
技术领域technical field
本发明涉及红外辐射材料领域,尤其涉及一种特别适用于高温工业窑炉(锅炉)的红外辐射节能涂料、红外辐射加热器等产品的尖晶石-硅酸盐多相复合体系红外辐射陶瓷粉料的制备方法。The invention relates to the field of infrared radiation materials, in particular to a spinel-silicate multiphase composite system infrared radiation ceramic powder which is especially suitable for infrared radiation energy-saving coatings for high-temperature industrial kilns (boilers), infrared radiation heaters and other products The preparation method of the material.
背景技术Background technique
红外辐射材料由于其优异的红外辐射性能而受到广泛关注,在工业炉节能、提高红外加热器热效率、航天器热控制等方面得到广泛应用。目前,国内外已研制出了多种红外辐射陶瓷材料,主要有氧化锆体系、锆英砂体系、碳化硅体系、氧化铬体系、氧化铁-氧化锰体系等。Infrared radiation materials have attracted extensive attention due to their excellent infrared radiation properties, and have been widely used in energy saving of industrial furnaces, improvement of thermal efficiency of infrared heaters, and thermal control of spacecraft. At present, a variety of infrared radiation ceramic materials have been developed at home and abroad, mainly including zirconia system, zircon sand system, silicon carbide system, chromium oxide system, iron oxide-manganese oxide system, etc.
在各类红外辐射陶瓷材料中,氧化铁-氧化锰体系过渡金属氧化物的红外辐射性能优良,且其结构和红外辐射性能的温度稳定性较好,尤为受到重视。但这类红外辐射材料的热膨胀系数较大,抗热震冲击性能不理想。在氧化铁-氧化锰体系中加入热膨胀系数较低的硅酸盐矿物材料可以提高其抗热震冲击性能,然而硅酸盐矿物材料的红外辐射率通常比较低,大量加入硅酸盐矿物材料在改善抗热震冲击性能的同时,会降低材料的红外辐射性能。而且,这种复合体系的红外辐射材料的制备工艺比较复杂,往往需要经过二次烧成工艺才能获得,即先通过一次固相合成使过渡金属氧化物形成尖晶石固溶体,然后通过二次固相合成使尖晶石固溶体与硅酸盐矿物材料形成多相复合结构的最终产物。上述二次烧成工艺的制备方法需要两次的球磨混合、破碎、粉碎和烧结,能源消耗大,生产效率低,生产成本高。探索过渡金属氧化尖晶石-硅酸盐多相复合体系红外辐射陶瓷粉料的简便、高效制备方法对实际应用具有重要的意义。Among all kinds of infrared radiation ceramic materials, iron oxide-manganese oxide system transition metal oxides have excellent infrared radiation performance, and their structure and infrared radiation performance have good temperature stability, so they are particularly valued. However, this kind of infrared radiation material has a large thermal expansion coefficient, and its thermal shock resistance is not ideal. Adding silicate mineral materials with a lower thermal expansion coefficient to the iron oxide-manganese oxide system can improve its thermal shock resistance. However, the infrared radiation rate of silicate mineral materials is usually relatively low. While improving the thermal shock resistance, it will reduce the infrared radiation performance of the material. Moreover, the preparation process of the infrared radiation material of this composite system is relatively complicated, and it often needs to be obtained through a second firing process, that is, the transition metal oxide forms a spinel solid solution through a solid phase synthesis first, and then through a second solid phase synthesis. Phase synthesis is the final product of spinel solid solution and silicate mineral material to form a multiphase composite structure. The preparation method of the above-mentioned secondary sintering process requires two ball mill mixing, crushing, pulverizing and sintering, which has large energy consumption, low production efficiency and high production cost. It is of great significance to explore the simple and efficient preparation method of transition metal oxide spinel-silicate multiphase composite system infrared radiation ceramic powder for practical application.
发明内容Contents of the invention
本发明所要解决的技术问题是针对上述现有技术而提出一种通过一次烧成制备尖晶石-硅酸盐的多相复合体系红外辐射陶瓷粉料的简便方法,其效率高,生产成本低。The technical problem to be solved by the present invention is to propose a simple method for preparing spinel-silicate multi-phase composite system infrared radiation ceramic powder through one-time firing in view of the above-mentioned prior art, which has high efficiency and low production cost .
本发明解决上述技术问题所采用的技术方案是:尖晶石-硅酸盐多相复合体系红外辐射陶瓷粉料的制备方法,其特征在于包括有以下步骤:The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: the preparation method of the infrared radiation ceramic powder of the spinel-silicate multiphase composite system, which is characterized in that it includes the following steps:
1)初步处理:首先将各种原料按规定比例配料,再对所述配料进行球磨、混合、干燥和压制成型为块状坯体的初步处理;所述的原料包括有形成尖晶石型固溶体的A组分、形成硅酸盐矿物的B组分和促进剂C组分,其质量比为100%:20~300%:0~15%,所述的A组分包括有Fe2O3、MnO2、CuO、Co2O3、Mo2O3、NiO、V2O5和WO3,所述的B组分包括有Al2O3、SiO2、MgO、BaO、CaO和TiO2,所述的促进剂C组分包括有玻璃粉和B2O3,各组分含量以质量百分比计为:1) Preliminary treatment: First, mix various raw materials according to the specified ratio, and then perform preliminary treatment on the ingredients by ball milling, mixing, drying and pressing to form a block body; the raw materials include the formation of spinel-type solid solution The A component, the B component forming silicate minerals and the accelerator C component, the mass ratio is 100%: 20~300%: 0~15%, and the A component includes Fe2 O3 , MnO2 , CuO, Co2 O3 , Mo2 O3 , NiO, V2 O5 and WO3 , the B component includes Al2 O3 , SiO2 , MgO, BaO, CaO and TiO2 , the described accelerator C component includes glass powder and B2 O3 , and the content of each component is calculated as:
Fe2O3:0~60%、 MnO2: 0~60%、Al2O3:5~50%、SiO2:5~50%、CuO:0~12%、Fe2 O3 : 0~60%, MnO2 : 0~60%, Al2 O3 : 5~50%, SiO2 : 5~50%, CuO: 0~12%,
Co2O3:0~10%、MgO:0~10%、Mo2O3:0~6%、NiO:0~6%、TiO2:0~6%、Co2 O3 : 0~10%, MgO: 0~10%, Mo2 O3 : 0~6%, NiO: 0~6%, TiO2 : 0~6%,
V2O5:0~5%、WO3:0~5%、BaO:0~3%、CaO:0~3%、玻璃粉:0~3%、V2 O5 : 0~5%, WO3 : 0~5%, BaO: 0~3%, CaO: 0~3%, Glass powder: 0~3%,
B2O3:0~3%;B2 O3 : 0~3%;
2)烧成制备:将步骤1)所得块状坯体在800~980℃温度范围内进行加热保温,加热保温时间为1~6小时,形成尖晶石型固溶体;然后继续升温到1100~1300℃温度范围内进行加热保温,加热保温时间为2~8小时,形成硅酸盐矿物,使尖晶石型固溶体与硅酸盐矿物进行多相复合,形成多相复合结构的黑色烧结体;2) Preparation by sintering: heat and heat-preserve the block green body obtained in step 1) in the temperature range of 800-980°C for 1-6 hours to form a spinel-type solid solution; then continue to heat up to 1100-1300°C Heating and heat preservation in the temperature range of ℃, the heating and heat preservation time is 2 to 8 hours, forming silicate minerals, making multiphase composite of spinel solid solution and silicate minerals, forming a black sintered body with multiphase composite structure;
3)将步骤2)所得的黑色烧结体经破碎、粉碎和过200~500目筛,制备出粒度小于74μm的尖晶石-硅酸盐的多相复合体系红外辐射陶瓷粉料。3) The black sintered body obtained in step 2) is crushed, pulverized and passed through a 200-500 mesh sieve to prepare a spinel-silicate multiphase composite system infrared radiation ceramic powder with a particle size of less than 74 μm.
按上述方案,所述的原料各组分含量以质量百分比计优选为20%Fe2O3、12%MnO2、2.4%CuO、2.4%Mo2O3、2%V2O5、1.2%WO3、20%Al2O3、25.1%SiO2、10%MgO、1.5%BaO、1.4%CaO、1%玻璃粉和1%B2O3。According to the above scheme, the content of each component of the raw material is preferably 20% Fe2 O3 , 12% MnO2 , 2.4% CuO, 2.4% Mo2 O3 , 2% V2 O5 , 1.2% WO3 , 20% Al2 O3 , 25.1% SiO2 , 10% MgO, 1.5% BaO, 1.4% CaO, 1% glass powder and 1% B2 O3 .
按上述方案,所述的原料各组分含量以质量百分比计优选为11%MnO2、10%Co2O3、3%NiO、5%WO3、50%Al2O3、9%SiO2、6%TiO2、3%CaO和3%玻璃粉。According to the above scheme, the content of each component of the raw material is preferably 11% MnO2 , 10% Co2 O3 , 3% NiO, 5% WO3 , 50% Al2 O3 , 9% SiO2 in terms of mass percentage , 6% TiO2 , 3% CaO and 3% glass powder.
按上述方案,所述的原料各组分含量以质量百分比计优选为6%Fe2O3、12%CuO、 4%Mo2O3、5%V2O5、14%Al2O3、50%SiO2、3%MgO、3%BaO和3%B2O3。According to the above scheme, the content of each component of the raw material is preferably 6% Fe2 O3 , 12% CuO, 4% Mo2 O3 , 5% V2 O5 , 14% Al2 O3 , 50% SiO2 , 3% MgO, 3% BaO and 3% B2 O3 .
按上述方案,所述的原料各组分含量以质量百分比计优选为60%Fe2O3、 8%MnO2、 4%CuO、 3%Co2O3、6%Mo2O3、2%WO3、5%Al2O3、10%SiO2、1%MgO和1%BaO。According to the above scheme, the content of each component of the raw material is preferably 60% Fe2 O3 , 8% MnO2 , 4% CuO, 3% Co2 O3 , 6% Mo2 O3 , 2% WO3 , 5% Al2 O3 , 10% SiO2 , 1% MgO and 1% BaO.
按上述方案,所述的原料各组分含量以质量百分比计优选为60%MnO2、4%CuO、2%Mo2O3、3%V2O5、6%NiO、11%Al2O3、5%SiO2、3%TiO2、2%BaO、2%玻璃粉和2%B2O3。According to the above scheme, the content of each component of the raw material is preferably 60% MnO2 , 4% CuO, 2% Mo2 O3 , 3% V2 O5 , 6% NiO, 11% Al2 O in terms of mass percentage3. 5% SiO2 , 3% TiO2 , 2% BaO, 2% glass powder and 2% B2 O3 .
按上述方案,所述的原料各组分含量以质量百分比计优选为按质量比:11%Fe2O3、 30%MnO2、 3%CuO、2%Mo2O3、2%V2O5、1%WO3、33%Al2O3、14%SiO2、3%CaO和1%玻璃粉。According to the above scheme, the content of each component of the raw materials is preferably in mass percentage: 11% Fe2 O3 , 30% MnO2 , 3% CuO, 2% Mo2 O3 , 2% V2 O5. 1% WO3 , 33% Al2 O3 , 14% SiO2 , 3% CaO and 1% glass powder.
按上述方案,所述的原料各组分含量以质量百分比计优选为按质量比:24%Fe2O3、40%MnO2、7%Co2O3、3%Mo2O3、2%NiO、14%Al2O3、6%SiO2、1%MgO、1%BaO、1%CaO和1%B2O3。According to the above scheme, the content of each component of the raw material is preferably in mass percentage: 24% Fe2 O3 , 40% MnO2 , 7% Co2 O3 , 3% Mo2 O3 , 2% NiO, 14% Al2 O3 , 6% SiO2 , 1% MgO, 1% BaO, 1% CaO, and 1% B2 O3 .
按上述方案,所述的原料各组分含量以质量百分比计优选为30%Fe2O3、21%MnO2、10%CuO、1%WO3、10%Al2O3、23%SiO2、2%BaO和3%MgO。According to the above scheme, the content of each component of the raw material is preferably 30% Fe2 O3 , 21% MnO2 , 10% CuO, 1% WO3 , 10% Al2 O3 , 23% SiO2 in terms of mass percentage , 2%BaO and 3%MgO.
按上述方案,所述的玻璃粉由下列质量百分含量的原料配置而成:SiO2:65%、Al2O3:15%、CaO:5%、BaO:3%、MgO:8%、TiO2:2%、ZnO:2%。According to the above scheme, the glass powder is prepared from the following raw materials in mass percentage: SiO2 : 65%, Al2 O3 : 15%, CaO: 5%, BaO: 3%, MgO: 8%, TiO2 : 2%, ZnO: 2%.
本发明的基本反应原理是:通过烧结温度制度来控制各种原料在不同温度下分步发生形成尖晶石型固溶体的固相合成反应、形成硅酸盐矿物的固相合成反应以及尖晶石型固溶体与硅酸盐矿物的多相复合反应,并利用促进剂来改善尖晶石型固溶体的固相合成反应和硅酸盐矿物的固相合成反应。The basic reaction principle of the present invention is: through the sintering temperature system, various raw materials are controlled step by step at different temperatures to form the solid-phase synthesis reaction of spinel-type solid solution, the solid-phase synthesis reaction of silicate minerals and the formation of spinel The heterogeneous composite reaction of spinel-type solid solution and silicate minerals, and the use of accelerators to improve the solid-phase synthesis reaction of spinel-type solid solution and the solid-phase synthesis reaction of silicate minerals.
与现有尖晶石-硅酸盐多相复合体系红外辐射陶瓷粉料的制备方法相比,本发明的特点是:Compared with the preparation method of the existing spinel-silicate multiphase composite system infrared radiation ceramic powder, the characteristics of the present invention are:
(1)在800~980℃温度范围内,Fe2O3、MnO2、CuO、Co2O3、Mo2O3、NiO、V2O5和WO3等多种过渡金属氧化物通过固相反应形成尖晶石型固溶体。由于在尖晶石型固溶体的晶体结构中分布有不同种类和价态的多种过渡金属离子,增强了其红外辐射能力,与目前的氧化铁-氧化锰体系材料相比,具有更优良的红外辐射性能;(1) In the temperature range of 800~980℃, various transition metal oxides such as Fe2 O3 , MnO2 , CuO, Co2 O3 , Mo2 O3 , NiO, V2 O5 and WO3 pass through solid The phase reaction forms a spinel-type solid solution. Due to the distribution of a variety of transition metal ions of different types and valence states in the crystal structure of the spinel solid solution, its infrared radiation ability is enhanced. Compared with the current iron oxide-manganese oxide system materials, it has better infrared radiation. radiation performance;
(2)在1100~1300℃温度范围,Al2O3、SiO2、MgO、BaO、CaO、TiO2等氧化物通过固相反应形成硅酸盐矿物,少量尖晶石型固溶体中的过渡金属离子能够固溶进入所形成的硅酸盐物相的晶格中,从而提高了硅酸盐矿物的红外辐射性能,克服了常规硅酸盐矿物材料红外辐射率较低的不足;(2) In the temperature range of 1100~1300°C, Al2 O3 , SiO2 , MgO, BaO, CaO, TiO2 and other oxides form silicate minerals through solid-state reaction, and transition metals in a small amount of spinel solid solution Ions can be solid-dissolved into the crystal lattice of the formed silicate phase, thereby improving the infrared radiation performance of silicate minerals and overcoming the shortcomings of the low infrared radiation rate of conventional silicate mineral materials;
(3)通过控制升温和保温工艺制度,使尖晶石型固溶体的固相合成反应、硅酸盐矿物的固相合成反应以及尖晶石型固溶体与硅酸盐矿物的多相复合在一次烧成过程中依次完成,简化了生产工艺过程,缩短了生产周期,提高生产效率,降低制造成本;(3) By controlling the heating and heat preservation process system, the solid-phase synthesis reaction of spinel-type solid solution, the solid-phase synthesis reaction of silicate minerals, and the multi-phase composite of spinel-type solid solution and silicate minerals in one firing It is completed sequentially during the production process, which simplifies the production process, shortens the production cycle, improves production efficiency, and reduces manufacturing costs;
(4)加入少量玻璃粉和B2O3等低熔点化合物,促进尖晶石型固溶体的固相合成反应和硅酸盐矿物的固相合成反应的依次完成;(4) Add a small amount of glass powder and B2 O3 and other low melting point compounds to promote the sequential completion of the solid phase synthesis reaction of spinel solid solution and the solid phase synthesis reaction of silicate minerals;
本发明所用原料均为普通原料,制备方法简单,尖晶石-硅酸盐多相复合体系材料的结构稳定好,红外辐射性能优良,并易于通过控制组成来调节材料的结构和性能,应用前景广泛,特别适用于高温工业窑炉(锅炉)的红外辐射节能涂料、红外辐射加热器等产品。The raw materials used in the present invention are common raw materials, the preparation method is simple, the structure of the spinel-silicate multiphase composite system material is stable, the infrared radiation performance is excellent, and the structure and performance of the material can be easily adjusted by controlling the composition. Wide range, especially suitable for infrared radiation energy-saving coatings, infrared radiation heaters and other products for high-temperature industrial kilns (boilers).
附图说明Description of drawings
图1为实施例1尖晶石-硅酸盐多相复合体系陶瓷粉料的XRD图。 Figure 1 is the XRD pattern of the ceramic powder of the spinel-silicate multiphase composite system in Example 1. the
具体实施方式Detailed ways
下面结合实施例对本发明作进一步详细的说明,但是此说明不会构成对本发明的限制:Below in conjunction with embodiment the present invention will be described in further detail, but this description will not constitute limitation of the present invention:
实施例1Example 1
按质量比:20%Fe2O3、12%MnO2、2.4%CuO、2.4%Mo2O3、2%V2O5、1.2%WO3、20%Al2O3、25.1%SiO2、10%MgO、1.5%BaO、1.4%CaO、1%玻璃粉和1%B2O3进行配料,所述玻璃粉的原料组成为:65%SiO2、15%Al2O3、5%CaO、3%BaO、8%MgO、2%TiO2、2%ZnO,将上述配料进行球磨、混合、干燥和压制成型为块状坯体;在上述块状坯体的烧成制备过程中,先加热到950℃保温4小时,形成尖晶石型固溶体,然后继续升温到1200℃保温2小时, 形成硅酸盐矿物,使尖晶石型固溶体与硅酸盐矿物进行多相复合,形成多相复合结构的黑色烧结体;再经破碎和粉碎,过320目筛,制备出粒度小于47μm的尖晶石-硅酸盐多相复合体系陶瓷粉料。By mass ratio: 20% Fe2 O3 , 12% MnO2 , 2.4% CuO, 2.4% Mo2 O3 , 2% V2 O5 , 1.2% WO3 , 20% Al2 O3 , 25.1% SiO2.____ CaO, 3%BaO, 8%MgO, 2%TiO2 , 2%ZnO, the above ingredients are ball milled, mixed, dried and pressed into a block green body; during the firing preparation process of the block green body, First heat to 950°C for 4 hours to form a spinel solid solution, and then continue to heat up to 1200°C for 2 hours to form silicate minerals, so that the spinel solid solution and silicate minerals are multiphase composite to form multi-phase A black sintered body with a phase composite structure; then crushed and pulverized, and passed through a 320 mesh sieve to prepare a spinel-silicate multiphase composite system ceramic powder with a particle size of less than 47 μm.
所得的尖晶石-硅酸盐多相复合体系陶瓷粉料的法向全波段辐射率为0.91,8μm~25μm波段的辐射率为0.93,8μm~14μm波段的辐射率为0.94,14μm~25μm波段的辐射率为0.95。The obtained spinel-silicate multiphase composite system ceramic powder has a normal full-band emissivity of 0.91, an emissivity of 0.93 in the 8μm~25μm band, and a 0.94 emissivity in the 8μm~14μm band, and an emissivity of 14μm~25μm band The emissivity is 0.95.
图1为实施例1中多种过渡金属氧化物与Al2O3、SiO2、MgO、BaO、CaO等氧化物经过一次配料和二次分步高温固相反应后所形成合成产物的XRD图谱,主要为尖晶石型固溶体和堇青石的衍射峰,此外还有少量镁铝尖晶石的衍射蜂,说明合成产物具有多相复合结构,主要由尖晶石型固溶体和堇青石构成,其中多种过渡金属氧化物形成尖晶石型结构的固溶体。Figure 1 is the XRD spectrum of the synthetic product formed after a variety of transition metal oxides and Al2 O3 , SiO2 , MgO, BaO, CaO and other oxides in Example 1 after one batching and two step-by-step high-temperature solid-state reactions , mainly the diffraction peaks of spinel-type solid solution and cordierite, and a small amount of diffraction peaks of magnesium-aluminum spinel, indicating that the synthesized product has a multi-phase composite structure, mainly composed of spinel-type solid solution and cordierite, of which A variety of transition metal oxides form solid solutions with a spinel structure.
实施例2Example 2
按质量比:11%MnO2、10%Co2O3、3%NiO、5%WO3、50%Al2O3、9%SiO2、6%TiO2、3%CaO、3%玻璃粉进行配料,其中玻璃粉的原料组成为65%SiO2、15%Al2O3、5%CaO、3%BaO、8%MgO、2%TiO2、2%ZnO,将上述配料进行球磨、混合、干燥和压制成型为块状坯体;在上述坯体的烧成制备过程中,先加热到800℃保温6小时,然后继续升温到1300℃保温6小时;再经破碎和粉碎,过200目筛,制备出粒度小于74μm的尖晶石-硅酸盐多相复合体系陶瓷粉料。By mass ratio: 11%MnO2 , 10%Co2 O3 , 3%NiO, 5%WO3 , 50%Al2 O3 , 9%SiO2 , 6%TiO2 , 3%CaO, 3%Glass powder For batching, the raw material composition of glass powder is 65% SiO2 , 15% Al2 O3 , 5% CaO, 3% BaO, 8% MgO, 2% TiO2 , 2% ZnO, and the above ingredients are ball milled and mixed , drying and pressing to form a block green body; in the firing preparation process of the above green body, it is first heated to 800 ° C for 6 hours, and then continues to heat up to 1300 ° C for 6 hours; after crushing and crushing, pass through 200 mesh Sieve to prepare spinel-silicate multiphase composite system ceramic powder with particle size less than 74 μm.
尖晶石-硅酸盐多相复合体系陶瓷粉料的法向全波段辐射率为0.90,8μm~25μm波段的辐射率为0.94,8μm~14μm波段的辐射率为0.92,14μm~25μm波段的辐射率为0.94。The normal full-band emissivity of the spinel-silicate multiphase composite ceramic powder is 0.90, the emissivity of the 8μm~25μm band is 0.94, the emissivity of the 8μm~14μm band is 0.92, and the radiation of the 14μm~25μm band The rate is 0.94.
实施例3Example 3
按质量比:6%Fe2O3、12%CuO、 4%Mo2O3、5%V2O5、14%Al2O3、50%SiO2、3%MgO、3%BaO、3%B2O3进行配料,将上述配料进行球磨、混合、干燥和压制成型为块状坯体;在上述坯体的烧成制备过程中,先加热到950℃保温2小时,然后继续加热到1200℃保温8小时;再经破碎和粉碎,过400目筛,制备出粒度小于38μm的尖晶石-硅酸盐多相复合体系陶瓷粉料。By mass ratio: 6%Fe2O3, 12%CuO, 4%Mo2O3 , 5%V2O5 ,14 %Al2O3, 50%SiO2,3 %MgO, 3%BaO, 3% %B2 O3 for batching, the above ingredients are ball milled, mixed, dried and pressed to form a block green body; in the firing preparation process of the above green body, it is first heated to 950 ° C for 2 hours, and then continues to be heated to Heat preservation at 1200°C for 8 hours; then crush and pulverize, and pass through a 400-mesh sieve to prepare a spinel-silicate multi-phase composite system ceramic powder with a particle size of less than 38 μm.
尖晶石-硅酸盐多相复合体系陶瓷粉料的法向全波段辐射率为0.89,8μm~25μm波段的辐射率为0.90,8μm~14μm波段的辐射率为0.90,14μm~25μm波段的辐射率为0.93。The normal full-band emissivity of the spinel-silicate multiphase composite ceramic powder is 0.89, the emissivity of the 8μm~25μm band is 0.90, the emissivity of the 8μm~14μm band is 0.90, and the radiation of the 14μm~25μm band The rate is 0.93.
实施例4Example 4
按质量比:60%Fe2O3、 8%MnO2、 4%CuO、 3%Co2O3、6%Mo2O3、2%WO3、5%Al2O3、10%SiO2、1%MgO、1%BaO进行配料,将上述配料进行球磨、混合、干燥和压制成型为块状坯体;在上述坯体的烧成制备过程中,先加热到980℃保温3小时,然后继续升温1250℃保温2小时;再经破碎和粉碎,过500目筛,制备出粒度小于26μm的尖晶石-硅酸盐多相复合体系陶瓷粉料。By mass ratio: 60% Fe2 O3 , 8% MnO2 , 4% CuO, 3% Co2 O3 , 6% Mo2 O 3 , 2% WO3 , 5% Al2 O3, 10% SiO2 , 1% MgO, and 1% BaO for batching, and the above-mentioned ingredients are ball milled, mixed, dried and pressed into a block green body; during the firing preparation process of the above-mentioned green body, it is first heated to 980 ° C for 3 hours, and then Continue to heat up at 1250°C for 2 hours; then crush and pulverize, and pass through a 500-mesh sieve to prepare a spinel-silicate multi-phase composite system ceramic powder with a particle size of less than 26 μm.
尖晶石-硅酸盐多相复合体系陶瓷粉料的法向全波段辐射率为0.91,8μm~25μm波段的辐射率为0.93,8μm~14μm波段的辐射率为0.92,14μm~25μm波段的辐射率为0.94。The normal full-band emissivity of the spinel-silicate multiphase composite system ceramic powder is 0.91, the emissivity of the 8μm~25μm band is 0.93, the emissivity of the 8μm~14μm band is 0.92, and the radiation of the 14μm~25μm band The rate is 0.94.
实施例5Example 5
按质量比:60%MnO2、4%CuO、2%Mo2O3、3%V2O5、6%NiO、11%Al2O3、5%SiO2、3%TiO2、2%BaO、2%玻璃粉、2%B2O3进行配料,其中玻璃粉的原料组成为:65%SiO2、15%Al2O3、5%CaO、3%BaO、8%MgO、2%TiO2、2%ZnO,将上述配料进行球磨、混合、干燥和压制成型为块状坯体;在上述坯体的烧成制备过程中,先加热到850℃保温5小时,然后继续升温到1100℃保温8小时;再经破碎和粉碎,过230目筛,制备出粒度小于61μm的尖晶石-硅酸盐多相复合体系陶瓷粉料。By mass ratio: 60%MnO2 , 4%CuO, 2%Mo2 O3 , 3%V2 O5 , 6%NiO, 11%Al2 O3 , 5%SiO2 , 3%TiO2 , 2% BaO, 2% glass powder, 2% B2 O3 for batching, wherein the raw material composition of glass powder is: 65% SiO2 , 15% Al2 O3 , 5% CaO, 3% BaO, 8% MgO, 2% TiO2 , 2% ZnO, the above ingredients are ball milled, mixed, dried and pressed into a block green body; during the firing preparation process of the above green body, first heat to 850 ° C for 5 hours, and then continue to heat up to 1100 °C ℃ for 8 hours; then crushed and pulverized, and passed through a 230-mesh sieve to prepare a spinel-silicate multi-phase composite system ceramic powder with a particle size of less than 61 μm.
尖晶石-硅酸盐多相复合体系陶瓷粉料的法向全波段辐射率为0.91,8μm~25μm波段的辐射率为0.92,8μm~14μm波段的辐射率为0.95,14μm~25μm波段的辐射率为0.96。The normal full-band emissivity of the spinel-silicate multiphase composite ceramic powder is 0.91, the emissivity of the 8μm~25μm band is 0.92, the emissivity of the 8μm~14μm band is 0.95, and the radiation of the 14μm~25μm band The rate is 0.96.
实施例6Example 6
按质量比:11%Fe2O3、 30%MnO2、 3%CuO、2%Mo2O3、2%V2O5、1%WO3、33%Al2O3、14%SiO2、3%CaO、1%玻璃粉进行配料,其中玻璃粉的原料组成为:65%SiO2、15%Al2O3、5%CaO、3%BaO、8%MgO、2%TiO2、2%ZnO,将上述配料进行球磨、混合、干燥和压制成型为块状坯体;在上述坯体的烧成制备过程中,先加热到900℃保温2小时,然后继续升温到1150℃保温6小时;再经破碎和粉碎,过400目筛,制备出粒度小于38μm的尖晶石-硅酸盐多相复合体系陶瓷粉料。By mass ratio: 11%Fe2 O3 , 30%MnO2 , 3%CuO, 2%Mo2 O3 , 2%V2 O5 , 1%WO3 , 33%Al2 O3 , 14%SiO2 , 3%CaO, 1% glass powder for batching, the raw material composition of glass powder is: 65%SiO2 , 15%Al2 O3 , 5%CaO, 3%BaO, 8%MgO, 2%TiO2 , 2 %ZnO, the above ingredients are ball milled, mixed, dried and pressed into a block green body; in the firing preparation process of the above green body, it is first heated to 900 ° C for 2 hours, and then continues to heat up to 1150 ° C for 6 hours and then through crushing and pulverizing, passing through a 400-mesh sieve to prepare a spinel-silicate multi-phase composite system ceramic powder with a particle size of less than 38 μm.
尖晶石-硅酸盐多相复合体系陶瓷粉料的法向全波段辐射率为0.92,8μm~25μm波段的辐射率为0.94,8μm~14μm波段的辐射率为0.93,14μm~25μm波段的辐射率为0.95。The normal full-band emissivity of the spinel-silicate multiphase composite system ceramic powder is 0.92, the emissivity of the 8μm~25μm band is 0.94, the emissivity of the 8μm~14μm band is 0.93, and the radiation of the 14μm~25μm band The rate is 0.95.
实施例7Example 7
按质量比:24%Fe2O3、40%MnO2、7%Co2O3、3%Mo2O3、2%NiO、14%Al2O3、6%SiO2、1%MgO、1%BaO、1%CaO、1%B2O3进行配料,将上述配料进行球磨、混合、干燥和压制成型为块状坯体;在上述坯体的烧成制备过程中,先加热到850℃保温3小时,然后继续升温到1130℃保温5小时;再经破碎和粉碎,过200目筛,制备出粒度小于74μm的尖晶石-硅酸盐多相复合体系陶瓷粉料。By mass ratio: 24%Fe2 O3 , 40%MnO2 , 7%Co2 O3 , 3%Mo2 O3 , 2%NiO, 14%Al2 O3 , 6%SiO2 , 1%MgO, 1% BaO, 1% CaO, 1% B2 O3 for batching, the above ingredients are ball milled, mixed, dried and pressed to form a block green body; in the process of firing the above green body, it is first heated to 850 ℃ for 3 hours, and then continue to heat up to 1130 ℃ for 5 hours; then crushed and pulverized, and passed through a 200-mesh sieve to prepare a spinel-silicate multiphase composite system ceramic powder with a particle size of less than 74 μm.
尖晶石-硅酸盐多相复合体系陶瓷粉料的法向全波段辐射率为0.90,8μm~25μm波段的辐射率为0.93,8μm~14μm波段的辐射率为0.92,14μm~25μm波段的辐射率为0.92。The normal full-band emissivity of the spinel-silicate multiphase composite system ceramic powder is 0.90, the emissivity of the 8μm~25μm band is 0.93, the emissivity of the 8μm~14μm band is 0.92, and the radiation of the 14μm~25μm band The rate is 0.92.
实施例8Example 8
按质量比:30%Fe2O3、21%MnO2、10%CuO、1%WO3、10%Al2O3、23%SiO2、2%BaO、3%MgO进行配料,将上述配料进行球磨、混合、干燥和压制成型为块状坯体;在上述坯体的烧成制备过程中,先加热到950℃保温4小时,然后继续升温到1250℃保温7小时;再经破碎和粉碎,过325目筛,制备出粒度小于44μm的尖晶石-硅酸盐多相复合体系陶瓷粉料。According to the mass ratio: 30%Fe2 O3 , 21%MnO2 , 10%CuO, 1%WO3 , 10%Al2 O3 , 23%SiO2 , 2%BaO, 3%MgO, the above ingredients Carry out ball milling, mixing, drying and pressing to form a block green body; in the firing preparation process of the above green body, it is first heated to 950 ° C for 4 hours, and then continues to heat up to 1250 ° C for 7 hours; and then crushed and pulverized , passed through a 325-mesh sieve to prepare spinel-silicate multi-phase composite system ceramic powder with a particle size of less than 44 μm.
尖晶石-硅酸盐多相复合体系陶瓷粉料的法向全波段辐射率为0.89,8μm~25μm波段的辐射率为0.92,8μm~14μm波段的辐射率为0.92,14μm~25μm波段的辐射率为0.93。The normal full-band emissivity of the spinel-silicate multiphase composite system ceramic powder is 0.89, the emissivity of the 8μm~25μm band is 0.92, the emissivity of the 8μm~14μm band is 0.92, and the radiation of the 14μm~25μm band The rate is 0.93.
经红外辐射性测试证明,本发明制备的尖晶石-硅酸盐多相复合体系陶瓷粉料具有优良的红外辐射性能,其法向全波段辐射率为0.89~0.92,8μm~25μm波段的辐射率为0.90~0.94,8μm~14μm波段的辐射率为0.89~0.95,14μm~25μm波段的辐射率为0.92~0.96。The infrared radiation test proves that the spinel-silicate multiphase composite system ceramic powder prepared by the present invention has excellent infrared radiation performance, and its normal full-band emissivity is 0.89~0.92, and the radiation in the 8μm~25μm band The radiation rate is 0.90~0.94, the emissivity in the 8μm~14μm band is 0.89~0.95, and the emissivity in the 14μm~25μm band is 0.92~0.96.
本发明的制备方法所用原料均为来源广泛的普通原料,尖晶石-硅酸盐多相复合体系材料的结构稳定好,红外辐射性能优良,该制备方法简单易行、生产周期短、制造成本低,对于尖晶石-硅酸盐多相复合体系材料的推广应用具有重要意义。The raw materials used in the preparation method of the present invention are common raw materials from a wide range of sources, the structure of the spinel-silicate multiphase composite system material is good, and the infrared radiation performance is excellent. It is of great significance for the popularization and application of spinel-silicate multiphase composite system materials.
以上所述仅为本发明的实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above description is only an embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention Inside.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210147305.6ACN102701746B (en) | 2012-05-14 | 2012-05-14 | Preparation method of infrared radiation ceramic powder of spinel-silicate multiphase composite system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210147305.6ACN102701746B (en) | 2012-05-14 | 2012-05-14 | Preparation method of infrared radiation ceramic powder of spinel-silicate multiphase composite system |
| Publication Number | Publication Date |
|---|---|
| CN102701746Atrue CN102701746A (en) | 2012-10-03 |
| CN102701746B CN102701746B (en) | 2014-02-19 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210147305.6AExpired - Fee RelatedCN102701746B (en) | 2012-05-14 | 2012-05-14 | Preparation method of infrared radiation ceramic powder of spinel-silicate multiphase composite system |
| Country | Link |
|---|---|
| CN (1) | CN102701746B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103553547A (en)* | 2013-10-31 | 2014-02-05 | 张婷 | Heat-radiation coating material for ceramic kiln |
| CN103708807A (en)* | 2013-10-31 | 2014-04-09 | 张婷 | Thermal radiation coating for black body |
| CN105198394A (en)* | 2015-09-30 | 2015-12-30 | 盐城工学院 | High-infrared-emitting-ability cordierite-spinel ceramic material and preparation method thereof |
| CN115108820A (en)* | 2022-08-09 | 2022-09-27 | 安徽新大陆特种涂料有限责任公司 | Preparation method of high-temperature-resistant wear-resistant ceramic coating |
| CN115385573A (en)* | 2022-08-29 | 2022-11-25 | 陕西科技大学 | A kind of far-infrared emitting ceramic powder for daily-use ceramics and preparation method thereof |
| CN115572152A (en)* | 2022-10-20 | 2023-01-06 | 湖南省醴陵市浦口电瓷有限公司 | High-voltage hollow porcelain bushing and preparation process thereof |
| CN119160879A (en)* | 2024-11-06 | 2024-12-20 | 天府永兴实验室 | A kind of nano hollow carbon sphere and its preparation method and application |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1587190A (en)* | 2004-09-16 | 2005-03-02 | 武汉理工大学 | Ceramic powder with infrared radiation and bacteria inhibiting function and its preparing method |
| CN102219496A (en)* | 2011-03-29 | 2011-10-19 | 广东新劲刚超硬材料有限公司 | Multiphase composite system infrared radiation ceramic powder and preparation method thereof |
| CN102219495A (en)* | 2011-03-29 | 2011-10-19 | 广东新劲刚超硬材料有限公司 | Infrared radiation coating and use method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1587190A (en)* | 2004-09-16 | 2005-03-02 | 武汉理工大学 | Ceramic powder with infrared radiation and bacteria inhibiting function and its preparing method |
| CN102219496A (en)* | 2011-03-29 | 2011-10-19 | 广东新劲刚超硬材料有限公司 | Multiphase composite system infrared radiation ceramic powder and preparation method thereof |
| CN102219495A (en)* | 2011-03-29 | 2011-10-19 | 广东新劲刚超硬材料有限公司 | Infrared radiation coating and use method thereof |
| Title |
|---|
| 《功能材料》 19981231 崔万秋 等 "低温远红外辐射陶瓷材料研究" 第29卷, 第6期* |
| 《苏州大学学报(工科版)》 20051230 张英 等 "红外辐射陶瓷材料的制备及应用" 第25卷, 第6期* |
| 《陶瓷学报》 20000229 徐庆 等 "过渡金属氧化物体系红外辐射陶瓷的研制" 第21卷, 第1期* |
| 崔万秋 等: ""低温远红外辐射陶瓷材料研究"", 《功能材料》* |
| 张英 等: ""红外辐射陶瓷材料的制备及应用"", 《苏州大学学报(工科版)》* |
| 徐庆 等: ""过渡金属氧化物体系红外辐射陶瓷的研制"", 《陶瓷学报》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103553547A (en)* | 2013-10-31 | 2014-02-05 | 张婷 | Heat-radiation coating material for ceramic kiln |
| CN103708807A (en)* | 2013-10-31 | 2014-04-09 | 张婷 | Thermal radiation coating for black body |
| CN103708807B (en)* | 2013-10-31 | 2015-10-14 | 顾祥茂 | A kind of black matrix thermal radiation coating |
| CN105198394A (en)* | 2015-09-30 | 2015-12-30 | 盐城工学院 | High-infrared-emitting-ability cordierite-spinel ceramic material and preparation method thereof |
| CN115108820A (en)* | 2022-08-09 | 2022-09-27 | 安徽新大陆特种涂料有限责任公司 | Preparation method of high-temperature-resistant wear-resistant ceramic coating |
| CN115108820B (en)* | 2022-08-09 | 2023-03-28 | 安徽新大陆特种涂料有限责任公司 | Preparation method of high-temperature-resistant wear-resistant ceramic coating |
| CN115385573A (en)* | 2022-08-29 | 2022-11-25 | 陕西科技大学 | A kind of far-infrared emitting ceramic powder for daily-use ceramics and preparation method thereof |
| CN115385573B (en)* | 2022-08-29 | 2023-08-18 | 陕西科技大学 | A kind of far-infrared emitting ceramic powder for daily-use ceramics and preparation method thereof |
| CN115572152A (en)* | 2022-10-20 | 2023-01-06 | 湖南省醴陵市浦口电瓷有限公司 | High-voltage hollow porcelain bushing and preparation process thereof |
| CN119160879A (en)* | 2024-11-06 | 2024-12-20 | 天府永兴实验室 | A kind of nano hollow carbon sphere and its preparation method and application |
| Publication number | Publication date |
|---|---|
| CN102701746B (en) | 2014-02-19 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102701746A (en) | Preparation method of infrared radiation ceramic powder in spinel-silicate multi-phase composite system | |
| CN113372108B (en) | Preparation method of high-entropy ceramic material with good light absorption performance | |
| CN105924184B (en) | A kind of high temperature infrared radiation coating for industrial furnace and preparation method thereof | |
| CN102875177B (en) | Infrared energy-saving coating of high-temperature kiln and preparation method thereof | |
| CN113336534B (en) | A kind of low thermal expansion daily-use ceramics not containing lithium mineral and preparation method thereof | |
| CN103145434B (en) | A light-weight aluminum oxide heat-insulating refractory product and its preparation method | |
| CN103058643B (en) | Mn-Zn soft magnetic ferrite material with high, temperature, high superposition and low power consumption, and preparation method of Mn-Zn soft magnetic ferrite material | |
| CN102219496B (en) | Multiphase composite system infrared radiation ceramic powder and preparation method thereof | |
| CN104341156A (en) | Silicon carbide based composite microwave-absorbing heating body composition and preparation method thereof | |
| CN103305039B (en) | Infrared radiation coating, preparation method thereof and infrared radiation coating | |
| CN105693210A (en) | Ceramic material prepared from red mud, and preparation method of ceramic material | |
| CN105174972A (en) | Preparation method of glass/ceramic nano composite material | |
| CN101445365A (en) | Barium titanate-based positive temperature coefficient resistance material and preparation method thereof | |
| CN102008232A (en) | Far-infrared ceramic electrothermal kettle and manufacture method thereof | |
| CN101982444A (en) | Technology for preparing nano microcrystalline enamels | |
| CN105152645A (en) | Manganese zinc ferrite with wideband, low loss and high strength and preparation method of manganese zinc ferrite | |
| CN104987057A (en) | High-emissivity infrared energy-saving material and applications thereof | |
| CN110028303A (en) | A kind of reinforcing porcelain and preparation method thereof using the preparation of common domestic ceramics blank | |
| CN102786300B (en) | Radiant heat reinforced absorbent and preparation method thereof | |
| CN101913648A (en) | A method for preparing partially stabilized zirconia by microwave sintering of natural zirconia | |
| CN101913858A (en) | Li2O-ZnO-TiO2 microwave dielectric ceramic material and its preparation method | |
| CN101215166A (en) | A kind of preparation method of infrared radiation material | |
| CN100418248C (en) | Sealing material for solid oxide fuel cell and preparation method thereof | |
| CN102659387A (en) | High-temperature far infrared radiation energy-saving composite coating and preparation method thereof | |
| CN113880593B (en) | High-temperature sintered tourmaline type negative ion unglazed ceramic and preparation method thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20140219 Termination date:20190514 | |
| CF01 | Termination of patent right due to non-payment of annual fee |