







【技术领域】【Technical field】
本发明涉及康复训练技术,特别是涉及一种康复训练机器人中的交互方法及系统。The invention relates to rehabilitation training technology, in particular to an interaction method and system in a rehabilitation training robot.
【背景技术】【Background technique】
随着机器人的广泛应用,越来越多的人开始致力于将机器人应用到康复训练中,以施予适当的助力或阻力来引导患者运动。自世界上第一支采用了表面肌电信号控制的假手问世以来,各种不同的上肢康复装置被陆续研发出来,并慢慢渗入下肢康复领域的研发。With the widespread application of robots, more and more people have begun to devote themselves to applying robots to rehabilitation training to give appropriate assistance or resistance to guide patients' movements. Since the world's first prosthetic hand controlled by surface myoelectric signals came out, various upper limb rehabilitation devices have been developed one after another, and have gradually penetrated into the research and development of the lower limb rehabilitation field.
应用于下肢康复训练的机器人通过采集到的运动信息进行康复训练的控制。例如,康复训练机器人可以采用下肢矫形腿,该下肢矫形腿主要由护套和气动肌肉组成,通过气动肌肉来驱动踝关节的运动,并通过采集下肢腓肠肌的表面肌电信号来作为信号源,该表面肌电信号反映了患者的肌肉活动信息;康复训练机器人也可以是一种下肢外骨骼机器人,该下肢外骨骼机器人采集下肢股中间肌和半膜肌这两块肌肉的表面肌电信号,来控制电机实现动力传输,从而带动下肢膝关节的运动。The robot used in lower limb rehabilitation training controls rehabilitation training through the collected motion information. For example, a rehabilitation training robot can use a lower limb orthopedic leg, which is mainly composed of a sheath and a pneumatic muscle. The movement of the ankle joint is driven by the pneumatic muscle, and the surface electromyographic signal of the gastrocnemius muscle of the lower limb is collected as a signal source. The surface EMG signal reflects the muscle activity information of the patient; the rehabilitation training robot can also be a lower limb exoskeleton robot, which collects the surface EMG signals of the two muscles of the lower limbs, the vastus intermedius and the semimembranosus, to Control the motor to realize power transmission, thereby driving the movement of the knee joint of the lower limbs.
然而,这些应用于下肢康复训练的机器人中,针对踝关节进行康复训练的机器人相对很少,并且在能够针对踝关节进行康复训练的机器人中所能反映的踝关节运动参数较为单一,例如,国内外研发出来的各种足踝康复机器人都仅能实现多个自由度的康复运动,无法灵活地引导患者进行运动。However, among these robots used in lower limb rehabilitation training, there are relatively few robots for ankle joint rehabilitation training, and the ankle joint motion parameters that can be reflected in robots that can perform rehabilitation training for ankle joints are relatively simple. For example, domestic All kinds of foot and ankle rehabilitation robots developed abroad can only realize rehabilitation exercises with multiple degrees of freedom, and cannot flexibly guide patients to exercise.
【发明内容】【Content of invention】
基于此,有必要提供一种能针对踝关节灵活地引导患者进行运动的康复训练机器人中的交互方法。Based on this, it is necessary to provide an interactive method in a rehabilitation training robot that can flexibly guide patients to exercise for the ankle joint.
此外,还有必要提供一种能针对踝关节灵活地引导患者进行运动的康复训练机器人中的交互系统。In addition, it is also necessary to provide an interactive system in a rehabilitation training robot that can flexibly guide a patient to perform movements for the ankle joint.
一种康复训练机器人中的交互方法,包括如下步骤:An interactive method in a rehabilitation training robot, comprising the steps of:
采集踝关节的运动信号;Collect the motion signal of the ankle joint;
按照设定的运动控制模式对所述踝关节的运动信号进行处理得到康复训练机器人的控制信号;Processing the motion signal of the ankle joint according to the set motion control mode to obtain the control signal of the rehabilitation training robot;
通过所述控制信号控制所述康复训练机器人执行相应的运动。The rehabilitation training robot is controlled to perform corresponding motions through the control signal.
优选地,所述采集踝关节的运动信号的步骤包括:Preferably, the step of collecting the motion signal of the ankle joint comprises:
采集控制踝关节运动的肌肉的表面肌电信号;Acquisition of surface EMG signals from muscles that control ankle movement;
采集足底压力分布得到足底压力信号;Collect plantar pressure distribution to obtain plantar pressure signal;
对所述康复训练机器人进行测量得到位置信号。The position signal is obtained by measuring the rehabilitation training robot.
优选地,所述运动控制模式为被动控制模式,所述按照所述运动控制模式对所述踝关节的运动信号进行处理得到康复训练机器人的控制信号的步骤包括:Preferably, the motion control mode is a passive control mode, and the step of processing the motion signal of the ankle joint according to the motion control mode to obtain the control signal of the rehabilitation training robot includes:
通过所述踝关节的运动信号进行定位得到所述康复训练机器人的位置以及运动轨迹;Positioning through the motion signal of the ankle joint to obtain the position and motion track of the rehabilitation training robot;
根据所述康复训练机器人的位置及运动轨迹生成符合预设的踝关节运动轨迹的控制信号。A control signal conforming to a preset ankle joint movement trajectory is generated according to the position and movement trajectory of the rehabilitation training robot.
优选地,所述通过所述踝关节的运动信号进行定位得到所述康复训练机器人的位置以及运动轨迹的步骤之后还包括:Preferably, after the step of obtaining the position and motion track of the rehabilitation training robot through positioning through the motion signal of the ankle joint, the step further includes:
将所述康复训练机器人的位置以及运动轨迹和预设的踝关节运动轨迹进行比对,并按照比对结果修正所述康复训练机器人的运动。Comparing the position and movement track of the rehabilitation training robot with the preset ankle joint movement track, and correcting the movement of the rehabilitation training robot according to the comparison result.
优选地,所述运动控制模式为主动控制模式,所述按照所述运动控制模式对所述踝关节的运动信号进行处理得到康复训练机器人的控制信号的步骤包括:Preferably, the motion control mode is an active control mode, and the step of processing the motion signal of the ankle joint according to the motion control mode to obtain the control signal of the rehabilitation training robot includes:
对所述表面肌电信号和足底压力信号进行处理得到相应的特征值;Processing the surface electromyographic signal and the plantar pressure signal to obtain corresponding eigenvalues;
对所述特征值进行归类得到所述特征值所处类别;classifying the feature value to obtain the category of the feature value;
按照所述特征值所处类别生成所述康复训练机器人的控制信号。The control signal of the rehabilitation training robot is generated according to the category of the feature value.
优选地,所述运动控制模式为阻抗控制模式,所述对所述特征值进行归类得到所述特征值所处类别的步骤之后还包括:Preferably, the motion control mode is an impedance control mode, and after the step of classifying the eigenvalues to obtain the category of the eigenvalues, the step further includes:
根据所述特征值所处类别生成对踝关节运动施加阻力的控制信号。A control signal for applying resistance to the movement of the ankle joint is generated according to the category of the feature value.
一种康复训练机器人中的交互系统,包括:An interactive system in a rehabilitation training robot, comprising:
采集装置,用于采集踝关节的运动信号;A collection device, configured to collect motion signals of the ankle joint;
处理装置,用于按照设定的运动控制模式对所述踝关节的运动信号进行处理得到康复训练机器人的控制信号;The processing device is used to process the motion signal of the ankle joint according to the set motion control mode to obtain the control signal of the rehabilitation training robot;
运动装置,用于通过所述控制信号控制所述康复训练机器人执行相应的运动。The motion device is used to control the rehabilitation training robot to perform corresponding motion through the control signal.
优选地,所述采集装置包括:Preferably, the collection device includes:
表面肌电仪,用于采集控制踝关节运动的肌肉的表面肌电信号;Surface electromyography, which is used to collect surface electromyography signals from the muscles that control the movement of the ankle joint;
压力传感器,用于采集足底压力分布得到足底压力信号;The pressure sensor is used to collect the plantar pressure distribution to obtain the plantar pressure signal;
位置传感器,用于对所述康复训练机器人进行测量得到位置信号。The position sensor is used to measure the rehabilitation training robot to obtain a position signal.
优选地,所述运动控制模式为被控制模式,所述处理装置包括:Preferably, the motion control mode is a controlled mode, and the processing device includes:
定位模块,用于通过所述踝关节的运动信号进行定位得到所述康复训练机器人的位置以及运动轨迹;A positioning module, configured to obtain the position and trajectory of the rehabilitation training robot by performing positioning through the motion signal of the ankle joint;
信号生成模块,用于根据所述康复训练机器人的位置及运动轨迹生成符合预设的踝关节运动轨迹的控制信号。The signal generation module is used to generate a control signal conforming to the preset ankle joint movement trajectory according to the position and movement trajectory of the rehabilitation training robot.
优选地,所述处理装置还包括:Preferably, the processing device further includes:
运动修正模块,用于将所述康复训练机器人的位置以及运动轨迹和预设的踝关节运动轨迹进行比对,并按照比对结果修正所述康复训练机器人的运动。The motion correction module is used for comparing the position and motion track of the rehabilitation training robot with the preset ankle joint motion track, and correcting the motion of the rehabilitation training robot according to the comparison result.
优选地,所述运动控制模式为主动控制模式,所述处理装置包括:Preferably, the motion control mode is an active control mode, and the processing device includes:
信号处理模块,用于对所述表面肌电信号和足底压力信号进行处理得到相应的特征值;A signal processing module, configured to process the surface electromyographic signal and the plantar pressure signal to obtain corresponding eigenvalues;
归类模块,用于对所述特征值进行归类得到所述特征值所处类别;A classification module, configured to classify the feature values to obtain the category of the feature values;
信号生成模块,用于按照所述特征值所处类别生成所述康复训练机器人的控制信号。The signal generation module is used to generate the control signal of the rehabilitation training robot according to the category of the feature value.
优选地,所述运动控制模式为阻抗控制模式,所述信号生成模块还用于根据所述特征值所处类别生成对踝关节运动施加阻力的控制信号。Preferably, the motion control mode is an impedance control mode, and the signal generation module is further configured to generate a control signal for applying resistance to ankle joint movement according to the category of the feature value.
上述康复训练机器人中的交互方法及系统中,按照设定运动控制模式对采集到的踝关节的运动信号进行处理得到相应的康复训练机器人的控制信号,并通过控制信号来实现康复训练机器人的控制,进而在患者通过康复训练机器人的辅助进行康复训练时可根据具体情况设定运动控制模式,不同的运动控制模式将使得踝关节的运动信号的处理各不相同,所生成的控制信号也不同,从而使得康复机器人实现了针对患者的踝关节灵活地引导患者进行运动。In the above-mentioned interactive method and system in the rehabilitation training robot, the collected motion signals of the ankle joint are processed according to the set motion control mode to obtain the corresponding control signals of the rehabilitation training robot, and the control of the rehabilitation training robot is realized through the control signals , and then when the patient carries out rehabilitation training with the assistance of the rehabilitation training robot, the motion control mode can be set according to the specific situation. Different motion control modes will make the processing of the motion signal of the ankle joint different, and the generated control signals are also different. Therefore, the rehabilitation robot can flexibly guide the patient to move according to the ankle joint of the patient.
上术康复训练机器人中的交互方法及系统中,所采集的踝关节运动信号包括了表面肌电信号、足底压力信号,由于表面肌信号能够反映大量的肌肉活动信息,足底压力信号是通过采集足底压力分布得到的,因此借助这些运动信号将能够更为准确地感知患者的运动意图,提高了康复训练的有效性。In the interactive method and system in the rehabilitation training robot, the collected ankle motion signals include surface electromyographic signals and plantar pressure signals. Since the surface muscle signals can reflect a large amount of muscle activity information, the plantar pressure signals are obtained through It is obtained by collecting the distribution of plantar pressure, so with the help of these motion signals, the patient's motion intention can be more accurately perceived, and the effectiveness of rehabilitation training is improved.
【附图说明】【Description of drawings】
图1为一个实施例中康复训练机器人中的交互方法的流程图;Fig. 1 is the flowchart of the interaction method in the rehabilitation training robot in an embodiment;
图2为图1中采集踝关节的运动信号的方法流程图;Fig. 2 is the flow chart of the method for collecting the motion signal of ankle joint in Fig. 1;
图3为一个实施例中按照设定的运动控制模式对踝关节的运动信号进行处理得到康复训练机器人的控制信号的方法流程图;Fig. 3 is a flow chart of the method for processing the motion signal of the ankle joint to obtain the control signal of the rehabilitation training robot according to the set motion control mode in one embodiment;
图4为另一个实施例中按照设定的运动控制模式对踝关节的运动信号进行处理得到康复训练机器人的控制信号的方法流程图;4 is a flow chart of a method for processing the motion signal of the ankle joint to obtain the control signal of the rehabilitation training robot in another embodiment according to the set motion control mode;
图5为一个实施例中康复训练机器人中的交互系统的结构示意图;Fig. 5 is a structural representation of the interactive system in the rehabilitation training robot in an embodiment;
图6为图5中采集装置的结构示意图。FIG. 6 is a schematic structural diagram of the acquisition device in FIG. 5 .
图7为一个实施例中处理装置的结构示意图;Fig. 7 is a schematic structural diagram of a processing device in an embodiment;
图8为另一个实施例中处理装置的结构示意图;Fig. 8 is a schematic structural diagram of a processing device in another embodiment;
【具体实施方式】【Detailed ways】
在一个实施例中,如图1所示,一种康复训练机器人中的交互方法,包括如下步骤:In one embodiment, as shown in Figure 1, a kind of interactive method in rehabilitation training robot, comprises the steps:
步骤S110,采集踝关节的运动信号。Step S110, collecting motion signals of the ankle joint.
本实施例中,采集各种能够反映踝关节运动状态的运动信号,并将该运动信号作为康复训练机器人的控制的信号源,按照采集的运动信号对康复训练机器人进行精确控制。In this embodiment, various motion signals that can reflect the motion state of the ankle joint are collected, and the motion signals are used as a signal source for the control of the rehabilitation training robot, and the rehabilitation training robot is precisely controlled according to the collected motion signals.
在一个实施例中,如图2所示,上述步骤S110的具体过程为:In one embodiment, as shown in FIG. 2, the specific process of the above step S110 is:
步骤S111,采集控制踝关节运动的肌肉的表面肌电信号。Step S111 , collecting surface electromyographic signals of muscles controlling the movement of the ankle joint.
本实施例中,表面肌电信号(Surface Electromyography,简称SEMG)是通过记录肌纤维产生的电位活动总和的生理信号,蕴涵了大量反映肌肉活动的信息。控制踝关节运动的肌肉,例如,腓肠肌外肌、腓肠肌内肌、胫骨前肌和比目鱼肌等,通过表面肌电仪持续地采集得到运动过程中的表面肌电信号。In this embodiment, Surface Electromyography (SEMG for short) is a physiological signal generated by recording the sum of potential activities generated by muscle fibers, and contains a large amount of information reflecting muscle activity. The muscles that control the movement of the ankle joint, such as the external gastrocnemius muscle, internal gastrocnemius muscle, tibialis anterior muscle, and soleus muscle, etc., are continuously collected by the surface electromyography device to obtain surface electromyographic signals during exercise.
步骤S113,采集足底压力分布得到足底压力信号。Step S113, collecting plantar pressure distribution to obtain a plantar pressure signal.
本实施例中,为充分地反映足底压力的实际分布情况,精确了解踝关节运动过程中的实际效果,对足底的压力分布进行采集得到表征足底压力分布的足底压力信号。在优选的实施例中,可将用于进行足底压力分布采集的装置均布设置,以通过该装置输出实际的足底压力分布。In this embodiment, in order to fully reflect the actual distribution of the plantar pressure and accurately understand the actual effect during the ankle joint movement, the pressure distribution of the sole is collected to obtain the plantar pressure signal representing the distribution of the plantar pressure. In a preferred embodiment, the devices for collecting the distribution of the plantar pressure can be evenly distributed, so that the actual distribution of the plantar pressure can be output by the device.
步骤S115,对康复训练机器人进行测量得到位置信号。Step S115, measuring the rehabilitation training robot to obtain a position signal.
本实施例中,为实时获取到康复训练机器人的位置,需要对康复训练机器人进行位置测量得到康复训练机器人当前的位置,实现康复训练机器在运动过程中的定位。In this embodiment, in order to obtain the position of the rehabilitation training robot in real time, it is necessary to measure the position of the rehabilitation training robot to obtain the current position of the rehabilitation training robot, so as to realize the positioning of the rehabilitation training machine during movement.
步骤S130,按照设定的运动控制模式对踝关节的运动信号进行处理得到康复训练机器人的控制信号。Step S130, process the motion signal of the ankle joint according to the set motion control mode to obtain the control signal of the rehabilitation training robot.
本实施例中,在康复训练机器人的交互过程中,可预先设定与患者的实际情况相适应的运动控制模式,进而按照这一运动控制模式处理采集得到的踝节运动信号以生成康复训练机器人的控制信号,不同的运动控制模式对应的控制信号是不相同的。In this embodiment, during the interaction process of the rehabilitation training robot, a motion control mode suitable for the actual situation of the patient can be preset, and then the collected ankle motion signals can be processed according to this motion control mode to generate a rehabilitation training robot The control signals corresponding to different motion control modes are different.
在一个实施例中,运动控制模式为被动控制模式,如图3所示,上述按照设定的运动控制模式对踝关节的运动信号进行处理得到康复训练机器人的控制信号的具体过程为:In one embodiment, the motion control mode is a passive control mode, as shown in Figure 3, the above-mentioned specific process of processing the motion signal of the ankle joint according to the set motion control mode to obtain the control signal of the rehabilitation training robot is:
步骤S301,通过踝关节的运动信号进行定位得到康复训练机器人的位置以及运动轨迹。In step S301, the position and motion track of the rehabilitation training robot are obtained through positioning through the motion signal of the ankle joint.
本实施例中,被动控制模式可应用于踝关节康复训练初期,是预先设定的运动控制模式,患者在康复训练机器人的引导下按照固定的运动轨迹做康复运动,该康复运动可以是踝关节的内翻或外翻、背屈或跖屈以及内收或外展等。In this embodiment, the passive control mode can be applied to the initial stage of ankle joint rehabilitation training. It is a preset motion control mode. Under the guidance of the rehabilitation training robot, the patient performs rehabilitation exercises according to a fixed trajectory. The rehabilitation exercise can be ankle joint rehabilitation training. Inversion or valgus, dorsiflexion or plantarflexion, adduction or abduction, etc.
根据采集到的运动信号对康复训练机器人进行定位以得到其当前时刻的位置和运动轨迹,进而通过当前时刻的位置和运动轨迹精确地获知康复训练机器人当前的运动状态。The rehabilitation training robot is positioned according to the collected motion signal to obtain its current position and motion trajectory, and then the current motion state of the rehabilitation training robot is accurately known through the current position and motion trajectory.
步骤S303,根据康复训练机器人的位置及运动轨迹生成符合预设的踝关节运动轨迹的控制信号。Step S303, generating a control signal conforming to a preset ankle joint movement trajectory according to the position and movement trajectory of the rehabilitation training robot.
本实施例中,由于被动控制模式是使康复训练机器人沿预设的踝关节运动轨迹进行患者踝关节运动的引导,该预设的踝关节运动轨迹可以是正常情况下踝关节进行运动所对应的标准轨迹。将当前康复训练机器人的位置及运动轨迹与预设的踝关节运动轨迹进行对照可以获知此时康复训练机器人正处于预设的踝关节运动轨迹中的哪一阶段,进而获知如何控制康复训练机器人完成后续的踝关节运动引导。In this embodiment, since the passive control mode is to make the rehabilitation training robot guide the patient's ankle joint movement along the preset ankle joint movement track, the preset ankle joint movement track can be the corresponding movement of the ankle joint under normal circumstances. standard track. Comparing the current position and trajectory of the rehabilitation training robot with the preset ankle joint trajectory, we can know which stage of the rehabilitation training robot is in the preset ankle movement trajectory at this time, and then know how to control the rehabilitation training robot to complete Follow-up ankle motion guidance.
在另一个实施例中,上述步骤S303之后还包括:In another embodiment, after the above step S303, it also includes:
将康复训练机器人的位置以及运动轨迹和预设的踝关节运动轨迹进行比对,并按照比对结果修正康复训练机器人的运动。The position and trajectory of the rehabilitation training robot are compared with the preset ankle joint trajectory, and the movement of the rehabilitation training robot is corrected according to the comparison results.
本实施例中,在定位得到康复训练机器人的位置以及运动轨迹之后,可将其与预设的踝关节运动轨迹进行比对以获知患者在踝关节的康复训练过程中的实际训练效果,若出现了偏差,则可根据比对结果以及预设的踝关节运动轨迹进行修正,进而保证康复训练过程能够获得较佳的效果。In this embodiment, after locating and obtaining the position and motion track of the rehabilitation training robot, it can be compared with the preset ankle joint motion track to know the actual training effect of the patient in the rehabilitation training process of the ankle joint. If there is a deviation, it can be corrected according to the comparison result and the preset ankle joint movement trajectory, so as to ensure that the rehabilitation training process can obtain better results.
在另一个实施例中,运动控制模式为主动控制模式,如图4所示,上述按照设定的运动控制模式对踝关节的运动信号进行处理得到康复训练机器人的控制信号的具体过程为:In another embodiment, the motion control mode is an active control mode, as shown in Figure 4, the specific process of processing the motion signal of the ankle joint according to the set motion control mode to obtain the control signal of the rehabilitation training robot is as follows:
步骤S401,对表面肌电信号和足底压力信号进行处理得到相应的特征值。In step S401, the surface electromyography signal and the plantar pressure signal are processed to obtain corresponding feature values.
本实施例中,主动控制模式可应用于经过了被动控制模式训练的患者,通过运动信号来感知患者的主动意识,以识别出患者的运动意图,进而按照识别出的运动意图引导患者进行康复训练。In this embodiment, the active control mode can be applied to patients who have been trained in the passive control mode, and the active consciousness of the patient can be sensed through motion signals to identify the patient's motion intention, and then guide the patient to perform rehabilitation training according to the identified motion intention .
在采集得到表面肌电信号和足底压力信号之后,将对其进行放大、滤波以及特征值提取等处理,以得到表面肌电信号所对应的时域以及频域等特征值,该时域可以是绝对均值、平方根值,频域可以是短时傅里叶、小波变换系数等;足底压力信号所对应的特征值可以为第一趾骨压力、第四趾骨压力、第二和第三趾骨压力、趾骨压力、足跟压力、足间指数、重心等。After the surface electromyography signal and plantar pressure signal are collected, they will be amplified, filtered, and feature value extracted to obtain the time-domain and frequency-domain feature values corresponding to the surface electromyography signal. The time domain can be is the absolute mean value, square root value, and the frequency domain can be short-time Fourier, wavelet transform coefficient, etc.; the eigenvalues corresponding to the plantar pressure signal can be the pressure of the first phalanx, the pressure of the fourth phalanx, the pressure of the second and third phalanx , phalanx pressure, heel pressure, interfoot index, center of gravity, etc.
步骤S403,对特征值进行归类得到特征值所处类别。Step S403, classifying the feature values to obtain the category of the feature values.
本实施例中,在踝关节运动的过程中,根据特征值所处类别可以准确地感知患者的运动意图,即每一类别均对应了具体的运动意图。例如,根据足底压力信号和控制踝关节运动肌肉所对应的特征值可知,如重心及最大压力点均在第一趾骨上,腓肠肌、比目鱼肌和胫骨前肌中采集到的表面肌电信号的特征值超过一定阈值,即患者希望踝关节进行某种运动(如外翻、内收、屈曲运动等),此时,在感知到这一运动意图时,将该足底压力信号的特征值以及腓肠肌、比目鱼肌、胫骨前肌中采集到的表面肌电信号的特征值归类到与踝关节相关的运动类别。In this embodiment, during the movement of the ankle joint, the movement intention of the patient can be accurately perceived according to the category of the feature value, that is, each category corresponds to a specific movement intention. For example, according to the plantar pressure signal and the eigenvalues corresponding to the muscles that control the ankle joint movement, it can be known that if the center of gravity and the maximum pressure point are on the first phalanx, the surface electromyographic signals collected from the gastrocnemius, soleus and tibialis anterior When the eigenvalue exceeds a certain threshold, that is, the patient wants to perform some kind of movement of the ankle joint (such as valgus, adduction, flexion, etc.), at this time, when the movement intention is perceived, the eigenvalue of the plantar pressure signal and The eigenvalues of the surface electromyographic signals collected in the gastrocnemius, soleus, and tibialis anterior muscles were classified into motion categories related to the ankle joint.
步骤S405,按照特征值所处类别生成康复训练机器人的控制信号。Step S405, generating a control signal of the rehabilitation training robot according to the category of the feature value.
本实施例中,按照特征值所处类别产生控制信号,该控制信号实现了通过采集到的运动信号来控制踝关节康复训练过程。In this embodiment, the control signal is generated according to the category of the feature value, and the control signal realizes the control of the ankle joint rehabilitation training process through the collected motion signal.
在另一个实施例中,运动控制模式为阻抗控制模式,上述步骤S403之后还包括:In another embodiment, the motion control mode is an impedance control mode, and after the above step S403, it also includes:
根据特征值所处类别生成对踝关节运动施加阻力的控制信号。A control signal that exerts resistance to the movement of the ankle joint is generated according to the category of the eigenvalues.
本实施例中,阻抗控制模式可应用于踝关节康复训练后期,可根据主动控制模式和被动控制模式进行调节,对患者的踝关节运动施加一定的阻力,以达到强化踝关节的康复训练的目的,进而锻炼与踝关节相关的肌肉,促使踝关节的康复。In this embodiment, the impedance control mode can be applied to the later stage of ankle joint rehabilitation training, and can be adjusted according to the active control mode and passive control mode to apply a certain resistance to the patient's ankle joint movement, so as to achieve the purpose of strengthening the rehabilitation training of the ankle joint , and then exercise the muscles related to the ankle joint to promote the rehabilitation of the ankle joint.
具体地,通过根据特征值所处类别感知到踝关节的运动意图后,产生相应的控制信号,该控制信号用于控制康复训练机器人对正在进行的踝关节运动施加阻力,其阻力是与踝关节的运动方向相反的,阻力的大小恒定,并且可以根据需要进行调节。Specifically, after perceiving the movement intention of the ankle joint according to the category of the feature value, a corresponding control signal is generated, which is used to control the rehabilitation training robot to apply resistance to the ongoing ankle joint movement, and the resistance is the same as that of the ankle joint. In the opposite direction of movement, the resistance is constant and can be adjusted as needed.
步骤S150,通过控制信号控制康复训练机器人执行相应的运动。Step S150, controlling the rehabilitation training robot to perform corresponding movements through the control signal.
在另一个实施例中,上述康复训练机器人中的交互方法还将采集得到的运动信号以及相应的特征值进行存储,以方便对患者的踝关节康复训练进行评价以及科学地制定后续的康复训练计划。In another embodiment, the above-mentioned interaction method in the rehabilitation training robot also stores the collected motion signals and corresponding feature values, so as to facilitate the evaluation of the patient's ankle joint rehabilitation training and scientifically formulate follow-up rehabilitation training plans .
在另一个实施例中,上述康复训练机器人中的交互方法还包括了显示康复训练机器人所执行的运动的步骤。In another embodiment, the above interaction method in the rehabilitation training robot further includes the step of displaying the movement performed by the rehabilitation training robot.
本实施例中,为提高患者进行踝关节康复训练的兴趣以及积极性,可在虚拟的游戏画面中显示康复训练机器人所进行的运动,也方便了患者实时获知当前康复训练的进度。In this embodiment, in order to improve the patient's interest and enthusiasm for ankle joint rehabilitation training, the movement performed by the rehabilitation training robot can be displayed in the virtual game screen, which also facilitates the patient to know the progress of the current rehabilitation training in real time.
在一个实施例中,如图5所示,一种康复训练机器人中的交互系统,包括采集装置10、处理装置30以及运动装置50。In one embodiment, as shown in FIG. 5 , an interactive system in a rehabilitation training robot includes a
采集装置10,用于采集踝关节的运动信号。The
本实施例中,采集装置10采集各种能够反映踝关节运动状态的运动信号,并将该运动信号作为康复训练机器人的控制的信号源,以实现按照采集的运动信号对康复训练机器人的精确控制。In this embodiment, the
在一个实施例中,如图6所示,采集装置10包括表面肌电仪110、压力传感器130以及位置传感器150。In one embodiment, as shown in FIG. 6 , the
表面肌电仪110,用于采集控制踝关节运动的肌肉的表面肌电信号。The
本实施例中,表面肌电信号是通过记录肌纤维产生的电位活动总和的生理信号,蕴涵了大量反映肌肉活动的信息。在控制踝关节运动的肌肉上,例如,腓肠肌外肌、腓肠肌内肌、胫骨前肌和比目鱼肌等,表面肌电仪110通过持续地采集得到运动过程中的表面肌电信号。在优选的实施例中,表面肌电仪110包括了表面肌电电极,该表面肌电电极安置于患者小腿中控制踝关节运动的肌肉上,例如,可根据表面肌电电极的安放规则,置于患者小腿肌肉上,表面肌电电极的数量可以为4个。In this embodiment, the surface electromyographic signal is a physiological signal generated by recording the sum of potential activities of muscle fibers, which contains a large amount of information reflecting muscle activity. On the muscles that control the movement of the ankle joint, such as the external gastrocnemius muscle, the internal gastrocnemius muscle, the tibialis anterior muscle, and the soleus muscle, etc., the
压力传感器130,用于采集足底压力分布得到足底压力信号。The
本实施例中,为充分地反映足底压力的实际分布情况,精确了解踝关节运动过程中的实际效果,压力传感器130对足底的压力分布进行采集得到表征足底压力分布的足底压力信号。在优选的实施例中,压力传感器130为阵列式压力传感器,并进行均布设置,以得到实际的足底压力分布。In this embodiment, in order to fully reflect the actual distribution of the plantar pressure and accurately understand the actual effect during the ankle joint movement, the
位置传感器150,用于对康复训练机器人进行测量得到位置信号。The
本实施例中,为实时获取到康复训练机器人的位置,需要位置传感器150对康复训练机器人进行位置测量得到康复训练机器人当前的位置,实现康复训练机器在运动过程中的定位。In this embodiment, in order to obtain the position of the rehabilitation training robot in real time, the
处理装置30,用于按照设定的运动控制模式对踝关节的运动信号进行处理得到康复训练机器人的控制信号。The
本实施例中,在康复训练机器人的交互过程中,可预先设定与患者的实际情况相适应的运动控制模式,进而处理装置30按照这一运动控制模式处理采集得到的踝节运动信号以生成康复训练机器人的控制信号,不同的运动控制模式对应的控制信号是不相同的。In this embodiment, during the interaction process of the rehabilitation training robot, a motion control mode suitable for the actual situation of the patient can be preset, and then the
在一个实施例中,运动控制模式为被控制模式,如图7所示,处理装置30包括定位模块310以及信号生成模块320。In one embodiment, the motion control mode is the controlled mode. As shown in FIG. 7 , the
定位模块310,用于通过踝关节的运动信号进行定位得到康复训练机器人的位置以及运动轨迹。The
本实施例中,被动控制模式可应用于踝关节康复训练初期,是预先设定的运动控制模式,患者在康复训练机器人的引导下按照固定的运动轨迹做康复运动,该康复运动可以是踝关节的内翻或外翻、背屈或跖屈以及内收或外展等。In this embodiment, the passive control mode can be applied to the initial stage of ankle joint rehabilitation training. It is a preset motion control mode. Under the guidance of the rehabilitation training robot, the patient performs rehabilitation exercises according to a fixed trajectory. The rehabilitation exercise can be ankle joint rehabilitation training. Inversion or valgus, dorsiflexion or plantarflexion, adduction or abduction, etc.
定位模块310根据采集到的运动信号对康复训练机器人进行定位以得到其当前时刻的位置和运动轨迹,进而通过当前时刻的位置和运动轨迹精确地获知康复训练机器人当前的运动状态。The
信号生成模块320,用于根据康复训练机器人的位置及运动轨迹生成符合预设的踝关节运动轨迹的控制信号。The
本实施例中,由于被动控制模式是使康复训练机器人沿预设的踝关节运动轨迹进行患者踝关节运动的引导,该预设的踝关节运动轨迹可以是正常情况下踝关节进行运动所对应的标准轨迹。信号生成模块320将当前康复训练机器人的位置及运动轨迹与预设的踝关节运动轨迹进行对照可以获知此时康复训练机器人处于预设的踝关节运动轨迹中的哪一阶段,进而获知如何控制康复训练机器人完成后续的踝关节运动引导。In this embodiment, since the passive control mode is to make the rehabilitation training robot guide the patient's ankle joint movement along the preset ankle joint movement track, the preset ankle joint movement track can be the corresponding movement of the ankle joint under normal circumstances. standard track. The
在另一个实施例中,上述处理装置30还包括运动修正模块,该运动修正模块用于将康复训练机器人的位置以及运动轨迹和预设的踝关节运动轨迹进行比对,并按照比对结果修正康复训练机器人的运动。In another embodiment, the above-mentioned
本实施例中,在定位得到康复训练机器人的位置以及运动轨迹之后,运动修正模块可将其与预设的踝关节运动轨迹进行比对以获知患者在踝关节的康复训练过程中的实际训练效果,若出现了偏差,则可根据比对结果以及预设的踝关节运动轨迹进行修正,进而保证康复训练过程能够获得较佳的效果。In this embodiment, after the position and motion track of the rehabilitation training robot are obtained, the motion correction module can compare it with the preset ankle joint motion track to know the actual training effect of the patient in the rehabilitation training process of the ankle joint , if there is a deviation, it can be corrected according to the comparison result and the preset ankle joint movement trajectory, so as to ensure that the rehabilitation training process can obtain better results.
在另一个实施例中,运动控制模式为主动控制模式,如图8所示,处理装置30包括信号处理模块330、归类模块340以及信号生成模块350。In another embodiment, the motion control mode is an active control mode. As shown in FIG. 8 , the
信号处理模块330,用于对表面肌电信号和足底压力信号进行处理得到相应的特征值。The
本实施例中,主动控制模式可应用于经过了被动控制模式训练的患者,信号处理模块330通过运动信号来感知患者的主动意识,以识别出患者的运动意图,进而按照识别出的运动意图引导患者进行康复训练。In this embodiment, the active control mode can be applied to patients who have been trained in the passive control mode. The
在采集得到表面肌电信号和足底压力信号之后,信号处理模块330将对其进行放大、滤波以及特征值提取等处理,以得到表面肌电信号所对应的时域以及频域等特征值,该时域可以是绝对均值、平方根值,频域可以是短时傅里叶、小波变换系数等;足底压力信号所对应的特征值可以为第一趾骨压力、第四趾骨压力、第二和第三趾骨压力、趾骨压力、足跟压力、足间指数以及重心等。After the surface electromyography signal and the plantar pressure signal are collected, the
归类模块340,用于对特征值进行归类得到特征值所处类别。The
本实施例中,在踝关节运动的过程中,归类模块340根据特征值所处类别可以准确地感知患者的运动意图,即每一类别均对应了具体的运动意图。例如,根据足底压力信号和控制踝关节运动肌肉所对应的特征值可知,如重心及最大压力点均在第一趾骨上,腓肠肌、比目鱼肌和胫骨前肌中采集到的表面肌电信号的特征值超过一定阈值,即患者希望踝关节进行某种运动(如外翻、内收、屈曲运动等),此时,在感知到这一运动意图时,将该足底压力信号的特征值以及腓肠肌、比目鱼肌、胫骨前肌中采集到的表面肌电信号的特征值归类到与踝关节相关的运动类别。In this embodiment, during the movement of the ankle joint, the
信号生成模块350,用于按照特征值所处类别生成康复训练机器人的控制信号。The
本实施例中,信号生成模块350按照特征值所处类别产生控制信号,该控制信号实现了通过采集到的运动信号来控制踝关节康复训练过程。In this embodiment, the
在另一个实施例中,运动控制模式为阻抗控制模式,上述信号生成模块350还用于根据特征值所处类别生成对踝关节运动施加阻力的控制信号。In another embodiment, the motion control mode is an impedance control mode, and the above-mentioned
本实施例中,阻抗控制模式应用于踝关节康复训练后期,可根据主动控制模式和被动控制模式进行调节,对患者的踝关节运动施加一定的阻力,以达到强化踝关节的康复训练的目的,进而锻炼与踝关节相关的肌肉,促使踝关节的康复。In this embodiment, the impedance control mode is applied in the late stage of ankle joint rehabilitation training, and can be adjusted according to the active control mode and passive control mode, and a certain resistance is applied to the patient's ankle joint movement, so as to achieve the purpose of strengthening the rehabilitation training of the ankle joint. Then exercise the muscles related to the ankle joint to promote the rehabilitation of the ankle joint.
具体地,信号生成模块350根据特征值所处类别感知到踝关节的运动意图后,产生相应的控制信号,该控制信号用于控制康复训练机器人对正在进行的踝关节运动施加阻力,其阻力是与踝关节的运动方向相反的,阻力的大小恒定,并且可以根据需要进行调节。Specifically, after the
运动装置50,用于通过控制信号控制康复训练机器人执行相应的运动。The
在另一个实施例中,上述康复训练机器人中的交互系统还包括了数据存储装置,该数据存储装置用于将采集得到的运动信号以及相应的特征值进行存储,以方便对患者的踝关节康复训练进行评价以及科学地制定后续的康复训练计划。In another embodiment, the above-mentioned interactive system in the rehabilitation training robot also includes a data storage device, which is used to store the collected motion signals and corresponding feature values, so as to facilitate the rehabilitation of the patient's ankle joint. Evaluate the training and scientifically formulate the follow-up rehabilitation training plan.
在另一个实施例中,上述康复训练机器人中的交互系统还包括了交互装置,该交互装置用于显示康复训练机器人所执行的运动。In another embodiment, the above interactive system in the rehabilitation training robot further includes an interaction device, which is used for displaying the movements performed by the rehabilitation training robot.
本实施例中,为提高患者进行踝关节康复训练的兴趣以及积极性,通过交互装置可在虚拟的游戏画面中显示康复训练机器人所进行的运动,也方便了患者实时获知当前康复训练的进度。In this embodiment, in order to improve the patient's interest and enthusiasm for ankle joint rehabilitation training, the movement of the rehabilitation training robot can be displayed on the virtual game screen through the interactive device, which also facilitates the patient to know the progress of the current rehabilitation training in real time.
上述康复训练机器人中的交互方法及系统中,按照设定运动控制模式对采集到的踝关节的运动信号进行处理得到相应的康复训练机器人的控制信号,并通过控制信号来实现康复训练机器人的控制,进而在患者通过康复训练机器人的辅助进行康复训练时可根据具体情况设定运动控制模式,不同的运动控制模式将使得踝关节的运动信号的处理各不相同,所生成的控制信号也不同,从而使得康复机器人实现了针对患者的踝关节灵活地引导患者进行运动。In the above-mentioned interactive method and system in the rehabilitation training robot, the collected motion signals of the ankle joint are processed according to the set motion control mode to obtain the corresponding control signals of the rehabilitation training robot, and the control of the rehabilitation training robot is realized through the control signals , and then when the patient carries out rehabilitation training with the assistance of the rehabilitation training robot, the motion control mode can be set according to the specific situation. Different motion control modes will make the processing of the motion signal of the ankle joint different, and the generated control signals are also different. Therefore, the rehabilitation robot can flexibly guide the patient to move according to the ankle joint of the patient.
上述康复训练机器人中的交互方法及系统中,所采集的踝关节运动信号包括了表面肌电信号、足底压力信号,由于表面肌信号能够反映大量的肌肉活动信息,足底压力信号是通过采集足底压力分布得到的,因此借助这些运动信号将能够更为准确地感知患者的运动意图,提高了康复训练的有效性。In the above-mentioned interactive method and system in the rehabilitation training robot, the collected ankle joint motion signals include surface electromyography signals and plantar pressure signals. Since the surface muscle signals can reflect a large amount of muscle activity information, the plantar pressure signals are obtained by collecting The plantar pressure distribution is obtained, so with the help of these motion signals, the patient's motion intention can be perceived more accurately, and the effectiveness of rehabilitation training is improved.
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be pointed out that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention, and these all belong to the protection scope of the present invention. Therefore, the protection scope of the patent for the present invention should be based on the appended claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110459846.8ACN102631276B (en) | 2011-12-31 | 2011-12-31 | Interaction system for rehabilitation training robot |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110459846.8ACN102631276B (en) | 2011-12-31 | 2011-12-31 | Interaction system for rehabilitation training robot |
| Publication Number | Publication Date |
|---|---|
| CN102631276Atrue CN102631276A (en) | 2012-08-15 |
| CN102631276B CN102631276B (en) | 2015-04-15 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110459846.8AActiveCN102631276B (en) | 2011-12-31 | 2011-12-31 | Interaction system for rehabilitation training robot |
| Country | Link |
|---|---|
| CN (1) | CN102631276B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102783766A (en)* | 2012-08-28 | 2012-11-21 | 中国科学院深圳先进技术研究院 | Fall prevention device |
| CN104013513A (en)* | 2014-06-05 | 2014-09-03 | 电子科技大学 | Rehabilitation robot sensing system and method |
| CN104107134A (en)* | 2013-12-10 | 2014-10-22 | 中山大学 | Myoelectricity feedback based upper limb training method and system |
| CN104523403A (en)* | 2014-11-05 | 2015-04-22 | 陶宇虹 | Method for judging lower-limb movement intentions of exoskeleton walking aid robot wearer |
| CN104665828A (en)* | 2013-11-27 | 2015-06-03 | 中国科学院深圳先进技术研究院 | System and method based on electromyographic signal controlling remote controller |
| CN105288933A (en)* | 2015-11-20 | 2016-02-03 | 武汉理工大学 | Self-adaptation training control method of parallel lower limb rehabilitation robot and rehabilitation robot |
| CN105455996A (en)* | 2015-11-25 | 2016-04-06 | 燕山大学 | Multisource signal feedback control rehabilitation training device based on wireless |
| CN105615890A (en)* | 2015-12-24 | 2016-06-01 | 西安交通大学 | Angle and myoelectricity continuous decoding method for human body lower limb walking joint |
| CN105771182A (en)* | 2016-05-13 | 2016-07-20 | 中国科学院自动化研究所 | Active exercise control method and device for rehabilitation robot |
| CN105769185A (en)* | 2014-12-26 | 2016-07-20 | 青岛智拓智能科技有限公司 | Sensor system |
| CN105997439A (en)* | 2016-07-26 | 2016-10-12 | 郑州轻工业学院 | Three-freedom-degree angle joint recovery assisting device controlled by electromyographic signals and provided with sphere pairs |
| CN106726357A (en)* | 2017-02-24 | 2017-05-31 | 宁波工程学院 | A kind of ectoskeleton pedipulator rehabilitation system standing mode control method |
| CN107174793A (en)* | 2017-07-07 | 2017-09-19 | 广州康医疗设备实业有限公司 | The rehabilitation training of upper limbs method moved based on track |
| CN107320285A (en)* | 2017-07-28 | 2017-11-07 | 上海逸动医学科技有限公司 | A kind of multifunctional intellectual rehabilitation training and assessment system |
| CN107469295A (en)* | 2017-09-11 | 2017-12-15 | 哈尔滨工程大学 | A Location-Based Active Intent Recognition Method for Rehabilitation Robots |
| CN107595549A (en)* | 2017-10-09 | 2018-01-19 | 广州康医疗设备实业有限公司 | A kind of method and control system for eliminating limb motion trajector deviation |
| CN105213153B (en)* | 2015-09-14 | 2018-06-26 | 西安交通大学 | Lower limb rehabilitation robot control method based on brain flesh information impedance |
| CN108392302A (en)* | 2018-02-10 | 2018-08-14 | 四川大学华西第二医院 | An ankle-foot orthotic device and control method thereof |
| CN109091818A (en)* | 2017-09-15 | 2018-12-28 | 中山大学 | The training method and system of rope-traction upper limb rehabilitation robot based on admittance control |
| CN109147904A (en)* | 2018-08-30 | 2019-01-04 | 香港理工大学 | Balance and gait training method, system and terminal |
| CN111358660A (en)* | 2018-12-26 | 2020-07-03 | 沈阳新松机器人自动化股份有限公司 | Lower limb rehabilitation training device, method and computer equipment |
| CN113730879A (en)* | 2021-10-15 | 2021-12-03 | 福州大学 | Ankle rehabilitation method based on plantar force feedback |
| CN114028775A (en)* | 2021-12-08 | 2022-02-11 | 福州大学 | Ankle joint movement intention identification method and system based on sole pressure |
| CN114159278A (en)* | 2021-09-28 | 2022-03-11 | 杭州程天科技发展有限公司 | Automatic correction control method suitable for exoskeleton hangers and related equipment |
| CN116196199A (en)* | 2023-03-08 | 2023-06-02 | 福州大学 | Ankle rehabilitation exercise evaluation method based on force time sequence |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5902214A (en)* | 1996-08-08 | 1999-05-11 | Shiraito Tani | Walk simulation apparatus |
| US20060004307A1 (en)* | 2002-11-25 | 2006-01-05 | Horst Robert W | Active muscle assistance device and method |
| TWM311442U (en)* | 2006-10-24 | 2007-05-11 | Univ Nat Cheng Kung | Ankle rehabilitation apparatus |
| CN101022855A (en)* | 2004-07-27 | 2007-08-22 | 松下电工株式会社 | Exercise aid device |
| CN101061984A (en)* | 2006-04-29 | 2007-10-31 | 香港理工大学 | Rehabilitation robot system and training method using electromyographic signals to provide mechanical assistance |
| WO2009125397A2 (en)* | 2008-04-08 | 2009-10-15 | Motorika Limited | Device and method for foot drop analysis and rehabilitation |
| CN101820845A (en)* | 2007-05-22 | 2010-09-01 | 香港理工大学 | Robot training system with multi-directional modules |
| CN101874758A (en)* | 2010-05-07 | 2010-11-03 | 中国科学院深圳先进技术研究院 | Auxiliary motion system and control method thereof |
| CN102038491A (en)* | 2009-10-19 | 2011-05-04 | 上海理工大学 | Intellectualized passive lower-limb function testing and training method |
| CN102058464A (en)* | 2010-11-27 | 2011-05-18 | 上海大学 | Motion control method of lower limb rehabilitative robot |
| CN102187118A (en)* | 2008-08-14 | 2011-09-14 | 蒂比昂公司 | Actuator system with a multi-motor assembly for extending and flexing a joint |
| CN102225034A (en)* | 2011-04-25 | 2011-10-26 | 中国科学院合肥物质科学研究院 | Gait rehabilitation training robot control system |
| CN102641196A (en)* | 2011-12-30 | 2012-08-22 | 中国科学院深圳先进技术研究院 | Rehealthy training robot control system and control method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5902214A (en)* | 1996-08-08 | 1999-05-11 | Shiraito Tani | Walk simulation apparatus |
| US20060004307A1 (en)* | 2002-11-25 | 2006-01-05 | Horst Robert W | Active muscle assistance device and method |
| CN101022855A (en)* | 2004-07-27 | 2007-08-22 | 松下电工株式会社 | Exercise aid device |
| CN101061984A (en)* | 2006-04-29 | 2007-10-31 | 香港理工大学 | Rehabilitation robot system and training method using electromyographic signals to provide mechanical assistance |
| TWM311442U (en)* | 2006-10-24 | 2007-05-11 | Univ Nat Cheng Kung | Ankle rehabilitation apparatus |
| CN101820845A (en)* | 2007-05-22 | 2010-09-01 | 香港理工大学 | Robot training system with multi-directional modules |
| WO2009125397A2 (en)* | 2008-04-08 | 2009-10-15 | Motorika Limited | Device and method for foot drop analysis and rehabilitation |
| CN102187118A (en)* | 2008-08-14 | 2011-09-14 | 蒂比昂公司 | Actuator system with a multi-motor assembly for extending and flexing a joint |
| CN102038491A (en)* | 2009-10-19 | 2011-05-04 | 上海理工大学 | Intellectualized passive lower-limb function testing and training method |
| CN101874758A (en)* | 2010-05-07 | 2010-11-03 | 中国科学院深圳先进技术研究院 | Auxiliary motion system and control method thereof |
| CN102058464A (en)* | 2010-11-27 | 2011-05-18 | 上海大学 | Motion control method of lower limb rehabilitative robot |
| CN102225034A (en)* | 2011-04-25 | 2011-10-26 | 中国科学院合肥物质科学研究院 | Gait rehabilitation training robot control system |
| CN102641196A (en)* | 2011-12-30 | 2012-08-22 | 中国科学院深圳先进技术研究院 | Rehealthy training robot control system and control method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102783766B (en)* | 2012-08-28 | 2014-11-19 | 中国科学院深圳先进技术研究院 | A fall prevention device |
| CN102783766A (en)* | 2012-08-28 | 2012-11-21 | 中国科学院深圳先进技术研究院 | Fall prevention device |
| CN104665828A (en)* | 2013-11-27 | 2015-06-03 | 中国科学院深圳先进技术研究院 | System and method based on electromyographic signal controlling remote controller |
| CN104107134B (en)* | 2013-12-10 | 2017-08-01 | 中山大学 | Method and system for upper limb training based on electromyographic feedback |
| CN104107134A (en)* | 2013-12-10 | 2014-10-22 | 中山大学 | Myoelectricity feedback based upper limb training method and system |
| CN104013513A (en)* | 2014-06-05 | 2014-09-03 | 电子科技大学 | Rehabilitation robot sensing system and method |
| CN104523403A (en)* | 2014-11-05 | 2015-04-22 | 陶宇虹 | Method for judging lower-limb movement intentions of exoskeleton walking aid robot wearer |
| CN104523403B (en)* | 2014-11-05 | 2019-06-18 | 陶宇虹 | A method of judging that ectoskeleton assistant robot wearer's lower limb action is intended to |
| CN105769185A (en)* | 2014-12-26 | 2016-07-20 | 青岛智拓智能科技有限公司 | Sensor system |
| CN105213153B (en)* | 2015-09-14 | 2018-06-26 | 西安交通大学 | Lower limb rehabilitation robot control method based on brain flesh information impedance |
| CN105288933B (en)* | 2015-11-20 | 2017-07-07 | 武汉理工大学 | Lower limb rehabilitation robot adaptive training control method in parallel and healing robot |
| CN105288933A (en)* | 2015-11-20 | 2016-02-03 | 武汉理工大学 | Self-adaptation training control method of parallel lower limb rehabilitation robot and rehabilitation robot |
| CN105455996A (en)* | 2015-11-25 | 2016-04-06 | 燕山大学 | Multisource signal feedback control rehabilitation training device based on wireless |
| CN105615890B (en)* | 2015-12-24 | 2018-08-10 | 西安交通大学 | Human body lower limbs walking joint angles myoelectricity continuous decoding method |
| CN105615890A (en)* | 2015-12-24 | 2016-06-01 | 西安交通大学 | Angle and myoelectricity continuous decoding method for human body lower limb walking joint |
| CN105771182A (en)* | 2016-05-13 | 2016-07-20 | 中国科学院自动化研究所 | Active exercise control method and device for rehabilitation robot |
| CN105997439A (en)* | 2016-07-26 | 2016-10-12 | 郑州轻工业学院 | Three-freedom-degree angle joint recovery assisting device controlled by electromyographic signals and provided with sphere pairs |
| CN105997439B (en)* | 2016-07-26 | 2018-09-21 | 郑州轻工业学院 | The three-degree of freedom ankle joint auxiliary rehabilitation device with ball pair of electromyography signal control |
| CN106726357A (en)* | 2017-02-24 | 2017-05-31 | 宁波工程学院 | A kind of ectoskeleton pedipulator rehabilitation system standing mode control method |
| CN107174793A (en)* | 2017-07-07 | 2017-09-19 | 广州康医疗设备实业有限公司 | The rehabilitation training of upper limbs method moved based on track |
| CN107320285A (en)* | 2017-07-28 | 2017-11-07 | 上海逸动医学科技有限公司 | A kind of multifunctional intellectual rehabilitation training and assessment system |
| CN107469295A (en)* | 2017-09-11 | 2017-12-15 | 哈尔滨工程大学 | A Location-Based Active Intent Recognition Method for Rehabilitation Robots |
| CN107469295B (en)* | 2017-09-11 | 2019-11-01 | 哈尔滨工程大学 | Rehabilitation robot active intention recognition method based on position |
| CN109091818A (en)* | 2017-09-15 | 2018-12-28 | 中山大学 | The training method and system of rope-traction upper limb rehabilitation robot based on admittance control |
| CN107595549A (en)* | 2017-10-09 | 2018-01-19 | 广州康医疗设备实业有限公司 | A kind of method and control system for eliminating limb motion trajector deviation |
| CN108392302A (en)* | 2018-02-10 | 2018-08-14 | 四川大学华西第二医院 | An ankle-foot orthotic device and control method thereof |
| CN109147904A (en)* | 2018-08-30 | 2019-01-04 | 香港理工大学 | Balance and gait training method, system and terminal |
| CN111358660A (en)* | 2018-12-26 | 2020-07-03 | 沈阳新松机器人自动化股份有限公司 | Lower limb rehabilitation training device, method and computer equipment |
| CN111358660B (en)* | 2018-12-26 | 2022-03-08 | 沈阳新松机器人自动化股份有限公司 | Lower limb rehabilitation training device and method and computer equipment |
| CN114159278A (en)* | 2021-09-28 | 2022-03-11 | 杭州程天科技发展有限公司 | Automatic correction control method suitable for exoskeleton hangers and related equipment |
| CN114159278B (en)* | 2021-09-28 | 2024-03-15 | 杭州程天科技发展有限公司 | Automatic correction control method and related equipment suitable for exoskeleton hanger |
| CN113730879A (en)* | 2021-10-15 | 2021-12-03 | 福州大学 | Ankle rehabilitation method based on plantar force feedback |
| CN114028775A (en)* | 2021-12-08 | 2022-02-11 | 福州大学 | Ankle joint movement intention identification method and system based on sole pressure |
| CN116196199A (en)* | 2023-03-08 | 2023-06-02 | 福州大学 | Ankle rehabilitation exercise evaluation method based on force time sequence |
| CN116196199B (en)* | 2023-03-08 | 2025-07-29 | 福州大学 | Ankle rehabilitation exercise evaluation method based on force time sequence |
| Publication number | Publication date |
|---|---|
| CN102631276B (en) | 2015-04-15 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102631276B (en) | Interaction system for rehabilitation training robot | |
| CN103431976B (en) | Based on lower limb rehabilitation robot system and the control method thereof of electromyographic signal feedback | |
| CN106236503B (en) | The wearable exoskeleton system of the electrically driven (operated) upper limb of flesh and control method | |
| CN102641196B (en) | Rehealthy training robot control system and control method thereof | |
| CN109276807A (en) | Functional electrical stimulation therapy device for lower limbs of hemiplegic patients based on mirror rehabilitation therapy | |
| Kotov-Smolenskiy et al. | Surface EMG: applicability in the motion analysis and opportunities for practical rehabilitation | |
| Sethi et al. | Advances in motion and electromyography based wearable technology for upper extremity function rehabilitation: A review | |
| Dawson et al. | Myoelectric training systems | |
| CN104337666A (en) | Multi-muscle collaborative myoelectricity feedback rehabilitation training system and method | |
| CN111603136B (en) | Remote consultation system for foot diagnosis and treatment | |
| CN114569144B (en) | Knee joint tendon reflex state assessment method based on myoelectricity-inertia sensing | |
| US20240149060A1 (en) | Electrical stimulation device and electrical stimulation method | |
| CN114748079B (en) | Wearable myoelectricity method for online evaluation of muscle exercise fatigue | |
| JP6653935B2 (en) | Paralysis function recovery training device and control method of paralysis function recovery training device | |
| CN116564465A (en) | Internet of things platform-based lower limb rehabilitation training interaction method | |
| Savoji et al. | A Comprehensive Review of Electromyography in Rehabilitation: Detecting Interrupted Wrist and Hand Movements with a Robotic Arm Approach | |
| CN118645207A (en) | An active rehabilitation training method for bilateral limb coordinated movement in hemiplegic patients | |
| Kizyte et al. | Influence of input features and emg type on ankle joint torque prediction with support vector regression | |
| RU2673151C1 (en) | Method of bionic control of technical devices | |
| Yu et al. | Analysis of muscle activity during gait cycle using fuzzy rule-based reasoning | |
| Ni et al. | A sEMG-Based Active-Passive Fusion Rehabilitation Method for Ankle Fracture Rehabilitation Robot after Surgery | |
| CN116196199B (en) | Ankle rehabilitation exercise evaluation method based on force time sequence | |
| Wang et al. | Qualitative evaluations of gait rehabilitation via EMG muscle activation pattern: Repetition, symmetry, and smoothness | |
| CN110720909B (en) | Whole rehabilitation training system for waist and abdomen core muscle group based on myoelectric biofeedback and application thereof | |
| JP4926042B2 (en) | Neuromuscular stimulation |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |