Movatterモバイル変換


[0]ホーム

URL:


CN102729760A - Real-time optimal damping control algorithm of automobile semi-active suspension system - Google Patents

Real-time optimal damping control algorithm of automobile semi-active suspension system
Download PDF

Info

Publication number
CN102729760A
CN102729760ACN2012102456857ACN201210245685ACN102729760ACN 102729760 ACN102729760 ACN 102729760ACN 2012102456857 ACN2012102456857 ACN 2012102456857ACN 201210245685 ACN201210245685 ACN 201210245685ACN 102729760 ACN102729760 ACN 102729760A
Authority
CN
China
Prior art keywords
vehicle
suspension
speed
damping
suspension system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102456857A
Other languages
Chinese (zh)
Other versions
CN102729760B (en
Inventor
周长城
李红艳
赵雷雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of TechnologyfiledCriticalShandong University of Technology
Priority to CN201210245685.7ApriorityCriticalpatent/CN102729760B/en
Publication of CN102729760ApublicationCriticalpatent/CN102729760A/en
Application grantedgrantedCritical
Publication of CN102729760BpublicationCriticalpatent/CN102729760B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Landscapes

Abstract

Translated fromChinese

本发明涉及连续控制式半主动悬架系统最佳阻尼的控制算法,是为更好地满足人们对乘坐舒适性和汽车行驶安全性要求而研发的。利用传感器测得车身振动加速度信号、车速信号和转角信号,根据传感器所测得的信号感知车辆当前行驶路况及悬架系统阻尼比;根据测得的车身和车轮振动加速度,得到车身和车轮垂直运动速度及它们之间的相对运动速度;根据车辆参数确定出当前车速和路况下所要求的减振器最佳阻尼系数和阻尼力,并通过控制器输出步进电机转角控制信号,控制调节可控减振器阻尼节流孔的面积,使半主动悬架系统达到所要求的最佳阻尼和阻尼力。本发明所提供的半主动悬架最佳阻尼控制算法,简单易于实现,对执行元件的动态性能要求低,有利于半主动悬架的应用和推广。

Figure 201210245685

The invention relates to a control algorithm for optimal damping of a continuous control type semi-active suspension system, which is developed to better meet people's requirements for ride comfort and vehicle driving safety. Use the sensor to measure the vibration acceleration signal, vehicle speed signal and corner signal of the vehicle body, and perceive the current driving road conditions and suspension system damping ratio of the vehicle according to the signal measured by the sensor; obtain the vertical motion of the vehicle body and wheel according to the measured vibration acceleration of the vehicle body and wheels Speed and relative movement speed between them; determine the optimal damping coefficient and damping force of the shock absorber required under the current vehicle speed and road conditions according to the vehicle parameters, and output the stepping motor rotation angle control signal through the controller, and the control adjustment is controllable The area of the damping orifice of the shock absorber enables the semi-active suspension system to achieve the required optimum damping and damping force. The optimal damping control algorithm of the semi-active suspension provided by the invention is simple and easy to realize, has low requirements on the dynamic performance of the actuator, and is beneficial to the application and popularization of the semi-active suspension.

Figure 201210245685

Description

Translated fromChinese
汽车半主动悬架系统实时最佳阻尼控制算法Real-time Optimal Damping Control Algorithm for Automobile Semi-Active Suspension System

 技术领域technical field

本发明涉及汽车半主动系统,特别是汽车半主动悬架系统阻尼控制算法。The invention relates to an automobile semi-active system, in particular to a damping control algorithm for an automobile semi-active suspension system.

背景技术Background technique

汽车在实际行驶过程中,车速和行驶路况是不断变化的。随着汽车工业的快速发展和汽车行驶速度的不断提高,人们对汽车行驶安全性和乘坐舒适性提出了更高的要求。汽车半主动悬架系统阻尼的控制方法对悬架的性能具有至关重要的作用,它直接影响汽车的操纵稳定性、乘坐舒适性和行驶安全性。对于汽车半主动悬架系统而言,必然要求其阻尼随车速和汽车当前行驶路况连续可调,在保证汽车安全行驶的前提下,使乘坐舒适性达到最佳。目前,国、内外很多学者已对半主动悬架阻尼的控制方法进行了大量研究,应用较多的是基于速度的控制方法和基于路面谱输入及车身加速度的控制方法。其中较成功且应用最多的控制方法是基于速度控制的天棚控制方法及其改进的控制方法,采用这两种控制方法的半主动悬架系统较之于被动悬架具有较好的减振性能,但是它们都不能保证对操纵稳定性进行改善,并未解决好悬架系统乘坐舒适性和操纵稳定性这一矛盾。国内、外车辆工程专家已对半主动悬架阻尼比进行了大量研究,曾单独以车身振动加速度或车轮动载建立目标函数,对悬架系统阻尼匹配进行了研究,但是由于悬架阻尼比决定车辆的乘坐舒适性和行驶安全性,且两者是相互矛盾和相互影响的。据所查阅资料可知,目前国内、外尚未能建立在不同行驶工况下安全性和舒适性相统一的实时最佳阻尼比数学模型,半主动悬架设计只能根据被动悬架阻尼比的可行性设计区(0.2~0.5)内,按照车辆类型和行驶路况,凭经验选择有限个(2或3个)阻尼比值,对可控减振器节流阀参数进行设计,在不同行驶工况下很难使车辆达到最佳减振效果。为了更好地改善半主动悬架系统的性能,解决悬架系统乘坐舒适性和操纵稳定性之间的矛盾,必须开发实时最佳阻尼匹配半主动悬架系统阻尼的控制算法。During the actual driving process of the car, the speed and road conditions are constantly changing. With the rapid development of the automobile industry and the continuous improvement of automobile driving speed, people put forward higher requirements for automobile driving safety and ride comfort. The damping control method of automobile semi-active suspension system plays a vital role in the performance of the suspension, and it directly affects the handling stability, ride comfort and driving safety of the automobile. For the semi-active suspension system of a car, it is necessary to require its damping to be continuously adjustable with the speed of the car and the current road conditions of the car, so as to achieve the best ride comfort under the premise of ensuring the safe driving of the car. At present, many scholars at home and abroad have done a lot of research on the control method of semi-active suspension damping, and the control method based on speed and the control method based on road surface spectrum input and vehicle body acceleration are widely used. Among them, the most successful and widely used control method is the ceiling control method based on speed control and its improved control method. The semi-active suspension system using these two control methods has better vibration reduction performance than the passive suspension. However, none of them can guarantee the improvement of the handling stability, and have not solved the contradiction between the ride comfort and the handling stability of the suspension system. Domestic and foreign vehicle engineering experts have done a lot of research on the damping ratio of semi-active suspensions. They have established objective functions based on the vibration acceleration of the vehicle body or the dynamic load of the wheels, and have studied the damping matching of the suspension system. However, due to the suspension damping ratio The ride comfort and driving safety of the vehicle are mutually contradictory and affect each other. According to the information we have consulted, at present, domestic and foreign countries have not yet established a real-time optimal damping ratio mathematical model that unifies safety and comfort under different driving conditions. The design of semi-active suspension can only be based on the damping ratio of passive suspension. In the feasibility design area (0.2-0.5), according to the vehicle type and driving conditions, a limited number (2 or 3) of damping ratios are selected based on experience, and the throttle valve parameters of the controllable shock absorber are designed. It is difficult to make the vehicle achieve the best vibration damping effect. In order to better improve the performance of the semi-active suspension system and resolve the contradiction between ride comfort and handling stability of the suspension system, it is necessary to develop a real-time optimal damping matching control algorithm for the semi-active suspension system damping.

发明内容Contents of the invention

针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是提供一种实时最佳阻尼匹配半主动悬架系统阻尼的控制算法。In view of the above-mentioned defects in the prior art, the technical problem to be solved by the present invention is to provide a real-time optimal damping matching control algorithm for semi-active suspension system damping.

为了解决上述技术问题,本发明所提供的一种实时最佳阻尼匹配半主动悬架系统阻尼的控制方法,其技术方案如下:In order to solve the above technical problems, the present invention provides a real-time optimal damping matching control method for semi-active suspension system damping, the technical solution of which is as follows:

(1) 确定车辆当前行驶路况的功率谱密度                                                

Figure 444637DEST_PATH_IMAGE001
:利用加速度传感器测得车身垂直振动加速度
Figure 700037DEST_PATH_IMAGE002
,车速传感器测得车辆行驶速度
Figure 776578DEST_PATH_IMAGE003
和阻尼控制量(电压或者步进电机转角等)求得悬架系统当前阻尼比
Figure 546957DEST_PATH_IMAGE004
,再根据车辆单轮簧上质量
Figure 796672DEST_PATH_IMAGE005
、单轮簧下质量
Figure 719629DEST_PATH_IMAGE006
、悬架弹簧刚度
Figure 216338DEST_PATH_IMAGE007
、轮胎刚度和车身固有频率,确定车辆当前行驶路面功率谱
Figure 304883DEST_PATH_IMAGE010
,其中,
Figure 785543DEST_PATH_IMAGE011
Figure 15667DEST_PATH_IMAGE012
为参考空间频率,
Figure 754002DEST_PATH_IMAGE014
;(1) Determine the power spectral density of the vehicle's current driving condition
Figure 444637DEST_PATH_IMAGE001
: Use the acceleration sensor to measure the vertical vibration acceleration of the vehicle body
Figure 700037DEST_PATH_IMAGE002
, the vehicle speed measured by the vehicle speed sensor
Figure 776578DEST_PATH_IMAGE003
Calculate the current damping ratio of the suspension system with the damping control amount (voltage or stepping motor rotation angle, etc.)
Figure 546957DEST_PATH_IMAGE004
, and then according to the sprung mass of the single wheel of the vehicle
Figure 796672DEST_PATH_IMAGE005
, single wheel unsprung mass
Figure 719629DEST_PATH_IMAGE006
, Suspension spring stiffness
Figure 216338DEST_PATH_IMAGE007
, tire stiffness and body natural frequency , to determine the power spectrum of the vehicle's current road surface
Figure 304883DEST_PATH_IMAGE010
,in,
Figure 785543DEST_PATH_IMAGE011
,
Figure 15667DEST_PATH_IMAGE012
, is the reference spatial frequency,
Figure 754002DEST_PATH_IMAGE014
;

(2) 计算当前行驶路况下悬架系统所需要的动限位行程

Figure 405563DEST_PATH_IMAGE015
:根据行驶车速
Figure 388563DEST_PATH_IMAGE003
和路面功率谱密度
Figure 970722DEST_PATH_IMAGE001
,利用悬架动挠度概率分布与标准差的关系,确定此时悬架系统所需要的动限位行程
Figure 519515DEST_PATH_IMAGE016
;(2) Calculate the dynamic limit travel required by the suspension system under the current driving conditions
Figure 405563DEST_PATH_IMAGE015
: According to driving speed
Figure 388563DEST_PATH_IMAGE003
and road power spectral density
Figure 970722DEST_PATH_IMAGE001
, using the relationship between the suspension dynamic deflection probability distribution and the standard deviation, determine the dynamic limit stroke required by the suspension system at this time
Figure 519515DEST_PATH_IMAGE016
;

(3) 确定当前车速和路况下的悬架系统实时最佳阻尼比

Figure 545240DEST_PATH_IMAGE017
:根据车辆悬架单轮簧上质量、簧下质量
Figure 932545DEST_PATH_IMAGE006
、悬架弹簧刚度
Figure 726058DEST_PATH_IMAGE007
、轮胎刚度
Figure 985001DEST_PATH_IMAGE008
、车身固有频率
Figure 411434DEST_PATH_IMAGE009
、路面功率谱密度
Figure 600976DEST_PATH_IMAGE001
、车速
Figure 124361DEST_PATH_IMAGE003
和悬架动限位行程,确定当前车速
Figure 467935DEST_PATH_IMAGE018
和路况
Figure 219026DEST_PATH_IMAGE001
下悬架系统实时最佳阻尼比
Figure 596917DEST_PATH_IMAGE019
,且当
Figure 135346DEST_PATH_IMAGE020
时,取;当
Figure 130033DEST_PATH_IMAGE022
时,取
Figure 565693DEST_PATH_IMAGE023
;(3) Determine the real-time optimal damping ratio of the suspension system under the current vehicle speed and road conditions
Figure 545240DEST_PATH_IMAGE017
: according to the sprung mass of the vehicle suspension single wheel , unsprung mass
Figure 932545DEST_PATH_IMAGE006
, Suspension spring stiffness
Figure 726058DEST_PATH_IMAGE007
, tire stiffness
Figure 985001DEST_PATH_IMAGE008
, The natural frequency of the vehicle body
Figure 411434DEST_PATH_IMAGE009
, road power spectral density
Figure 600976DEST_PATH_IMAGE001
, speed
Figure 124361DEST_PATH_IMAGE003
and suspension limit travel , to determine the current speed
Figure 467935DEST_PATH_IMAGE018
and traffic
Figure 219026DEST_PATH_IMAGE001
Real-time optimal damping ratio of the lower suspension system
Figure 596917DEST_PATH_IMAGE019
, and when
Figure 135346DEST_PATH_IMAGE020
when, take ;when
Figure 130033DEST_PATH_IMAGE022
when, take
Figure 565693DEST_PATH_IMAGE023
;

(4) 确定簧上质量和簧下质量的相对运动速度:利用车身振动加速度传感器测得的车身垂直振动加速度

Figure 474929DEST_PATH_IMAGE002
,求得车身垂直运动速度
Figure 357435DEST_PATH_IMAGE025
;利用车轮振动加速度传感器测得的车轮垂直振动加速度
Figure 647602DEST_PATH_IMAGE026
,求得车轮垂直运动速度
Figure 324571DEST_PATH_IMAGE027
;根据车身垂直运动速度
Figure 949456DEST_PATH_IMAGE025
和车轮垂直运动速度
Figure 635652DEST_PATH_IMAGE027
,计算簧上质量和簧下质量的相对运动速度
Figure 780326DEST_PATH_IMAGE028
;(4) Determine the relative velocity of the sprung mass and the unsprung mass : The vertical vibration acceleration of the vehicle body measured by the vehicle body vibration acceleration sensor
Figure 474929DEST_PATH_IMAGE002
, to obtain the vertical velocity of the vehicle body
Figure 357435DEST_PATH_IMAGE025
; Wheel vertical vibration acceleration measured by the wheel vibration acceleration sensor
Figure 647602DEST_PATH_IMAGE026
, to obtain the vertical velocity of the wheel
Figure 324571DEST_PATH_IMAGE027
;According to the vertical movement speed of the body
Figure 949456DEST_PATH_IMAGE025
and wheel vertical velocity
Figure 635652DEST_PATH_IMAGE027
, to calculate the relative velocity of the sprung mass and the unsprung mass
Figure 780326DEST_PATH_IMAGE028
;

(5) 确定当前车速

Figure 893775DEST_PATH_IMAGE018
和路况
Figure 5957DEST_PATH_IMAGE001
下的减振器最佳阻尼系数
Figure 230265DEST_PATH_IMAGE029
:根据所确定的悬架系统实时最佳阻尼比
Figure 495024DEST_PATH_IMAGE017
、悬架系统单轮簧上质量
Figure 966325DEST_PATH_IMAGE005
、悬架刚度
Figure 113273DEST_PATH_IMAGE007
、减振器安装杠杆比
Figure 78955DEST_PATH_IMAGE030
和减振器安装角
Figure 447488DEST_PATH_IMAGE031
,确定当前车速
Figure 840423DEST_PATH_IMAGE018
和路况
Figure 927197DEST_PATH_IMAGE001
下的减振器最佳阻尼系数
Figure 493308DEST_PATH_IMAGE032
,其中,
Figure 467080DEST_PATH_IMAGE033
为平安比,且
Figure 280184DEST_PATH_IMAGE034
;(5) Determine the current vehicle speed
Figure 893775DEST_PATH_IMAGE018
and traffic
Figure 5957DEST_PATH_IMAGE001
The optimal damping coefficient of the shock absorber under
Figure 230265DEST_PATH_IMAGE029
: According to the determined real-time optimal damping ratio of the suspension system
Figure 495024DEST_PATH_IMAGE017
, Suspension system single wheel sprung mass
Figure 966325DEST_PATH_IMAGE005
, Suspension stiffness
Figure 113273DEST_PATH_IMAGE007
, Shock absorber installation leverage ratio
Figure 78955DEST_PATH_IMAGE030
and shock absorber mounting angle
Figure 447488DEST_PATH_IMAGE031
, to determine the current speed
Figure 840423DEST_PATH_IMAGE018
and traffic
Figure 927197DEST_PATH_IMAGE001
The optimal damping coefficient of the shock absorber under
Figure 493308DEST_PATH_IMAGE032
,in,
Figure 467080DEST_PATH_IMAGE033
is the safety ratio, and
Figure 280184DEST_PATH_IMAGE034
;

(6) 确定当前车速和路况

Figure 709208DEST_PATH_IMAGE001
下的最佳阻尼力
Figure 865383DEST_PATH_IMAGE035
:根据步骤(4)确定的相对运动速度
Figure 849388DEST_PATH_IMAGE024
及步骤(5)确定的减振器最佳阻尼系数
Figure 458224DEST_PATH_IMAGE029
,确定当前车速
Figure 303821DEST_PATH_IMAGE018
和路况
Figure 314502DEST_PATH_IMAGE001
下的最佳阻尼力
Figure 469409DEST_PATH_IMAGE036
,并通过控制系统控制调节可控减振器达到所要求的阻尼力
Figure 565541DEST_PATH_IMAGE035
。(6) Determine the current vehicle speed and traffic
Figure 709208DEST_PATH_IMAGE001
The best damping force under
Figure 865383DEST_PATH_IMAGE035
: The relative motion speed determined according to step (4)
Figure 849388DEST_PATH_IMAGE024
and the optimal damping coefficient of the shock absorber determined in step (5)
Figure 458224DEST_PATH_IMAGE029
, to determine the current speed
Figure 303821DEST_PATH_IMAGE018
and traffic
Figure 314502DEST_PATH_IMAGE001
The best damping force under
Figure 469409DEST_PATH_IMAGE036
, and adjust the controllable shock absorber to achieve the required damping force through the control system
Figure 565541DEST_PATH_IMAGE035
.

本发明比现有技术具有的优点:The present invention has the advantage over prior art:

本发明提供的汽车半主动悬架系统最佳阻尼的控制算法,是以半主动悬架系统最佳阻尼匹配作为控制目标,通过控制可控减振器最佳阻尼,使悬架系统达到最佳阻尼匹配。该控制算法简单易实施,且利用该控制算法可明显改善悬架的性能,很好地解决悬架系统乘坐舒适性和汽车行驶安全性之间的矛盾。The optimal damping control algorithm of the automobile semi-active suspension system provided by the present invention takes the optimal damping matching of the semi-active suspension system as the control target, and makes the suspension system reach the optimum level by controlling the optimal damping of the controllable shock absorber. Damping matching. The control algorithm is simple and easy to implement, and the performance of the suspension can be significantly improved by using the control algorithm, and the contradiction between the ride comfort of the suspension system and the driving safety of the vehicle can be well resolved.

附图说明Description of drawings

为了更好地理解本发明下面结合附图作进一步说明。In order to better understand the present invention, the following will be further described in conjunction with the accompanying drawings.

图1是实时汽车主动悬架系统最佳阻尼的控制算法原理图。Figure 1 is a schematic diagram of the control algorithm for the optimal damping of the real-time vehicle active suspension system.

图2是实施例在车速60km/h时步进电机转角随路况的控制曲线。Fig. 2 is the control curve of the stepper motor rotation angle with the road conditions when the vehicle speed is 60km/h.

图3是实施例在车速100km/h时步进电机转角随路况的控制曲线。Fig. 3 is the control curve of stepping motor rotation angle with road conditions when the vehicle speed is 100km/h.

图4是实施例的车身垂直加速度的幅频特性曲线。Fig. 4 is an amplitude-frequency characteristic curve of the vertical acceleration of the vehicle body in the embodiment.

图5是实施例的悬架动挠度的幅频特性曲线。Fig. 5 is an amplitude-frequency characteristic curve of the dynamic deflection of the suspension of the embodiment.

图6是实施例的车轮相对动载的幅频特性曲线。Fig. 6 is the amplitude-frequency characteristic curve of the wheel relative to the dynamic load of the embodiment.

具体实施方式Detailed ways

下面通过一实施例对本发明作进一步详细说明。The present invention will be further described in detail through an embodiment below.

某轿车悬架系统单轮簧上质量

Figure 214828DEST_PATH_IMAGE037
=240kg、簧下质量=24kg;悬架弹簧刚度
Figure 671403DEST_PATH_IMAGE007
=9475N/m和轮胎刚度
Figure 926935DEST_PATH_IMAGE039
=85270N/m;车身固有频率
Figure 442230DEST_PATH_IMAGE040
=1.0Hz;可控筒式液压减振器安装杠杆比
Figure 614454DEST_PATH_IMAGE030
=0.8、安装角
Figure 924213DEST_PATH_IMAGE031
=10°。Single wheel sprung mass of a car suspension system
Figure 214828DEST_PATH_IMAGE037
=240kg, unsprung mass =24kg; suspension spring stiffness
Figure 671403DEST_PATH_IMAGE007
=9475N/m and tire stiffness
Figure 926935DEST_PATH_IMAGE039
=85270N/m; The natural frequency of the body
Figure 442230DEST_PATH_IMAGE040
=1.0Hz; installation lever ratio of controllable cylinder hydraulic shock absorber
Figure 614454DEST_PATH_IMAGE030
=0.8, installation angle
Figure 924213DEST_PATH_IMAGE031
=10°.

本发明实施例所提供的实时最佳阻尼匹配半主动悬架系统阻尼的控制方法,控制流程如图1所示,具体步骤如下:The control method of the real-time optimal damping matching semi-active suspension system damping provided by the embodiment of the present invention, the control flow is shown in Figure 1, and the specific steps are as follows:

(1) 确定车辆行驶路况的功率谱密度

Figure 667041DEST_PATH_IMAGE001
:利用车身振动加速度传感器测得车身振动加速度,车速传感器测得车辆行驶速度
Figure 684861DEST_PATH_IMAGE003
及步进电机转角反求得当前阻尼比
Figure 910492DEST_PATH_IMAGE004
,确定路面功率谱
Figure 439693DEST_PATH_IMAGE001
;(1) Determine the power spectral density of the vehicle's driving conditions
Figure 667041DEST_PATH_IMAGE001
: Use the body vibration acceleration sensor to measure the body vibration acceleration , the vehicle speed measured by the vehicle speed sensor
Figure 684861DEST_PATH_IMAGE003
and stepper motor angle Inversely obtain the current damping ratio
Figure 910492DEST_PATH_IMAGE004
, to determine the road power spectrum
Figure 439693DEST_PATH_IMAGE001
;

(2) 计算当前行驶路况下的悬架动挠度限位行程

Figure 238071DEST_PATH_IMAGE015
:根据行驶车速
Figure 955491DEST_PATH_IMAGE003
和路面功率谱密度
Figure 350701DEST_PATH_IMAGE001
,利用悬架动挠度概率分布与标准差的关系,确定悬架动挠度限位行程
Figure 352024DEST_PATH_IMAGE015
;(2) Calculate the current driving conditions Suspension dynamic deflection limit travel under
Figure 238071DEST_PATH_IMAGE015
: According to driving speed
Figure 955491DEST_PATH_IMAGE003
and road power spectral density
Figure 350701DEST_PATH_IMAGE001
, using the relationship between the suspension dynamic deflection probability distribution and the standard deviation, determine the suspension dynamic deflection limit stroke
Figure 352024DEST_PATH_IMAGE015
;

(3) 确定当前车速

Figure 174486DEST_PATH_IMAGE018
和路况
Figure 379202DEST_PATH_IMAGE001
下所需要的最佳阻尼比:根据轿车悬架系统单轮簧上质量
Figure 433932DEST_PATH_IMAGE037
=240kg、簧下质量
Figure 364979DEST_PATH_IMAGE038
=24kg、悬架弹簧刚度
Figure 119308DEST_PATH_IMAGE007
=9475N/m、轮胎刚度
Figure 246533DEST_PATH_IMAGE039
=85270N/m、车身固有频率
Figure 769918DEST_PATH_IMAGE040
=1.0Hz、路面功率谱密度、车速及悬架动限位行程
Figure 121134DEST_PATH_IMAGE015
,确定当前车速和路况下所需要的最佳阻尼比
Figure 300443DEST_PATH_IMAGE042
,且当
Figure 841146DEST_PATH_IMAGE043
时,取;当
Figure 6734DEST_PATH_IMAGE045
时,取
Figure 407759DEST_PATH_IMAGE046
,其中
Figure 752153DEST_PATH_IMAGE047
Figure 171502DEST_PATH_IMAGE048
Figure 943148DEST_PATH_IMAGE013
为参考空间频率,
Figure 831470DEST_PATH_IMAGE014
;(3) Determine the current vehicle speed
Figure 174486DEST_PATH_IMAGE018
and traffic
Figure 379202DEST_PATH_IMAGE001
The optimal damping ratio required under : According to the sprung mass of a single wheel in the car suspension system
Figure 433932DEST_PATH_IMAGE037
=240kg, unsprung mass
Figure 364979DEST_PATH_IMAGE038
=24kg, suspension spring stiffness
Figure 119308DEST_PATH_IMAGE007
=9475N/m, tire stiffness
Figure 246533DEST_PATH_IMAGE039
=85270N/m, natural frequency of vehicle body
Figure 769918DEST_PATH_IMAGE040
=1.0Hz, road surface power spectral density, vehicle speed and suspension dynamic limit stroke
Figure 121134DEST_PATH_IMAGE015
, to determine the optimal damping ratio required under the current vehicle speed and road conditions
Figure 300443DEST_PATH_IMAGE042
, and when
Figure 841146DEST_PATH_IMAGE043
when, take ;when
Figure 6734DEST_PATH_IMAGE045
when, take
Figure 407759DEST_PATH_IMAGE046
,in
Figure 752153DEST_PATH_IMAGE047
,
Figure 171502DEST_PATH_IMAGE048
,
Figure 943148DEST_PATH_IMAGE013
is the reference spatial frequency,
Figure 831470DEST_PATH_IMAGE014
;

(4) 确定当前车速

Figure 713975DEST_PATH_IMAGE018
和路况
Figure 253410DEST_PATH_IMAGE001
下所需要的最佳阻尼系数:根据悬架系统单轮簧上质量
Figure 571576DEST_PATH_IMAGE037
=240kg、悬架刚度=9475N/m、减振器安装杠杆比
Figure 589396DEST_PATH_IMAGE030
=0.8、减振器安装角
Figure 702846DEST_PATH_IMAGE031
=10°及当前车速和路况下的最佳阻尼比
Figure 815027DEST_PATH_IMAGE017
,确定当前车速
Figure 39335DEST_PATH_IMAGE018
和路况下所需要的最佳阻尼系数;(4) Determine the current vehicle speed
Figure 713975DEST_PATH_IMAGE018
and traffic
Figure 253410DEST_PATH_IMAGE001
The optimal damping coefficient required under : according to the sprung mass of the suspension system single wheel
Figure 571576DEST_PATH_IMAGE037
=240kg, suspension stiffness =9475N/m, shock absorber installation leverage ratio
Figure 589396DEST_PATH_IMAGE030
=0.8, installation angle of shock absorber
Figure 702846DEST_PATH_IMAGE031
=10° and the best damping ratio under the current vehicle speed and road conditions
Figure 815027DEST_PATH_IMAGE017
, to determine the current speed
Figure 39335DEST_PATH_IMAGE018
and traffic The optimal damping coefficient required under ;

(5) 确定簧上质量和簧下质量的相对运动速度:利用车身振动加速度传感器测得的车身振动加速度

Figure 888026DEST_PATH_IMAGE002
,估算簧上质量和簧下质量的相对运动速度
Figure 69608DEST_PATH_IMAGE024
;(5) Determine the relative velocity of the sprung mass and the unsprung mass : The body vibration acceleration measured by the body vibration acceleration sensor
Figure 888026DEST_PATH_IMAGE002
, to estimate the relative velocity of the sprung and unsprung masses
Figure 69608DEST_PATH_IMAGE024
;

(6) 确定当前车速

Figure 711811DEST_PATH_IMAGE018
和路况
Figure 283738DEST_PATH_IMAGE001
下所需要的最佳阻尼及阻尼力
Figure 276150DEST_PATH_IMAGE035
:根据步骤(4)确定的最佳阻尼系数
Figure 902304DEST_PATH_IMAGE029
及步骤(5)确定的相对运动速度
Figure 148477DEST_PATH_IMAGE024
,确定当前车速
Figure 518279DEST_PATH_IMAGE018
和路况
Figure 861404DEST_PATH_IMAGE001
下所需要的最佳阻尼力,通过控制可控减振器达到所要求的最佳阻尼力
Figure 204978DEST_PATH_IMAGE035
。(6) Determine the current vehicle speed
Figure 711811DEST_PATH_IMAGE018
and traffic
Figure 283738DEST_PATH_IMAGE001
The optimum damping required under and damping force
Figure 276150DEST_PATH_IMAGE035
: The optimal damping coefficient determined according to step (4)
Figure 902304DEST_PATH_IMAGE029
and the relative motion speed determined in step (5)
Figure 148477DEST_PATH_IMAGE024
, to determine the current speed
Figure 518279DEST_PATH_IMAGE018
and traffic
Figure 861404DEST_PATH_IMAGE001
The optimum damping force required under , to achieve the required optimum damping force by controlling the controllable shock absorber
Figure 204978DEST_PATH_IMAGE035
.

图2是实施例在车速60km/h时步进电机转角随路况的控制曲线,图3是实施例在车速100km/h时步进电机转角随路况的控制曲线。通过分析图2和图3可知,同一车速下,行驶在良好路面上时,可控减振器在舒适性最佳阻尼比下工作,步进电机转动较小的度数;行驶在差路面上时,可控减振器在安全性最佳阻尼比下工作,步进电机转动较大的度数;随着路面状况变差,步进电机转角逐渐增大。在低车速下行驶,步进电机调节的路面等级带宽大;在高车速下行驶,步进电机调节的路面等级带宽小。Fig. 2 is the control curve of stepper motor rotation angle with road conditions when the vehicle speed is 60km/h, and Fig. 3 is the control curve of stepper motor rotation angle with road conditions when the vehicle speed is 100km/h. By analyzing Figure 2 and Figure 3, it can be seen that at the same speed, when driving on a good road surface, the controllable shock absorber works at the best damping ratio for comfort, and the stepper motor rotates at a smaller degree; when driving on a bad road surface , the controllable shock absorber works under the best damping ratio for safety, and the stepper motor rotates at a larger degree; as the road surface condition becomes worse, the stepper motor's rotation angle gradually increases. When driving at a low speed, the stepper motor adjusts the road surface grade bandwidth with a wide range; when driving at a high speed, the stepper motor adjusts the road surface grade bandwidth with a small width.

图4是实施例的车身垂直加速度的幅频特性曲线,图5是实施例的悬架动挠度的幅频特性曲线,图6是实施例的车轮相对动载的幅频特性曲线。由图4~图6可知,与被动悬架相比,由于该轿车采用了半主动悬架系统最佳阻尼的控制算法,车身振动加速度在低频共振区的峰值明显降低,车轮动载荷和悬架弹簧动挠度在低频和高频共振区的峰值也得到明显改善。Fig. 4 is the amplitude-frequency characteristic curve of the vertical acceleration of the vehicle body of the embodiment, Fig. 5 is the amplitude-frequency characteristic curve of the suspension dynamic deflection of the embodiment, and Fig. 6 is the amplitude-frequency characteristic curve of the relative dynamic load of the wheel of the embodiment. It can be seen from Figures 4 to 6 that compared with the passive suspension, because the car adopts the optimal damping control algorithm of the semi-active suspension system, the peak value of the vibration acceleration of the vehicle body in the low-frequency resonance area is significantly reduced, and the dynamic load of the wheel and the suspension The spring deflection peaks in the low-frequency and high-frequency resonance regions have also been significantly improved.

由此可知,采用半主动悬架系统最佳阻尼的控制算法,可明显地改善悬架的性能,使车辆悬架达到最佳阻尼匹配,很好地解决悬架系统乘坐舒适性和汽车行驶安全性之间的矛盾。It can be seen that the optimal damping control algorithm of the semi-active suspension system can significantly improve the performance of the suspension, make the vehicle suspension achieve the best damping matching, and solve the problem of ride comfort and driving safety of the suspension system. conflict between sex.

Claims (4)

Translated fromChinese
1.基于车速和行驶路况的汽车半主动悬架最佳阻尼比控制方法,其具体步骤如下:1. The optimal damping ratio control method for semi-active suspension of automobiles based on vehicle speed and driving conditions. The specific steps are as follows:(1) 确定路况的功率谱密度                                                
Figure 233317DEST_PATH_IMAGE001
:利用加速度传感器测得车身垂直振动加速度
Figure 940242DEST_PATH_IMAGE002
,车速传感器测得车辆行驶速度
Figure 334314DEST_PATH_IMAGE003
和阻尼控制量(电压或者步进电机转角等)求得悬架系统当前阻尼比
Figure 152098DEST_PATH_IMAGE004
,再根据车辆单轮簧上质量
Figure 948015DEST_PATH_IMAGE005
、单轮簧下质量
Figure 560262DEST_PATH_IMAGE006
、悬架弹簧刚度
Figure 972789DEST_PATH_IMAGE007
、轮胎刚度和车身固有频率
Figure 746152DEST_PATH_IMAGE009
,确定车辆当前行驶路面功率谱
Figure 670246DEST_PATH_IMAGE010
,其中,
Figure 897965DEST_PATH_IMAGE011
Figure 234585DEST_PATH_IMAGE013
为参考空间频率,
Figure 454214DEST_PATH_IMAGE014
;(1) Determine the power spectral density of the road condition
Figure 233317DEST_PATH_IMAGE001
: Use the acceleration sensor to measure the vertical vibration acceleration of the vehicle body
Figure 940242DEST_PATH_IMAGE002
, the vehicle speed measured by the vehicle speed sensor
Figure 334314DEST_PATH_IMAGE003
and the damping control amount (voltage or stepper motor angle, etc.) to obtain the current damping ratio of the suspension system
Figure 152098DEST_PATH_IMAGE004
, and then according to the sprung mass of the single wheel of the vehicle
Figure 948015DEST_PATH_IMAGE005
, single wheel unsprung mass
Figure 560262DEST_PATH_IMAGE006
, Suspension spring stiffness
Figure 972789DEST_PATH_IMAGE007
, tire stiffness and body natural frequency
Figure 746152DEST_PATH_IMAGE009
, to determine the power spectrum of the vehicle's current road surface
Figure 670246DEST_PATH_IMAGE010
,in,
Figure 897965DEST_PATH_IMAGE011
, ,
Figure 234585DEST_PATH_IMAGE013
is the reference spatial frequency,
Figure 454214DEST_PATH_IMAGE014
;(2) 计算当前行驶路况下悬架系统所需要的动限位行程
Figure 44596DEST_PATH_IMAGE015
:根据行驶车速
Figure 414397DEST_PATH_IMAGE003
和路面功率谱密度
Figure 164047DEST_PATH_IMAGE001
,利用悬架动挠度概率分布与标准差的关系,确定此时悬架系统所需要的动限位行程
(2) Calculate the dynamic limit travel required by the suspension system under the current driving conditions
Figure 44596DEST_PATH_IMAGE015
: According to driving speed
Figure 414397DEST_PATH_IMAGE003
and road power spectral density
Figure 164047DEST_PATH_IMAGE001
, using the relationship between the suspension dynamic deflection probability distribution and the standard deviation, determine the dynamic limit stroke required by the suspension system at this time ;
(3) 确定当前车速和路况下的悬架系统实时最佳阻尼比
Figure 142509DEST_PATH_IMAGE017
:根据车辆悬架单轮簧上质量、簧下质量
Figure 123420DEST_PATH_IMAGE006
、悬架弹簧刚度
Figure 91376DEST_PATH_IMAGE007
、轮胎刚度
Figure 656349DEST_PATH_IMAGE008
、车身固有频率、路面功率谱密度
Figure 295458DEST_PATH_IMAGE001
、车速
Figure 27791DEST_PATH_IMAGE003
和悬架动限位行程,确定当前车速
Figure 595356DEST_PATH_IMAGE018
和路况
Figure 409990DEST_PATH_IMAGE001
下悬架系统实时最佳阻尼比
Figure 188590DEST_PATH_IMAGE019
,且当
Figure 852790DEST_PATH_IMAGE020
时,取
Figure 375038DEST_PATH_IMAGE021
;当
Figure 808293DEST_PATH_IMAGE022
时,取
Figure 288953DEST_PATH_IMAGE023
(3) Determine the real-time optimal damping ratio of the suspension system under the current vehicle speed and road conditions
Figure 142509DEST_PATH_IMAGE017
: according to the sprung mass of the vehicle suspension single wheel , unsprung mass
Figure 123420DEST_PATH_IMAGE006
, Suspension spring stiffness
Figure 91376DEST_PATH_IMAGE007
, tire stiffness
Figure 656349DEST_PATH_IMAGE008
, The natural frequency of the vehicle body , road power spectral density
Figure 295458DEST_PATH_IMAGE001
, speed
Figure 27791DEST_PATH_IMAGE003
and suspension limit travel , to determine the current speed
Figure 595356DEST_PATH_IMAGE018
and traffic
Figure 409990DEST_PATH_IMAGE001
Real-time optimal damping ratio of the lower suspension system
Figure 188590DEST_PATH_IMAGE019
, and when
Figure 852790DEST_PATH_IMAGE020
when, take
Figure 375038DEST_PATH_IMAGE021
;when
Figure 808293DEST_PATH_IMAGE022
when, take
Figure 288953DEST_PATH_IMAGE023
;
(4) 确定簧上质量和簧下质量的相对运动速度
Figure 315815DEST_PATH_IMAGE024
:利用车身振动加速度传感器测得的车身垂直振动加速度
Figure 500809DEST_PATH_IMAGE002
,求得车身垂直运动速度
Figure 195095DEST_PATH_IMAGE025
;利用车轮振动加速度传感器测得的车轮垂直振动加速度,求得车轮垂直运动速度
Figure 452825DEST_PATH_IMAGE027
;根据车身垂直运动速度
Figure 910351DEST_PATH_IMAGE025
和车轮垂直运动速度
Figure 724723DEST_PATH_IMAGE027
,计算簧上质量和簧下质量的相对运动速度
Figure 16027DEST_PATH_IMAGE028
(4) Determine the relative velocity of the sprung mass and the unsprung mass
Figure 315815DEST_PATH_IMAGE024
: The vertical vibration acceleration of the vehicle body measured by the vehicle body vibration acceleration sensor
Figure 500809DEST_PATH_IMAGE002
, to obtain the vertical velocity of the vehicle body
Figure 195095DEST_PATH_IMAGE025
; Wheel vertical vibration acceleration measured by the wheel vibration acceleration sensor , to obtain the vertical velocity of the wheel
Figure 452825DEST_PATH_IMAGE027
;According to the vertical movement speed of the body
Figure 910351DEST_PATH_IMAGE025
and wheel vertical velocity
Figure 724723DEST_PATH_IMAGE027
, to calculate the relative velocity of the sprung mass and the unsprung mass
Figure 16027DEST_PATH_IMAGE028
;
(5) 确定当前车速
Figure 876536DEST_PATH_IMAGE018
和路况
Figure 75436DEST_PATH_IMAGE001
下的减振器最佳阻尼系数
Figure 213156DEST_PATH_IMAGE029
:根据所确定的悬架系统实时最佳阻尼比
Figure 799996DEST_PATH_IMAGE017
、悬架系统单轮簧上质量
Figure 23166DEST_PATH_IMAGE005
、悬架刚度
Figure 855119DEST_PATH_IMAGE007
、减振器安装杠杆比
Figure 378504DEST_PATH_IMAGE030
和减振器安装角
Figure 277190DEST_PATH_IMAGE031
,确定当前车速
Figure 112290DEST_PATH_IMAGE018
和路况
Figure 387414DEST_PATH_IMAGE001
下的减振器最佳阻尼系数
Figure 499726DEST_PATH_IMAGE032
,其中,
Figure 428368DEST_PATH_IMAGE033
为平安比,且
Figure 157290DEST_PATH_IMAGE034
(5) Determine the current vehicle speed
Figure 876536DEST_PATH_IMAGE018
and traffic
Figure 75436DEST_PATH_IMAGE001
The optimal damping coefficient of the shock absorber under
Figure 213156DEST_PATH_IMAGE029
: According to the determined real-time optimal damping ratio of the suspension system
Figure 799996DEST_PATH_IMAGE017
, Suspension system single wheel sprung mass
Figure 23166DEST_PATH_IMAGE005
, Suspension stiffness
Figure 855119DEST_PATH_IMAGE007
, Shock absorber installation leverage ratio
Figure 378504DEST_PATH_IMAGE030
and shock absorber mounting angle
Figure 277190DEST_PATH_IMAGE031
, to determine the current speed
Figure 112290DEST_PATH_IMAGE018
and traffic
Figure 387414DEST_PATH_IMAGE001
The optimal damping coefficient of the shock absorber under
Figure 499726DEST_PATH_IMAGE032
,in,
Figure 428368DEST_PATH_IMAGE033
is the safety ratio, and
Figure 157290DEST_PATH_IMAGE034
;
(6) 确定当前车速
Figure 704946DEST_PATH_IMAGE018
和路况下的最佳阻尼力
Figure 36887DEST_PATH_IMAGE035
:根据步骤(4)确定的相对运动速度
Figure 987526DEST_PATH_IMAGE024
及步骤(5)确定的减振器最佳阻尼系数
Figure 962041DEST_PATH_IMAGE029
,确定当前车速
Figure 314525DEST_PATH_IMAGE018
和路况
Figure 725915DEST_PATH_IMAGE001
下的最佳阻尼力
Figure 757325DEST_PATH_IMAGE036
(6) Determine the current vehicle speed
Figure 704946DEST_PATH_IMAGE018
and traffic The best damping force under
Figure 36887DEST_PATH_IMAGE035
: The relative motion speed determined according to step (4)
Figure 987526DEST_PATH_IMAGE024
and the optimal damping coefficient of the shock absorber determined in step (5)
Figure 962041DEST_PATH_IMAGE029
, to determine the current speed
Figure 314525DEST_PATH_IMAGE018
and traffic
Figure 725915DEST_PATH_IMAGE001
The best damping force under
Figure 757325DEST_PATH_IMAGE036
;
(7)通过控制步进电机转动一定角度
Figure 177942DEST_PATH_IMAGE037
,调节可控减振器阻尼孔面积达到所要求的最佳阻尼力Fo
(7) By controlling the stepper motor to rotate a certain angle
Figure 177942DEST_PATH_IMAGE037
, adjust the damping hole area of the controllable shock absorber to achieve the required optimum damping forceFo .
2.根据权利要求1中所述的基于车速和行驶路况的汽车半主动悬架最佳阻尼比控制方法,其特征在于:利用加速度传感器测得车身垂直振动加速度
Figure 119353DEST_PATH_IMAGE002
,车速传感器测得车辆行驶速度
Figure 826278DEST_PATH_IMAGE003
和阻尼控制量(电压或者步进电机转角等),可确定出悬架系统的当前阻尼比
Figure 751509DEST_PATH_IMAGE004
,并且根据车辆单轮簧上质量
Figure 444658DEST_PATH_IMAGE005
、单轮簧下质量
Figure 99631DEST_PATH_IMAGE006
、悬架弹簧刚度
Figure 383981DEST_PATH_IMAGE007
、轮胎刚度
Figure 265350DEST_PATH_IMAGE008
和车身固有频率
Figure 388289DEST_PATH_IMAGE009
,可确定车辆当前行驶路况的路面功率谱
2. according to the automobile semi-active suspension optimal damping ratio control method based on vehicle speed and driving road conditions described in claim 1, it is characterized in that: utilize acceleration sensor to record vehicle body vertical vibration acceleration
Figure 119353DEST_PATH_IMAGE002
, the vehicle speed measured by the vehicle speed sensor
Figure 826278DEST_PATH_IMAGE003
and damping control amount (voltage or stepper motor angle, etc.), the current damping ratio of the suspension system can be determined
Figure 751509DEST_PATH_IMAGE004
, and according to the sprung mass of a single wheel of the vehicle
Figure 444658DEST_PATH_IMAGE005
, single wheel unsprung mass
Figure 99631DEST_PATH_IMAGE006
, Suspension spring stiffness
Figure 383981DEST_PATH_IMAGE007
, tire stiffness
Figure 265350DEST_PATH_IMAGE008
and body natural frequency
Figure 388289DEST_PATH_IMAGE009
, which can determine the road surface power spectrum of the vehicle's current driving condition .
3.根据权利要求1中所述的基于车速和行驶路况的汽车半主动悬架最佳阻尼比控制方法,其特征在于:利用悬架动挠度概率分布与其标准差的关系,确定车辆当前所需要的悬架动挠度限位行程
Figure 228386DEST_PATH_IMAGE038
3. according to the automobile semi-active suspension optimal damping ratio control method based on vehicle speed and driving road condition described in claim 1, it is characterized in that: utilize the relation of suspension dynamic deflection probability distribution and its standard deviation, determine the vehicle current required Suspension dynamic deflection limit stroke
Figure 228386DEST_PATH_IMAGE038
.
4.根据权利要求1中所述的基于车速和行驶路况的汽车半主动悬架最佳阻尼比控制方法,其特征在于:根据车辆悬架单轮簧上质量、簧下质量
Figure 287795DEST_PATH_IMAGE006
、悬架弹簧刚度
Figure 58304DEST_PATH_IMAGE007
、轮胎刚度
Figure 12354DEST_PATH_IMAGE008
、车身固有频率、路面功率谱密度、车速
Figure 722187DEST_PATH_IMAGE003
和悬架动限位行程,确定当前车速
Figure 596919DEST_PATH_IMAGE018
和路况下悬架系统实时最佳阻尼比
Figure 873103DEST_PATH_IMAGE019
,并且可通过控制步进电机转动一定角度
Figure 309901DEST_PATH_IMAGE037
,调节可控减振器阻尼孔面积达到所要求的最佳阻尼系数及可最佳阻尼力Fo
4. according to the optimal damping ratio control method of automobile semi-active suspension based on vehicle speed and driving road condition described in claim 1, it is characterized in that: according to vehicle suspension single-wheel sprung mass , unsprung mass
Figure 287795DEST_PATH_IMAGE006
, Suspension spring stiffness
Figure 58304DEST_PATH_IMAGE007
, tire stiffness
Figure 12354DEST_PATH_IMAGE008
, The natural frequency of the vehicle body , road power spectral density , speed
Figure 722187DEST_PATH_IMAGE003
and suspension limit travel , to determine the current speed
Figure 596919DEST_PATH_IMAGE018
and traffic Real-time optimal damping ratio of the lower suspension system
Figure 873103DEST_PATH_IMAGE019
, and can rotate a certain angle by controlling the stepping motor
Figure 309901DEST_PATH_IMAGE037
, adjust the orifice area of the controllable shock absorber to achieve the required optimum damping coefficient And the best damping forceFo .
CN201210245685.7A2012-07-172012-07-17Real-time optimal damping control algorithm of automobile semi-active suspension systemExpired - Fee RelatedCN102729760B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201210245685.7ACN102729760B (en)2012-07-172012-07-17Real-time optimal damping control algorithm of automobile semi-active suspension system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201210245685.7ACN102729760B (en)2012-07-172012-07-17Real-time optimal damping control algorithm of automobile semi-active suspension system

Publications (2)

Publication NumberPublication Date
CN102729760Atrue CN102729760A (en)2012-10-17
CN102729760B CN102729760B (en)2014-06-18

Family

ID=46986330

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201210245685.7AExpired - Fee RelatedCN102729760B (en)2012-07-172012-07-17Real-time optimal damping control algorithm of automobile semi-active suspension system

Country Status (1)

CountryLink
CN (1)CN102729760B (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102975587A (en)*2012-12-032013-03-20南京师范大学Vehicle semiactive suspension based on double controllable dampers and control method thereof
CN103112508A (en)*2013-03-082013-05-22山东理工大学Design method for optimum speed characteristics of trunk cab damper
CN103121475A (en)*2013-03-082013-05-29山东理工大学Design method for optimal damping ratio of suspension system of cab
CN103204043A (en)*2013-04-012013-07-17中国人民解放军装甲兵工程学院Frequency domain control method of automotive semi-active suspension system
CN103235891A (en)*2013-05-052013-08-07吉林大学Road identification system and method based on vehicle vertical vibration system identification
CN103241095A (en)*2013-05-312013-08-14山东理工大学Control algorithm of automotive magneto-rheological semi-active suspension system and real-time optimal current
CN103522863A (en)*2013-11-012014-01-22哈尔滨工业大学Executor input saturation control method of automobile active suspension system
CN103522862A (en)*2013-10-142014-01-22江苏大学Method for determining maximum value of equivalent damping of semi-active suspension
CN103625236A (en)*2013-11-182014-03-12江苏大学Method for determining charging voltage of ESASRE suspension frame based on grading transformation charging
CN104015582A (en)*2014-06-182014-09-03吉林大学Automotive energy-regenerative active suspension system with rigidity and damping variable
CN104200028A (en)*2014-09-032014-12-10山东理工大学Method for designing power of energy regenerative suspension generator based on vehicle parameters
CN104266849A (en)*2014-10-232015-01-07山东理工大学Test device and analysis method for damping of vehicle tire
WO2015004676A1 (en)*2013-07-112015-01-15Kpit Technologies LimitedA dynamically adjustable suspension device
CN104309437A (en)*2014-10-232015-01-28山东理工大学Design method for real-time optimal control of nonlinear rigidity of vehicle air suspension
CN104343884A (en)*2013-07-232015-02-11上海三一重机有限公司Mine car oil gas suspension damping control method
CN104408224A (en)*2014-10-142015-03-11山东理工大学Human body equivalent stiffness and damping identification method of vehicle seat human body vibration model
CN104494391A (en)*2014-12-162015-04-08张乔木Automobile anti-shocking system and control method
CN104669973A (en)*2015-02-122015-06-03江苏大学Automobile suspension system active control method for impact-type road disturbance
CN104999880A (en)*2015-08-172015-10-28哈尔滨工业大学Automobile active suspension anti-saturation control method based on self-adaptive control
CN105069263A (en)*2015-09-062015-11-18山东理工大学Collaborative optimization method of seat and secondary vertical suspension optimal damping ratio of high-speed railway vehicle
CN105117554A (en)*2015-09-062015-12-02山东理工大学Design method for optimal damping ratio of primary vertical suspension of high-speed rail vehicle
US9205717B2 (en)2012-11-072015-12-08Polaris Industries Inc.Vehicle having suspension with continuous damping control
CN105138785A (en)*2015-09-062015-12-09山东理工大学Collaborative optimization method for damping ratios of high-speed rail seat suspension, primary vertical suspension and secondary vertical suspension
CN105160179A (en)*2015-09-062015-12-16山东理工大学Analytic calculation method of optimal damping ratio of two-line horizontal suspension of high-speed railway vehicle
CN105160103A (en)*2015-09-062015-12-16山东理工大学Collaborative optimization method of one-line and two-line vertical suspension damping ratio of high-speed railway vehicle
CN105160180A (en)*2015-09-062015-12-16山东理工大学Analytic calculation method of optimal damping ratio of two-line vertical suspension of high-speed railway vehicle
CN105857003A (en)*2016-05-112016-08-17江苏大学Improved ceiling control method of energy feedback suspension system
CN105893704A (en)*2016-04-272016-08-24山东理工大学Auxiliary-spring rigidity designing method for few-leaf main and auxiliary springs with contacted end parts and reinforced root parts
CN105930596A (en)*2016-04-272016-09-07山东理工大学Design method for root thickness of end-contactless few-leaf root-enhanced sub-spring
CN105930607A (en)*2016-05-042016-09-07山东理工大学Calculation method for stress of each leaf of non-end-contact few-leaf end-enhanced main spring and sub-spring
CN105974821A (en)*2016-05-162016-09-28江苏大学Vehicle semi-active suspension hybrid control method based on damping multi-mode switching vibration damper
CN106515348A (en)*2016-12-232017-03-22长春孔辉汽车科技股份有限公司Intelligent accelerated speed damping semi-active control method for vehicle suspension system
US9662954B2 (en)2012-11-072017-05-30Polaris Industries Inc.Vehicle having suspension with continuous damping control
CN107323199A (en)*2017-06-222017-11-07南京航空航天大学A kind of new half active hydro pneumatic suspension control system and method
CN107599777A (en)*2017-07-312018-01-19江苏大学Electromagnetism based on model anticipation mixes suspension modes switching method
CN107941488A (en)*2017-11-202018-04-20中国重汽集团济南动力有限公司A kind of vehicle sheet steel spring dynamic stiffness assay method
CN108058561A (en)*2017-12-192018-05-22东风汽车集团有限公司A kind of active suspension system for the rigidity and damping characteristic for changing suspension
US10124709B2 (en)2015-05-152018-11-13Polaris Industries Inc.Utility vehicle
CN108891221A (en)*2018-07-242018-11-27山东大学A kind of active suspension system and its working method based on mode energy distribution method
US10406884B2 (en)2017-06-092019-09-10Polaris Industries Inc.Adjustable vehicle suspension system
CN110228343A (en)*2019-05-152019-09-13江苏师范大学A kind of magnetorheological air suspension control system of partly active and its control method
CN110341414A (en)*2019-06-252019-10-18江苏大学 A Suspension Adaptive Optimal Control System and Method Under Continuous Linear Skyhook Control
CN110712490A (en)*2018-07-132020-01-21山东大学 An active suspension system based on stack self-encoding and its working method
CN110750063A (en)*2019-10-282020-02-04武汉齐物科技有限公司 A damping adjustment device and method of a mountain bike shock absorber
CN110843449A (en)*2019-10-242020-02-28江苏大学 A fuzzy switching control method for a damped multi-mode semi-active suspension electronic control system
CN110962519A (en)*2019-11-252020-04-07福建省汽车工业集团云度新能源汽车股份有限公司Active suspension control method with intelligent adjusting function for electric automobile
CN111125837A (en)*2019-12-312020-05-08北京理工大学Control method for optimizing dynamic performance and energy consumption of active suspension
CN111284288A (en)*2018-12-062020-06-16现代自动车株式会社 Vehicle shock absorber control method
US10946736B2 (en)2018-06-052021-03-16Polaris Industries Inc.All-terrain vehicle
CN112572086A (en)*2020-12-222021-03-30华为技术有限公司Vehicle, control method of vehicle suspension and related equipment
CN112622554A (en)*2021-02-022021-04-09齐齐哈尔大学Automobile semi-active suspension damping control method
US10987987B2 (en)2018-11-212021-04-27Polaris Industries Inc.Vehicle having adjustable compression and rebound damping
US11110913B2 (en)2016-11-182021-09-07Polaris Industries Inc.Vehicle having adjustable suspension
US11285964B2 (en)2014-10-312022-03-29Polaris Industries Inc.System and method for controlling a vehicle
CN114312202A (en)*2022-03-102022-04-12成都九鼎科技(集团)有限公司Semi-active suspension control method and system based on road condition recognition
CN114771189A (en)*2022-05-312022-07-22上海集度汽车有限公司 Control method, device and vehicle for suspension system
CN114905908A (en)*2022-06-272022-08-16中国第一汽车股份有限公司 A control method, device, computer equipment and medium for ceiling damping
CN115167550A (en)*2022-06-202022-10-11中国农业大学 A vibration control method of tracked vehicle based on virtual simulation test
CN115230419A (en)*2022-06-142022-10-25富奥汽车零部件股份有限公司Control method and device for shock absorber in vehicle suspension and storage medium
CN115871392A (en)*2021-09-282023-03-31比亚迪股份有限公司 Vehicle damping continuously adjustable control method and device, storage medium, vibration damping system
CN116176197A (en)*2021-11-262023-05-30比亚迪股份有限公司 Semi-active suspension control method and device, storage medium, vehicle
CN116442708A (en)*2023-05-062023-07-18岚图汽车科技有限公司 A suspension control method, system, storage medium and vehicle
CN116691259A (en)*2022-02-282023-09-05比亚迪股份有限公司Semi-active suspension control method and system and vehicle
CN117566018A (en)*2024-01-162024-02-20深圳市开心电子有限公司Automatic identification control method and system for stable running of electric scooter
US11904648B2 (en)2020-07-172024-02-20Polaris Industries Inc.Adjustable suspensions and vehicle operation for off-road recreational vehicles
US12172518B2 (en)2019-04-302024-12-24Polaris Industries Inc.Vehicle
US12187127B2 (en)2020-05-152025-01-07Polaris Industries Inc.Off-road vehicle
US12384464B2 (en)2020-05-152025-08-12Polaris Industries Inc.Off-road vehicle
US12385429B2 (en)2022-06-132025-08-12Polaris Industries Inc.Powertrain for a utility vehicle
US12391116B2 (en)2010-06-032025-08-19Polaris Industries Inc.Adjustable performance for a vehicle
US12397878B2 (en)2020-05-202025-08-26Polaris Industries Inc.Systems and methods of adjustable suspensions for off-road recreational vehicles

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH04368211A (en)*1991-06-181992-12-21Toyota Motor CorpOptimum control type semi-active suspension system
JPH07315026A (en)*1994-05-251995-12-05Suzuki Motor CorpSuspension control device for vehicle
CN1749048A (en)*2005-10-142006-03-22上海燃料电池汽车动力系统有限公司Semiactive suspension awning damp control algorithm for vehicle speed and road inductive automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH04368211A (en)*1991-06-181992-12-21Toyota Motor CorpOptimum control type semi-active suspension system
JPH07315026A (en)*1994-05-251995-12-05Suzuki Motor CorpSuspension control device for vehicle
CN1749048A (en)*2005-10-142006-03-22上海燃料电池汽车动力系统有限公司Semiactive suspension awning damp control algorithm for vehicle speed and road inductive automobile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐伟,周长城,孟婕,赵雷雷: "汽车悬架阻尼匹配研究及减振器设计", 《农业装备与车辆工程》*

Cited By (119)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US12391116B2 (en)2010-06-032025-08-19Polaris Industries Inc.Adjustable performance for a vehicle
US11400784B2 (en)2012-11-072022-08-02Polaris Industries Inc.Vehicle having suspension with continuous damping control
US9662954B2 (en)2012-11-072017-05-30Polaris Industries Inc.Vehicle having suspension with continuous damping control
US11400785B2 (en)2012-11-072022-08-02Polaris Industries Inc.Vehicle having suspension with continuous damping control
US11400787B2 (en)2012-11-072022-08-02Polaris Industries Inc.Vehicle having suspension with continuous damping control
US11970036B2 (en)2012-11-072024-04-30Polaris Industries Inc.Vehicle having suspension with continuous damping control
US9205717B2 (en)2012-11-072015-12-08Polaris Industries Inc.Vehicle having suspension with continuous damping control
US11124036B2 (en)2012-11-072021-09-21Polaris Industries Inc.Vehicle having suspension with continuous damping control
US10005335B2 (en)2012-11-072018-06-26Polaris Industries Inc.Vehicle having suspension with continuous damping control
US12291069B2 (en)2012-11-072025-05-06Polaris Industries Inc.Vehicle having suspension with continuous damping control
US11400786B2 (en)2012-11-072022-08-02Polaris Industries Inc.Vehicle having suspension with continuous damping control
CN102975587A (en)*2012-12-032013-03-20南京师范大学Vehicle semiactive suspension based on double controllable dampers and control method thereof
CN103121475A (en)*2013-03-082013-05-29山东理工大学Design method for optimal damping ratio of suspension system of cab
CN103112508A (en)*2013-03-082013-05-22山东理工大学Design method for optimum speed characteristics of trunk cab damper
CN103204043B (en)*2013-04-012015-02-25中国人民解放军装甲兵工程学院Frequency domain control method of automotive semi-active suspension system
CN103204043A (en)*2013-04-012013-07-17中国人民解放军装甲兵工程学院Frequency domain control method of automotive semi-active suspension system
CN103235891A (en)*2013-05-052013-08-07吉林大学Road identification system and method based on vehicle vertical vibration system identification
CN103235891B (en)*2013-05-052015-03-18吉林大学Road identification system and method based on vehicle vertical vibration system identification
CN103241095A (en)*2013-05-312013-08-14山东理工大学Control algorithm of automotive magneto-rheological semi-active suspension system and real-time optimal current
WO2015004676A1 (en)*2013-07-112015-01-15Kpit Technologies LimitedA dynamically adjustable suspension device
US10315479B2 (en)2013-07-112019-06-11Kpit Technologies Ltd.Dynamically adjustable suspension device
CN104343884A (en)*2013-07-232015-02-11上海三一重机有限公司Mine car oil gas suspension damping control method
CN103522862B (en)*2013-10-142015-12-09江苏大学A kind of method determining semi-active suspension equivalent damping maxim
CN103522862A (en)*2013-10-142014-01-22江苏大学Method for determining maximum value of equivalent damping of semi-active suspension
CN103522863A (en)*2013-11-012014-01-22哈尔滨工业大学Executor input saturation control method of automobile active suspension system
CN103625236A (en)*2013-11-182014-03-12江苏大学Method for determining charging voltage of ESASRE suspension frame based on grading transformation charging
CN104015582B (en)*2014-06-182016-04-13吉林大学The automobile energy regenerative active suspension system of a kind of stiffness variable and damping
CN104015582A (en)*2014-06-182014-09-03吉林大学Automotive energy-regenerative active suspension system with rigidity and damping variable
CN104200028B (en)*2014-09-032017-07-28山东理工大学The design method of feed energy suspension generator power based on vehicle parameter
CN104200028A (en)*2014-09-032014-12-10山东理工大学Method for designing power of energy regenerative suspension generator based on vehicle parameters
CN104408224B (en)*2014-10-142018-05-04山东理工大学The human body equivalent stiffness of seat human body vibrating model and the discrimination method of damping
CN104408224A (en)*2014-10-142015-03-11山东理工大学Human body equivalent stiffness and damping identification method of vehicle seat human body vibration model
CN104266849B (en)*2014-10-232017-10-17山东理工大学A kind of vehicle tyre damping test device and analysis method
CN104309437A (en)*2014-10-232015-01-28山东理工大学Design method for real-time optimal control of nonlinear rigidity of vehicle air suspension
CN104266849A (en)*2014-10-232015-01-07山东理工大学Test device and analysis method for damping of vehicle tire
US11285964B2 (en)2014-10-312022-03-29Polaris Industries Inc.System and method for controlling a vehicle
US12325432B2 (en)2014-10-312025-06-10Polaris Industries Inc.System and method for controlling a vehicle
US11919524B2 (en)2014-10-312024-03-05Polaris Industries Inc.System and method for controlling a vehicle
CN104494391A (en)*2014-12-162015-04-08张乔木Automobile anti-shocking system and control method
CN104669973A (en)*2015-02-122015-06-03江苏大学Automobile suspension system active control method for impact-type road disturbance
US11752860B2 (en)2015-05-152023-09-12Polaris Industries Inc.Utility vehicle
US10124709B2 (en)2015-05-152018-11-13Polaris Industries Inc.Utility vehicle
CN104999880A (en)*2015-08-172015-10-28哈尔滨工业大学Automobile active suspension anti-saturation control method based on self-adaptive control
CN105138785B (en)*2015-09-062018-03-06山东理工大学High-speed rail seat and a system and two be vertical suspension damping ratio cooperative optimization method
CN105138785A (en)*2015-09-062015-12-09山东理工大学Collaborative optimization method for damping ratios of high-speed rail seat suspension, primary vertical suspension and secondary vertical suspension
CN105117554B (en)*2015-09-062018-01-02山东理工大学High speed railway car one is the design method of vertical suspension Optimal damping ratio
CN105160180B (en)*2015-09-062017-12-12山东理工大学High speed railway car two is the Analytic Calculation Method of vertical suspension Optimal damping ratio
CN105069263A (en)*2015-09-062015-11-18山东理工大学Collaborative optimization method of seat and secondary vertical suspension optimal damping ratio of high-speed railway vehicle
CN105160180A (en)*2015-09-062015-12-16山东理工大学Analytic calculation method of optimal damping ratio of two-line vertical suspension of high-speed railway vehicle
CN105160179B (en)*2015-09-062017-11-17山东理工大学The system of high speed railway car two laterally suspends the Analytic Calculation Method of Optimal damping ratio
CN105160179A (en)*2015-09-062015-12-16山东理工大学Analytic calculation method of optimal damping ratio of two-line horizontal suspension of high-speed railway vehicle
CN105117554A (en)*2015-09-062015-12-02山东理工大学Design method for optimal damping ratio of primary vertical suspension of high-speed rail vehicle
CN105160103A (en)*2015-09-062015-12-16山东理工大学Collaborative optimization method of one-line and two-line vertical suspension damping ratio of high-speed railway vehicle
CN105930596B (en)*2016-04-272018-12-25山东理工大学Non- end contact lacks the design method of the reinforced auxiliary spring root thickness in piece root
CN105930596A (en)*2016-04-272016-09-07山东理工大学Design method for root thickness of end-contactless few-leaf root-enhanced sub-spring
CN105893704A (en)*2016-04-272016-08-24山东理工大学Auxiliary-spring rigidity designing method for few-leaf main and auxiliary springs with contacted end parts and reinforced root parts
CN105893704B (en)*2016-04-272018-11-20山东理工大学End contact lacks the auxiliary spring stiffness design method of the reinforced major-minor spring in piece root
CN105930607A (en)*2016-05-042016-09-07山东理工大学Calculation method for stress of each leaf of non-end-contact few-leaf end-enhanced main spring and sub-spring
CN105930607B (en)*2016-05-042019-01-08山东理工大学Non- end contact lacks the calculation method of piece reinforcement end each stress of major-minor spring
CN105857003A (en)*2016-05-112016-08-17江苏大学Improved ceiling control method of energy feedback suspension system
CN105974821B (en)*2016-05-162019-01-18萨克斯汽车零部件系统(上海)有限公司Vehicle Semi-active Suspension mixed control method based on damping multimode formula switching damper
CN105974821A (en)*2016-05-162016-09-28江苏大学Vehicle semi-active suspension hybrid control method based on damping multi-mode switching vibration damper
US11878678B2 (en)2016-11-182024-01-23Polaris Industries Inc.Vehicle having adjustable suspension
US12337824B2 (en)2016-11-182025-06-24Polaris Industries Inc.Vehicle having adjustable suspension
US11110913B2 (en)2016-11-182021-09-07Polaris Industries Inc.Vehicle having adjustable suspension
CN106515348B (en)*2016-12-232020-04-28浙江孔辉汽车科技有限公司Intelligent acceleration damping semi-active control method for vehicle suspension system
CN106515348A (en)*2016-12-232017-03-22长春孔辉汽车科技股份有限公司Intelligent accelerated speed damping semi-active control method for vehicle suspension system
US12330467B2 (en)2017-06-092025-06-17Polaris Industries Inc.Adjustable vehicle suspension system
US11912096B2 (en)2017-06-092024-02-27Polaris Industries Inc.Adjustable vehicle suspension system
US10406884B2 (en)2017-06-092019-09-10Polaris Industries Inc.Adjustable vehicle suspension system
US11479075B2 (en)2017-06-092022-10-25Polaris Industries Inc.Adjustable vehicle suspension system
US10987989B2 (en)2017-06-092021-04-27Polaris Industries Inc.Adjustable vehicle suspension system
CN107323199A (en)*2017-06-222017-11-07南京航空航天大学A kind of new half active hydro pneumatic suspension control system and method
CN107323199B (en)*2017-06-222023-09-26南京航空航天大学 A new semi-active hydropneumatic suspension control system and method
CN107599777A (en)*2017-07-312018-01-19江苏大学Electromagnetism based on model anticipation mixes suspension modes switching method
CN107599777B (en)*2017-07-312020-01-24江苏大学 Model Prediction Based Mode Switching Method of Electromagnetic Hybrid Suspension
CN107941488A (en)*2017-11-202018-04-20中国重汽集团济南动力有限公司A kind of vehicle sheet steel spring dynamic stiffness assay method
CN108058561B (en)*2017-12-192023-07-04东风汽车集团有限公司Active suspension system capable of changing rigidity and damping characteristics of suspension system
CN108058561A (en)*2017-12-192018-05-22东风汽车集团有限公司A kind of active suspension system for the rigidity and damping characteristic for changing suspension
US10946736B2 (en)2018-06-052021-03-16Polaris Industries Inc.All-terrain vehicle
CN110712490A (en)*2018-07-132020-01-21山东大学 An active suspension system based on stack self-encoding and its working method
CN108891221A (en)*2018-07-242018-11-27山东大学A kind of active suspension system and its working method based on mode energy distribution method
US12384214B2 (en)2018-11-212025-08-12Polaris Industries Inc.Vehicle having adjustable compression and rebound damping
US11884117B2 (en)2018-11-212024-01-30Polaris Industries Inc.Vehicle having adjustable compression and rebound damping
US11975584B2 (en)2018-11-212024-05-07Polaris Industries Inc.Vehicle having adjustable compression and rebound damping
US10987987B2 (en)2018-11-212021-04-27Polaris Industries Inc.Vehicle having adjustable compression and rebound damping
CN111284288A (en)*2018-12-062020-06-16现代自动车株式会社 Vehicle shock absorber control method
US12172518B2 (en)2019-04-302024-12-24Polaris Industries Inc.Vehicle
CN110228343A (en)*2019-05-152019-09-13江苏师范大学A kind of magnetorheological air suspension control system of partly active and its control method
CN110341414B (en)*2019-06-252022-03-22江苏大学Suspension self-adaptive optimal control system and method under continuous linear ceiling control
CN110341414A (en)*2019-06-252019-10-18江苏大学 A Suspension Adaptive Optimal Control System and Method Under Continuous Linear Skyhook Control
CN110843449B (en)*2019-10-242022-12-16江苏大学Fuzzy switching control method for damping multi-mode semi-active suspension electronic control system
CN110843449A (en)*2019-10-242020-02-28江苏大学 A fuzzy switching control method for a damped multi-mode semi-active suspension electronic control system
CN110750063A (en)*2019-10-282020-02-04武汉齐物科技有限公司 A damping adjustment device and method of a mountain bike shock absorber
CN110962519A (en)*2019-11-252020-04-07福建省汽车工业集团云度新能源汽车股份有限公司Active suspension control method with intelligent adjusting function for electric automobile
CN110962519B (en)*2019-11-252022-11-25福建省汽车工业集团云度新能源汽车股份有限公司Active suspension control method with intelligent adjusting function for electric automobile
CN111125837A (en)*2019-12-312020-05-08北京理工大学Control method for optimizing dynamic performance and energy consumption of active suspension
US12337690B2 (en)2020-05-152025-06-24Polaris Industries Inc.Off-road vehicle
US12384464B2 (en)2020-05-152025-08-12Polaris Industries Inc.Off-road vehicle
US12187127B2 (en)2020-05-152025-01-07Polaris Industries Inc.Off-road vehicle
US12397878B2 (en)2020-05-202025-08-26Polaris Industries Inc.Systems and methods of adjustable suspensions for off-road recreational vehicles
US11904648B2 (en)2020-07-172024-02-20Polaris Industries Inc.Adjustable suspensions and vehicle operation for off-road recreational vehicles
US11897300B2 (en)2020-12-222024-02-13Huawei Digital Power Technologies Co., Ltd.Vehicle, control method for vehicle suspension, and related device
CN112572086A (en)*2020-12-222021-03-30华为技术有限公司Vehicle, control method of vehicle suspension and related equipment
CN112622554A (en)*2021-02-022021-04-09齐齐哈尔大学Automobile semi-active suspension damping control method
CN115871392A (en)*2021-09-282023-03-31比亚迪股份有限公司 Vehicle damping continuously adjustable control method and device, storage medium, vibration damping system
CN116176197A (en)*2021-11-262023-05-30比亚迪股份有限公司 Semi-active suspension control method and device, storage medium, vehicle
CN116176197B (en)*2021-11-262024-10-11比亚迪股份有限公司Semi-active suspension control method and device, storage medium and vehicle
CN116691259A (en)*2022-02-282023-09-05比亚迪股份有限公司Semi-active suspension control method and system and vehicle
CN114312202A (en)*2022-03-102022-04-12成都九鼎科技(集团)有限公司Semi-active suspension control method and system based on road condition recognition
CN114771189A (en)*2022-05-312022-07-22上海集度汽车有限公司 Control method, device and vehicle for suspension system
US12385429B2 (en)2022-06-132025-08-12Polaris Industries Inc.Powertrain for a utility vehicle
CN115230419A (en)*2022-06-142022-10-25富奥汽车零部件股份有限公司Control method and device for shock absorber in vehicle suspension and storage medium
CN115167550A (en)*2022-06-202022-10-11中国农业大学 A vibration control method of tracked vehicle based on virtual simulation test
CN115167550B (en)*2022-06-202023-02-07中国农业大学Tracked vehicle vibration control method based on virtual simulation test
CN114905908A (en)*2022-06-272022-08-16中国第一汽车股份有限公司 A control method, device, computer equipment and medium for ceiling damping
CN116442708A (en)*2023-05-062023-07-18岚图汽车科技有限公司 A suspension control method, system, storage medium and vehicle
CN117566018B (en)*2024-01-162024-04-12深圳市开心电子有限公司Automatic identification control method and system for stable running of electric scooter
CN117566018A (en)*2024-01-162024-02-20深圳市开心电子有限公司Automatic identification control method and system for stable running of electric scooter

Also Published As

Publication numberPublication date
CN102729760B (en)2014-06-18

Similar Documents

PublicationPublication DateTitle
CN102729760B (en)Real-time optimal damping control algorithm of automobile semi-active suspension system
CN112339517B (en)Semi-active suspension control method and control system
CN106985627B (en) A vehicle road surface recognition system and suspension mode switching method
CN100418799C (en) Ceiling damping control algorithm for vehicle speed and road surface sensing semi-active suspension
CN107323199B (en) A new semi-active hydropneumatic suspension control system and method
CN106515348B (en)Intelligent acceleration damping semi-active control method for vehicle suspension system
CN103241095B (en)Control algorithm of automotive magneto-rheological semi-active suspension system and real-time optimal current
CN103072440B (en)Control method for automotive active suspension system
CN102189909A (en)Filtering control strategy for skyhook damping frequencies of semi-active suspension of vehicle
US9327574B2 (en)Vehicle control device and vehicle control method
CN103121475A (en)Design method for optimal damping ratio of suspension system of cab
CN108058562B (en) An active suspension device and its control method
CN110001339B (en)Semi-active control method for suspension of tire burst vehicle
CN102131663A (en) Method and apparatus for controlling a semi-active suspension system of a motorcycle
CN103593506B (en) A Two-Stage Series ISD Suspension Parameter Optimization Method
CN112659841A (en)Vehicle semi-active suspension integrated control method and control system
CN105109299A (en)Multi-working-condition automobile electric control suspension system and control method thereof
WO2023174327A1 (en)Cooperative control module, adaptive cruise control system as well as control method thereof, and vehicle
CN114619824B (en) Vehicle body control method, control device, electronic device and storage medium
CN103434359A (en)Multi-target control method of automobile driving suspension system
CN106926660B (en)A kind of electromagnetic suspension system and its control method based on wheel rim driven motor vehicle
CN108839532A (en)A kind of interconnection condition control method of quadrangle interconnection air suspension
CN108357318A (en)A kind of intelligent preview control method for the suspension of emergency management and rescue vehicle
CN104608820B (en)A kind of scaling method of motor turning vibroshock optimal damping operating characteristic
CN115782496B (en)Intelligent evolution method of semi-active suspension system based on MAP control

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20140618

Termination date:20190717


[8]ページ先頭

©2009-2025 Movatter.jp