Wind driven generator and blade thereofTechnical Field
The invention relates to a wind driven generator, in particular to a wind driven generator with low starting wind speed and blades thereof.
Background
The design theory of the blade of the wind driven generator is various, such as Betz theory, vortex theory, phyllotactic theory, momentum theory and the like, and the theories provide great help for the design of the blade of the wind driven generator and the design of the whole machine.
The simplified windmill model derived from the Betz theory is based on the theoretical optimal operation condition, and does not consider the distribution and the influence of the blade vortex, so that the simplified windmill model has a larger difference from the actual application; in the later period, Schmits and Glauert fully consider peripheral vortexes such as a central vortex, a boundary vortex and a vortex of a blade tip of a wind wheel and vortexes behind the wind wheel, a Schmits and Glauert design model based on a vortex and chlorophyll theory is generated, and the design theory of blades is further improved; wilson further researches the influence of tip loss and lift-drag ratio of the blade on the optimal performance of the blade and the performance of the wind wheel under the non-design working condition on the basis of a Glauert design model, and provides a Wilson design model. Besides, many other aerodynamics experts have studied more relevant theories, and the design methods most used in the wind turbine blade design in the industry at present are schmitts and Glauert models.
The above various blade design models are based on how the blade exerts the best efficiency at the rated wind speed, and the analysis and inference made by the blade in the standard rotation process state are set without considering the factors such as the starting wind speed, so that the starting wind speed of the blade designed according to the model in the market at present is higher and is difficult to grasp. In practical application, the designed external conditions of the blade are greatly different between a static state and a moving state, so that the designed blade has the problems of high starting wind speed, low efficiency and the like. The requirement of the starting wind speed is mainly considered when the chord length and the installation angle of the blade are designed, the factor influence of the rated wind speed, the tip speed ratio and the number of the blades is not considered enough, and the numerical value of a correction coefficient must be increased when the determined rated wind speed numerical value is increased to obtain a lower starting wind speed; the size of the tip speed ratio has a great influence on the design of the blade, besides the relevance of Reynolds number selection, a lower starting wind speed is obtained under a high tip speed ratio, the relevant parameters are also greatly adjusted, the number of the blades has a direct relation with the solidity ratio of a wind wheel, the number of the blades is generally large, the solidity is large, and the correction coefficient of the blades is small along with the value of the solidity ratio.
Disclosure of Invention
The invention aims to provide a wind driven generator and a blade thereof, which can obtain lower starting wind speed at high blade tip speed.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows: providing a blade of a wind driven generator, wherein the blade comprises a root used for mounting at one end and a blade tip at the other end, the mounting angle of the blade adjacent to the root is larger than that of the blade tip, the nonlinear acceleration of the chord length of the blade adjacent to the root is increased, and the chord length and the mounting angle of the blade are obtained by correcting through a Schmits or Glauert calculation model;
Crs=Kcs*Cr;
θrs=Kθs*θr;
said C isrsTo correct the chord length, KcsAs a chord length correction factor, CrCalculating model chord length, θ, for Schmits or GlauertrsTo correct the mounting angle, KθsFor setting angle correction factor, thetarCalculating the model chord length for Schmits or Glauert;
wherein,
Kcs=Kcrswhen K iscrsWhen greater than 1;
Kcs1-when KcrsLess than 1;
Kθs=Kθrswhen K isθrsWhen greater than 1;
Kθs1-when KθrsLess than 1;
the above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1.2</mn> <mo>*</mo> <mo>[</mo> <mi>π</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>λ</mi> <mo>+</mo> <mi>B</mi> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>λ</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>θrs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>π</mi> <mo>-</mo> <mrow> <mo>(</mo> <mn>2.6</mn> <mo>*</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> <mo>-</mo> <mn>0.542</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>λ</mi> <mo>-</mo> <mn>0.9</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The V issA predetermined starting wind speed value for the wind turbine, said VaThe wind power generation method is characterized in that the rated wind speed value of the wind power generator is obtained, lambda is the tip speed ratio of the blades of the wind power generator, B is the number of the blades of the wind power generator, R is the distance between the section of the blade of the wind power generator and the center of a wind wheel, and R is the design radius of the blade of the wind power generator.
Wherein the Vs value is in the range of 1.2-3.2 m/s, and V isaThe value range is 8-12 m/s, the value range of lambda is 5-8, and the value range of B is 2-6.
Wherein the length of the blade is increased by 3-15% compared with the standard theoretical calculation method and is inversely proportional to the starting wind speed.
Wherein, the blade tip of the blade is provided with a winglet smoothly connected with the blade tip.
The winglet is of a symmetrical wing type structure, the length of the winglet is 5% -10% of the designed length of the blade, the winglet inclines backwards from the windward side, the inclination angle is 15-60 degrees, the winglet inclines backwards along the rotation plane of the impeller along the downwind direction, the inclination angle is 8-30 degrees, and the connecting radius of the winglet and the blade tip is 1/4 of the length of the winglet.
In order to solve the technical problems, the invention adopts a further technical scheme that a wind driven generator is provided, and the wind driven generator comprises a blade, wherein the blade comprises a root part used for installation at one end and a blade tip at the other end, the installation angle of the blade adjacent to the root part is larger than that of the blade tip, the chord length of the blade increases in a non-linear acceleration mode in the region adjacent to the root part, and the chord length and the installation angle of the blade are obtained through modification of a Schmits or Glauert calculation model;
Crs=Kcs*Cr;
θrs=Kθs*θr;
said C isrsTo correct the chord length, KcsAs a chord length correction factor, CrCalculating model chord length, θ, for Schmits or GlauertrsTo correct the mounting angle, KθsFor setting angle correction factor, thetarCalculating the model chord length for Schmits or Glauert;
wherein,
Kcs=Kcrswhen K iscrsWhen greater than 1;
Kcs1-when KcrsLess than 1;
Kθs=Kθrswhen K isθrsWhen greater than 1;
Kθs1-when KθrsLess than 1;
the above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1.2</mn> <mo>*</mo> <mo>[</mo> <mi>π</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>λ</mi> <mo>+</mo> <mi>B</mi> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>λ</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>θrs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>π</mi> <mo>-</mo> <mrow> <mo>(</mo> <mn>2.6</mn> <mo>*</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> <mo>-</mo> <mn>0.542</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>λ</mi> <mo>-</mo> <mn>0.9</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The V issA predetermined starting wind speed value for the wind turbine, said VaThe wind power generation method is characterized in that the rated wind speed value of the wind power generator is obtained, lambda is the tip speed ratio of the blades of the wind power generator, B is the number of the blades of the wind power generator, R is the distance between the section of the blade of the wind power generator and the center of a wind wheel, and R is the design radius of the blade of the wind power generator.
Wherein the Vs value is in the range of 1.2-3.2 m/s, and V isaThe value range is 8-12 m/s, the value range of lambda is 5-8, and the value range of B is 2-6.
The invention has the advantages that the parameters such as starting wind speed and the like are introduced on the basis of more applied Schmits and Glauert models, the original calculation model is corrected, the influence of relevant parameter factors such as rated wind speed, tip speed ratio and blade number on the starting wind speed of the fixed-pitch blades of the wind driven generator is fully considered, a complete calculation formula is scientifically derived, a method for freely setting the starting wind speed is provided for the design of the fixed-pitch blades of the wind driven generator, the generated power is basically not lost or is hardly lost compared with the prior art, the requirements in the industry are greatly met, and a great effect is played on the development of the wind driven generator technology.
Detailed Description
In order to explain technical contents, structural features, and objects and effects of the present invention in detail, the following description is given in detail with reference to the embodiments.
Schmittg calculation model:
blade chord length: <math> <mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>16</mn> <mi>π</mi> <mo>·</mo> <mi>r</mi> </mrow> <mrow> <msub> <mi>C</mi> <mi>l</mi> </msub> <mi>B</mi> </mrow> </mfrac> <msup> <mi>Sin</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>λ</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> </mrow></math>
mounting angles: <math> <mrow> <mi>θr</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mi>arccty</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>λ</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>α</mi> </mrow></math>
wherein: clIs the lift coefficient of the airfoil profile;
b is the number of the blades;
r is the distance from the blade section to the blade installation center;
r is the rotation radius of the fan;
λ is tip speed ratio;
alpha is the optimum angle of attack of the airfoil.
Glauert calculation model:
<math> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>λ</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>π</mi> <mn>3</mn> </mfrac> </mrow></math>
<math> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>cos</mi> <msub> <mi>k</mi> <mn>1</mn> </msub> <msqrt> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>λ</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> </mrow></math>
<math> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <msqrt> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <msup> <msub> <mi>k</mi> <mn>2</mn> </msub> <mn>2</mn> </msup> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>λ</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </msqrt> </mrow></math>
<math> <mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>3</mn> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <msub> <mi>λ</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> </mrow></math>
blade chord length: <math> <mrow> <mi>Cr</mi> <mo>=</mo> <mfrac> <mrow> <mn>8</mn> <mi>π</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mfrac> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <msqrt> <msup> <msub> <mi>k</mi> <mn>4</mn> </msub> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </msqrt> </mrow> </mfrac> <mfrac> <mi>r</mi> <msub> <mi>BC</mi> <mi>l</mi> </msub> </mfrac> </mrow></math>
mounting angles: thetar=arc cot k4-α
Wherein: k is a radical of1Intermediate variables used to simplify the calculation process;
k2an axial velocity induction factor;
k3a tangential velocity inducing factor;
the optimal inflow angle is achieved.
The blade design method of the wind driven generator is modified on the basis of Schmits and Glauert calculation models. The Schmits and Glauert calculation model refers to chord length and installation angle parameters of the blade. The chord length and the mounting angle are the chord length and the mounting angle of the airfoil of the blade at the radius r. The correction theory and the calculation formula refer to correction coefficient K which is obtained by derivation, analysis and experiment and is supplemented with a Schmits and Glauert calculation modelcs、KθsThe chord length and the mounting angle of the obtained blade.
Crs=Kcs*Cr;
θrs=Kθs*θr;
Said C isrsTo correct the chord length, KcsAs a chord length correction factor, CrCalculating model chord length, θ, for Schmits or GlauertrsTo correct the mounting angle, KθsFor correcting mounting angleNumber, thetarCalculating the model chord length for Schmits or Glauert; establishing a correction coefficient K of chord length related to the starting wind speed, the rated wind speed, the tip speed ratio, the number of blades and the distance between the cross section and the center of the blade of the wind driven generatorcrsWhen K iscrsWhen the chord length is more than or equal to 1, correcting the chord length CrsIs equal to the correction factor KcrsAnd Schmits or Glauert calculation model chord length CrThe product of (a); when the correction coefficient K iscrsWhen the chord length is less than 1, correcting the chord length CrsEqual to Schmits or Glauert calculation model chord length Cr. Wherein KcrsThe mathematical model of (a) is:
<math> <mrow> <msub> <mi>K</mi> <mi>crs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>1.2</mn> <mo>*</mo> <mo>[</mo> <mi>π</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>λ</mi> <mo>+</mo> <mi>B</mi> </mrow> </msup> <mo>+</mo> <mfrac> <mrow> <mn>3</mn> <mi>λ</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
the V issThe starting wind speed value is preset for the wind driven generator, and the range of the Vs value is 1.2-3.2 m/s;
the V isaFor rated wind speed value of the wind power generator, said VaThe value range is 8-12 m/s;
the lambda is the tip speed ratio of the wind driven generator blade and satisfies the relation:
for a high-speed fan, the value range is usually between 5 and 8.
B is the number of blades of the wind driven generator, and the value is 2-6;
r is the distance from the blade section of the wind driven generator to the center of the wind wheel;
and R is the design radius of the wind driven generator blade.
Setting a correction coefficient K of a mounting angle related to the starting wind speed, the rated wind speed, the tip speed ratio, the number of blades and the distance between the cross section and the center of the blade of the wind driven generatorθrsWhen K isθsWhen the angle is greater than or equal to 1, correcting the installation angle thetarsIs equal to the correction factor KθrsCalculating a model installation angle theta with Schmits or GlauertrThe product of (a); when the correction coefficient K isθrsWhen the angle is less than 1, the mounting angle theta is correctedrsEqual to the Schmits or Glauert calculation model mounting angle thetar. Wherein KθrsThe mathematical expression of (a) is:
the above-mentioned <math> <mrow> <msub> <mi>K</mi> <mi>θrs</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>π</mi> <mo>-</mo> <mrow> <mo>(</mo> <mn>2.6</mn> <mo>*</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>a</mi> </msub> <mo>)</mo> </mrow> <mo>*</mo> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> <mo>-</mo> <mn>0.542</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>+</mo> <mn>0.5</mn> <mo>)</mo> </mrow> <mo>*</mo> <mrow> <mo>(</mo> <mfrac> <mi>r</mi> <mi>R</mi> </mfrac> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mi>λ</mi> <mo>-</mo> <mn>0.9</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> </mrow></math>
The V issThe starting wind speed value is preset for the wind driven generator, and the range of the Vs value is 1.2-3.2 m/s;
the V isaFor rated wind speed value of the wind power generator, said VaThe value range is 8-12 m/s;
the lambda is the tip speed ratio of the wind driven generator blade and satisfies the relation:
for high speed windThe value range of the machine is usually between 5 and 8.
B is the number of blades of the wind driven generator, and the value is 2-6;
r is the distance from the blade section of the wind driven generator to the center of the wind wheel;
and R is the design radius of the wind driven generator blade.
In the present embodiment, the correction coefficient K of the chord lengthcrsAnd correction factor K of mounting angleθrsUnder the common influence of the starting wind speed of the fan, the rated wind speed, the tip speed ratio, the number of the blades and the distance between the cross section and the center of the blade, the correction coefficient can make a suitable change trend after any variable is adjusted. Correction coefficient K of chord lengthcrsAnd correction factor K of mounting angleθrsThe correction effect of (2) is mainly concentrated on the area of the blade close to the root part, and the correction is smaller when the blade is closer to the blade tip part until the correction coefficient is 1. Starting wind speed VsRated wind speed V as the main variableaTip speed ratio λ, blade number B as auxiliary variables. The calculated length of the blade is increased by 3-15% compared with a standard theoretical calculation method according to the required starting wind speed. The lower the start-up wind speed requirement, the larger the value of the increase.
The invention relates to a corrected chord length C calculated after the blade of a wind driven generator is correctedrsAnd correcting the mounting angle thetarsThe correction is within 10% of the design correction theory and the calculation result of the calculation model in the reasonable extension range of the calculation model, and the basic ideas and ideas of the blade design correction theory and the calculation model are still used.
In this embodiment, a winglet smoothly connected to the tip of the blade is provided. The winglet is of a symmetrical wing type structure, the length of the winglet is 5% -10% of the designed length of the blade, the winglet inclines backwards from the windward side, the inclination angle is 15-60 degrees, the winglet inclines backwards along the rotation plane of the impeller along the downwind direction, the inclination angle is 8-30 degrees, the connection radius of the winglet and the blade tip is 1/4 of the length of the winglet, and the number of the wing types used in the length of all the blades is 1-3.
The above description is only an embodiment of the present invention, and not intended to limit the scope of the present invention, and all modifications of equivalent structures and equivalent processes, which are made by the present specification, or directly or indirectly applied to other related technical fields, are included in the scope of the present invention.