





技术领域technical field
本发明涉及汽车半主动系统,特别是汽车半主动悬架系统阻尼控制算法。The invention relates to an automobile semi-active system, in particular to a damping control algorithm for an automobile semi-active suspension system.
背景技术Background technique
汽车在实际行驶过程中,车速和行驶路况是不断变化的。随着汽车工业的快速发展和汽车行驶速度的不断提高,人们对汽车行驶安全性和乘坐舒适性提出了更高的要求。汽车半主动悬架系统阻尼的控制方法对悬架的性能具有至关重要的作用,它直接影响汽车的操纵稳定性、乘坐舒适性和行驶安全性。对于汽车半主动悬架系统而言,必然要求其阻尼随车速和汽车当前行驶路况连续可调,在保证汽车安全行驶的前提下,使乘坐舒适性达到最佳。目前,国、内外很多学者已对半主动悬架阻尼的控制方法进行了大量研究,应用较多的是基于速度的控制方法和基于路面谱输入及车身加速度的控制方法。其中较成功且应用最多的控制方法是基于速度控制的天棚控制方法及其改进的控制方法,采用这两种控制方法的半主动悬架系统较之于被动悬架具有较好的减振性能,但是它们都不能保证对操纵稳定性进行改善,并未解决好悬架系统乘坐舒适性和操纵稳定性这一矛盾。国内、外车辆工程专家已对半主动悬架阻尼比进行了大量研究,曾单独以车身振动加速度或车轮动载建立目标函数,对悬架系统阻尼匹配进行了研究,但是由于悬架阻尼比决定车辆的乘坐舒适性和行驶安全性,且两者是相互矛盾和相互影响的。据所查阅资料可知,目前国内、外尚未能建立在不同行驶工况下安全性和舒适性相统一的实时最佳阻尼比数学模型,半主动悬架设计只能根据被动悬架阻尼比的可行性设计区(0.2~0.5)内,按照车辆类型和行驶路况,凭经验选择有限个(2或3个)阻尼比值,对可控减振器节流阀参数进行设计,在不同行驶工况下很难使车辆达到最佳减振效果。为了更好地改善半主动悬架系统的性能,解决悬架系统乘坐舒适性和操纵稳定性之间的矛盾,必须开发实时最佳阻尼匹配半主动悬架系统阻尼的控制算法。During the actual driving process of the car, the speed and road conditions are constantly changing. With the rapid development of the automobile industry and the continuous improvement of automobile driving speed, people put forward higher requirements for automobile driving safety and ride comfort. The damping control method of automobile semi-active suspension system plays a vital role in the performance of the suspension, and it directly affects the handling stability, ride comfort and driving safety of the automobile. For the semi-active suspension system of a car, it is necessary to require its damping to be continuously adjustable with the speed of the car and the current road conditions of the car, so as to achieve the best ride comfort under the premise of ensuring the safe driving of the car. At present, many scholars at home and abroad have done a lot of research on the control method of semi-active suspension damping, and the control method based on speed and the control method based on road surface spectrum input and vehicle body acceleration are widely used. Among them, the most successful and widely used control method is the ceiling control method based on speed control and its improved control method. The semi-active suspension system using these two control methods has better vibration reduction performance than the passive suspension. However, none of them can guarantee the improvement of the handling stability, and have not solved the contradiction between the ride comfort and the handling stability of the suspension system. Domestic and foreign vehicle engineering experts have done a lot of research on the damping ratio of semi-active suspensions. They have established objective functions based on the vibration acceleration of the vehicle body or the dynamic load of the wheels, and have studied the damping matching of the suspension system. However, due to the suspension damping ratio The ride comfort and driving safety of the vehicle are mutually contradictory and affect each other. According to the information we have consulted, at present, domestic and foreign countries have not yet established a real-time optimal damping ratio mathematical model that unifies safety and comfort under different driving conditions. The design of semi-active suspension can only be based on the damping ratio of passive suspension. In the feasibility design area (0.2-0.5), according to the vehicle type and driving conditions, a limited number (2 or 3) of damping ratios are selected based on experience, and the throttle valve parameters of the controllable shock absorber are designed. It is difficult to make the vehicle achieve the best vibration damping effect. In order to better improve the performance of the semi-active suspension system and resolve the contradiction between ride comfort and handling stability of the suspension system, it is necessary to develop a real-time optimal damping matching control algorithm for the semi-active suspension system damping.
发明内容Contents of the invention
针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是提供一种实时最佳阻尼匹配半主动悬架系统阻尼的控制算法。In view of the above-mentioned defects in the prior art, the technical problem to be solved by the present invention is to provide a real-time optimal damping matching control algorithm for semi-active suspension system damping.
为了解决上述技术问题,本发明所提供的一种实时最佳阻尼匹配半主动悬架系统阻尼的控制方法,其技术方案如下:In order to solve the above technical problems, the present invention provides a real-time optimal damping matching control method for semi-active suspension system damping, the technical solution of which is as follows:
(1) 确定车辆当前行驶路况的功率谱密度 :利用加速度传感器测得车身垂直振动加速度,车速传感器测得车辆行驶速度和阻尼控制量(电压或者步进电机转角等)求得悬架系统当前阻尼比,再根据车辆单轮簧上质量、单轮簧下质量、悬架弹簧刚度、轮胎刚度和车身固有频率,确定车辆当前行驶路面功率谱,其中,,,为参考空间频率,;(1) Determine the power spectral density of the vehicle's current driving condition : Use the acceleration sensor to measure the vertical vibration acceleration of the vehicle body , the vehicle speed measured by the vehicle speed sensor Calculate the current damping ratio of the suspension system with the damping control amount (voltage or stepping motor rotation angle, etc.) , and then according to the sprung mass of the single wheel of the vehicle , single wheel unsprung mass , Suspension spring stiffness , tire stiffness and body natural frequency , to determine the power spectrum of the vehicle's current road surface ,in, , , is the reference spatial frequency, ;
(2) 计算当前行驶路况下悬架系统所需要的动限位行程:根据行驶车速和路面功率谱密度,利用悬架动挠度概率分布与标准差的关系,确定此时悬架系统所需要的动限位行程;(2) Calculate the dynamic limit travel required by the suspension system under the current driving conditions : According to driving speed and road power spectral density , using the relationship between the suspension dynamic deflection probability distribution and the standard deviation, determine the dynamic limit stroke required by the suspension system at this time ;
(3) 确定当前车速和路况下的悬架系统实时最佳阻尼比:根据车辆悬架单轮簧上质量、簧下质量、悬架弹簧刚度、轮胎刚度、车身固有频率、路面功率谱密度、车速和悬架动限位行程,确定当前车速和路况下悬架系统实时最佳阻尼比,且当时,取;当时,取;(3) Determine the real-time optimal damping ratio of the suspension system under the current vehicle speed and road conditions : according to the sprung mass of the vehicle suspension single wheel , unsprung mass , Suspension spring stiffness , tire stiffness , The natural frequency of the vehicle body , road power spectral density , speed and suspension limit travel , to determine the current speed and traffic Real-time optimal damping ratio of the lower suspension system , and when when, take ;when when, take ;
(4) 确定簧上质量和簧下质量的相对运动速度:利用车身振动加速度传感器测得的车身垂直振动加速度,求得车身垂直运动速度;利用车轮振动加速度传感器测得的车轮垂直振动加速度,求得车轮垂直运动速度;根据车身垂直运动速度和车轮垂直运动速度,计算簧上质量和簧下质量的相对运动速度;(4) Determine the relative velocity of the sprung mass and the unsprung mass : The vertical vibration acceleration of the vehicle body measured by the vehicle body vibration acceleration sensor , to obtain the vertical velocity of the vehicle body ; Wheel vertical vibration acceleration measured by the wheel vibration acceleration sensor , to obtain the vertical velocity of the wheel ;According to the vertical movement speed of the body and wheel vertical velocity , to calculate the relative velocity of the sprung mass and the unsprung mass ;
(5) 确定当前车速和路况下的减振器最佳阻尼系数:根据所确定的悬架系统实时最佳阻尼比、悬架系统单轮簧上质量、悬架刚度、减振器安装杠杆比和减振器安装角,确定当前车速和路况下的减振器最佳阻尼系数,其中,为平安比,且;(5) Determine the current vehicle speed and traffic The optimal damping coefficient of the shock absorber under : According to the determined real-time optimal damping ratio of the suspension system , Suspension system single wheel sprung mass , Suspension stiffness , Shock absorber installation leverage ratio and shock absorber mounting angle , to determine the current speed and traffic The optimal damping coefficient of the shock absorber under ,in, is the safety ratio, and ;
(6) 确定当前车速和路况下的最佳阻尼力:根据步骤(4)确定的相对运动速度及步骤(5)确定的减振器最佳阻尼系数,确定当前车速和路况下的最佳阻尼力,并通过控制系统控制调节可控减振器达到所要求的阻尼力。(6) Determine the current vehicle speed and traffic The best damping force under : The relative motion speed determined according to step (4) and the optimal damping coefficient of the shock absorber determined in step (5) , to determine the current speed and traffic The best damping force under , and adjust the controllable shock absorber to achieve the required damping force through the control system .
本发明比现有技术具有的优点:The present invention has the advantage over prior art:
本发明提供的汽车半主动悬架系统最佳阻尼的控制算法,是以半主动悬架系统最佳阻尼匹配作为控制目标,通过控制可控减振器最佳阻尼,使悬架系统达到最佳阻尼匹配。该控制算法简单易实施,且利用该控制算法可明显改善悬架的性能,很好地解决悬架系统乘坐舒适性和汽车行驶安全性之间的矛盾。The optimal damping control algorithm of the automobile semi-active suspension system provided by the present invention takes the optimal damping matching of the semi-active suspension system as the control target, and makes the suspension system reach the optimum level by controlling the optimal damping of the controllable shock absorber. Damping matching. The control algorithm is simple and easy to implement, and the performance of the suspension can be significantly improved by using the control algorithm, and the contradiction between the ride comfort of the suspension system and the driving safety of the vehicle can be well resolved.
附图说明Description of drawings
为了更好地理解本发明下面结合附图作进一步说明。In order to better understand the present invention, the following will be further described in conjunction with the accompanying drawings.
图1是实时汽车主动悬架系统最佳阻尼的控制算法原理图。Figure 1 is a schematic diagram of the control algorithm for the optimal damping of the real-time vehicle active suspension system.
图2是实施例在车速60km/h时步进电机转角随路况的控制曲线。Fig. 2 is the control curve of the stepper motor rotation angle with the road conditions when the vehicle speed is 60km/h.
图3是实施例在车速100km/h时步进电机转角随路况的控制曲线。Fig. 3 is the control curve of stepping motor rotation angle with road conditions when the vehicle speed is 100km/h.
图4是实施例的车身垂直加速度的幅频特性曲线。Fig. 4 is an amplitude-frequency characteristic curve of the vertical acceleration of the vehicle body in the embodiment.
图5是实施例的悬架动挠度的幅频特性曲线。Fig. 5 is an amplitude-frequency characteristic curve of the dynamic deflection of the suspension of the embodiment.
图6是实施例的车轮相对动载的幅频特性曲线。Fig. 6 is the amplitude-frequency characteristic curve of the wheel relative to the dynamic load of the embodiment.
具体实施方式Detailed ways
下面通过一实施例对本发明作进一步详细说明。The present invention will be further described in detail through an embodiment below.
某轿车悬架系统单轮簧上质量=240kg、簧下质量=24kg;悬架弹簧刚度=9475N/m和轮胎刚度=85270N/m;车身固有频率=1.0Hz;可控筒式液压减振器安装杠杆比=0.8、安装角=10°。Single wheel sprung mass of a car suspension system =240kg, unsprung mass =24kg; suspension spring stiffness =9475N/m and tire stiffness =85270N/m; The natural frequency of the body =1.0Hz; installation lever ratio of controllable cylinder hydraulic shock absorber =0.8, installation angle =10°.
本发明实施例所提供的实时最佳阻尼匹配半主动悬架系统阻尼的控制方法,控制流程如图1所示,具体步骤如下:The control method of the real-time optimal damping matching semi-active suspension system damping provided by the embodiment of the present invention, the control flow is shown in Figure 1, and the specific steps are as follows:
(1) 确定车辆行驶路况的功率谱密度:利用车身振动加速度传感器测得车身振动加速度,车速传感器测得车辆行驶速度及步进电机转角反求得当前阻尼比,确定路面功率谱;(1) Determine the power spectral density of the vehicle's driving conditions : Use the body vibration acceleration sensor to measure the body vibration acceleration , the vehicle speed measured by the vehicle speed sensor and stepper motor angle Inversely obtain the current damping ratio , to determine the road power spectrum ;
(2) 计算当前行驶路况下的悬架动挠度限位行程:根据行驶车速和路面功率谱密度,利用悬架动挠度概率分布与标准差的关系,确定悬架动挠度限位行程;(2) Calculate the current driving conditions Suspension dynamic deflection limit travel under : According to driving speed and road power spectral density , using the relationship between the suspension dynamic deflection probability distribution and the standard deviation, determine the suspension dynamic deflection limit stroke ;
(3) 确定当前车速和路况下所需要的最佳阻尼比:根据轿车悬架系统单轮簧上质量=240kg、簧下质量=24kg、悬架弹簧刚度=9475N/m、轮胎刚度=85270N/m、车身固有频率=1.0Hz、路面功率谱密度、车速及悬架动限位行程,确定当前车速和路况下所需要的最佳阻尼比,且当时,取;当时,取,其中,,为参考空间频率,;(3) Determine the current vehicle speed and traffic The optimal damping ratio required under : According to the sprung mass of a single wheel in the car suspension system =240kg, unsprung mass =24kg, suspension spring stiffness =9475N/m, tire stiffness =85270N/m, natural frequency of vehicle body =1.0Hz, road surface power spectral density, vehicle speed and suspension dynamic limit stroke , to determine the optimal damping ratio required under the current vehicle speed and road conditions , and when when, take ;when when, take ,in , , is the reference spatial frequency, ;
(4) 确定当前车速和路况下所需要的最佳阻尼系数:根据悬架系统单轮簧上质量=240kg、悬架刚度=9475N/m、减振器安装杠杆比=0.8、减振器安装角=10°及当前车速和路况下的最佳阻尼比,确定当前车速和路况下所需要的最佳阻尼系数;(4) Determine the current vehicle speed and traffic The optimal damping coefficient required under : according to the sprung mass of the suspension system single wheel =240kg, suspension stiffness =9475N/m, shock absorber installation leverage ratio =0.8, installation angle of shock absorber =10° and the best damping ratio under the current vehicle speed and road conditions , to determine the current speed and traffic The optimal damping coefficient required under ;
(5) 确定簧上质量和簧下质量的相对运动速度:利用车身振动加速度传感器测得的车身振动加速度,估算簧上质量和簧下质量的相对运动速度;(5) Determine the relative velocity of the sprung mass and the unsprung mass : The body vibration acceleration measured by the body vibration acceleration sensor , to estimate the relative velocity of the sprung and unsprung masses ;
(6) 确定当前车速和路况下所需要的最佳阻尼及阻尼力:根据步骤(4)确定的最佳阻尼系数及步骤(5)确定的相对运动速度,确定当前车速和路况下所需要的最佳阻尼力,通过控制可控减振器达到所要求的最佳阻尼力。(6) Determine the current vehicle speed and traffic The optimum damping required under and damping force : The optimal damping coefficient determined according to step (4) and the relative motion speed determined in step (5) , to determine the current speed and traffic The optimum damping force required under , to achieve the required optimum damping force by controlling the controllable shock absorber .
图2是实施例在车速60km/h时步进电机转角随路况的控制曲线,图3是实施例在车速100km/h时步进电机转角随路况的控制曲线。通过分析图2和图3可知,同一车速下,行驶在良好路面上时,可控减振器在舒适性最佳阻尼比下工作,步进电机转动较小的度数;行驶在差路面上时,可控减振器在安全性最佳阻尼比下工作,步进电机转动较大的度数;随着路面状况变差,步进电机转角逐渐增大。在低车速下行驶,步进电机调节的路面等级带宽大;在高车速下行驶,步进电机调节的路面等级带宽小。Fig. 2 is the control curve of stepper motor rotation angle with road conditions when the vehicle speed is 60km/h, and Fig. 3 is the control curve of stepper motor rotation angle with road conditions when the vehicle speed is 100km/h. By analyzing Figure 2 and Figure 3, it can be seen that at the same speed, when driving on a good road surface, the controllable shock absorber works at the best damping ratio for comfort, and the stepper motor rotates at a smaller degree; when driving on a bad road surface , the controllable shock absorber works under the best damping ratio for safety, and the stepper motor rotates at a larger degree; as the road surface condition becomes worse, the stepper motor's rotation angle gradually increases. When driving at a low speed, the stepper motor adjusts the road surface grade bandwidth with a wide range; when driving at a high speed, the stepper motor adjusts the road surface grade bandwidth with a small width.
图4是实施例的车身垂直加速度的幅频特性曲线,图5是实施例的悬架动挠度的幅频特性曲线,图6是实施例的车轮相对动载的幅频特性曲线。由图4~图6可知,与被动悬架相比,由于该轿车采用了半主动悬架系统最佳阻尼的控制算法,车身振动加速度在低频共振区的峰值明显降低,车轮动载荷和悬架弹簧动挠度在低频和高频共振区的峰值也得到明显改善。Fig. 4 is the amplitude-frequency characteristic curve of the vertical acceleration of the vehicle body of the embodiment, Fig. 5 is the amplitude-frequency characteristic curve of the suspension dynamic deflection of the embodiment, and Fig. 6 is the amplitude-frequency characteristic curve of the relative dynamic load of the wheel of the embodiment. It can be seen from Figures 4 to 6 that compared with the passive suspension, because the car adopts the optimal damping control algorithm of the semi-active suspension system, the peak value of the vibration acceleration of the vehicle body in the low-frequency resonance area is significantly reduced, and the dynamic load of the wheel and the suspension The spring deflection peaks in the low-frequency and high-frequency resonance regions have also been significantly improved.
由此可知,采用半主动悬架系统最佳阻尼的控制算法,可明显地改善悬架的性能,使车辆悬架达到最佳阻尼匹配,很好地解决悬架系统乘坐舒适性和汽车行驶安全性之间的矛盾。It can be seen that the optimal damping control algorithm of the semi-active suspension system can significantly improve the performance of the suspension, make the vehicle suspension achieve the best damping matching, and solve the problem of ride comfort and driving safety of the suspension system. conflict between sex.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210245685.7ACN102729760B (en) | 2012-07-17 | 2012-07-17 | Real-time optimal damping control algorithm of automobile semi-active suspension system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210245685.7ACN102729760B (en) | 2012-07-17 | 2012-07-17 | Real-time optimal damping control algorithm of automobile semi-active suspension system |
| Publication Number | Publication Date |
|---|---|
| CN102729760Atrue CN102729760A (en) | 2012-10-17 |
| CN102729760B CN102729760B (en) | 2014-06-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210245685.7AExpired - Fee RelatedCN102729760B (en) | 2012-07-17 | 2012-07-17 | Real-time optimal damping control algorithm of automobile semi-active suspension system |
| Country | Link |
|---|---|
| CN (1) | CN102729760B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102975587A (en)* | 2012-12-03 | 2013-03-20 | 南京师范大学 | Vehicle semiactive suspension based on double controllable dampers and control method thereof |
| CN103112508A (en)* | 2013-03-08 | 2013-05-22 | 山东理工大学 | Design method for optimum speed characteristics of trunk cab damper |
| CN103121475A (en)* | 2013-03-08 | 2013-05-29 | 山东理工大学 | Design method for optimal damping ratio of suspension system of cab |
| CN103204043A (en)* | 2013-04-01 | 2013-07-17 | 中国人民解放军装甲兵工程学院 | Frequency domain control method of automotive semi-active suspension system |
| CN103235891A (en)* | 2013-05-05 | 2013-08-07 | 吉林大学 | Road identification system and method based on vehicle vertical vibration system identification |
| CN103241095A (en)* | 2013-05-31 | 2013-08-14 | 山东理工大学 | Control algorithm of automotive magneto-rheological semi-active suspension system and real-time optimal current |
| CN103522863A (en)* | 2013-11-01 | 2014-01-22 | 哈尔滨工业大学 | Executor input saturation control method of automobile active suspension system |
| CN103522862A (en)* | 2013-10-14 | 2014-01-22 | 江苏大学 | Method for determining maximum value of equivalent damping of semi-active suspension |
| CN103625236A (en)* | 2013-11-18 | 2014-03-12 | 江苏大学 | Method for determining charging voltage of ESASRE suspension frame based on grading transformation charging |
| CN104015582A (en)* | 2014-06-18 | 2014-09-03 | 吉林大学 | Automotive energy-regenerative active suspension system with rigidity and damping variable |
| CN104200028A (en)* | 2014-09-03 | 2014-12-10 | 山东理工大学 | Method for designing power of energy regenerative suspension generator based on vehicle parameters |
| CN104266849A (en)* | 2014-10-23 | 2015-01-07 | 山东理工大学 | Test device and analysis method for damping of vehicle tire |
| WO2015004676A1 (en)* | 2013-07-11 | 2015-01-15 | Kpit Technologies Limited | A dynamically adjustable suspension device |
| CN104309437A (en)* | 2014-10-23 | 2015-01-28 | 山东理工大学 | Design method for real-time optimal control of nonlinear rigidity of vehicle air suspension |
| CN104343884A (en)* | 2013-07-23 | 2015-02-11 | 上海三一重机有限公司 | Mine car oil gas suspension damping control method |
| CN104408224A (en)* | 2014-10-14 | 2015-03-11 | 山东理工大学 | Human body equivalent stiffness and damping identification method of vehicle seat human body vibration model |
| CN104494391A (en)* | 2014-12-16 | 2015-04-08 | 张乔木 | Automobile anti-shocking system and control method |
| CN104669973A (en)* | 2015-02-12 | 2015-06-03 | 江苏大学 | Automobile suspension system active control method for impact-type road disturbance |
| CN104999880A (en)* | 2015-08-17 | 2015-10-28 | 哈尔滨工业大学 | Automobile active suspension anti-saturation control method based on self-adaptive control |
| CN105069263A (en)* | 2015-09-06 | 2015-11-18 | 山东理工大学 | Collaborative optimization method of seat and secondary vertical suspension optimal damping ratio of high-speed railway vehicle |
| CN105117554A (en)* | 2015-09-06 | 2015-12-02 | 山东理工大学 | Design method for optimal damping ratio of primary vertical suspension of high-speed rail vehicle |
| US9205717B2 (en) | 2012-11-07 | 2015-12-08 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| CN105138785A (en)* | 2015-09-06 | 2015-12-09 | 山东理工大学 | Collaborative optimization method for damping ratios of high-speed rail seat suspension, primary vertical suspension and secondary vertical suspension |
| CN105160179A (en)* | 2015-09-06 | 2015-12-16 | 山东理工大学 | Analytic calculation method of optimal damping ratio of two-line horizontal suspension of high-speed railway vehicle |
| CN105160103A (en)* | 2015-09-06 | 2015-12-16 | 山东理工大学 | Collaborative optimization method of one-line and two-line vertical suspension damping ratio of high-speed railway vehicle |
| CN105160180A (en)* | 2015-09-06 | 2015-12-16 | 山东理工大学 | Analytic calculation method of optimal damping ratio of two-line vertical suspension of high-speed railway vehicle |
| CN105857003A (en)* | 2016-05-11 | 2016-08-17 | 江苏大学 | Improved ceiling control method of energy feedback suspension system |
| CN105893704A (en)* | 2016-04-27 | 2016-08-24 | 山东理工大学 | Auxiliary-spring rigidity designing method for few-leaf main and auxiliary springs with contacted end parts and reinforced root parts |
| CN105930596A (en)* | 2016-04-27 | 2016-09-07 | 山东理工大学 | Design method for root thickness of end-contactless few-leaf root-enhanced sub-spring |
| CN105930607A (en)* | 2016-05-04 | 2016-09-07 | 山东理工大学 | Calculation method for stress of each leaf of non-end-contact few-leaf end-enhanced main spring and sub-spring |
| CN105974821A (en)* | 2016-05-16 | 2016-09-28 | 江苏大学 | Vehicle semi-active suspension hybrid control method based on damping multi-mode switching vibration damper |
| CN106515348A (en)* | 2016-12-23 | 2017-03-22 | 长春孔辉汽车科技股份有限公司 | Intelligent accelerated speed damping semi-active control method for vehicle suspension system |
| US9662954B2 (en) | 2012-11-07 | 2017-05-30 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| CN107323199A (en)* | 2017-06-22 | 2017-11-07 | 南京航空航天大学 | A kind of new half active hydro pneumatic suspension control system and method |
| CN107599777A (en)* | 2017-07-31 | 2018-01-19 | 江苏大学 | Electromagnetism based on model anticipation mixes suspension modes switching method |
| CN107941488A (en)* | 2017-11-20 | 2018-04-20 | 中国重汽集团济南动力有限公司 | A kind of vehicle sheet steel spring dynamic stiffness assay method |
| CN108058561A (en)* | 2017-12-19 | 2018-05-22 | 东风汽车集团有限公司 | A kind of active suspension system for the rigidity and damping characteristic for changing suspension |
| US10124709B2 (en) | 2015-05-15 | 2018-11-13 | Polaris Industries Inc. | Utility vehicle |
| CN108891221A (en)* | 2018-07-24 | 2018-11-27 | 山东大学 | A kind of active suspension system and its working method based on mode energy distribution method |
| US10406884B2 (en) | 2017-06-09 | 2019-09-10 | Polaris Industries Inc. | Adjustable vehicle suspension system |
| CN110228343A (en)* | 2019-05-15 | 2019-09-13 | 江苏师范大学 | A kind of magnetorheological air suspension control system of partly active and its control method |
| CN110341414A (en)* | 2019-06-25 | 2019-10-18 | 江苏大学 | A Suspension Adaptive Optimal Control System and Method Under Continuous Linear Skyhook Control |
| CN110712490A (en)* | 2018-07-13 | 2020-01-21 | 山东大学 | An active suspension system based on stack self-encoding and its working method |
| CN110750063A (en)* | 2019-10-28 | 2020-02-04 | 武汉齐物科技有限公司 | A damping adjustment device and method of a mountain bike shock absorber |
| CN110843449A (en)* | 2019-10-24 | 2020-02-28 | 江苏大学 | A fuzzy switching control method for a damped multi-mode semi-active suspension electronic control system |
| CN110962519A (en)* | 2019-11-25 | 2020-04-07 | 福建省汽车工业集团云度新能源汽车股份有限公司 | Active suspension control method with intelligent adjusting function for electric automobile |
| CN111125837A (en)* | 2019-12-31 | 2020-05-08 | 北京理工大学 | Control method for optimizing dynamic performance and energy consumption of active suspension |
| CN111284288A (en)* | 2018-12-06 | 2020-06-16 | 现代自动车株式会社 | Vehicle shock absorber control method |
| US10946736B2 (en) | 2018-06-05 | 2021-03-16 | Polaris Industries Inc. | All-terrain vehicle |
| CN112572086A (en)* | 2020-12-22 | 2021-03-30 | 华为技术有限公司 | Vehicle, control method of vehicle suspension and related equipment |
| CN112622554A (en)* | 2021-02-02 | 2021-04-09 | 齐齐哈尔大学 | Automobile semi-active suspension damping control method |
| US10987987B2 (en) | 2018-11-21 | 2021-04-27 | Polaris Industries Inc. | Vehicle having adjustable compression and rebound damping |
| US11110913B2 (en) | 2016-11-18 | 2021-09-07 | Polaris Industries Inc. | Vehicle having adjustable suspension |
| US11285964B2 (en) | 2014-10-31 | 2022-03-29 | Polaris Industries Inc. | System and method for controlling a vehicle |
| CN114312202A (en)* | 2022-03-10 | 2022-04-12 | 成都九鼎科技(集团)有限公司 | Semi-active suspension control method and system based on road condition recognition |
| CN114771189A (en)* | 2022-05-31 | 2022-07-22 | 上海集度汽车有限公司 | Control method, device and vehicle for suspension system |
| CN114905908A (en)* | 2022-06-27 | 2022-08-16 | 中国第一汽车股份有限公司 | A control method, device, computer equipment and medium for ceiling damping |
| CN115167550A (en)* | 2022-06-20 | 2022-10-11 | 中国农业大学 | A vibration control method of tracked vehicle based on virtual simulation test |
| CN115230419A (en)* | 2022-06-14 | 2022-10-25 | 富奥汽车零部件股份有限公司 | Control method and device for shock absorber in vehicle suspension and storage medium |
| CN115871392A (en)* | 2021-09-28 | 2023-03-31 | 比亚迪股份有限公司 | Vehicle damping continuously adjustable control method and device, storage medium, vibration damping system |
| CN116176197A (en)* | 2021-11-26 | 2023-05-30 | 比亚迪股份有限公司 | Semi-active suspension control method and device, storage medium, vehicle |
| CN116442708A (en)* | 2023-05-06 | 2023-07-18 | 岚图汽车科技有限公司 | A suspension control method, system, storage medium and vehicle |
| CN116691259A (en)* | 2022-02-28 | 2023-09-05 | 比亚迪股份有限公司 | Semi-active suspension control method and system and vehicle |
| CN117566018A (en)* | 2024-01-16 | 2024-02-20 | 深圳市开心电子有限公司 | Automatic identification control method and system for stable running of electric scooter |
| US11904648B2 (en) | 2020-07-17 | 2024-02-20 | Polaris Industries Inc. | Adjustable suspensions and vehicle operation for off-road recreational vehicles |
| US12172518B2 (en) | 2019-04-30 | 2024-12-24 | Polaris Industries Inc. | Vehicle |
| US12187127B2 (en) | 2020-05-15 | 2025-01-07 | Polaris Industries Inc. | Off-road vehicle |
| US12384464B2 (en) | 2020-05-15 | 2025-08-12 | Polaris Industries Inc. | Off-road vehicle |
| US12385429B2 (en) | 2022-06-13 | 2025-08-12 | Polaris Industries Inc. | Powertrain for a utility vehicle |
| US12391116B2 (en) | 2010-06-03 | 2025-08-19 | Polaris Industries Inc. | Adjustable performance for a vehicle |
| US12397878B2 (en) | 2020-05-20 | 2025-08-26 | Polaris Industries Inc. | Systems and methods of adjustable suspensions for off-road recreational vehicles |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04368211A (en)* | 1991-06-18 | 1992-12-21 | Toyota Motor Corp | Optimum control type semi-active suspension system |
| JPH07315026A (en)* | 1994-05-25 | 1995-12-05 | Suzuki Motor Corp | Suspension control device for vehicle |
| CN1749048A (en)* | 2005-10-14 | 2006-03-22 | 上海燃料电池汽车动力系统有限公司 | Semiactive suspension awning damp control algorithm for vehicle speed and road inductive automobile |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04368211A (en)* | 1991-06-18 | 1992-12-21 | Toyota Motor Corp | Optimum control type semi-active suspension system |
| JPH07315026A (en)* | 1994-05-25 | 1995-12-05 | Suzuki Motor Corp | Suspension control device for vehicle |
| CN1749048A (en)* | 2005-10-14 | 2006-03-22 | 上海燃料电池汽车动力系统有限公司 | Semiactive suspension awning damp control algorithm for vehicle speed and road inductive automobile |
| Title |
|---|
| 徐伟,周长城,孟婕,赵雷雷: "汽车悬架阻尼匹配研究及减振器设计", 《农业装备与车辆工程》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12391116B2 (en) | 2010-06-03 | 2025-08-19 | Polaris Industries Inc. | Adjustable performance for a vehicle |
| US11400784B2 (en) | 2012-11-07 | 2022-08-02 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| US9662954B2 (en) | 2012-11-07 | 2017-05-30 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| US11400785B2 (en) | 2012-11-07 | 2022-08-02 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| US11400787B2 (en) | 2012-11-07 | 2022-08-02 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| US11970036B2 (en) | 2012-11-07 | 2024-04-30 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| US9205717B2 (en) | 2012-11-07 | 2015-12-08 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| US11124036B2 (en) | 2012-11-07 | 2021-09-21 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| US10005335B2 (en) | 2012-11-07 | 2018-06-26 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| US12291069B2 (en) | 2012-11-07 | 2025-05-06 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| US11400786B2 (en) | 2012-11-07 | 2022-08-02 | Polaris Industries Inc. | Vehicle having suspension with continuous damping control |
| CN102975587A (en)* | 2012-12-03 | 2013-03-20 | 南京师范大学 | Vehicle semiactive suspension based on double controllable dampers and control method thereof |
| CN103121475A (en)* | 2013-03-08 | 2013-05-29 | 山东理工大学 | Design method for optimal damping ratio of suspension system of cab |
| CN103112508A (en)* | 2013-03-08 | 2013-05-22 | 山东理工大学 | Design method for optimum speed characteristics of trunk cab damper |
| CN103204043B (en)* | 2013-04-01 | 2015-02-25 | 中国人民解放军装甲兵工程学院 | Frequency domain control method of automotive semi-active suspension system |
| CN103204043A (en)* | 2013-04-01 | 2013-07-17 | 中国人民解放军装甲兵工程学院 | Frequency domain control method of automotive semi-active suspension system |
| CN103235891A (en)* | 2013-05-05 | 2013-08-07 | 吉林大学 | Road identification system and method based on vehicle vertical vibration system identification |
| CN103235891B (en)* | 2013-05-05 | 2015-03-18 | 吉林大学 | Road identification system and method based on vehicle vertical vibration system identification |
| CN103241095A (en)* | 2013-05-31 | 2013-08-14 | 山东理工大学 | Control algorithm of automotive magneto-rheological semi-active suspension system and real-time optimal current |
| WO2015004676A1 (en)* | 2013-07-11 | 2015-01-15 | Kpit Technologies Limited | A dynamically adjustable suspension device |
| US10315479B2 (en) | 2013-07-11 | 2019-06-11 | Kpit Technologies Ltd. | Dynamically adjustable suspension device |
| CN104343884A (en)* | 2013-07-23 | 2015-02-11 | 上海三一重机有限公司 | Mine car oil gas suspension damping control method |
| CN103522862B (en)* | 2013-10-14 | 2015-12-09 | 江苏大学 | A kind of method determining semi-active suspension equivalent damping maxim |
| CN103522862A (en)* | 2013-10-14 | 2014-01-22 | 江苏大学 | Method for determining maximum value of equivalent damping of semi-active suspension |
| CN103522863A (en)* | 2013-11-01 | 2014-01-22 | 哈尔滨工业大学 | Executor input saturation control method of automobile active suspension system |
| CN103625236A (en)* | 2013-11-18 | 2014-03-12 | 江苏大学 | Method for determining charging voltage of ESASRE suspension frame based on grading transformation charging |
| CN104015582B (en)* | 2014-06-18 | 2016-04-13 | 吉林大学 | The automobile energy regenerative active suspension system of a kind of stiffness variable and damping |
| CN104015582A (en)* | 2014-06-18 | 2014-09-03 | 吉林大学 | Automotive energy-regenerative active suspension system with rigidity and damping variable |
| CN104200028B (en)* | 2014-09-03 | 2017-07-28 | 山东理工大学 | The design method of feed energy suspension generator power based on vehicle parameter |
| CN104200028A (en)* | 2014-09-03 | 2014-12-10 | 山东理工大学 | Method for designing power of energy regenerative suspension generator based on vehicle parameters |
| CN104408224B (en)* | 2014-10-14 | 2018-05-04 | 山东理工大学 | The human body equivalent stiffness of seat human body vibrating model and the discrimination method of damping |
| CN104408224A (en)* | 2014-10-14 | 2015-03-11 | 山东理工大学 | Human body equivalent stiffness and damping identification method of vehicle seat human body vibration model |
| CN104266849B (en)* | 2014-10-23 | 2017-10-17 | 山东理工大学 | A kind of vehicle tyre damping test device and analysis method |
| CN104309437A (en)* | 2014-10-23 | 2015-01-28 | 山东理工大学 | Design method for real-time optimal control of nonlinear rigidity of vehicle air suspension |
| CN104266849A (en)* | 2014-10-23 | 2015-01-07 | 山东理工大学 | Test device and analysis method for damping of vehicle tire |
| US11285964B2 (en) | 2014-10-31 | 2022-03-29 | Polaris Industries Inc. | System and method for controlling a vehicle |
| US12325432B2 (en) | 2014-10-31 | 2025-06-10 | Polaris Industries Inc. | System and method for controlling a vehicle |
| US11919524B2 (en) | 2014-10-31 | 2024-03-05 | Polaris Industries Inc. | System and method for controlling a vehicle |
| CN104494391A (en)* | 2014-12-16 | 2015-04-08 | 张乔木 | Automobile anti-shocking system and control method |
| CN104669973A (en)* | 2015-02-12 | 2015-06-03 | 江苏大学 | Automobile suspension system active control method for impact-type road disturbance |
| US11752860B2 (en) | 2015-05-15 | 2023-09-12 | Polaris Industries Inc. | Utility vehicle |
| US10124709B2 (en) | 2015-05-15 | 2018-11-13 | Polaris Industries Inc. | Utility vehicle |
| CN104999880A (en)* | 2015-08-17 | 2015-10-28 | 哈尔滨工业大学 | Automobile active suspension anti-saturation control method based on self-adaptive control |
| CN105138785B (en)* | 2015-09-06 | 2018-03-06 | 山东理工大学 | High-speed rail seat and a system and two be vertical suspension damping ratio cooperative optimization method |
| CN105138785A (en)* | 2015-09-06 | 2015-12-09 | 山东理工大学 | Collaborative optimization method for damping ratios of high-speed rail seat suspension, primary vertical suspension and secondary vertical suspension |
| CN105117554B (en)* | 2015-09-06 | 2018-01-02 | 山东理工大学 | High speed railway car one is the design method of vertical suspension Optimal damping ratio |
| CN105160180B (en)* | 2015-09-06 | 2017-12-12 | 山东理工大学 | High speed railway car two is the Analytic Calculation Method of vertical suspension Optimal damping ratio |
| CN105069263A (en)* | 2015-09-06 | 2015-11-18 | 山东理工大学 | Collaborative optimization method of seat and secondary vertical suspension optimal damping ratio of high-speed railway vehicle |
| CN105160180A (en)* | 2015-09-06 | 2015-12-16 | 山东理工大学 | Analytic calculation method of optimal damping ratio of two-line vertical suspension of high-speed railway vehicle |
| CN105160179B (en)* | 2015-09-06 | 2017-11-17 | 山东理工大学 | The system of high speed railway car two laterally suspends the Analytic Calculation Method of Optimal damping ratio |
| CN105160179A (en)* | 2015-09-06 | 2015-12-16 | 山东理工大学 | Analytic calculation method of optimal damping ratio of two-line horizontal suspension of high-speed railway vehicle |
| CN105117554A (en)* | 2015-09-06 | 2015-12-02 | 山东理工大学 | Design method for optimal damping ratio of primary vertical suspension of high-speed rail vehicle |
| CN105160103A (en)* | 2015-09-06 | 2015-12-16 | 山东理工大学 | Collaborative optimization method of one-line and two-line vertical suspension damping ratio of high-speed railway vehicle |
| CN105930596B (en)* | 2016-04-27 | 2018-12-25 | 山东理工大学 | Non- end contact lacks the design method of the reinforced auxiliary spring root thickness in piece root |
| CN105930596A (en)* | 2016-04-27 | 2016-09-07 | 山东理工大学 | Design method for root thickness of end-contactless few-leaf root-enhanced sub-spring |
| CN105893704A (en)* | 2016-04-27 | 2016-08-24 | 山东理工大学 | Auxiliary-spring rigidity designing method for few-leaf main and auxiliary springs with contacted end parts and reinforced root parts |
| CN105893704B (en)* | 2016-04-27 | 2018-11-20 | 山东理工大学 | End contact lacks the auxiliary spring stiffness design method of the reinforced major-minor spring in piece root |
| CN105930607A (en)* | 2016-05-04 | 2016-09-07 | 山东理工大学 | Calculation method for stress of each leaf of non-end-contact few-leaf end-enhanced main spring and sub-spring |
| CN105930607B (en)* | 2016-05-04 | 2019-01-08 | 山东理工大学 | Non- end contact lacks the calculation method of piece reinforcement end each stress of major-minor spring |
| CN105857003A (en)* | 2016-05-11 | 2016-08-17 | 江苏大学 | Improved ceiling control method of energy feedback suspension system |
| CN105974821B (en)* | 2016-05-16 | 2019-01-18 | 萨克斯汽车零部件系统(上海)有限公司 | Vehicle Semi-active Suspension mixed control method based on damping multimode formula switching damper |
| CN105974821A (en)* | 2016-05-16 | 2016-09-28 | 江苏大学 | Vehicle semi-active suspension hybrid control method based on damping multi-mode switching vibration damper |
| US11878678B2 (en) | 2016-11-18 | 2024-01-23 | Polaris Industries Inc. | Vehicle having adjustable suspension |
| US12337824B2 (en) | 2016-11-18 | 2025-06-24 | Polaris Industries Inc. | Vehicle having adjustable suspension |
| US11110913B2 (en) | 2016-11-18 | 2021-09-07 | Polaris Industries Inc. | Vehicle having adjustable suspension |
| CN106515348B (en)* | 2016-12-23 | 2020-04-28 | 浙江孔辉汽车科技有限公司 | Intelligent acceleration damping semi-active control method for vehicle suspension system |
| CN106515348A (en)* | 2016-12-23 | 2017-03-22 | 长春孔辉汽车科技股份有限公司 | Intelligent accelerated speed damping semi-active control method for vehicle suspension system |
| US12330467B2 (en) | 2017-06-09 | 2025-06-17 | Polaris Industries Inc. | Adjustable vehicle suspension system |
| US11912096B2 (en) | 2017-06-09 | 2024-02-27 | Polaris Industries Inc. | Adjustable vehicle suspension system |
| US10406884B2 (en) | 2017-06-09 | 2019-09-10 | Polaris Industries Inc. | Adjustable vehicle suspension system |
| US11479075B2 (en) | 2017-06-09 | 2022-10-25 | Polaris Industries Inc. | Adjustable vehicle suspension system |
| US10987989B2 (en) | 2017-06-09 | 2021-04-27 | Polaris Industries Inc. | Adjustable vehicle suspension system |
| CN107323199A (en)* | 2017-06-22 | 2017-11-07 | 南京航空航天大学 | A kind of new half active hydro pneumatic suspension control system and method |
| CN107323199B (en)* | 2017-06-22 | 2023-09-26 | 南京航空航天大学 | A new semi-active hydropneumatic suspension control system and method |
| CN107599777A (en)* | 2017-07-31 | 2018-01-19 | 江苏大学 | Electromagnetism based on model anticipation mixes suspension modes switching method |
| CN107599777B (en)* | 2017-07-31 | 2020-01-24 | 江苏大学 | Model Prediction Based Mode Switching Method of Electromagnetic Hybrid Suspension |
| CN107941488A (en)* | 2017-11-20 | 2018-04-20 | 中国重汽集团济南动力有限公司 | A kind of vehicle sheet steel spring dynamic stiffness assay method |
| CN108058561B (en)* | 2017-12-19 | 2023-07-04 | 东风汽车集团有限公司 | Active suspension system capable of changing rigidity and damping characteristics of suspension system |
| CN108058561A (en)* | 2017-12-19 | 2018-05-22 | 东风汽车集团有限公司 | A kind of active suspension system for the rigidity and damping characteristic for changing suspension |
| US10946736B2 (en) | 2018-06-05 | 2021-03-16 | Polaris Industries Inc. | All-terrain vehicle |
| CN110712490A (en)* | 2018-07-13 | 2020-01-21 | 山东大学 | An active suspension system based on stack self-encoding and its working method |
| CN108891221A (en)* | 2018-07-24 | 2018-11-27 | 山东大学 | A kind of active suspension system and its working method based on mode energy distribution method |
| US12384214B2 (en) | 2018-11-21 | 2025-08-12 | Polaris Industries Inc. | Vehicle having adjustable compression and rebound damping |
| US11884117B2 (en) | 2018-11-21 | 2024-01-30 | Polaris Industries Inc. | Vehicle having adjustable compression and rebound damping |
| US11975584B2 (en) | 2018-11-21 | 2024-05-07 | Polaris Industries Inc. | Vehicle having adjustable compression and rebound damping |
| US10987987B2 (en) | 2018-11-21 | 2021-04-27 | Polaris Industries Inc. | Vehicle having adjustable compression and rebound damping |
| CN111284288A (en)* | 2018-12-06 | 2020-06-16 | 现代自动车株式会社 | Vehicle shock absorber control method |
| US12172518B2 (en) | 2019-04-30 | 2024-12-24 | Polaris Industries Inc. | Vehicle |
| CN110228343A (en)* | 2019-05-15 | 2019-09-13 | 江苏师范大学 | A kind of magnetorheological air suspension control system of partly active and its control method |
| CN110341414B (en)* | 2019-06-25 | 2022-03-22 | 江苏大学 | Suspension self-adaptive optimal control system and method under continuous linear ceiling control |
| CN110341414A (en)* | 2019-06-25 | 2019-10-18 | 江苏大学 | A Suspension Adaptive Optimal Control System and Method Under Continuous Linear Skyhook Control |
| CN110843449B (en)* | 2019-10-24 | 2022-12-16 | 江苏大学 | Fuzzy switching control method for damping multi-mode semi-active suspension electronic control system |
| CN110843449A (en)* | 2019-10-24 | 2020-02-28 | 江苏大学 | A fuzzy switching control method for a damped multi-mode semi-active suspension electronic control system |
| CN110750063A (en)* | 2019-10-28 | 2020-02-04 | 武汉齐物科技有限公司 | A damping adjustment device and method of a mountain bike shock absorber |
| CN110962519A (en)* | 2019-11-25 | 2020-04-07 | 福建省汽车工业集团云度新能源汽车股份有限公司 | Active suspension control method with intelligent adjusting function for electric automobile |
| CN110962519B (en)* | 2019-11-25 | 2022-11-25 | 福建省汽车工业集团云度新能源汽车股份有限公司 | Active suspension control method with intelligent adjusting function for electric automobile |
| CN111125837A (en)* | 2019-12-31 | 2020-05-08 | 北京理工大学 | Control method for optimizing dynamic performance and energy consumption of active suspension |
| US12337690B2 (en) | 2020-05-15 | 2025-06-24 | Polaris Industries Inc. | Off-road vehicle |
| US12384464B2 (en) | 2020-05-15 | 2025-08-12 | Polaris Industries Inc. | Off-road vehicle |
| US12187127B2 (en) | 2020-05-15 | 2025-01-07 | Polaris Industries Inc. | Off-road vehicle |
| US12397878B2 (en) | 2020-05-20 | 2025-08-26 | Polaris Industries Inc. | Systems and methods of adjustable suspensions for off-road recreational vehicles |
| US11904648B2 (en) | 2020-07-17 | 2024-02-20 | Polaris Industries Inc. | Adjustable suspensions and vehicle operation for off-road recreational vehicles |
| US11897300B2 (en) | 2020-12-22 | 2024-02-13 | Huawei Digital Power Technologies Co., Ltd. | Vehicle, control method for vehicle suspension, and related device |
| CN112572086A (en)* | 2020-12-22 | 2021-03-30 | 华为技术有限公司 | Vehicle, control method of vehicle suspension and related equipment |
| CN112622554A (en)* | 2021-02-02 | 2021-04-09 | 齐齐哈尔大学 | Automobile semi-active suspension damping control method |
| CN115871392A (en)* | 2021-09-28 | 2023-03-31 | 比亚迪股份有限公司 | Vehicle damping continuously adjustable control method and device, storage medium, vibration damping system |
| CN116176197A (en)* | 2021-11-26 | 2023-05-30 | 比亚迪股份有限公司 | Semi-active suspension control method and device, storage medium, vehicle |
| CN116176197B (en)* | 2021-11-26 | 2024-10-11 | 比亚迪股份有限公司 | Semi-active suspension control method and device, storage medium and vehicle |
| CN116691259A (en)* | 2022-02-28 | 2023-09-05 | 比亚迪股份有限公司 | Semi-active suspension control method and system and vehicle |
| CN114312202A (en)* | 2022-03-10 | 2022-04-12 | 成都九鼎科技(集团)有限公司 | Semi-active suspension control method and system based on road condition recognition |
| CN114771189A (en)* | 2022-05-31 | 2022-07-22 | 上海集度汽车有限公司 | Control method, device and vehicle for suspension system |
| US12385429B2 (en) | 2022-06-13 | 2025-08-12 | Polaris Industries Inc. | Powertrain for a utility vehicle |
| CN115230419A (en)* | 2022-06-14 | 2022-10-25 | 富奥汽车零部件股份有限公司 | Control method and device for shock absorber in vehicle suspension and storage medium |
| CN115167550A (en)* | 2022-06-20 | 2022-10-11 | 中国农业大学 | A vibration control method of tracked vehicle based on virtual simulation test |
| CN115167550B (en)* | 2022-06-20 | 2023-02-07 | 中国农业大学 | Tracked vehicle vibration control method based on virtual simulation test |
| CN114905908A (en)* | 2022-06-27 | 2022-08-16 | 中国第一汽车股份有限公司 | A control method, device, computer equipment and medium for ceiling damping |
| CN116442708A (en)* | 2023-05-06 | 2023-07-18 | 岚图汽车科技有限公司 | A suspension control method, system, storage medium and vehicle |
| CN117566018B (en)* | 2024-01-16 | 2024-04-12 | 深圳市开心电子有限公司 | Automatic identification control method and system for stable running of electric scooter |
| CN117566018A (en)* | 2024-01-16 | 2024-02-20 | 深圳市开心电子有限公司 | Automatic identification control method and system for stable running of electric scooter |
| Publication number | Publication date |
|---|---|
| CN102729760B (en) | 2014-06-18 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102729760B (en) | Real-time optimal damping control algorithm of automobile semi-active suspension system | |
| CN112339517B (en) | Semi-active suspension control method and control system | |
| CN106985627B (en) | A vehicle road surface recognition system and suspension mode switching method | |
| CN100418799C (en) | Ceiling damping control algorithm for vehicle speed and road surface sensing semi-active suspension | |
| CN107323199B (en) | A new semi-active hydropneumatic suspension control system and method | |
| CN106515348B (en) | Intelligent acceleration damping semi-active control method for vehicle suspension system | |
| CN103241095B (en) | Control algorithm of automotive magneto-rheological semi-active suspension system and real-time optimal current | |
| CN103072440B (en) | Control method for automotive active suspension system | |
| CN102189909A (en) | Filtering control strategy for skyhook damping frequencies of semi-active suspension of vehicle | |
| US9327574B2 (en) | Vehicle control device and vehicle control method | |
| CN103121475A (en) | Design method for optimal damping ratio of suspension system of cab | |
| CN108058562B (en) | An active suspension device and its control method | |
| CN110001339B (en) | Semi-active control method for suspension of tire burst vehicle | |
| CN102131663A (en) | Method and apparatus for controlling a semi-active suspension system of a motorcycle | |
| CN103593506B (en) | A Two-Stage Series ISD Suspension Parameter Optimization Method | |
| CN112659841A (en) | Vehicle semi-active suspension integrated control method and control system | |
| CN105109299A (en) | Multi-working-condition automobile electric control suspension system and control method thereof | |
| WO2023174327A1 (en) | Cooperative control module, adaptive cruise control system as well as control method thereof, and vehicle | |
| CN114619824B (en) | Vehicle body control method, control device, electronic device and storage medium | |
| CN103434359A (en) | Multi-target control method of automobile driving suspension system | |
| CN106926660B (en) | A kind of electromagnetic suspension system and its control method based on wheel rim driven motor vehicle | |
| CN108839532A (en) | A kind of interconnection condition control method of quadrangle interconnection air suspension | |
| CN108357318A (en) | A kind of intelligent preview control method for the suspension of emergency management and rescue vehicle | |
| CN104608820B (en) | A kind of scaling method of motor turning vibroshock optimal damping operating characteristic | |
| CN115782496B (en) | Intelligent evolution method of semi-active suspension system based on MAP control |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20140618 Termination date:20190717 |