

技术领域technical field
本发明涉及柔性电子制造领域,特别涉及一种可伸缩的RFID电子标签及其制作方法。The invention relates to the field of flexible electronic manufacturing, in particular to a stretchable RFID electronic tag and a manufacturing method thereof.
背景技术Background technique
射频识别(Radio Frequency Identification,RFID)是利用射频信号及其空间耦合和传输特性非接触双向通信、实现对静止或移动物体的自动识别和信息采集。RFID电子标签由天线、芯片和基板三部分组成。它可贴在物品的表面,将物品的各种信息存储在标签的芯片中,其中的信息可以被读取和修改。当前,RFID电子标签作为物联网技术的重要组成部分,正在得到越来越广泛的应用,将逐渐渗透到人类生活、工作的各个领域,对人类的生活产生深远的影响。Radio Frequency Identification (RFID) is the use of radio frequency signals and their spatial coupling and transmission characteristics for non-contact two-way communication to realize automatic identification and information collection of stationary or moving objects. RFID electronic tags are composed of three parts: antenna, chip and substrate. It can be attached to the surface of the item, and store various information of the item in the chip of the tag, and the information in it can be read and modified. At present, RFID electronic tags, as an important part of the Internet of Things technology, are being used more and more widely, and will gradually penetrate into various fields of human life and work, and have a profound impact on human life.
当前的RFID电子标签是可弯折的,但不可拉伸,这就限制了其应用范围。专利文献CN 102054194A中公开了一种弹簧式天线结构的电子标签,这种电子标签可以移植于汽车轮胎上,能承受汽车行驶过程中轮胎的变形。这种标签的不足是其尺寸太大,与现有的电子标签制作工艺不兼容。Current RFID electronic tags are bendable but not stretchable, which limits their application range. Patent document CN 102054194A discloses an electronic tag with a spring-type antenna structure, which can be implanted on a car tire and can withstand the deformation of the tire during driving. The disadvantage of this label is that its size is too large, and it is not compatible with the existing electronic label manufacturing process.
发明内容Contents of the invention
针对以上问题,本发明公开了一种可以伸缩的RFID电子标签的制备方法,制作的标签具有可伸缩性,可将其贴到产生较大拉伸或压缩变形的物品表面上工作。In view of the above problems, the present invention discloses a method for preparing a stretchable RFID electronic tag. The manufactured tag has stretchability, and can be pasted on the surface of an item that undergoes large stretching or compression deformation to work.
为实现上述目的所采用的技术方案为:The technical scheme adopted for realizing the above-mentioned purpose is:
一种可拉伸RFID电子标签的制作方法,其步骤包括:A method for making a stretchable RFID electronic tag, the steps comprising:
(1)首先将导电银浆沉积到薄玻璃片上,放入烧结炉中进行烧结处理,再将玻璃片腐蚀掉,获得RFID电子标签天线;(1) First deposit the conductive silver paste on the thin glass sheet, put it into the sintering furnace for sintering treatment, and then corrode the glass sheet to obtain the RFID electronic tag antenna;
(2)将获得的RFID天线黏贴到一在双向上呈预拉伸状态的弹性膜上;(2) Paste the obtained RFID antenna on an elastic film that is pre-stretched in two directions;
(3)在处于预拉伸状态的弹性膜相应位置点上导电胶,再将芯片封装于该RFID天线上,使导电胶在低温下固化;(3) Put conductive glue on the corresponding position of the elastic film in the pre-stretched state, and then package the chip on the RFID antenna, so that the conductive glue can be cured at low temperature;
(4)令处于双向拉伸状态的薄膜缓慢恢复原状,使RFID天线在垂直基板方向弯曲,形成屈曲波纹;(4) Slowly restore the film in the biaxially stretched state to make the RFID antenna bend in the direction perpendicular to the substrate to form buckling ripples;
(5)用与基板所用材料的液态预聚物铺满RFID天线表面,之后将其放入高温炉中使预聚物反应成为与基板材料相同的固态聚合物。(5) Cover the surface of the RFID antenna with a liquid prepolymer of the material used for the substrate, and then put it into a high-temperature furnace to make the prepolymer react to become a solid polymer that is the same as the substrate material.
作为本发明的改进,所述弹性膜为可拉伸的PDMS膜。As an improvement of the present invention, the elastic membrane is a stretchable PDMS membrane.
作为本发明的改进,所述步骤(1)中采用NaOH溶液对玻璃片进行腐蚀。As an improvement of the present invention, NaOH solution is used to corrode the glass sheet in the step (1).
作为本发明的改进,所述步骤(1)和(2)可替换为如下步骤:直接在一双向上呈预拉伸状态的弹性膜上印制天线。As an improvement of the present invention, the steps (1) and (2) can be replaced by the following step: directly printing the antenna on a bidirectionally pre-stretched elastic film.
本发明的另一目的还在于提供一种可伸缩RFID电子标签,其包括:Another object of the present invention is to provide a stretchable RFID electronic tag, which includes:
基板,为可拉伸的薄膜,在使用过程中薄膜可以配合所贴对象的弹性变形。The substrate is a stretchable film, and the film can adapt to the elastic deformation of the attached object during use.
RFID电子标签天线,为专门用于制作RFID电子标签的导电银浆膜,其厚度为3-5um。The RFID electronic tag antenna is a conductive silver paste film specially used for making RFID electronic tags, and its thickness is 3-5um.
芯片,标签所用芯片为尺寸小于1mm的芯片,这样可以使芯片对标签的拉伸性能影响减到最小。Chip, the chip used in the label is a chip with a size less than 1mm, which can minimize the impact of the chip on the tensile performance of the label.
天线覆盖层,天线覆盖层将天线和芯片保护起来,天线覆盖层需用与基板相同的材料,以使其在伸缩过程中不与基板之间产生剪应力。The antenna cover layer protects the antenna and the chip, and the antenna cover layer needs to be made of the same material as the substrate so that it does not generate shear stress with the substrate during the expansion and contraction process.
其中,所述电子标签天线具有屈曲结构,能够承受较大的轴向拉伸与压缩。Wherein, the electronic tag antenna has a buckling structure, which can withstand relatively large axial tension and compression.
本发明采用了可拉伸的PDMS膜作为标签的基板和封装材料。PDMS基板需要进行双向预拉伸,以备后面屈曲波纹的形成。The invention adopts stretchable PDMS film as the substrate and packaging material of the label. The PDMS substrate needs to be pre-stretched bidirectionally to prepare for the formation of buckling corrugations later.
本发明所采用导电银浆为专为制作RFID标签天线制备的用于非多孔表面的导电银浆。The conductive silver paste used in the present invention is a conductive silver paste specially prepared for making RFID tag antennas for non-porous surfaces.
本发明采用NaOH溶液进行腐蚀,以释放RFID天线。The present invention uses NaOH solution for corrosion to release the RFID antenna.
RFID天线屈曲后形成波纹结构,计算屈曲波纹波长和幅值的公式分别为:The RFID antenna forms a corrugated structure after buckling, and the formulas for calculating the buckling corrugation wavelength and amplitude are:
其中,λ0代表波长,A0代表幅值,h是天线的厚度,代表屈曲的临界应变(当预应变大于临界应变时,才会产生屈曲结构),εpre为预拉伸应变。Es,Ef,vs,vf分别是基底和薄膜的平面应变弹性模量、杨氏模量、泊松比。由公式可看出,天线厚度越大,波长和幅值都会相应变大。基板弹性模量越大,波长越小。Among them, λ0 represents the wavelength, A0 represents the amplitude, h is the thickness of the antenna, Represents the critical strain of buckling (when the pre-strain is greater than the critical strain, the buckling structure will be produced), εpre is the pre-tension strain. Es , Ef , vs , vf are the plane strain elastic modulus, Young's modulus, and Poisson's ratio of the substrate and the film, respectively. It can be seen from the formula that the greater the thickness of the antenna, the greater the wavelength and amplitude will be. The larger the elastic modulus of the substrate, the smaller the wavelength.
本发明使RFID电子标签变得可伸缩,从而使其可以贴在人体皮肤、服装等可能产生复杂弹性变形的物体表面,拓展了RFID电子标签的应用范围。The invention makes the RFID electronic tag stretchable, so that it can be pasted on the surface of objects that may produce complex elastic deformation, such as human skin and clothing, and expands the application range of the RFID electronic tag.
附图说明Description of drawings
图1为RFID电子标签半成品。Figure 1 shows the semi-finished product of the RFID electronic tag.
图2为RFID电子标签半成品玻璃基板的溶解过程。Figure 2 shows the dissolution process of the semi-finished glass substrate of the RFID electronic tag.
图3为RFID天线的黏贴过程。Figure 3 shows the pasting process of the RFID antenna.
图4为具有屈曲结构的RFID天线局部截面图。Fig. 4 is a partial cross-sectional view of an RFID antenna with a buckling structure.
图中符号意义说明如下:1:标签天线;2:玻璃基板;3:培养皿;4:硅片;5:NaOH溶液;6:边框;7:夹具;8:PDMS基板;9:芯片;10:天线覆盖层。The meanings of the symbols in the figure are as follows: 1: tag antenna; 2: glass substrate; 3: petri dish; 4: silicon wafer; 5: NaOH solution; 6: frame; 7: fixture; 8: PDMS substrate; 9: chip; 10 : Antenna cover.
具体实施方式Detailed ways
下面结合具体实例对本发明作进一步说明。The present invention will be further described below in conjunction with specific examples.
图1所示为RFID电子标签半成品。RFID电子标签半成品包括标签天线1,玻璃片2(本实施例中优选长80mm,宽20mm,厚0.13mm)。天线通过丝网印刷的方式印刷于薄玻璃片2上,其厚度为5um。丝网采用不锈钢丝网(优选网孔53um,丝径24um),以使印刷图案的效果更好。丝网印刷完毕后,将其放入对流烘箱中,优选在140℃下烧结,烧结时间优选为5min。烧结之后便形成了附着于玻璃片2上的固化的RFID天线。Figure 1 shows the semi-finished product of the RFID electronic tag. The semi-finished RFID electronic tag includes a tag antenna 1 and a glass sheet 2 (preferably 80mm long, 20mm wide, and 0.13mm thick in this embodiment). The antenna is printed on the
天线材料可根据需要具体选择,本实施例中优选采用昆山海斯电子有限公司的SC-100MP型银导电墨水,该形状天线用于超高频波段,线宽为1mm。The antenna material can be specifically selected according to the needs. In this embodiment, the SC-100MP silver conductive ink of Kunshan Haisi Electronics Co., Ltd. is preferably used. The shape of the antenna is used in the ultra-high frequency band, and the line width is 1mm.
图2所示为玻璃基板的溶解过程。其中包括聚苯乙烯制成的外径150mm的塑料培养皿3,硅片4,NaOH溶液5以及标签半成品。在塑料培养皿中放入一个直径100mm的硅片,将制好的RFID电子标签半成品放于塑料培养皿中,完全置于硅片上,有天线的一方朝下。在塑料培养皿中倒入充足的NaOH溶液,加热使玻璃片2被完全溶解,最终用蒸馏水清洗RFID天线。Figure 2 shows the dissolution process of the glass substrate. These include a
图3所示为RFID天线的黏贴过程。首先将一定尺寸PDMS方形薄膜进行双向预拉伸,拉伸至其原长度的130%,如图a。在脱离玻璃基板的RFID天线上涂上一层固化后具有弹性的胶水,之后将其粘附于预拉伸的PDMS基板上,如图b。Figure 3 shows the pasting process of the RFID antenna. First, pre-stretch a PDMS square film of a certain size bidirectionally to 130% of its original length, as shown in Figure a. Coat a layer of cured elastic glue on the RFID antenna detached from the glass substrate, and then adhere it to the pre-stretched PDMS substrate, as shown in Figure b.
待胶水固化后,将DELO-CA导电胶点上,并将芯片封装于其上。保持封装芯片处处在50℃温度下,以使导电胶固化。After the glue is cured, put the DELO-CA conductive glue on it, and package the chip on it. Keep the packaged chip at a temperature of 50°C to cure the conductive adhesive.
使处于预拉伸状态的PDMS膜恢复原长,则RFID天线会形成屈曲波纹,如图c。When the PDMS film in the pre-stretched state is restored to its original length, the RFID antenna will form buckling ripples, as shown in Figure c.
薄膜的尺寸根据实际情况如天线尺寸等进行确定,本实施例中优选采用1mm厚,边长为150mm的方形薄膜,薄膜材料优选PDMS。The size of the film is determined according to the actual situation, such as the size of the antenna. In this embodiment, a square film with a thickness of 1 mm and a side length of 150 mm is preferably used, and the film material is preferably PDMS.
用与基板所用材料的液态预聚物铺满RFID天线表面,之后将其放入高温炉中使预聚物反应成为与基板材料相同的固态聚合物。The surface of the RFID antenna is covered with a liquid prepolymer of the material used for the substrate, and then placed in a high-temperature furnace to react the prepolymer into a solid polymer that is the same as the substrate material.
图4为具有屈曲结构的RFID天线的截面图。其中包括芯片9,天线覆盖层10。在屈曲结构形成后,在RFID电子标签的半成品处在未拉伸状态下,首先使液态的PDMS预聚物铺满整个RFID天线表面,之后将其烘焙固化为PDMS固体膜。这样可以形成一层保护层,使RFID天线和芯片完全处于PDMS膜的保护中。Fig. 4 is a cross-sectional view of an RFID antenna having a buckled structure. These include a chip 9 and an antenna cover 10 . After the buckling structure is formed, when the semi-finished product of the RFID electronic tag is in an unstretched state, the liquid PDMS prepolymer is first spread over the entire RFID antenna surface, and then it is baked and solidified into a PDMS solid film. This creates a protective layer that keeps the RFID antenna and chip completely under the protection of the PDMS film.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012100106736ACN102610534A (en) | 2012-01-13 | 2012-01-13 | Stretchable RFID (Radio Frequency Identification) electronic tag and manufacturing method thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012100106736ACN102610534A (en) | 2012-01-13 | 2012-01-13 | Stretchable RFID (Radio Frequency Identification) electronic tag and manufacturing method thereof |
| Publication Number | Publication Date |
|---|---|
| CN102610534Atrue CN102610534A (en) | 2012-07-25 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2012100106736APendingCN102610534A (en) | 2012-01-13 | 2012-01-13 | Stretchable RFID (Radio Frequency Identification) electronic tag and manufacturing method thereof |
| Country | Link |
|---|---|
| CN (1) | CN102610534A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103116803A (en)* | 2013-01-29 | 2013-05-22 | 华中科技大学 | RFID (radio frequency identification) electronic tag based on fractal spring structure, radio frequency antenna based on fractal spring structure, and preparation method of RFID electronic tag |
| CN103367880A (en)* | 2013-07-05 | 2013-10-23 | 华中科技大学 | Frequency-adjustable stretchable liquid metal antenna and manufacture method thereof |
| CN104979617A (en)* | 2015-06-11 | 2015-10-14 | 江健良 | RFID (Radio Frequency Identification) label antenna provided with frequency-increasing notch |
| CN105703051A (en)* | 2016-04-13 | 2016-06-22 | 中国计量大学 | Ultrahigh frequency RFID antenna integrated to PCB |
| CN105870573A (en)* | 2016-05-20 | 2016-08-17 | 电子科技大学 | Vertical flexible and stretchable antenna and production method thereof |
| CN105895199A (en)* | 2016-06-14 | 2016-08-24 | 珠海安润普科技有限公司 | Flexible stretchable and washable conductive connecting piece |
| CN106291264A (en)* | 2015-05-13 | 2017-01-04 | 国网智能电网研究院 | The high-voltage detecting device of a kind of power electronic chip and high-voltage detecting method |
| EP3411222A4 (en)* | 2016-02-03 | 2019-06-19 | Cooper Tire & Rubber Company | Rubberized rfid tagged tire bladders |
| US10390759B2 (en) | 2016-02-25 | 2019-08-27 | Welch Allyn, Inc. | Physical assessment parameter measuring device |
| US10474940B2 (en) | 2014-12-23 | 2019-11-12 | 3M Innovative Properties Company | Flexible radio frequency identification tags |
| WO2020118905A1 (en)* | 2018-12-12 | 2020-06-18 | 武汉华星光电半导体显示技术有限公司 | Method for manufacturing composite film, and display device |
| US10978679B2 (en)* | 2018-12-12 | 2021-04-13 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Method of manufacturing composite film layer and display device |
| US11450946B2 (en) | 2018-07-31 | 2022-09-20 | Huawei Technologies Co., Ltd. | Mobile terminal and mobile terminal antenna production method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1118910A (en)* | 1994-09-09 | 1996-03-20 | 国际商业机器公司 | RF circuits and memory in thin flexible packages |
| CN101137517A (en)* | 2005-03-09 | 2008-03-05 | 米其林技术公司 | Robust Mounting Device for RFID Transponder Antennas |
| CN101681695A (en)* | 2006-09-06 | 2010-03-24 | 伊利诺伊大学评议会 | Controlled bending structures in semiconductor interconnects and nanomembranes for stretchable electronic components |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1118910A (en)* | 1994-09-09 | 1996-03-20 | 国际商业机器公司 | RF circuits and memory in thin flexible packages |
| CN101137517A (en)* | 2005-03-09 | 2008-03-05 | 米其林技术公司 | Robust Mounting Device for RFID Transponder Antennas |
| CN101681695A (en)* | 2006-09-06 | 2010-03-24 | 伊利诺伊大学评议会 | Controlled bending structures in semiconductor interconnects and nanomembranes for stretchable electronic components |
| Title |
|---|
| DAHL-YOUNG KHANG ET AL: "A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates", 《SCIENCE》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103116803A (en)* | 2013-01-29 | 2013-05-22 | 华中科技大学 | RFID (radio frequency identification) electronic tag based on fractal spring structure, radio frequency antenna based on fractal spring structure, and preparation method of RFID electronic tag |
| CN103116803B (en)* | 2013-01-29 | 2015-12-02 | 华中科技大学 | Based on the RFID of fractal spring structure, radio-frequency antenna and preparation method |
| CN103367880A (en)* | 2013-07-05 | 2013-10-23 | 华中科技大学 | Frequency-adjustable stretchable liquid metal antenna and manufacture method thereof |
| CN103367880B (en)* | 2013-07-05 | 2016-01-20 | 华中科技大学 | Stretched liquid metal antenna of a kind of frequency-adjustable control and preparation method thereof |
| US10977541B2 (en) | 2014-12-23 | 2021-04-13 | 3M Innovative Properties Company | Flexible radio frequency identification tags |
| US10474940B2 (en) | 2014-12-23 | 2019-11-12 | 3M Innovative Properties Company | Flexible radio frequency identification tags |
| CN106291264A (en)* | 2015-05-13 | 2017-01-04 | 国网智能电网研究院 | The high-voltage detecting device of a kind of power electronic chip and high-voltage detecting method |
| CN104979617B (en)* | 2015-06-11 | 2017-01-25 | 福州臻美网络科技有限公司 | RFID (Radio Frequency Identification) label antenna provided with frequency-increasing notch |
| CN104979617A (en)* | 2015-06-11 | 2015-10-14 | 江健良 | RFID (Radio Frequency Identification) label antenna provided with frequency-increasing notch |
| EP3411222A4 (en)* | 2016-02-03 | 2019-06-19 | Cooper Tire & Rubber Company | Rubberized rfid tagged tire bladders |
| US10457005B2 (en) | 2016-02-03 | 2019-10-29 | Cooper Tire & Rubber Company | Rubberized RFID tagged tire bladders |
| US10390759B2 (en) | 2016-02-25 | 2019-08-27 | Welch Allyn, Inc. | Physical assessment parameter measuring device |
| CN105703051A (en)* | 2016-04-13 | 2016-06-22 | 中国计量大学 | Ultrahigh frequency RFID antenna integrated to PCB |
| CN105870573A (en)* | 2016-05-20 | 2016-08-17 | 电子科技大学 | Vertical flexible and stretchable antenna and production method thereof |
| CN105895199B (en)* | 2016-06-14 | 2018-07-06 | 珠海安润普科技有限公司 | A kind of washable conducting connecting part of flexible extensible |
| CN105895199A (en)* | 2016-06-14 | 2016-08-24 | 珠海安润普科技有限公司 | Flexible stretchable and washable conductive connecting piece |
| US11450946B2 (en) | 2018-07-31 | 2022-09-20 | Huawei Technologies Co., Ltd. | Mobile terminal and mobile terminal antenna production method |
| US11831062B2 (en) | 2018-07-31 | 2023-11-28 | Huawei Technologies Co., Ltd. | Mobile device radiating antenna disposed on an inner side of an insulation rear housing |
| WO2020118905A1 (en)* | 2018-12-12 | 2020-06-18 | 武汉华星光电半导体显示技术有限公司 | Method for manufacturing composite film, and display device |
| US10978679B2 (en)* | 2018-12-12 | 2021-04-13 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Method of manufacturing composite film layer and display device |
| Publication | Publication Date | Title |
|---|---|---|
| CN102610534A (en) | Stretchable RFID (Radio Frequency Identification) electronic tag and manufacturing method thereof | |
| CN108318162B (en) | A kind of flexible sensor and preparation method thereof | |
| Kim et al. | Responsive, 3D electronics enabled by liquid crystal elastomer substrates | |
| JP4669069B2 (en) | Mesh sheet and housing parts for electronic devices | |
| CN103177656B (en) | Flexible back plate for flexible display | |
| CN109520411B (en) | Pre-stretched graphene flexible strain sensor and preparation method thereof | |
| Kim et al. | Silver nanowire networks embedded in urethane acrylate for flexible capacitive touch sensor | |
| CN103116803B (en) | Based on the RFID of fractal spring structure, radio-frequency antenna and preparation method | |
| WO2017080128A1 (en) | Graphene pressure sensor and manufacturing method and use thereof | |
| Sharma et al. | Flexible and stretchable oxide electronics | |
| CN104505148B (en) | A kind of preparation method of the three-dimensional coplanar shape graphene film of flexible base | |
| CN107894293A (en) | A kind of highly sensitive flexible passive wireless pressure sensor | |
| Ko et al. | Multifunctional, flexible electronic systems based on engineered nanostructured materials | |
| CN105185898B (en) | A flexible transparent functional device and its preparation method | |
| CN102598329A (en) | Piezoelectric nanodevices | |
| Li et al. | High-efficiency transfer printing using droplet stamps for robust hybrid integration of flexible devices | |
| Dai et al. | Stress tunable magnetic stripe domains in flexible Fe81Ga19 films | |
| Moon et al. | Three-dimensional out-of-plane geometric engineering of thin films for stretchable electronics: A brief review | |
| Salim et al. | Inkjet printed kirigami inspired split ring resonator for disposable, low cost strain sensor applications | |
| CN109573939A (en) | Bilayer strain matrix and stretchable electronic device | |
| CN102709702B (en) | Metamaterial preparation method and antenna housing made of metamaterial prepared by method | |
| Chen et al. | A highly sensitive strain sensor with a sandwich structure composed of two silver nanoparticles layers and one silver nanowires layer for human motion detection | |
| Miao et al. | Localized modulus-controlled PDMS substrate for 2D and 3D stretchable electronics | |
| CN110936686A (en) | Flexible electronics based on elastic shape memory polymers | |
| CN112151955B (en) | A flexible frequency reconfigurable antenna, preparation method and application thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20120725 |