Movatterモバイル変換


[0]ホーム

URL:


CN102705173B - Wind generator and blades thereof - Google Patents

Wind generator and blades thereof
Download PDF

Info

Publication number
CN102705173B
CN102705173BCN201210026101.7ACN201210026101ACN102705173BCN 102705173 BCN102705173 BCN 102705173BCN 201210026101 ACN201210026101 ACN 201210026101ACN 102705173 BCN102705173 BCN 102705173B
Authority
CN
China
Prior art keywords
mrow
msub
blade
mfrac
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210026101.7A
Other languages
Chinese (zh)
Other versions
CN102705173A (en
Inventor
李永泉
韩建景
徐浩
朱益红
林韧锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Effsun New Energy Co ltd
Original Assignee
Shenzhen Effsun Wind Power Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Effsun Wind Power Co ltdfiledCriticalShenzhen Effsun Wind Power Co ltd
Priority to CN201210026101.7ApriorityCriticalpatent/CN102705173B/en
Publication of CN102705173ApublicationCriticalpatent/CN102705173A/en
Application grantedgrantedCritical
Publication of CN102705173BpublicationCriticalpatent/CN102705173B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention discloses a wind generator and blades thereof. Each blade comprises a root portion at one end for mounting and a tip at the other end, a mounting angle, closing to the root portion, of the blade is bigger, a chord length of the blade increases in nonlinear acceleration when closing to the root portion, and the chord length and the mounting angle of the blade are obtained by modifying computation models of Schmits or Glauert. On the basis of mainly used models of Schmits and Glauert, parameters such as a start-up wind speed are introduced to modify the original computation models, so a complete computational formula can be deduced scientifically while influences of relevant parameters such as rated wind speed, tip speed ratio and number of the blades to the start-up wind speed of the pitch-fixed blade of the wind generator are fully considered, and a method for setting the start-up wind speed freely is provided for the pitch-fixed blade of the wind generator. No loss or less loss of generation power compared with the prior art. Requirements for the industry are greatly met, and development of wind generator technology is significantly influenced.

Description

Wind driven generator and blade thereof
Technical Field
The invention relates to a wind driven generator, in particular to a wind driven generator with low starting wind speed and blades thereof.
Background
The design theory of the blade of the wind driven generator is various, such as Betz theory, vortex theory, phyllotactic theory, momentum theory and the like, and the theories provide great help for the design of the blade of the wind driven generator and the design of the whole machine.
The simplified windmill model derived from the Betz theory is based on the theoretical optimal operation condition, and does not consider the distribution and the influence of the blade vortex, so that the simplified windmill model has a larger difference from the actual application; in the later period, Schmits and Glauert fully consider peripheral vortexes such as a central vortex, a boundary vortex and a vortex of a blade tip of a wind wheel and vortexes behind the wind wheel, a Schmits and Glauert design model based on a vortex and chlorophyll theory is generated, and the design theory of blades is further improved; wilson further researches the influence of tip loss and lift-drag ratio of the blade on the optimal performance of the blade and the performance of the wind wheel under the non-design working condition on the basis of a Glauert design model, and provides a Wilson design model. Besides, many other aerodynamics experts have studied more relevant theories, and the design methods most used in the wind turbine blade design in the industry at present are schmitts and Glauert models.
The above various blade design models are based on how the blade exerts the best efficiency at the rated wind speed, and the analysis and inference made by the blade in the standard rotation process state are set without considering the factors such as the starting wind speed, so that the starting wind speed of the blade designed according to the model in the market at present is higher and is difficult to grasp. In practical application, the designed external conditions of the blade are greatly different between a static state and a moving state, so that the designed blade has the problems of high starting wind speed, low efficiency and the like. The requirement of the starting wind speed is mainly considered when the chord length and the installation angle of the blade are designed, the factor influence of the rated wind speed, the tip speed ratio and the number of the blades is not considered enough, and the numerical value of a correction coefficient must be increased when the determined rated wind speed numerical value is increased to obtain a lower starting wind speed; the size of the tip speed ratio has a great influence on the design of the blade, besides the relevance of Reynolds number selection, a lower starting wind speed is obtained under a high tip speed ratio, the relevant parameters are also greatly adjusted, the number of the blades has a direct relation with the solidity ratio of a wind wheel, the number of the blades is generally large, the solidity is large, and the correction coefficient of the blades is small along with the value of the solidity ratio.
Disclosure of Invention
The invention aims to provide a wind driven generator and a blade thereof, which can obtain lower starting wind speed at high blade tip speed.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows: providing a blade of a wind driven generator, wherein the blade comprises a root used for mounting at one end and a blade tip at the other end, the mounting angle of the blade adjacent to the root is larger than that of the blade tip, the nonlinear acceleration of the chord length of the blade adjacent to the root is increased, and the chord length and the mounting angle of the blade are obtained by correcting through a Schmits or Glauert calculation model;
Crs=Kcs*Cr
θrs=Kθsr
said C isrsTo correct the chord length, KcsAs a chord length correction factor, CrCalculating model chord length, θ, for Schmits or GlauertrsTo correct the mounting angle, KθsFor setting angle correction factor, thetarCalculating the model chord length for Schmits or Glauert;
wherein,
Kcs=Kcrswhen K iscrsWhen greater than 1;
Kcs1-when KcrsLess than 1;
Kθs=Kθrswhen K isθrsWhen greater than 1;
Kθs1-when KθrsLess than 1;
the above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1.2</mn> <mo>*</mo> <mo>[</mo> <mi>&pi;</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>&lambda;</mi> <mo>+</mo> <mi>B</mi> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>&lambda;</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mrow> <mo>(</mo> <mn>2.6</mn> <mo>*</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> <mo>-</mo> <mn>0.542</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>&lambda;</mi> <mo>-</mo> <mn>0.9</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The V issA predetermined starting wind speed value for the wind turbine, said VaThe wind power generation method is characterized in that the rated wind speed value of the wind power generator is obtained, lambda is the tip speed ratio of the blades of the wind power generator, B is the number of the blades of the wind power generator, R is the distance between the section of the blade of the wind power generator and the center of a wind wheel, and R is the design radius of the blade of the wind power generator.
Wherein the Vs value is in the range of 1.2-3.2 m/s, and V isaThe value range is 8-12 m/s, the value range of lambda is 5-8, and the value range of B is 2-6.
Wherein the length of the blade is increased by 3-15% compared with the standard theoretical calculation method and is inversely proportional to the starting wind speed.
Wherein, the blade tip of the blade is provided with a winglet smoothly connected with the blade tip.
The winglet is of a symmetrical wing type structure, the length of the winglet is 5% -10% of the designed length of the blade, the winglet inclines backwards from the windward side, the inclination angle is 15-60 degrees, the winglet inclines backwards along the rotation plane of the impeller along the downwind direction, the inclination angle is 8-30 degrees, and the connecting radius of the winglet and the blade tip is 1/4 of the length of the winglet.
In order to solve the technical problems, the invention adopts a further technical scheme that a wind driven generator is provided, and the wind driven generator comprises a blade, wherein the blade comprises a root part used for installation at one end and a blade tip at the other end, the installation angle of the blade adjacent to the root part is larger than that of the blade tip, the chord length of the blade increases in a non-linear acceleration mode in the region adjacent to the root part, and the chord length and the installation angle of the blade are obtained through modification of a Schmits or Glauert calculation model;
Crs=Kcs*Cr
θrs=Kθsr
said C isrsTo correct the chord length, KcsAs a chord length correction factor, CrCalculating model chord length, θ, for Schmits or GlauertrsTo correct the mounting angle, KθsFor setting angle correction factor, thetarCalculating the model chord length for Schmits or Glauert;
wherein,
Kcs=Kcrswhen K iscrsWhen greater than 1;
Kcs1-when KcrsLess than 1;
Kθs=Kθrswhen K isθrsWhen greater than 1;
Kθs1-when KθrsLess than 1;
the above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1.2</mn> <mo>*</mo> <mo>[</mo> <mi>&pi;</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>&lambda;</mi> <mo>+</mo> <mi>B</mi> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>&lambda;</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mrow> <mo>(</mo> <mn>2.6</mn> <mo>*</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> <mo>-</mo> <mn>0.542</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>&lambda;</mi> <mo>-</mo> <mn>0.9</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The V issA predetermined starting wind speed value for the wind turbine, said VaThe wind power generation method is characterized in that the rated wind speed value of the wind power generator is obtained, lambda is the tip speed ratio of the blades of the wind power generator, B is the number of the blades of the wind power generator, R is the distance between the section of the blade of the wind power generator and the center of a wind wheel, and R is the design radius of the blade of the wind power generator.
Wherein the Vs value is in the range of 1.2-3.2 m/s, and V isaThe value range is 8-12 m/s, the value range of lambda is 5-8, and the value range of B is 2-6.
The invention has the advantages that the parameters such as starting wind speed and the like are introduced on the basis of more applied Schmits and Glauert models, the original calculation model is corrected, the influence of relevant parameter factors such as rated wind speed, tip speed ratio and blade number on the starting wind speed of the fixed-pitch blades of the wind driven generator is fully considered, a complete calculation formula is scientifically derived, a method for freely setting the starting wind speed is provided for the design of the fixed-pitch blades of the wind driven generator, the generated power is basically not lost or is hardly lost compared with the prior art, the requirements in the industry are greatly met, and a great effect is played on the development of the wind driven generator technology.
Detailed Description
In order to explain technical contents, structural features, and objects and effects of the present invention in detail, the following description is given in detail with reference to the embodiments.
Schmittg calculation model:
blade chord length: <math> <mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> <mi>&pi;</mi> <mo>&CenterDot;</mo> <mi>r</mi> </mrow> <mrow> <msub> <mi>C</mi> <mi>l</mi> </msub> <mi>B</mi> </mrow> </mfrac> <msup> <mi>Sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> </mrow></math>
mounting angles: <math> <mrow> <mi>&theta;r</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&alpha;</mi> </mrow></math>
wherein: clIs the lift coefficient of the airfoil profile;
b is the number of the blades;
r is the distance from the blade section to the blade installation center;
r is the rotation radius of the fan;
λ is tip speed ratio;
alpha is the optimum angle of attack of the airfoil.
Glauert calculation model:
<math> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>&pi;</mi> <mn>3</mn> </mfrac> </mrow></math>
<math> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>cos</mi> <msub> <mi>k</mi> <mn>1</mn> </msub> <msqrt> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> </mrow></math>
<math> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <msqrt> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msup> <msub> <mi>k</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </msqrt> </mrow></math>
<math> <mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>&lambda;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> </mrow></math>
blade chord length: <math> <mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>&pi;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <msqrt> <msup> <msub> <mi>k</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mfrac> <mfrac> <mi>r</mi> <msub> <mi>BC</mi> <mi>l</mi> </msub> </mfrac> </mrow></math>
mounting angles: thetar=arc cot k4
Wherein: k is a radical of1Intermediate variables used to simplify the calculation process;
k2an axial velocity induction factor;
k3a tangential velocity inducing factor;
Figure BDA0000134303380000059
the optimal inflow angle is achieved.
The blade design method of the wind driven generator is modified on the basis of Schmits and Glauert calculation models. The Schmits and Glauert calculation model refers to chord length and installation angle parameters of the blade. The chord length and the mounting angle are the chord length and the mounting angle of the airfoil of the blade at the radius r. The correction theory and the calculation formula refer to correction coefficient K which is obtained by derivation, analysis and experiment and is supplemented with a Schmits and Glauert calculation modelcs、KθsThe chord length and the mounting angle of the obtained blade.
Crs=Kcs*Cr
θrs=Kθsr
Said C isrsTo correct the chord length, KcsAs a chord length correction factor, CrCalculating model chord length, θ, for Schmits or GlauertrsTo correct the mounting angle, KθsFor correcting mounting angleNumber, thetarCalculating the model chord length for Schmits or Glauert; establishing a correction coefficient K of chord length related to the starting wind speed, the rated wind speed, the tip speed ratio, the number of blades and the distance between the cross section and the center of the blade of the wind driven generatorcrsWhen K iscrsWhen the chord length is more than or equal to 1, correcting the chord length CrsIs equal to the correction factor KcrsAnd Schmits or Glauert calculation model chord length CrThe product of (a); when the correction coefficient K iscrsWhen the chord length is less than 1, correcting the chord length CrsEqual to Schmits or Glauert calculation model chord length Cr. Wherein KcrsThe mathematical model of (a) is:
<math> <mrow> <msub> <mi>K</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1.2</mn> <mo>*</mo> <mo>[</mo> <mi>&pi;</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>&lambda;</mi> <mo>+</mo> <mi>B</mi> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>&lambda;</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
the V issThe starting wind speed value is preset for the wind driven generator, and the range of the Vs value is 1.2-3.2 m/s;
the V isaFor rated wind speed value of the wind power generator, said VaThe value range is 8-12 m/s;
the lambda is the tip speed ratio of the wind driven generator blade and satisfies the relation:
Figure BDA0000134303380000062
for a high-speed fan, the value range is usually between 5 and 8.
B is the number of blades of the wind driven generator, and the value is 2-6;
r is the distance from the blade section of the wind driven generator to the center of the wind wheel;
and R is the design radius of the wind driven generator blade.
Setting a correction coefficient K of a mounting angle related to the starting wind speed, the rated wind speed, the tip speed ratio, the number of blades and the distance between the cross section and the center of the blade of the wind driven generatorθrsWhen K isθsWhen the angle is greater than or equal to 1, correcting the installation angle thetarsIs equal to the correction factor KθrsCalculating a model installation angle theta with Schmits or GlauertrThe product of (a); when the correction coefficient K isθrsWhen the angle is less than 1, the mounting angle theta is correctedrsEqual to the Schmits or Glauert calculation model mounting angle thetar. Wherein KθrsThe mathematical expression of (a) is:
the above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mrow> <mo>(</mo> <mn>2.6</mn> <mo>*</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> <mo>-</mo> <mn>0.542</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>&lambda;</mi> <mo>-</mo> <mn>0.9</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The V issThe starting wind speed value is preset for the wind driven generator, and the range of the Vs value is 1.2-3.2 m/s;
the V isaFor rated wind speed value of the wind power generator, said VaThe value range is 8-12 m/s;
the lambda is the tip speed ratio of the wind driven generator blade and satisfies the relation:
Figure BDA0000134303380000072
for high speed windThe value range of the machine is usually between 5 and 8.
B is the number of blades of the wind driven generator, and the value is 2-6;
r is the distance from the blade section of the wind driven generator to the center of the wind wheel;
and R is the design radius of the wind driven generator blade.
In the present embodiment, the correction coefficient K of the chord lengthcrsAnd correction factor K of mounting angleθrsUnder the common influence of the starting wind speed of the fan, the rated wind speed, the tip speed ratio, the number of the blades and the distance between the cross section and the center of the blade, the correction coefficient can make a suitable change trend after any variable is adjusted. Correction coefficient K of chord lengthcrsAnd correction factor K of mounting angleθrsThe correction effect of (2) is mainly concentrated on the area of the blade close to the root part, and the correction is smaller when the blade is closer to the blade tip part until the correction coefficient is 1. Starting wind speed VsRated wind speed V as the main variableaTip speed ratio λ, blade number B as auxiliary variables. The calculated length of the blade is increased by 3-15% compared with a standard theoretical calculation method according to the required starting wind speed. The lower the start-up wind speed requirement, the larger the value of the increase.
The invention relates to a corrected chord length C calculated after the blade of a wind driven generator is correctedrsAnd correcting the mounting angle thetarsThe correction is within 10% of the design correction theory and the calculation result of the calculation model in the reasonable extension range of the calculation model, and the basic ideas and ideas of the blade design correction theory and the calculation model are still used.
In this embodiment, a winglet smoothly connected to the tip of the blade is provided. The winglet is of a symmetrical wing type structure, the length of the winglet is 5% -10% of the designed length of the blade, the winglet inclines backwards from the windward side, the inclination angle is 15-60 degrees, the winglet inclines backwards along the rotation plane of the impeller along the downwind direction, the inclination angle is 8-30 degrees, the connection radius of the winglet and the blade tip is 1/4 of the length of the winglet, and the number of the wing types used in the length of all the blades is 1-3.
The above description is only an embodiment of the present invention, and not intended to limit the scope of the present invention, and all modifications of equivalent structures and equivalent processes, which are made by the present specification, or directly or indirectly applied to other related technical fields, are included in the scope of the present invention.

Claims (5)

1. A blade of a wind driven generator is characterized in that the blade comprises a root part used for installation at one end and a blade tip at the other end, the installation angle of the blade adjacent to the root part is larger than that of the blade tip, the chord length of the blade increases in a nonlinear acceleration mode in the area adjacent to the root part, and the chord length and the installation angle of the blade are obtained through modification through a Schmits or Glauert calculation model;
Crs=Kcs*Cr
θrs=Kθsr
said C isrsTo correct the chord length, KcsAs a chord length correction factor, CrCalculating model chord length, θ, for Schmits or GlauertrsTo correct the mounting angle, KθsFor setting angle correction factor, thetarCalculating the model chord length for Schmits or Glauert;
wherein,
Kcs=Kcrswhen K iscrsWhen greater than 1;
Kcs= 1-when KcrsLess than 1;
Kθs=Kθrswhen K isθrsWhen greater than 1;
Kθs= 1-when KθrsLess than 1;
the above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1.2</mn> <mo>*</mo> <mo>[</mo> <mi>&pi;</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>&lambda;</mi> <mo>+</mo> <mi>B</mi> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>&lambda;</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mrow> <mo>(</mo> <mn>2.6</mn> <mo>*</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.542</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>&lambda;</mi> <mo>-</mo> <mn>0.9</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The V issScheduled start-up for wind generatorsDynamic wind speed value, said VaThe wind power generation method comprises the following steps that a rated wind speed value of the wind driven generator is obtained, lambda is the tip speed ratio of a wind driven generator blade, B is the number of the wind driven generator blade, R is the distance between the section of the wind driven generator blade and the center of a wind wheel, and R is the design radius of the wind driven generator blade;
the range of the Vs value is 1.2-3.2 m/s, and the V value isaThe value range is 8-12 m/s, the value range of lambda is 5-8, and the value range of B is 2-6.
2. Blade for a wind turbine according to claim 1, wherein the length of the blade is increased by 3% compared to a standard theoretical calculation method-15% and is inversely proportional to the starting wind speed.
3. The blade of the wind power generator as claimed in claim 2, wherein the tip of the blade is provided with a winglet smoothly connected.
4. The blade of claim 3, wherein the winglet is a symmetrical airfoil configuration having a length of 5% of a blade design length-10% of winglets inclined backwards from the windward side, and the inclination angle is 15 degrees-60 degrees, the winglet is inclined backwards downwind along the plane of rotation of the impeller, the angle of inclination being 8 degrees-30 degrees and the radius of the winglet to the tip is 1/4 the length of the winglet.
5. A wind power generator comprising a blade, wherein the blade comprises a root part used for installation at one end and a blade tip at the other end, the installation angle of the blade adjacent to the root part is larger than that of the blade tip, the chord length of the blade increases in the area adjacent to the root part in a nonlinear acceleration mode, and the chord length and the installation angle of the blade are obtained through modification through a Schmits or Glauert calculation model;
Crs=Kcs*Cr
θrs=Kθsr
said C isrsTo correct the chord length, KcsAs a chord length correction factor, CrCalculating model chord length, θ, for Schmits or GlauertrsTo correct the mounting angle, KθsFor setting angle correction factor, thetarCalculating the model chord length for Schmits or Glauert;
wherein,
Kcs=Kcrswhen K iscrsWhen greater than 1;
Kcs= 1-when KcrsLess than 1;
Kθs=Kθrswhen K isθrsWhen greater than 1;
Kθs= 1-when KθrsLess than 1;
the above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1.2</mn> <mo>*</mo> <mo>[</mo> <mi>&pi;</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>&lambda;</mi> <mo>+</mo> <mi>B</mi> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>&lambda;</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>&theta;rs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&pi;</mi> <mo>-</mo> <mrow> <mo>(</mo> <mn>2.6</mn> <mo>*</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.542</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>&lambda;</mi> <mo>-</mo> <mn>0.9</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The V issA predetermined starting wind speed value for the wind turbine, said VaThe wind power generation method comprises the following steps that a rated wind speed value of the wind driven generator is obtained, lambda is the tip speed ratio of a wind driven generator blade, B is the number of the wind driven generator blade, R is the distance between the section of the wind driven generator blade and the center of a wind wheel, and R is the design radius of the wind driven generator blade;
the range of the Vs value is 1.2-3.2 m/s, and the V value isaThe value range is 8-12 m/s, the value range of lambda is 5-8, and the value range of B is 2-6.
CN201210026101.7A2012-02-072012-02-07Wind generator and blades thereofExpired - Fee RelatedCN102705173B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201210026101.7ACN102705173B (en)2012-02-072012-02-07Wind generator and blades thereof

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201210026101.7ACN102705173B (en)2012-02-072012-02-07Wind generator and blades thereof

Publications (2)

Publication NumberPublication Date
CN102705173A CN102705173A (en)2012-10-03
CN102705173Btrue CN102705173B (en)2014-04-23

Family

ID=46898177

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201210026101.7AExpired - Fee RelatedCN102705173B (en)2012-02-072012-02-07Wind generator and blades thereof

Country Status (1)

CountryLink
CN (1)CN102705173B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104343626B (en)*2014-10-282017-02-15河海大学Self-protection wind-driven water lifting system with accelerating vanes
CN109026519B (en)*2018-07-262019-09-03华北电力大学 Method for determining the chord length of wind power blades, wind rotors and wind power blades

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN1659376A (en)*2002-06-052005-08-24艾劳埃斯·乌本 Rotor blades for wind power plants
CN101749193A (en)*2009-12-092010-06-23韩建景High-efficient wind powered generator with start-up wind speed being set and blades thereof
CN102108947A (en)*2011-02-252011-06-29珠海市洁源电器有限公司Pneumatic design method for wind turbine blade with low starting wind speed

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6503058B1 (en)*2000-05-012003-01-07Zond Energy Systems, Inc.Air foil configuration for wind turbine
TW200726908A (en)*2005-10-042007-07-16Arthur Benjamin O ConnorWind turbine
EP2078851A1 (en)*2008-01-142009-07-15Lm Glasfiber A/SWind turbine blade and hub assembly
CN102713261A (en)*2009-11-032012-10-03北星公司Wind turbine blade
US20110229300A1 (en)*2010-03-162011-09-22Stichting Energieonderzoek Centrum NederlandApparatus and method for individual pitch control in wind turbines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN1659376A (en)*2002-06-052005-08-24艾劳埃斯·乌本 Rotor blades for wind power plants
CN101749193A (en)*2009-12-092010-06-23韩建景High-efficient wind powered generator with start-up wind speed being set and blades thereof
CN102108947A (en)*2011-02-252011-06-29珠海市洁源电器有限公司Pneumatic design method for wind turbine blade with low starting wind speed

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王飞.小型风力发电机叶片设计与制造工艺研究.《中国优秀硕士学位论文全文数据库(工程科技II辑)》.2007,(第05期),第17页表3-1、第18页表3-2.*

Also Published As

Publication numberPublication date
CN102705173A (en)2012-10-03

Similar Documents

PublicationPublication DateTitle
CN107559143B (en) A large-scale wind turbine trailing edge flap structure parameter optimization and multi-objective flap optimization control method
CN103244348B (en)Speed-changing oar-changing power curves of wind-driven generator sets optimization method
AU2020100825A4 (en)Method for evaluating aerodynamic performance of wind wheel of wind turbine based on three-factor fitting integral method
CN102708266B (en) A Calculation Method for Ultimate Load Prediction of Horizontal Axis Wind Turbine Blades
CN110110427A (en)A kind of Design of Aerodynamic Configuration method of high-power wind mill blade
CN102797629A (en)Wind turbine generator control method, controller and control system of wind turbine generator
CN111550363B (en)Blade tip winglet, wind turbine blade and blade synergy calculation method thereof
CN102322407A (en)Aerodynamic configuration collaborative design method for wind turbine blade
CN106894947A (en)A kind of low wind speed speed-changing oar-changing pneumatic equipment bladess Optimization Design
CN103485973B (en)A kind of pneumatic equipment blades with tip vane
CN105840434B (en)A kind of wind electricity blade vortex generator optimum design method
CN111209638A (en)Low wind speed wind turbine blade pneumatic design method based on operation attack angle deviation correction
CN107905945A (en)Adjust the leaf paddle head of the Universal Windmill of paddle length
Wang et al.Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects
CN101749193B (en)High-efficient wind powered generator with start-up wind speed being set and blades thereof
CN117034618A (en)Wind farm output power joint optimization method considering yaw wind turbine load
CN113847207A (en) A double wind turbine wind turbine
CN105868470A (en)Wind turbine wing shape and blade appearance parameter integrated design method
CN101498276A (en)Horizontal axle wind mill with blade tip winglet
CN102705173B (en)Wind generator and blades thereof
CN203362391U (en)Wind turbine blade with tip vane
CN202768249U (en)Wind generation set control system based on pneumatic torque calculation model
CN109359426A (en) A joint optimization method of wind turbine blade aerodynamic parameters and controller parameters
CN109325274B (en)Wind turbine wind wheel aerodynamic performance evaluation method based on three-factor fitting integration method
Soraghan et al.Influence of lift to drag ratio on optimal aerodynamic performance of straight blade vertical axis wind turbines

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
C56Change in the name or address of the patentee
CP01Change in the name or title of a patent holder

Address after:518000 Guangdong city of Shenzhen province Baoan District Guanlan Street Zhang Ge village community club chapter No. 452 Yuelu Guangxi

Patentee after:SHENZHEN EFFSUN NEW ENERGY CO.,LTD.

Address before:518000 Guangdong city of Shenzhen province Baoan District Guanlan Street Zhang Ge village community club chapter No. 452 Yuelu Guangxi

Patentee before:SHENZHEN EFFSUN WIND POWER Co.,Ltd.

CF01Termination of patent right due to non-payment of annual fee
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20140423

Termination date:20220207


[8]ページ先頭

©2009-2025 Movatter.jp