


技术领域technical field
本发明属于导热系数测量技术领域,具体来说,是一种基于稳态法的棒体材料导热系数测量装置及测量方法。The invention belongs to the technical field of thermal conductivity measurement, and specifically relates to a measurement device and method for thermal conductivity of rod materials based on a steady-state method.
背景技术Background technique
导热系数是描述材料导热性能的重要参数,对工程热设计有重要作用,因此准确地测量导热系数一直是传热领域研究的重要课题。导热系数的测试方法有很多,美国普渡大学热物理性能研究中心(Thermal Physical Research Center of Purdue University)的CINDAS对各种方法做过归纳,根据导热过程的宏观机理可分为稳态法和非稳态法。其中稳态法由于可以得到可靠的结果且计算简单是目前应用广泛的测定方法。稳态法测定的一般过程为:在待测试样一端加热,另一端冷却,同时进行隔热处理,形成近似的一维导热模型来测量材料的导热系数。但当对导热系数较小或测量段长度较长的材料进行导热系数测量时,材料周向隔热是稳态导热系数测试中必须关注的问题,其效果会影响测量精度。Thermal conductivity is an important parameter to describe the thermal conductivity of materials and plays an important role in engineering thermal design. Therefore, accurate measurement of thermal conductivity has always been an important topic in the field of heat transfer. There are many test methods for thermal conductivity. CINDAS of the Thermal Physical Research Center of Purdue University has summarized various methods. According to the macroscopic mechanism of the thermal conduction process, it can be divided into steady state method and non-conductive method. steady state method. Among them, the steady-state method is widely used at present because of its reliable results and simple calculation. The general process of the steady-state method is: heating one end of the sample to be tested, cooling the other end, and performing heat insulation treatment at the same time to form an approximate one-dimensional thermal conductivity model to measure the thermal conductivity of the material. However, when measuring the thermal conductivity of a material with a small thermal conductivity or a long measurement section, the circumferential insulation of the material must be paid attention to in the steady-state thermal conductivity test, and its effect will affect the measurement accuracy.
通常采用比较法测量试验中通过待测材料的热流量,即将已知导热系数的标准试样和待测试样串连在一起,使得通过标准试样的热流密度与待测试样相同,再通过测定等温面间的温差和相关的几何尺寸得到材料的导热系数。这种方法中,隔热方法通常采用真空防辐射隔热和保温材料隔热两种,真空隔热结构较复杂,成本较高;保温材料隔热由于材料绝热性能有限,材料本身也有吸热,在被测材料冷热两端温差较大时隔热效果很差,可能会导致测试结果不正确;且目前采用的比较法测量试验中,不易安排和匹配热保护加热器,使得隔热结构的隔热效果不佳,增大了热损失,降低了测试精度。Usually, the comparative method is used to measure the heat flow through the material to be tested in the test, that is, the standard sample with known thermal conductivity and the sample to be tested are connected in series, so that the heat flux through the standard sample is the same as that of the sample to be tested, and then The thermal conductivity of the material is obtained by measuring the temperature difference between the isothermal surfaces and the related geometric dimensions. In this method, the heat insulation method usually adopts two kinds of vacuum radiation protection heat insulation and heat insulation material heat insulation. The vacuum heat insulation structure is more complicated and the cost is higher; the heat insulation material heat insulation has limited heat insulation performance, and the material itself also absorbs heat. When the temperature difference between the cold and hot ends of the tested material is large, the heat insulation effect is very poor, which may lead to incorrect test results; and in the current comparison method measurement test, it is not easy to arrange and match the thermal protection heater, making the heat insulation structure The heat insulation effect is not good, which increases the heat loss and reduces the test accuracy.
发明内容Contents of the invention
为了解决上述问题,本发明提出一种用来测量棒体材料导热系数的测量装置及测量方法,通过在传统的稳态法导热系数测试装置中加入热保护加热器以及主动热控部分,从而提高隔热结构的隔热效果,减小热损失,提高测试精度。In order to solve the above problems, the present invention proposes a measuring device and measuring method for measuring the thermal conductivity of rod materials. By adding a thermal protection heater and an active thermal control part to the traditional steady-state method thermal conductivity testing device, thereby improving The heat insulation effect of the heat insulation structure reduces heat loss and improves test accuracy.
本发明一种棒体材料导热系数测量装置,包括装置部分与监测控制部分;装置部分用来安装待测棒体材料,通过监控部分实现待测棒体材料导热系数的测量。The invention relates to a device for measuring the thermal conductivity of a rod material, comprising a device part and a monitoring control part; the device part is used to install the rod material to be tested, and the monitoring part realizes the measurement of the thermal conductivity of the rod material to be tested.
其中,装置部分包括隔热结构、安装平台、主加热器、热保护组件、散热器与制冷器;在安装平台上设置有顶部封闭的筒状隔热结构;隔热结构底端面与安装平台贴合,使隔热结构内部形成密封的用来放置待测棒体材料与标准试样的空腔;隔热结构内部顶面上固定安装有主加热器,主加热器用来对待测棒体材料高温端加热;主加热器的加热面上安装有加热垫片,用来将主加热器产生的热量在加热垫片底面形成均一的温度,使待测棒体材料上部体积内热流均匀;制冷器固定安装在安装平台上,制冷器与隔热结构内部顶面相对,制冷器通过安装在安装平台底面上的散热片进行散热。Among them, the device part includes a heat insulation structure, an installation platform, a main heater, a thermal protection component, a radiator and a refrigerator; a cylindrical heat insulation structure with a closed top is arranged on the installation platform; The heat insulation structure forms a sealed cavity for placing the rod material to be tested and the standard sample; the main heater is fixedly installed on the top surface of the heat insulation structure, and the main heater is used for the high temperature of the rod material to be tested. End heating; heating pads are installed on the heating surface of the main heater to form a uniform temperature on the bottom surface of the heating pads with the heat generated by the main heater, so that the heat flow in the upper volume of the rod material to be tested is uniform; the refrigerator is fixed Installed on the installation platform, the refrigerator is opposite to the inner top surface of the heat insulation structure, and the refrigerator dissipates heat through the cooling fins installed on the bottom surface of the installation platform.
所述热保护组件包括辅加热器和热保护垫片;热保护垫片为筒状结构,设置在隔热结构内部周向上,热保护垫片顶端面与待测棒体材料高温端的测温点所在水平平面共面,底端面与待测棒体材料低温端的测温点所在水平平面共面;所述待测棒体材料高温端的测温点与待测棒体材料低温端的测温点均选取在待测棒体材料外壁周向上;热保护垫片外壁上安装有辅加热器。The thermal protection assembly includes an auxiliary heater and a thermal protection gasket; the thermal protection gasket is a cylindrical structure, which is arranged on the inner circumferential direction of the heat insulation structure, and the temperature measurement point between the top surface of the thermal protection gasket and the high temperature end of the rod material to be tested The horizontal plane is coplanar, and the bottom end surface is coplanar with the horizontal plane where the temperature measuring point of the low temperature end of the rod material to be tested is located; In the circumferential direction of the outer wall of the rod material to be tested; an auxiliary heater is installed on the outer wall of the thermal protection gasket.
所述监控部分包括控制模块、可控硅调功模块、温度采集模块、监测模块与控制。其中,控制模块用来向可控硅调功模块发送主加热器与辅加热器的功率控制信号,从而控制可控硅调功模块调节主加热器与辅加热器的输出功率;所述温度采集模块实时采集待测棒体材料与标准试样上的各测温点的温度数据,并通发送给监测模块;监控模块用来对接收的温度数据进行显示、保存,且根据测量装置整体达到热平衡时接收到的各个测温点的温度数据,以及在监测模块中输入的环境温度与主加热器额定功率得出待测棒体材料的导热系数。The monitoring part includes a control module, a thyristor power adjustment module, a temperature acquisition module, a monitoring module and a control module. Wherein, the control module is used to send the power control signal of the main heater and the auxiliary heater to the thyristor power adjustment module, thereby controlling the thyristor power adjustment module to adjust the output power of the main heater and the auxiliary heater; the temperature acquisition The module collects the temperature data of each temperature measurement point on the rod material to be tested and the standard sample in real time, and sends it to the monitoring module; the monitoring module is used to display and save the received temperature data, and achieve thermal balance according to the overall measurement device The temperature data of each temperature measurement point received at the time, as well as the ambient temperature input in the monitoring module and the rated power of the main heater are used to obtain the thermal conductivity of the rod material to be tested.
基于上述导热系数测量装置的测量方法,其特征在于:通过下述步骤来完成:Based on the measurement method of above-mentioned thermal conductivity measuring device, it is characterized in that: complete through the following steps:
步骤1:设置待测棒状材料与标准试样;Step 1: Set the rod-shaped material to be tested and the standard sample;
将待测棒状材料放置在隔热结构内部,将一个导热系数已知且与待测棒体材料横截面均相同的标准试样置于待测棒体材料下部;标准试样的长度可以与待测棒体材料长度相同,且标准试样的导热系数与待测棒体材料的导热系数间相差1个数量级范围内;待测棒体材料高温端紧贴加热垫片,低温端与标准试样高温端贴合,标准试样低温端与安装平台上的制冷器贴合;将隔热结构底端与安装平台固定。Place the rod material to be tested inside the heat insulation structure, and place a standard sample with known thermal conductivity and the same cross-section as the rod material to be tested under the rod material to be tested; the length of the standard sample can be the same as that of the rod material to be tested. The length of the test rod material is the same, and the thermal conductivity of the standard sample and the thermal conductivity of the rod material to be tested are within an order of magnitude; The high temperature end is attached, and the low temperature end of the standard sample is attached to the refrigerator on the installation platform; the bottom of the heat insulation structure is fixed to the installation platform.
步骤2:装置部分与监控部分的连接;Step 2: the connection between the device part and the monitoring part;
在待测棒体材料高温端处选取一个测温点a,在待测棒体材料低温端处选取一个测温点b,同样在标准试样高温端外壁上选取一个测温点c,在标准试样低温端处外壁上选取一个测温点d,测温点a、测温点b、测温点c与测温点d通过导线穿过隔热结构上的走线孔与监控部分中的温度采集模块相连;并且通过导线穿过隔热结构上的走线孔将主加热器与辅加热器以及监控部分中的可控硅调功模块相连。Select a temperature measurement point a at the high temperature end of the rod material to be tested, select a temperature measurement point b at the low temperature end of the rod material to be tested, and select a temperature measurement point c on the outer wall of the high temperature end of the standard sample, and select a temperature measurement point c at the standard sample high temperature end. Select a temperature measurement point d on the outer wall at the low temperature end of the sample, temperature measurement point a, temperature measurement point b, temperature measurement point c and temperature measurement point d pass through the wire hole on the heat insulation structure and the monitoring part. The temperature acquisition module is connected; and the main heater is connected with the auxiliary heater and the thyristor power regulating module in the monitoring part through the wiring hole on the heat insulation structure.
步骤3:加热待测棒体材料;Step 3: heating the rod material to be tested;
当待测棒体材料的导热系数估计值为已知时,通过控制模块向可控硅调功模块发送功率控制信号,控制可控硅调功模块将主加热器的功率调节为最大值,直至待测棒体材料高温端处的测温点a的温度值达到估计值,通过控制模块向可控硅调功模块发送功率控制信号,控制可控硅调功模块将主加热器的功率调节为额定功率,直至测温点a的温度不变;当待测棒体材料的导热系数估计值为未知时,则通过控制模块向可控硅调功模块发送功率控制信号,控制可控硅调功模块将主加热器的功率调节为额定功率,直至测温点a的温度不变;When the estimated value of the thermal conductivity of the rod material to be tested is known, the power control signal is sent to the thyristor power regulating module through the control module, and the thyristor power regulating module is controlled to adjust the power of the main heater to the maximum value until The temperature value of the temperature measuring point a at the high temperature end of the rod material to be tested reaches the estimated value, and the power control signal is sent to the thyristor power regulating module through the control module to control the thyristor power regulating module to adjust the power of the main heater to Rated power until the temperature of the temperature measurement point a remains unchanged; when the estimated value of the thermal conductivity of the rod material to be tested is unknown, the power control signal is sent to the thyristor power adjustment module through the control module to control the power adjustment of the thyristor The module adjusts the power of the main heater to the rated power until the temperature of the temperature measurement point a remains unchanged;
上述过程中,通过控制模块控制可控硅调功模块实时调整辅加热器的功率,始终控制热保护垫片的温度值保持在测温点a处温度与测温点b处温度的平均值。In the above process, the control module controls the thyristor power adjustment module to adjust the power of the auxiliary heater in real time, and always controls the temperature value of the thermal protection pad to maintain the average value of the temperature at temperature measurement point a and the temperature at temperature measurement point b.
步骤4:待测棒体材料的导热系数测量;Step 4: Measure the thermal conductivity of the rod material to be tested;
在监测模块中输入主加热器的额定功率与环境温度,并且通过监测模块在测温点a的温度不变时接收到的测温点a、测温点b、测温点c与测温点d的温度,得到待测棒体材料的导热系数λb为:Input the rated power and ambient temperature of the main heater in the monitoring module, and through the temperature measuring point a, temperature measuring point b, temperature measuring point c and temperature measuring point received by the monitoring module when the temperature of the temperature measuring point a is constant d, the thermal conductivity λb of the rod material to be tested is obtained as:
式中,λs为标准试样的导热系数;ta、tb、tc、td分别为测温点a、b、c、d处的温度,Δxab为测温点a、b间距离,Δxcd为测温点c、d间距离。In the formula, λs is the thermal conductivity coefficient of the standard sample; ta , tb , tc , and td are the temperatures at the temperature measurement points a, b, c, and d respectively, and Δxab is the temperature between the temperature measurement points a and b. Distance, Δxcd is the distance between temperature measuring points c and d.
本发明的优点在于:The advantages of the present invention are:
1、本发明测量装置通过热保护加热器,有效提高隔热结构的隔热效果,减小待测棒体材料径向热损失;1. The measuring device of the present invention effectively improves the heat insulation effect of the heat insulation structure and reduces the radial heat loss of the rod material to be measured through the heat protection heater;
2、本发明测量方法通过热保护加热器以及主动热控,提高了棒体材料导热系数的测量精度,扩大了测量装置的测量范围;2. The measurement method of the present invention improves the measurement accuracy of the thermal conductivity of the rod material and expands the measurement range of the measurement device through the thermal protection heater and active thermal control;
3、本发明测量装置成本低,操作方便简单。3. The measuring device of the present invention has low cost and is convenient and simple to operate.
附图说明Description of drawings
图1是本发明测量装置结构示意图;Fig. 1 is the structural representation of measuring device of the present invention;
图2为本发明测温装置中隔热结构结构示意图;Fig. 2 is a structural schematic diagram of the heat insulation structure in the temperature measuring device of the present invention;
图3是本发明测量方法流程图。Fig. 3 is a flowchart of the measurement method of the present invention.
图中:In the picture:
1-装置部分 2-监控部分 3-装待测棒体材料 4-标准试样1-Device part 2-Monitoring part 3-Standard rod material to be tested 4-Standard sample
101-隔热结构 102-安装平台 103-主加热器 104-热保护组件101-Heat insulation structure 102-Installation platform 103-Main heater 104-Thermal protection components
105-散热片 106-制冷器 107-加热垫片 1011-内隔热层105-Heat sink 106-Refrigerator 107-Heating gasket 1011-Inner heat insulation layer
1012-外隔热层 1013-隔热上盖 1041-辅加热器 1042-热保护垫片1012-Outer heat insulation layer 1013-Heat insulation upper cover 1041-Auxiliary heater 1042-Heat protection gasket
201-控制模块 202-可控硅调功模块 203-温度采集模块 204-监测模块201-Control module 202-SCR power adjustment module 203-Temperature acquisition module 204-Monitoring module
具体实施方式Detailed ways
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.
本发明为一种棒体材料导热系数测量装置,如图1所示,包括装置部分1与监测控制2部分,装置部分1用来安装待测棒体材料3,通过监控部分2实现待测棒体材料3导热系数的测量。The present invention is a device for measuring the thermal conductivity of a rod material, as shown in Figure 1, comprising a device part 1 and a
其中,装置部分1包括隔热结构101、安装平台102、主加热器103、热保护组件104、散热器105、制冷器106,如图1所示,在安装平台102上设置有顶部封闭的筒状隔热结构101,隔热结构101采用尼龙材料,由此既可保证隔热效果,又具有一定的结构强度,且为测量装置节省了成本。隔热结构101底端面与安装平台102贴合,可使隔热结构101内部形成密封的用来放置待测棒体材料3与标准试样4的空腔。隔热结构101内部顶面上固定安装有主加热器103,主加热器103用来对待测棒体材料高温端(待测棒体材料3顶端)加热。由于主加热器103的形状很难做成与待测棒体材料3横截面相同,且很难使主加热器103的加热面各点温度相同,因此本发明中在主加热器103的加热面(主加热器底面)上安装有铜质加热垫片107,铜质加热垫片107具有良好的导热性,可将主加热器103产生的热量在加热垫片107底面形成均一的温度,使待测棒体材料3上部体积内热流均匀,形成一维的导热。隔热结构101上开有走线用的走线孔。Wherein, the device part 1 includes a
由于在棒体材料导热系数测量时,待测棒体材料3的温度由待测棒体材料高温端到待测棒体材料低温端(待测棒体材料3低端)逐渐降低,通常待测棒体材料高温端的温度会高于待测棒体材料低温端很多,在隔热结构101相同的情况下,待测棒体材料3不同轴向位置上的径向热损失不同,待测棒体材料高温端由于与环境温度间的温差最大,热损失也最大,如散热量计算不准,会直接影响导热系数的测量值。因此本发明中通过热保护组件104和制冷器106的加入,减小待测棒体材料3与隔热结构101之间的温差,从而减小待测棒体材料3径向散热损失,提高测量精度。Since the temperature of the
所述制冷器106固定安装在安装平台102上,制冷器106与隔热结构101内部顶面相对,用来对待测棒体材料低温端进行制冷降温,使待测棒体材料低温端的温度与环境温度相同,由此使待测棒体材料3下部与隔热结构101之间的温差较小。通过调节制冷器106的制冷温度使待测棒体材料低温端的温度维持在环境温度,保证低温端温度恒定,提高测量精度。制冷器106通过安装在安装平台102底面上的散热片105进行散热。本发明中制冷器106采用半导体制冷片,半导体制冷片可以得到低于环境的温度,且体积小、使用方便,在工程中已经有了非常广泛的应用。本发明中由于主加热器103产生并通过待测棒体材料3、标准式样4的热量和制冷器106产生的热量最终都要通过散热片105散失到环境中,因此主加热器103的功率和散热片105的散热效果就决定了散热片105的温度(即制冷器106热端的温度),而制冷器106冷热端的温差决定了制冷器106所需的功率。The
为了使待测棒体材料3与标准试样4与空气的对流换热作用很小,需使隔热结构101内部待测棒体材料3、标准试样4与隔热结构101间不存在明显间隙,由此本发明中隔热结构101内径与待测棒体材料3与标准试样4的内径相等,并且将主加热器103嵌入到隔热结构101内部顶面中,使主加热器103底面与隔热结构101内部顶面齐平;制冷器106嵌入到安装平台102内部,使制冷器106顶面与安装平台102顶面齐平;加热垫片107设计为与隔热结构101内部横截面形状相同。为了使待测棒体材料3与标准试样4间具有良好的接触,保证测量过程中系统的热通路正常,因此在主加热器103与待测棒体材料3、待测棒体材料3与标准试样4、标准试样4与制冷器106之间的接触面上涂抹导热硅脂。In order to make the convective heat transfer between the
所述热保护组件104包括辅加热器1041和热保护垫片1042。热保护垫片1042为筒状结构,设置在隔热结构101内部周向上,热保护垫片1042顶端面与待测棒体材料高温端的测温点所在水平平面共面,底端面与待测棒体材料低温端的测温点所在水平平面共面;所述待测棒体材料高温端的测温点与待测棒体材料低温端的测温点均选取在待测棒体材料3外壁周向上;其中,待测棒体材料高温端的测温点所在水平平面与待测棒体材料3顶端面垂直距离为10mm~0.5L,L为待测材料棒体3的长度,待测棒体材料低温端的测温点所在水平平面与待测棒体材料3底端面垂直距离为5mm~0.5L,由此使待测棒体材料高温端的测温点与待测棒体材料低温端的测温点可避开待测棒体材料3上温度热流不均匀的体积。热保护垫片1042外壁周向上均布有至少2个辅加热器1041,辅加热器1041用来加热热保护垫片1042,提高热保护垫片1042的温度,通过辅加热器1041产生的热量在热保护垫片1042内壁形成均一的温度,从而提高热保护垫片1042顶端与低端所在平面间的隔热结构101的温度,使得待测棒体材料3与隔热结构101之间的温差较小,由此减小热损失,提高测量精度。待测棒体材料3的导热系数越大,热流不均匀段的长度越短。热保护垫片1042与待测棒体材料3侧壁间隔热结构101的厚度为15mm~25mm,从而防止辅加热器1041对待测棒体材料高温端与低温端的测温点所在水平平面间的待测棒体材料3增加额外的热量输入,影响测量结果。The
为了便于热保护组件104加工和安装,如图2所示,本发明中隔热结构101分为内隔热层1011、外隔热层1012和隔热上盖1013,内隔热层1011为筒状结构,外部安装热保护组件104,即将热保护垫片1042套接在内隔热层1011外壁周向上。外隔热层1012同样为筒状结构,外隔热层1012的内径与内隔热层1011的外径相等,通过将外隔热层1012套接在内隔热层1011外部,从而将热保护组件104在内隔热层1011与外隔热层1012间定位。所述内隔热层1011与外隔热层1012高度相等,通过隔热上盖1013将内隔热层1011顶端与外隔热层1012顶端固定,实现内隔热层1011与外隔热层1012间的定位,由此实现了热保护组件104位于隔热结构101内部周向上的位置关系。In order to facilitate the processing and installation of the
由于在导热系数测量过程中,辅加热器1041和主加热器103的功率需经常调整,因此为简化测量过程,本发明中通过监控部分2,实时监测待测棒体材料3、标准式样4以及辅加热器1041上的测温点的温度,并调整主加热器103与辅加热器1041的功率,以保证测量过程中所需要的温度值,最终使待测棒体材料3的温度尽快达到设定值,缩短测量装置整体达到热平衡状态的时间,并且根据测得的温度数据,最终得出待测棒体材料3的导热系数。Since the power of the
所述监控部分2包括控制模块201、可控硅调功模块202、温度采集模块203、监测模块204。其中,控制模块201用来向可控硅调功模块202发送主加热器103与辅加热器1041的功率控制信号,从而控制可控硅调功模202块调节主加热器103与辅加热器1041的输出功率。所述温度采集模块203通过导线穿过隔热结构101上开有的走线孔与待测棒体材料3、标准式样4上的测温点连接,通过温度采集模块203实时采集待测棒体材料3与标准试样4上的各测温点的温度数据,并通过串口发送给监测模块204。监测模块204用来对接收的温度数据进行显示、保存,且根据测量装置整体达到热平衡时接收到的各个测温点的温度数据,以及在监测模块204中输入的环境温度与主加热器103额定功率得出待测棒体材料3的导热系数。The
基于上述导热系数测量装置的测量方法,如图3所示,通过下述步骤来完成:Based on the measurement method of the above-mentioned thermal conductivity measuring device, as shown in Figure 3, it is completed through the following steps:
步骤1:设置待测棒状材料3与标准试样4;Step 1: setting the rod-shaped
将待测棒状材料3放置在隔热结构101内部,同时为了得到通过待测棒体材料3的热流量,将一个与待测棒体材料3横截面均相同的标准试样4置于待测棒体材料3下部,使标准试样4与待测棒体材料3通过相同的热流量。所述且标准试样4的导热系数与待测棒体材料3的导热系数间相差1个数量级范围内;且随温度的变化较小,对于导热系数不高的材料,标准试样4通常选取在0-100℃范围内导热系数比较稳定的不锈钢1Cr18Ni9Ti。标准试样4的长度可以与待测棒体材料3长度相同。待测棒体材料高温端紧贴加热垫片107,其低温端与标准试样高温端(标准试样4顶端)贴合,标准试样低温端(标准试样4底端)与安装平台102上的制冷器106贴合。将隔热结构101底端与安装平台102固定。Place the rod-shaped
步骤2:装置部分1与监控部分2的连接;Step 2: connection of device part 1 and
在待测棒体材料高温端处选取一个测温点a,在待测棒体材料低温端处选取一个测温点b,同样在标准试样高温端外壁上选取一个测温点c,在标准试样低温端处外壁上选取一个测温点d,测温点a、测温点b、测温点c与测温点d通过导线穿过隔热结构101上的走线孔与监控部分2中的温度采集模块203相连。并且通过导线穿过隔热结构101上的走线孔将主加热器103与辅加热器1041与监控部分2中的可控硅调功模块202相连。Select a temperature measurement point a at the high temperature end of the rod material to be tested, select a temperature measurement point b at the low temperature end of the rod material to be tested, and select a temperature measurement point c on the outer wall of the high temperature end of the standard sample, and select a temperature measurement point c at the standard sample high temperature end. Select a temperature measurement point d on the outer wall at the low temperature end of the sample, temperature measurement point a, temperature measurement point b, temperature measurement point c and temperature measurement point d pass through the wire hole on the
步骤3:待测棒体材料3的热控;Step 3: thermal control of the
当待测棒体材料3的导热系数估计值(通常取理论计算值或与待测棒体材料3同类材料的导热系数平均值)为已知时,通过控制模块201向可控硅调功模块202发送功率控制信号,控制可控硅调功模块202将主加热器103的功率调节为最大值,直至待测棒体材料高温端处的测温点a的温度值达到估计值(即通过待测棒体材料3导热系数的估计值、主加热器103额定功率和环境温度值计算得出),再通过控制模块201向可控硅调功模块202发送功率控制信号,控制可控硅调功模块202将主加热器103的功率调节为额定功率,直至测温点a的温度不变;上述过程中,通过控制模块201控制可控硅调功模块202实时调整辅加热器1041的功率,始终控制热保护垫片1042的温度值保持在测温点a处温度与测温点b处温度的平均值。When the estimated value of the thermal conductivity of the rod material 3 to be measured (usually the theoretically calculated value or the average value of the thermal conductivity of the same material as the rod material 3 to be measured) is known, the control module 201 is used to adjust the power of the silicon controlled rectifier module 202 sends a power control signal to control the thyristor power adjustment module 202 to adjust the power of the main heater 103 to the maximum value until the temperature value of the temperature measurement point a at the high temperature end of the rod material to be measured reaches the estimated value (that is, through the The estimated value of the thermal conductivity of the measuring rod material 3, the main heater 103 rated power and the ambient temperature value are calculated), and then the power control signal is sent to the thyristor power adjustment module 202 through the control module 201 to control the power adjustment of the thyristor The module 202 adjusts the power of the main heater 103 to the rated power until the temperature of the temperature measurement point a remains unchanged; in the above process, the control module 201 controls the thyristor power adjustment module 202 to adjust the power of the auxiliary heater 1041 in real time, always Control the temperature value of the thermal protection gasket 1042 to keep at the average value of the temperature at the temperature measurement point a and the temperature at the temperature measurement point b.
当待测棒体材料3的导热系数估计值为未知时(即待测棒体材料3为新材料),则通过控制模块201向可控硅调功模块202发送功率控制信号,控制可控硅调功模块202将主加热器103的功率调节为额定功率,直至测温点a的温度不变;上述过程中,同样通过控制模块201控制可控硅调功模块202实时调整辅加热器1041的功率,始终控制热保护垫片1042的温度值保持在测温点a处温度与测温点b处温度的平均值。When the estimated value of the thermal conductivity of the
步骤4:待测棒体材料3的导热系数测量;Step 4: measuring the thermal conductivity of the
在监测模块204中输入主加热器103的额定功率与环境温度,并且通过在测量装置整体处于热平衡状态时接收到的测温点a、测温点b、测温点c与测温点d的温度,得到待测棒体材料3的导热系数λb为:The rated power and ambient temperature of the
式中,λs为标准试样4的导热系数;ta、tb、tc、td分别为测温点a、b、c、d处的温度,Δxab为测温点a、b间距离,Δxcd为测温点c、d间距离;In the formula, λs is the thermal conductivity coefficient of standard sample 4; ta , tb , tc , and td are the temperatures at temperature measuring points a, b, c, and d respectively, and Δxab is the temperature measuring points a, b Δxcd is the distance between temperature measuring points c and d;
应用本发明的导热系数测量方法测量不锈钢1Cr18Ni9Ti的导热系数,标准式样4与待测棒体材料3的材料与横截面相同。主加热器103额定功率为5W,制冷器106额定功率为0.63W,环境温度为30℃,待测棒体材料3直径为48mm、长度为65mm,标准式样4直径为48mm、长度为150mm,测温点a、b之间的距离为40mm,测温点c、d之间的距离为60mm。测试开始时,控制模块201将主加热器103的功率设置为最大值,当a点的温度达到62℃时调整主加热器103的功率为额定值(5W)。在整个测试过程中,控制模块201实时调整辅加热器1041的功率,使热保护的温度为a点和b点温度的平均值。系统达到平衡状态后,点a、b、c、d的温度值分别为:62.5℃、56.9℃、46.3℃、37.4℃,热保护的温度为58.3℃,测得的材料的导热系数值为16.87,工程材料使用手册中该牌号不锈钢的导热系数荐值为16.3,测试误差为3.50%。The thermal conductivity measurement method of the present invention is used to measure the thermal conductivity of stainless steel 1Cr18Ni9Ti, and the material and cross section of the standard pattern 4 and the
热平衡分析如下:监控部分2的总输入热量为10.63W,总输出热量为10.13W。其中,主加热器103额定功率5.00W,辅加热器1041额定功率为5.63W,中间标准试样4冷端流出的热量为4.38W,隔热结构101散失的热量为5.75W。监控部分2总输入与总输出之间存在0.5W的误差,误差在4.7%以内。The heat balance analysis is as follows: the total input heat of the
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210073812XACN102621179A (en) | 2012-03-20 | 2012-03-20 | Device and method for measuring heat conductivity coefficient of barred body material |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210073812XACN102621179A (en) | 2012-03-20 | 2012-03-20 | Device and method for measuring heat conductivity coefficient of barred body material |
| Publication Number | Publication Date |
|---|---|
| CN102621179Atrue CN102621179A (en) | 2012-08-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210073812XAPendingCN102621179A (en) | 2012-03-20 | 2012-03-20 | Device and method for measuring heat conductivity coefficient of barred body material |
| Country | Link |
|---|---|
| CN (1) | CN102621179A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103411996A (en)* | 2013-08-05 | 2013-11-27 | 电子科技大学 | Measuring equipment and measuring method for heat conductivity coefficients of solid materials |
| CN104181195A (en)* | 2014-08-28 | 2014-12-03 | 电子科技大学 | Steady-state method-based heat conductivity coefficient measurement device |
| CN104634810A (en)* | 2013-11-08 | 2015-05-20 | 国核华清(北京)核电技术研发中心有限公司 | High Rayleigh (Ra) number coupling heat-transfer characteristic measuring and evaluating device |
| CN105388184A (en)* | 2015-12-17 | 2016-03-09 | 北京航空航天大学 | Specimen installation fixture used for contact thermal resistance testing |
| CN105806889A (en)* | 2016-05-19 | 2016-07-27 | 东北石油大学 | Testing device for heat conductivity coefficient of heat preservation material |
| CN106053529A (en)* | 2016-08-05 | 2016-10-26 | 厦门大学 | Device and method for measuring porous metal material heat conductivity coefficient through comparison plate |
| CN106442612A (en)* | 2016-09-06 | 2017-02-22 | 哈尔滨工业大学 | Testing method of thermal insulation performance of vacuum high temperature thermal protection product |
| CN106960089A (en)* | 2017-03-14 | 2017-07-18 | 清华大学 | Temperature field and hot-fluid containing internal complex boundary structure are while reconstructing method |
| CN108828004A (en)* | 2018-06-15 | 2018-11-16 | 上海卫星工程研究所 | The synthesis thermal conductivity measurement method of complex heat transfer path product |
| CN109444211A (en)* | 2018-08-22 | 2019-03-08 | 南京林业大学 | Plate heat conduction coefficient measuring instrument based on copper water-cooling system and linear fit method |
| CN110376244A (en)* | 2019-08-20 | 2019-10-25 | 北京新能源汽车技术创新中心有限公司 | A kind of heat conductivity measuring device |
| CN110907491A (en)* | 2019-11-28 | 2020-03-24 | 航天特种材料及工艺技术研究所 | A high temperature thermal conductivity test device for low thermal conductivity materials |
| CN114720017A (en)* | 2022-03-29 | 2022-07-08 | 孚泽(成都)科技有限公司 | Temperature measuring method, device and system based on heat conduction and terminal |
| CN120404842A (en)* | 2025-07-02 | 2025-08-01 | 浙江城建煤气热电设计院股份有限公司 | A thermal conductivity testing system for pipeline insulation materials under engineering meteorological conditions |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1601262A (en)* | 2004-10-14 | 2005-03-30 | 武汉大学 | A method and device for measuring thermal conductivity |
| CN2752768Y (en)* | 2004-10-14 | 2006-01-18 | 武汉大学 | Thermal conductivity coefficient measuring device |
| CN1815210A (en)* | 2005-02-04 | 2006-08-09 | 鸿富锦精密工业(深圳)有限公司 | Heat-conductive characteristic detecting device and detecting method |
| CN1971260A (en)* | 2005-11-21 | 2007-05-30 | 华为技术有限公司 | Testing method of thermal resistance of heat-conducting material and testing clamp |
| CN201107284Y (en)* | 2007-11-12 | 2008-08-27 | 中国测试技术研究院热工研究所 | Heat conductivity coefficient test device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1601262A (en)* | 2004-10-14 | 2005-03-30 | 武汉大学 | A method and device for measuring thermal conductivity |
| CN2752768Y (en)* | 2004-10-14 | 2006-01-18 | 武汉大学 | Thermal conductivity coefficient measuring device |
| CN1815210A (en)* | 2005-02-04 | 2006-08-09 | 鸿富锦精密工业(深圳)有限公司 | Heat-conductive characteristic detecting device and detecting method |
| CN1971260A (en)* | 2005-11-21 | 2007-05-30 | 华为技术有限公司 | Testing method of thermal resistance of heat-conducting material and testing clamp |
| CN201107284Y (en)* | 2007-11-12 | 2008-08-27 | 中国测试技术研究院热工研究所 | Heat conductivity coefficient test device |
| Title |
|---|
| 贾丽等: "《锂/二氧化硫电池稳态法导热系数试验研究》", 《电子机械工程》, vol. 27, no. 5, 31 October 2011 (2011-10-31)* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103411996B (en)* | 2013-08-05 | 2016-03-02 | 电子科技大学 | Solid material heat conductivity measurement mechanism and measuring method |
| CN103411996A (en)* | 2013-08-05 | 2013-11-27 | 电子科技大学 | Measuring equipment and measuring method for heat conductivity coefficients of solid materials |
| CN104634810A (en)* | 2013-11-08 | 2015-05-20 | 国核华清(北京)核电技术研发中心有限公司 | High Rayleigh (Ra) number coupling heat-transfer characteristic measuring and evaluating device |
| CN104181195A (en)* | 2014-08-28 | 2014-12-03 | 电子科技大学 | Steady-state method-based heat conductivity coefficient measurement device |
| CN105388184A (en)* | 2015-12-17 | 2016-03-09 | 北京航空航天大学 | Specimen installation fixture used for contact thermal resistance testing |
| CN105806889A (en)* | 2016-05-19 | 2016-07-27 | 东北石油大学 | Testing device for heat conductivity coefficient of heat preservation material |
| CN105806889B (en)* | 2016-05-19 | 2018-10-23 | 东北石油大学 | A kind of thermal insulation material test device of thermal conductivity coefficient |
| CN106053529A (en)* | 2016-08-05 | 2016-10-26 | 厦门大学 | Device and method for measuring porous metal material heat conductivity coefficient through comparison plate |
| CN106442612A (en)* | 2016-09-06 | 2017-02-22 | 哈尔滨工业大学 | Testing method of thermal insulation performance of vacuum high temperature thermal protection product |
| CN106442612B (en)* | 2016-09-06 | 2019-07-19 | 哈尔滨工业大学 | Test method for thermal insulation performance of vacuum high temperature thermal protection products |
| CN106960089B (en)* | 2017-03-14 | 2019-05-21 | 清华大学 | Temperature field and hot-fluid containing internal complex boundary structural body while reconstructing method |
| CN106960089A (en)* | 2017-03-14 | 2017-07-18 | 清华大学 | Temperature field and hot-fluid containing internal complex boundary structure are while reconstructing method |
| CN108828004A (en)* | 2018-06-15 | 2018-11-16 | 上海卫星工程研究所 | The synthesis thermal conductivity measurement method of complex heat transfer path product |
| CN109444211A (en)* | 2018-08-22 | 2019-03-08 | 南京林业大学 | Plate heat conduction coefficient measuring instrument based on copper water-cooling system and linear fit method |
| CN109444211B (en)* | 2018-08-22 | 2021-10-15 | 南京林业大学 | Plate Thermal Conductivity Measuring Instrument Based on Copper Water Cooling System and Linear Fitting Method |
| CN110376244A (en)* | 2019-08-20 | 2019-10-25 | 北京新能源汽车技术创新中心有限公司 | A kind of heat conductivity measuring device |
| CN110376244B (en)* | 2019-08-20 | 2022-06-21 | 北京国家新能源汽车技术创新中心有限公司 | Heat conductivity coefficient measuring device |
| CN110907491A (en)* | 2019-11-28 | 2020-03-24 | 航天特种材料及工艺技术研究所 | A high temperature thermal conductivity test device for low thermal conductivity materials |
| CN110907491B (en)* | 2019-11-28 | 2022-06-28 | 航天特种材料及工艺技术研究所 | Low heat conduction material high temperature thermal conductivity testing arrangement |
| CN114720017A (en)* | 2022-03-29 | 2022-07-08 | 孚泽(成都)科技有限公司 | Temperature measuring method, device and system based on heat conduction and terminal |
| CN120404842A (en)* | 2025-07-02 | 2025-08-01 | 浙江城建煤气热电设计院股份有限公司 | A thermal conductivity testing system for pipeline insulation materials under engineering meteorological conditions |
| Publication | Publication Date | Title |
|---|---|---|
| CN102621179A (en) | Device and method for measuring heat conductivity coefficient of barred body material | |
| CN104181195B (en) | Steady-state method-based heat conductivity coefficient measurement device | |
| US11686626B2 (en) | Apparatus, systems, and methods for non-invasive thermal interrogation | |
| CN103175861B (en) | Crust thermo-resistance measurement method | |
| CN103837822B (en) | A kind of super large-scale integration is tied the method for shell thermo-resistance measurement | |
| CN106124955B (en) | The transient electrical test method of liquid cold plate thermal resistance | |
| CN207571259U (en) | A kind of surface mount chip and semiconductor power device crust thermal resistance measurement fixture | |
| CN109613051B (en) | Device and method for measuring Seebeck coefficient of material by using contrast method | |
| CN208334251U (en) | A kind of heat dissipation index measurement device | |
| CN107490736A (en) | The method and device that a kind of nondestructive measurement electronic functional module internal temperature and thermal resistance are formed | |
| CN102590274B (en) | System and method used for testing heat conductivity of thin film thermoelectric material | |
| CN107329026B (en) | Three-post insulator temperature cycle test device and method | |
| CN111830080B (en) | Precise heat insulation calorimeter and heat metering method thereof | |
| CN112229869A (en) | A kind of building wall thermal resistance field test device and method | |
| CN110988027A (en) | Testing device and testing method for shale heat conduction parameters | |
| CN202853845U (en) | Test device for temperature characteristics of pressure sensor | |
| CN104122469B (en) | Method for increasing measured seebeck coefficient accuracy of thermoelectric material | |
| CN104569042B (en) | Device for testing boundary conditions of forging temperature field | |
| CN101806761B (en) | Instrument for measuring thermal conductivity coefficient of one-dimensional plane by using properties of graphite material | |
| CN201434852Y (en) | Evaluation device for testing heat dissipation and energy saving efficiency of coatings | |
| CN102865969A (en) | Test device for temperature characteristics of pressure sensor | |
| CN211978736U (en) | A device for measuring thermal conductivity of composite phase change materials by steady-state method | |
| CN208505485U (en) | A kind of surface temperature measurement instrument | |
| CN103018137A (en) | Apparatus and method used for determining thermal contact resistance in hot stamping process | |
| CN204925001U (en) | Metal radiator heat dispersion testing arrangement |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20120801 |