Movatterモバイル変換


[0]ホーム

URL:


CN102556341A - Group flying robot with distribution and self-assembly characteristics - Google Patents

Group flying robot with distribution and self-assembly characteristics
Download PDF

Info

Publication number
CN102556341A
CN102556341ACN201110400157XACN201110400157ACN102556341ACN 102556341 ACN102556341 ACN 102556341ACN 201110400157X ACN201110400157X ACN 201110400157XACN 201110400157 ACN201110400157 ACN 201110400157ACN 102556341 ACN102556341 ACN 102556341A
Authority
CN
China
Prior art keywords
module
robot
docking
drive
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110400157XA
Other languages
Chinese (zh)
Other versions
CN102556341B (en
Inventor
魏洪兴
李宁
陈友东
刘淼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubo Beijing Intelligent Technology Co ltd
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang UniversityfiledCriticalBeihang University
Priority to CN201110400157XApriorityCriticalpatent/CN102556341B/en
Publication of CN102556341ApublicationCriticalpatent/CN102556341A/en
Application grantedgrantedCritical
Publication of CN102556341BpublicationCriticalpatent/CN102556341B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Landscapes

Abstract

Translated fromChinese

本发明公开了一种具有分布式和自组装特征的群体飞行机器人,由至少三个机器人单体组成,并且机器人单体中要同时包括正桨机器人单体和反桨机器人单体,所述的机器人单体是多边形的中空柱体结构,是由外壳包覆机架形成的,每个机器人单体由地面运动模块、主动对接模块、被动对接模块、传感定位模块、飞行动力模块和控制模块组成,均连接设置在机架上;本发明的机器人具有强大的地面全向运动能力,能通过自组装形成各种复杂的目标构型并实现整体的飞行控制,具有更强的环境适应性、控制冗余度和生存能力。

Figure 201110400157

The invention discloses a group flying robot with distributed and self-assembly characteristics, which is composed of at least three robot units, and the robot unit should include both a forward propeller robot unit and a reverse propulsion robot unit, the said The robot unit is a polygonal hollow cylinder structure, which is formed by the shell covering the frame. Each robot unit consists of a ground movement module, an active docking module, a passive docking module, a sensor positioning module, a flight power module and a control module. are all connected and arranged on the frame; the robot of the present invention has powerful ground omnidirectional movement ability, can form various complex target configurations and realize overall flight control through self-assembly, and has stronger environmental adaptability, Control redundancy and survivability.

Figure 201110400157

Description

Translated fromChinese
具有分布式和自组装特征的群体飞行机器人Swarm Flying Robots with Distributed and Self-Assembled Features

技术领域technical field

本发明涉及一种群体飞行机器人,该群体飞行机器人是由多个独立的群体飞行机器人单体组成,具有典型的分布式、自组装和模块化特点。The invention relates to a group flying robot, which is composed of a plurality of independent group flying robots and has typical characteristics of distribution, self-assembly and modularization.

背景技术Background technique

通过观察自然界社会性生物的群体自组织行为,人们意识到了群体机器人通过彼此协同在非结构化复杂多变的环境中执行任务时强大的功能扩展性、灵活性和适应性,开始了群体机器人理论和应用方面的研究。目前,群体机器人的研究领域主要局限在地面运动机器人的自组装、自重构和运动控制方面,对于在监控、探测、勘探、救灾和军事等领域有着广泛应用的飞行机器人领域的研究,大都还停留在构型固定的单个飞行器的控制和应用层面,由于受到其自身结构的限制,决定了其功能的单一化,无法适应复杂多变的环境和任务。虽然少有的一些研究涉及到了多个固定构型飞行器之间的协同和编队控制等内容,但是很少有涉及到具有分布式、自组装和模块化特点的群体飞行器的理论性和实用性的研究。群体机器人良好的扩展性、冗余性和鲁棒性没有能够在飞行机器人领域得到有效应用。By observing the group self-organization behavior of social creatures in nature, people realized the powerful functional scalability, flexibility and adaptability of group robots when they cooperate with each other to perform tasks in unstructured complex and changeable environments, and started the group robot theory and applied research. At present, the research field of swarm robots is mainly limited to the self-assembly, self-reconfiguration and motion control of ground-moving robots. For the research on flying robots, which are widely used in the fields of monitoring, detection, exploration, disaster relief and military affairs, most of them are still Staying at the control and application level of a single aircraft with a fixed configuration, due to the limitation of its own structure, determines the simplification of its functions and cannot adapt to complex and changeable environments and tasks. Although few studies have involved coordination and formation control between multiple fixed-configuration aircraft, few studies have involved the theoretical and practical aspects of distributed, self-assembled, and modular swarm aircraft. Research. The good scalability, redundancy and robustness of swarm robots have not been effectively applied in the field of flying robots.

发明内容Contents of the invention

本发明的目的在于提供一种具有分布式和自组装特征的群体飞行机器人,采用模块化的设计思想,群体飞行机器人由至少三个机器人单体组成,每个机器人单体都是一个完全自主的模块,可以通过机器人单体之间的自组装形成各种目标构型,具有更强的环境适应能力,并实现分布式的飞行控制。The object of the present invention is to provide a group flying robot with distributed and self-assembly features, adopting the modular design idea, the group flying robot is composed of at least three robot monomers, each robot monomer is a completely autonomous Modules can form various target configurations through self-assembly between robot monomers, have stronger environmental adaptability, and realize distributed flight control.

本发明采用以下技术方案实现:本发明是一种具有分布式和自组装特征的群体飞行机器人,采用模块化思想进行设计,群体飞行机器人由至少三个机器人单体组成,并且同时包括正桨和反桨机器人单体,每个机器人单体由地面运动模块、主动对接模块、被动对接模块、传感定位模块、飞行动力模块和控制模块组成。所述的正桨和反桨机器人单体主要是飞行动力模块中螺旋桨的倾角不同。The present invention is realized by the following technical solutions: the present invention is a distributed and self-assembled group flying robot, which is designed with the concept of modularization. Anti-propeller robot unit, each robot unit is composed of a ground motion module, an active docking module, a passive docking module, a sensor positioning module, a flight power module and a control module. The main difference between the forward propeller and reverse propeller robot is the inclination angle of the propeller in the flight power module.

所述的地面运动模块安装在机器人单体的底部,能够为机器人单体提供灵活而且全面的地面运动能力,采用的是多个全向轮在圆周空间上均匀布置的方案,每个全向轮由一个带码盘反馈的直流电机独立驱动控制,利用最少的资源实现机器人单体的主动全向驱动。The ground movement module is installed at the bottom of the robot body, which can provide flexible and comprehensive ground movement capabilities for the robot body. It adopts a scheme in which multiple omnidirectional wheels are evenly arranged in the circumferential space, and each omnidirectional wheel It is independently driven and controlled by a DC motor with code disk feedback, and the active omnidirectional drive of the robot is realized with the least resources.

所述的主动对接模块包括对接卡扣,被动对接模块上开有对接卡槽,机器人单体的各个侧面中有1个侧面为主动对接面,其余侧面为被动对接面。The active docking module includes a docking buckle, and the passive docking module is provided with a docking slot. Among the sides of the robot monomer, one side is an active docking surface, and the other sides are passive docking surfaces.

所述的传感定位模块包括布置在每个侧面上的一对模拟红外收发传感器,用于短距离的目标机器人测距定位以及避障;布置在每个侧面上的3个为一组的RGB三色一体LED,每组的3个LED都以一定的尺寸关系布置在三维的空间中,方便利用单目CMOS摄像头来观察定位;布置在主动对接面上的单目CMOS摄像头,以观察LED的成像尺寸来确定机器人单体之间的位置关系。The sensing and positioning module includes a pair of analog infrared transceiver sensors arranged on each side for short-distance target robot ranging positioning and obstacle avoidance; three RGB sensors arranged on each side as a group Three-color integrated LED, the three LEDs in each group are arranged in a three-dimensional space with a certain size relationship, which is convenient to use the monocular CMOS camera to observe and position; the monocular CMOS camera arranged on the active docking surface is used to observe the LED. The imaging size is used to determine the positional relationship between robot monomers.

所述的飞行动力模块根据螺旋桨的类别可以分成两类,“正桨模块”和“反桨模块”;所述的飞行动力模块包括1个螺旋桨、驱动该螺旋桨的直流无刷电机和设计在机体中间的圆形气流涵道。单个机器人单体不具有完整的飞行能力,但是多个正桨和反桨机器人单体对接组合之后便可以通过分布式协同控制获得完整的飞行功能。The flight power module can be divided into two categories according to the type of propeller, "forward propeller module" and "reverse propeller module"; the flight power module includes a propeller, a DC brushless motor driving the propeller and a The circular air duct in the middle. A single robot body does not have complete flight capabilities, but multiple forward propeller and anti-propeller robot monomers can obtain complete flight functions through distributed collaborative control after docking and combination.

所述的控制模块由1片ARM架构的处理器STM32 F103ZCT6做主控的算法,另1片ARM架构的处理器为核心的IMU模块做惯导姿态解算,底层以AVRMega8单片机为核心做所有电机(包括驱动螺旋桨的直流无刷电机和驱动全向轮的直流电机)的驱动控制和模拟红外收发传感器的信息采集;机器人单体之间的通信方式有两种选择:以cc2431为核心的Zigbee无线组网可以在机器人单体之间没有通过自组装建立物理连接之前以及组装后提供有效通信,机器人单体组装后还可以通过CAN总线物理连接建立通信。The control module is composed of one ARM architecture processor STM32 F103ZCT6 as the main control algorithm, another ARM architecture processor as the core IMU module for inertial navigation attitude calculation, and the bottom layer uses AVRMega8 single-chip microcomputer as the core to do all the motors (including DC brushless motors driving propellers and DC motors driving omnidirectional wheels) drive control and information collection of analog infrared transceiver sensors; there are two options for communication between robot monomers: Zigbee wireless with cc2431 as the core Networking can provide effective communication before and after the assembly of the robot monomers without establishing a physical connection through self-assembly. After the robot monomers are assembled, they can also establish communication through the physical connection of the CAN bus.

所述的具有分布式和自组装特征的群体飞行机器人,每个机器人单体的机体的机架结构由刚度较大、密度较轻的碳纤维方管搭建而成,机体外壳主要是采用EPP材料。In the group flying robot with distributed and self-assembly features, the frame structure of each robot body is made of carbon fiber square tubes with high rigidity and light density, and the shell of the body is mainly made of EPP material.

所述的具有分布式和自组装特征的群体飞行机器人能够通过机器人单体之间的相互对接连接形成各种构型,每个机器人单体的主动对接面可以和另外一个机器人单体的任何一个被动对接面对接,也可以和另一个机器人单体的主动对接面相互对接构成一个具有目标构型的群体飞行机器人;对于一种目标构型,机器人单体可以有多种不同的连接方式来实现,可以顺次相连形成一个环形的连接拓扑,也可以依次相连形成树形拓扑或者形成一种复合的网状拓扑。The group flying robot with distributed and self-assembly characteristics can form various configurations through the mutual docking connection between robot monomers, and the active docking surface of each robot monomer can be connected to any one of another robot monomer The passive docking surface can also be docked with the active docking surface of another robot monomer to form a group flying robot with a target configuration; for a target configuration, the robot monomer can have many different connection methods. For implementation, they can be connected in sequence to form a ring topology, or can be connected in sequence to form a tree topology or a composite mesh topology.

本发明的优点是:The advantages of the present invention are:

(1)将群体机器人“分布式”和“自组装”的特点引入群体飞行机器人的研究设计中,设计出一种能够自主对接成各种目标构型并以分布式策略控制飞行的群体飞行机器人。(1) Introduce the "distributed" and "self-assembly" characteristics of swarm robots into the research and design of swarm flying robots, and design a swarm flying robot that can autonomously dock into various target configurations and control flight with distributed strategies .

(2)采用模块化的设计思想,将机器人单体本身的各个主要功能部分区分成不同的设计模块,各个模块具有标准的连接接口,方便安装和维护。(2) Using the modular design concept, the main functional parts of the robot itself are divided into different design modules. Each module has a standard connection interface, which is convenient for installation and maintenance.

(3)地面运动方案采用全向轮建立起最简单的全向移动平台,使机器人拥有灵活的地面机动能力,方便快速运动到目标位置,提高自组装过程中的对接效率。(3) The ground motion scheme uses omni-directional wheels to establish the simplest omni-directional mobile platform, so that the robot has flexible ground maneuverability, convenient and fast movement to the target position, and improves the docking efficiency in the self-assembly process.

(4)设计了一种基于卡扣和卡槽的机械式对接卡紧机构及其相关的对称耦合曲柄摇杆驱动机构,相关的对接面分为主动对接面和被动对接面,每个机器人单体的主动对接面可以与另一个机器人单体的任意被动对接面或主动对接面对接。(4) A mechanical docking clamping mechanism based on buckles and slots and its related symmetrically coupled crank-rocker drive mechanism are designed. The related docking surfaces are divided into active docking surfaces and passive docking surfaces. Each robot unit The active docking surface of a robot body can be docked with any passive docking surface or active docking surface of another robot body.

(5)对接引导利用摄像头观察LED成像尺寸关系的方式来进行机器人之间相对位姿的准确定位,LED以一定的尺寸关系布置在三维的空间中,使得机器人之间的相对位姿关系能够通过一个单目摄像头成像完全确定。(5) Docking guidance uses the camera to observe the LED imaging size relationship to accurately locate the relative pose between the robots. The LEDs are arranged in a three-dimensional space with a certain size relationship, so that the relative pose relationship between the robots can be passed. A monocular camera imaging is completely determined.

(6)机身的结构和控制系统设计紧凑,分别采用EPP和碳纤维材料做外壳和机架,质量和体积都比较小。(6) The structure of the fuselage and the control system are compact in design, and the shell and frame are made of EPP and carbon fiber materials respectively, and the mass and volume are relatively small.

附图说明Description of drawings

图1是本发明具有分布式和自组装特征的群体飞行机器人的机器人单体的结构示意图;Fig. 1 is the structural representation of the robot monomer of the group flying robot with distributed and self-assembly characteristics of the present invention;

图2是地面运动模块布置示意图;Figure 2 is a schematic diagram of the layout of the ground movement module;

图3是主动对接模块和被动对接模块示意图;Fig. 3 is a schematic diagram of an active docking module and a passive docking module;

图3A、图3B是主动对接模块驱动机构简图;Fig. 3A and Fig. 3B are schematic diagrams of the driving mechanism of the active docking module;

图4是传感定位模块和飞行动力模块布置示意图;Fig. 4 is a schematic diagram of the arrangement of the sensor positioning module and the flight power module;

图5是控制模块及机架和外壳的结构和外观示意图;Fig. 5 is a schematic diagram of the structure and appearance of the control module, the frame and the shell;

图6是三旋翼构型机器人;Fig. 6 is a three-rotor configuration robot;

图7是四旋翼构型机器人;Fig. 7 is a four-rotor configuration robot;

图8是多旋翼构型机器人。Figure 8 is a multi-rotor configuration robot.

图中:In the picture:

1.地面运动模块;2.主动对接模块;3.被动对接模块;4.传感定位模块;5.飞行动力模块;6.外壳;7.机架;8.机器人单体;9.机器人单体;10.机器人单体;11.控制模块 101.全向轮;102.直流电机;103.安装支座;201.对接卡扣;202.转动副;203.驱动连杆;204.驱动盘;205.驱动电机;206.驱动轴;301.对接卡槽;401.CMOS摄像头;402.顶部LED;403.底部LED;404.模拟红外收发传感器;501螺旋桨;502.直流无刷电机;503.气流涵道;504.电机安装盘;505.底座;506.支架。1. Ground movement module; 2. Active docking module; 3. Passive docking module; 4. Sensor positioning module; 5. Flight power module; Body; 10. Robot monomer; 11.Control module 101. Omni-directional wheel; 102. DC motor; 103. Mounting support; 201. Butt buckle; ;205. Drive motor; 206. Drive shaft; 301. Docking card slot; 401. CMOS camera; 402. Top LED; 403. Bottom LED; 404. Analog infrared transceiver sensor; 501 propeller; 502. DC brushless motor; 503 . Air duct; 504. Motor mounting plate; 505. Base; 506. Bracket.

具体实施方式Detailed ways

下面将结合附图和实施例对本发明做进一步的详细说明:The present invention will be described in further detail below in conjunction with accompanying drawing and embodiment:

本发明的具有分布式和自组装特征的群体飞行机器人,每个群体飞行机器人由至少三个机器人单体组成,并且三个机器人单体中要同时包括正桨机器人单体和反桨机器人单体。所述的机器人单体如图1所示,具有规则的几何外形结构,可以是三角形、四边形、五边形或者六边形等多边形的中空柱体结构(或者称为中空棱柱结构),所述的中空柱体结构是由外壳6包覆机架7(如图5)形成的,每个机器人单体由地面运动模块1、主动对接模块2、被动对接模块3、传感定位模块4、飞行动力模块5和控制模块11(如图5)组成,每个模块都有特定的尺寸和独立的功能,模块之间有良好的通用性和可交换性,图1展示了一个完整功能的机器人单体的实施例,所述的实施例中的机器人单体为六边形的中空棱柱结构,外壳6内部为所包覆的机架7,所述的地面运动模块1、主动对接模块2、被动对接模块3、传感定位模块4、飞行动力模块5和控制模块11均连接设置在机架7上。多个机器人单体之间通过相关模块的连接组合可以得到多变的整体形态和构型,具有简单的本体结构,丰富的形态构型和强大的适应能力。In the distributed and self-assembled swarm flying robot of the present invention, each swarm flying robot is composed of at least three robot units, and the three robot units must include both forward propeller robot units and reverse propulsion robot units . As shown in Figure 1, the robot monomer has a regular geometric shape structure, which can be a hollow cylinder structure (or a hollow prism structure) of polygons such as triangles, quadrilaterals, pentagons or hexagons. The hollow cylinder structure is formed by thecasing 6 covering the frame 7 (as shown in Figure 5). Each robot unit consists of aground movement module 1, anactive docking module 2, apassive docking module 3, a sensor positioning module Composed of a power module 5 and a control module 11 (as shown in Figure 5), each module has a specific size and independent function, and the modules have good versatility and interchangeability. Figure 1 shows a single robot with complete functions. In the embodiment of the body, the robot in the embodiment is a hexagonal hollow prism structure, and the inside of theshell 6 is the coveredframe 7. Theground movement module 1, theactive docking module 2, the passive Thedocking module 3 , the sensor positioning module 4 , the flight power module 5 and thecontrol module 11 are all connected and arranged on theframe 7 . A variety of overall shapes and configurations can be obtained through the connection and combination of related modules between multiple robot monomers. It has a simple body structure, rich morphological configurations and strong adaptability.

如图1和图2所示,所述的地面运动模块1安装在机器人单体的机架7的底部,主要由全向轮101、直流电机102和安装支座103构成,优选的,本实施例中在每个机器人单体的机架7底部共布置有三个全向轮101,角度间距为120度,均匀分布在底盘圆周空间上,每个全向轮101均与一个直流电机102输出轴直接连接;所述的直流电机102为带有增量式编码器的闭环直流伺服电机,也称直流编码反馈电机。所述的安装支座103固定在机架7上,安装支座103上开有电机安装槽,直流电机102可以部分插入电机安装槽内并通过螺纹连接固定在安装支座103上。所述的全向轮101可以设置多个,连接方式与三个全向轮101的连接方式相同。As shown in Figures 1 and 2, theground motion module 1 is installed on the bottom of theframe 7 of the robot body, and is mainly composed ofomnidirectional wheels 101,DC motors 102 and mounting supports 103. Preferably, this implementation In the example, threeomnidirectional wheels 101 are arranged at the bottom of theframe 7 of each robot monomer, and the angular spacing is 120 degrees, which are evenly distributed on the circumferential space of the chassis. Eachomnidirectional wheel 101 is connected to aDC motor 102 output shaft Direct connection; theDC motor 102 is a closed-loop DC servo motor with an incremental encoder, also known as a DC encoder feedback motor. The mountingsupport 103 is fixed on theframe 7, and the mountingsupport 103 has a motor mounting groove, and theDC motor 102 can be partially inserted into the motor mounting groove and fixed on the mountingsupport 103 by screwing. There can be multipleomnidirectional wheels 101, and the connection method is the same as that of threeomnidirectional wheels 101.

请参见图3所示,所述的主动对接模块2和被动对接模块3设置在机器人单体的侧面上,其中一个侧面上设置为主动对接模块2,称为主动对接面,其余侧面上均设置为被动对接模块3,称为被动对接面,所述的主动对接模块2包括一对主动对接卡扣201,两个对接卡扣201在高度方向和水平方向上都要错开一定的距离,即两个对接卡口201高度设置不同。在本实施例中,两个对接卡口201垂直高度方向间距15mm,水平间距80mm;所述的被动对接模块3是指与对接卡扣201对应的对接卡槽301,设置在主动对接面和被动对接面上,两个对接卡槽301和所述的对接卡扣201相互配合卡紧即可实现两个机器人单体的有效连接;所述的对接卡扣201的驱动模块采用对称耦合曲柄摇杆形式驱动,通过一部卡扣驱动电机205驱动两个对接卡扣201同时对称动作实现对接卡扣的开合。如图3A、3B所示,两个对接卡扣201分别通过两个转动副202转动连接在机架7上,两个对接卡扣201上分别连接有驱动连杆203,所述的两个驱动连杆203的另一端连接在驱动盘204上,所述的驱动盘204位于两个对接卡扣201中间的位置,驱动盘204中心固定连接驱动电机205的驱动轴206,在驱动电机205的驱动下,驱动轴206带动驱动盘204转动,进而通过驱动盘204上的驱动连杆203带动对接卡扣201转动,实现对接卡扣201与对接卡槽301的开合对接,这样,就可以实现两个机器人单体之间的连接,将两个机器人单体组装。Please refer to Fig. 3, theactive docking module 2 and thepassive docking module 3 are arranged on the sides of the robot, one of the sides is set as theactive docking module 2, which is called the active docking surface, and the other sides are all arranged It is apassive docking module 3, which is called a passive docking surface. Theactive docking module 2 includes a pair of active docking buckles 201. The heights of the docking bayonets 201 are set differently. In this embodiment, the vertical height distance between two dockingbayonets 201 is 15mm, and the horizontal distance is 80mm; thepassive docking module 3 refers to thedocking slot 301 corresponding to thedocking buckle 201, which is arranged on the active docking surface and the passive docking surface. On the docking surface, the twodocking slots 301 and thedocking buckle 201 cooperate with each other to realize the effective connection of the two robot units; the drive module of thedocking buckle 201 adopts a symmetrically coupled crank rocker Form drive, through abuckle drive motor 205 to drive two docking buckles 201 to move symmetrically at the same time to realize the opening and closing of the docking buckles. As shown in Figures 3A and 3B, the two docking buckles 201 are rotatably connected to theframe 7 through tworotating pairs 202, respectively, and the two docking buckles 201 are respectively connected with drivinglinks 203, and the two driving The other end of the connectingrod 203 is connected to thedrive disc 204, thedrive disc 204 is located in the middle of the two docking buckles 201, the center of thedrive disc 204 is fixedly connected to thedrive shaft 206 of the drivingmotor 205, and the driving of the drivingmotor 205 Next, thedrive shaft 206 drives thedrive disc 204 to rotate, and then drives thedocking buckle 201 to rotate through thedrive link 203 on thedrive disc 204 to realize the opening and closing of thedocking buckle 201 and thedocking slot 301. In this way, two The connection between the two robot monomers is used to assemble the two robot monomers.

请参见图4所示,所述的传感定位模块4主要包括一个CMOS摄像头401、一个顶部LED402、两个底部LED 403和两个模拟红外收发传感器404,所述的CMOS摄像头401安装在机器人单体的主动对接面上;所述的一个顶部LED402和两个底部LED403组成LED组,在机器人单体的每个侧面上都布置一个LED组,其中两个底部LED403间隔布置在机器人单体的侧面上,顶部LED402布置在靠近机体内侧的位置,高度比底部LED403高,从主动对接面的正面观察,CMOS摄像头401恰好位于三个以LED为顶点的三角形的几何中心位置。所述的模拟红外收发传感器404也设置在机器人单体的每个侧面上,并且优选的将两个模拟红外收发传感器404之间的水平距离大于所在侧面上的两个底部LED403之间的距离,即将两个模拟红外收发传感器404设置在尽量靠近所在侧面的两侧边缘位置。所述的顶部LED402的高度高于CMOS摄像头401的高度,保证在实现对接的时候,每个CMOS摄像头401可以看到LED组的每个LED。优选的,所述的底部LED403位置高于两个模拟红外收发传感器404的位置,两个模拟红外收发传感器404的位置高于对接卡口201或者对接卡槽301的位置。Please refer to shown in Fig. 4, described sensing positioning module 4 mainly comprises aCMOS camera 401, a top LED402, twobottom LEDs 403 and two analoginfrared transceiver sensors 404, and describedCMOS camera 401 is installed on the robot unit On the active docking surface of the body; the one top LED402 and the two bottom LED403 form an LED group, and one LED group is arranged on each side of the robot body, wherein the two bottom LED403 are arranged at intervals on the side of the robot body On the top, the top LED402 is arranged close to the inside of the body, and its height is higher than that of the bottom LED403. Viewed from the front of the active docking surface, theCMOS camera 401 is exactly located at the geometric center of three triangles with LEDs as vertices. The analoginfrared transceiver sensor 404 is also arranged on each side of the robot monomer, and preferably the horizontal distance between the two analoginfrared transceiver sensors 404 is greater than the distance between the two bottom LED403 on the side, That is, the two analoginfrared transceiver sensors 404 are arranged as close as possible to the two side edges of the side where they are located. The height of thetop LED 402 is higher than that of theCMOS camera 401 to ensure that eachCMOS camera 401 can see each LED of the LED group when docking is realized. Preferably, the position of thebottom LED 403 is higher than the positions of the two analoginfrared transceiver sensors 404 , and the positions of the two analoginfrared transceiver sensors 404 are higher than the positions of thedocking bayonet 201 or thedocking card slot 301 .

所述的飞行动力模块5主要由螺旋桨501、直流无刷电机502和气流涵道503构成,优选的,其中所述的螺旋桨501为双叶型的单旋翼慢速桨,直接紧固安装在直流无刷电机502的输出轴上;所述的直流无刷电机502通过螺纹连接固定在底座505的电机安装盘504上,所述的底座505是与机架7连接固定的,如图4所示,底座505可以通过三条支架506连接到机架7上;所述的气流涵道503是一个由EPP材料的机壳6形成的圆形气流通道,气流涵道503与螺旋桨501的配合,能够增压增力,驱动机器人单体的飞行。The flight power module 5 is mainly composed of apropeller 501, aDC brushless motor 502 and anair duct 503. Preferably, thepropeller 501 is a double-bladed single-rotor slow-speed propeller, which is directly fastened and installed on a DC On the output shaft of thebrushless motor 502; thebrushless DC motor 502 is fixed on themotor mounting plate 504 of the base 505 through threaded connection, and thebase 505 is fixedly connected with theframe 7, as shown in Figure 4 , the base 505 can be connected to theframe 7 through threebrackets 506; theairflow duct 503 is a circular airflow channel formed by thecasing 6 of EPP material, and the cooperation of theairflow duct 503 and thepropeller 501 can increase The pressure is increased to drive the flight of the robot body.

本发明的具有分布式和自组装特征的群体飞行机器人,其特点是机器人单体根据所安装的螺旋桨501的桨叶倾角方向不同,(所述的倾角方向是指螺旋桨的桨叶平面和桨的转轴垂直平面的夹角,如果定义正桨夹角为正则反桨夹角即为负)分为正桨机器人单体和反桨机器人单体两类,如图6,图7和图8。当机器人单体组装形成具有飞行能力的群体飞行机器人时,至少要有一个正桨机器人单体和一个反桨机器人单体。The group flying robot with distribution and self-assembly characteristics of the present invention is characterized in that the direction of the blade inclination angle of the robot monomer is different according to the installedpropeller 501, (the direction of the inclination angle refers to the blade plane of the propeller and the blade plane of the paddle. The included angle of the vertical plane of the rotating shaft, if the positive propeller angle is defined as positive and the reverse propeller angle is negative), it can be divided into two types: positive propeller robot unit and reverse propeller robot unit, as shown in Fig. 6, Fig. 7 and Fig. 8. When the robot units are assembled to form a group flying robot with flight capability, at least one forward propeller robot unit and one anti-propeller robot unit are required.

请参见图5所示,本发明的机器人单体的外壳6采用EPP泡沫材料,机架7采用轻质的碳纤维方管,外壳6包覆在机架7的外面,形成外形为中空的六棱柱,该中空结构就作为螺旋桨501的气流涵道503。在机架7上连结固定有地面驱动模块1、主动对接模块2、被动对接模块3、传感定位模块4和飞行动力模块5的相应位置的外壳6上设置有开孔,这样既保证了上述各模块的安装稳固,又起到了一定的保护作用,尤其是对传感定位模块4的保护,避免的机器人单体对接的时候发生碰撞和摩擦损害。Please refer to shown in Fig. 5, theshell 6 of robot monomer of the present invention adopts EPP foam material, andframe 7 adopts light-weight carbon fiber square tube, andshell 6 is coated on the outside offrame 7, forms the shape and is a hollow hexagonal prism , the hollow structure is used as theair duct 503 of thepropeller 501 . Open holes are arranged on thecasing 6 of the corresponding positions of theground driving module 1, theactive docking module 2, thepassive docking module 3, the sensor positioning module 4 and the flight power module 5, which are connected and fixed on theframe 7, so that the above-mentioned The installation of each module is stable, and it also plays a certain protective role, especially for the protection of the sensor positioning module 4, so as to avoid collision and friction damage when the robot monomer is docked.

本发明的具有分布式和自组装特征的群体飞行机器人,通过主动对接模块2的对接卡扣201和主动对接模块2或被动对接模块3的对接卡槽301相互配合卡紧组成一个拥有某种构型的整体机器人。一种比较基础和简单的构型如图6所示,机器人单体10(正桨机器人单体)的主动对接面卡紧机器人单体9(反桨机器人单体)的一个被动对接面,机器人单体9的主动对接面卡紧机器人单体8(正桨机器人单体)的一个被动对接面,机器人单体8的主动对接面卡紧机器人单体10的一个被动对接面,3个基本的机器人单体之间通过相互顺次卡紧的方式形成一个三旋翼的构型。如图7所示,四个机器人单体通过顺次卡紧可以实现一个常见的四旋翼构型的整体机器人,其中包括两个正桨机器人单体和两个反桨机器人单体;更一般的,多个正桨和反桨机器人单体之间通过对接卡紧,可以实现机器人构型空间内所有目标构型的建立,如图8所示,形成一个适应具体环境和应用要求的整体机器人,由八个机器人单体组成,正桨和反桨机器人单体的选取可以根据飞控算法可控空间进行合理选取。The group flying robot with distributed and self-assembly features of the present invention forms a robot with a certain structure by cooperating with thedocking buckle 201 of theactive docking module 2 and thedocking slot 301 of theactive docking module 2 orpassive docking module 3. type overall robot. A relatively basic and simple configuration is shown in Figure 6, the active docking surface of the robot cell 10 (positive paddle robot cell) clamps a passive docking surface of the robot cell 9 (reverse paddle robot cell), and the robot The active docking surface of themonomer 9 clamps a passive docking surface of the robot monomer 8 (positive paddle robot monomer), the active docking surface of therobot monomer 8 clamps a passive docking surface of therobot monomer 10, and three basic The robot units form a three-rotor configuration by clamping each other sequentially. As shown in Figure 7, four robot units can be clamped sequentially to realize a common four-rotor configuration overall robot, which includes two positive propeller robot units and two reverse propeller robot units; more general , through docking and clamping between multiple forward propeller and reverse propeller robot units, the establishment of all target configurations in the robot configuration space can be realized, as shown in Figure 8, forming an overall robot that adapts to the specific environment and application requirements. Composed of eight robot units, the selection of forward propeller and reverse propeller robot units can be reasonably selected according to the controllable space of the flight control algorithm.

请参见图9所示,所述的控制模块11连结在机架7上,控制模块11的主控电路板采用STM32 F103ZCT6,设置在主动对接面所对应位置的机架7上,地面运动模块1和传感定位模块4由3个AVRMega8(MEGA8)控制,具体为每个MEGA8负责控制一个地面驱动模块1中的全向轮101、两个传感定位模块4中的LED组和模拟红外收发传感器404。飞行控制模块5中的直流无刷电机502通过1个MEGA8控制的电调板驱动,机器人单体的姿态测量由以第二块STM32处理器为核心的IMU模块完成,所述的IMU模块为集成有三轴加速度计、三轴陀螺仪和三轴地磁传感器的九轴复合IMU模块,以上所述的IMU模块和MEGA8控制板都挂靠在I2C总线上,通过I2C总线与主控电路板通信并由主控电路板来控制。所述的主控电路板上预留有PPM遥控编码(MEGA128 PPM Ecoder)的信息接收通道,通过处理器的ICP(Input Signal Capture)通道解码遥控指令,方便飞控调试;无线通信的Zigbee模块以具有定位功能的cc2431为核心,通过USART(Universal Synchronous/AsynchronousReceiver/Transmitter)接受主控控制,不同的机器人单体之间的通信有Zigbee和CAN两种选择方式:以cc2431为核心的Zigbee无线组网可以在机器人单体之间没有通过自组装建立物理连接之前以及组装后提供有效通信,机器人单体组装后可以通过CAN总线物理连接建立通信。Please refer to shown in Fig. 9, describedcontrol module 11 is connected on theframe 7, and the main control circuit board ofcontrol module 11 adopts STM32 F103ZCT6, is arranged on theframe 7 of the corresponding position of active docking surface, andground motion module 1 And the sensor positioning module 4 is controlled by 3 AVRMega8 (MEGA8), specifically each MEGA8 is responsible for controlling theomnidirectional wheel 101 in aground drive module 1, the LED group and the analog infrared transceiver sensor in the two sensor positioning modules 4 404. TheDC brushless motor 502 in the flight control module 5 is driven by an ESC board controlled by a MEGA8, and the attitude measurement of the robot body is completed by the IMU module with the second STM32 processor as the core. The IMU module is an integrated A nine-axis composite IMU module with a three-axis accelerometer, a three-axis gyroscope and a three-axis geomagnetic sensor. The above-mentioned IMU module and the MEGA8 control board are all attached to the I2C bus, communicate with the main control circuit board through the I2C bus and are controlled by the main control board. Control circuit board to control. The information receiving channel of PPM remote control encoding (MEGA128 PPM Ecoder) is reserved on the main control circuit board, and the remote control instruction is decoded through the ICP (Input Signal Capture) channel of the processor, which is convenient for flight control debugging; the Zigbee module of wireless communication uses The cc2431 with positioning function is the core, and the main control is accepted through USART (Universal Synchronous/Asynchronous Receiver/Transmitter). The communication between different robot units has two options: Zigbee and CAN: Zigbee wireless networking with cc2431 as the core Effective communication can be provided before and after the physical connection is established between the robot monomers through self-assembly, and communication can be established through the physical connection of the CAN bus after the robot monomers are assembled.

所述的MEGA8的数量根据地面运动模块1上全向轮101的设置数量以及机器人单体的棱柱结构的侧面个数,可以进行调整,MEGA8也连结在机架7上。本实施例中,三个全向轮101,因此设置三个MEGA8,每个MEGA8负责控制一个全向轮,同时,每个MEGA8还分别用来负责控制与其相邻的两个侧面上的传感定位模块4中的LED组和模拟红外收发传感器404。The quantity of the MEGA8 can be adjusted according to the number ofomnidirectional wheels 101 on theground movement module 1 and the side numbers of the prism structure of the robot monomer, and the MEGA8 is also connected to theframe 7 . In this embodiment, there are threeomnidirectional wheels 101, so three MEGA8s are set, and each MEGA8 is responsible for controlling one omnidirectional wheel. The LED group and the analoginfrared transceiver sensor 404 in the positioning module 4 .

本发明的具有分布式和自组装特征的群体飞行机器人,将群体机器人“分布式”和“自组装”的特点引入飞行机器人的研究设计中,突破了传统群体机器人研究领域的限制,设计出一种能够自主对接成各种目标构型并以分布式策略控制飞行的群体飞行机器人;采用模块化的设计思想,机器人结构简单,成本低廉,对各种复杂环境和应用要求都有较强的适应性和扩展性。The distributed and self-assembled swarm flying robot of the present invention introduces the "distributed" and "self-assembled" characteristics of swarm robots into the research and design of flying robots, breaks through the limitations of the traditional swarm robot research field, and designs a A group flying robot that can autonomously dock into various target configurations and control the flight with a distributed strategy; adopts the modular design idea, the robot has a simple structure, low cost, and has a strong adaptability to various complex environments and application requirements and scalability.

以上所述,仅为本发明较佳的具体实施方式之一,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可以轻易想到的变化或替代,都应涵盖在本发明的保护范围之内。The above description is only one of the preferred specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Anyone familiar with the technical field can easily think of Any changes or substitutions shall fall within the protection scope of the present invention.

Claims (5)

Translated fromChinese
1.具有分布式和自组装特征的群体飞行机器人,其特征在于:所述的群体飞行机器人由至少三个机器人单体组成,并且机器人单体中要同时包括正桨机器人单体和反桨机器人单体,多个机器人单体之间能够自主对接组装,形成二维空间中任意构型结构的整体机器人,所述的机器人单体是多边形的中空柱体结构,所述的中空柱体结构是由外壳包覆机架形成的,每个机器人单体由地面运动模块、主动对接模块、被动对接模块、传感定位模块、飞行动力模块和控制模块组成,所述的地面运动模块、主动对接模块、被动对接模块、传感定位模块、飞行动力模块和控制模块均连接设置在机架上;1. A swarm flying robot with distributed and self-assembly features, characterized in that: the swarm flying robot is composed of at least three robot monomers, and the robot monomers will include both forward-propeller robot monomers and reverse-propeller robots A single body, a plurality of robot bodies can be autonomously docked and assembled to form an overall robot with any configuration structure in two-dimensional space. The robot body is a polygonal hollow cylinder structure, and the hollow cylinder structure is Formed by the outer shell covering the frame, each robot unit is composed of a ground movement module, an active docking module, a passive docking module, a sensor positioning module, a flight power module and a control module. The ground movement module, the active docking module , the passive docking module, the sensor positioning module, the flight power module and the control module are all connected and arranged on the frame;所述的地面运动模块主要由全向轮、直流电机和安装支座构成,所述的每个全向轮均与一个直流电机输出轴直接连接;所述的安装支座固定在机架底部圆周上,安装支座上开有电机安装槽,直流电机部分插入电机安装槽内并通过螺纹连接固定在安装支座上;The ground movement module is mainly composed of omnidirectional wheels, a DC motor and a mounting support, and each of the omnidirectional wheels is directly connected to an output shaft of a DC motor; the mounting support is fixed on the bottom circumference of the frame On the installation support, there is a motor installation groove, and the DC motor part is inserted into the motor installation groove and fixed on the installation support by screw connection;所述的主动对接模块和被动对接模块设置在机器人单体的侧面上,其中一个侧面上设置为主动对接模块,称为主动对接面,其余侧面上均设置为被动对接模块,称为被动对接面,所述的主动对接模块包括一对主动对接卡扣和一对对接卡槽,所述的被动对接模块是指与对接卡扣对应的对接卡槽,所述的对接卡扣与任意主动或者被动对接面上的对接卡槽相互配合卡紧实现两个机器人单体的连接;The active docking module and the passive docking module are arranged on the side of the robot monomer, one of the sides is set as the active docking module, which is called the active docking surface, and the other sides are set as the passive docking module, which is called the passive docking surface , the active docking module includes a pair of active docking buckles and a pair of docking slots, the passive docking module refers to the docking slots corresponding to the docking buckles, the docking buckle and any active or passive The docking slots on the docking surface cooperate with each other to realize the connection of two robot units;所述的传感定位模块主要包括一个CMOS摄像头、一个顶部LED、两个底部LED和两个模拟红外收发传感器,所述的CMOS摄像头安装在机器人单体的主动对接面上;所述的一个顶部LED和两个底部LED组成LED组,在机器人单体的每个侧面上都布置一个LED组,其中两个底部LED间隔布置在机器人单体的侧面上,顶部LED布置在靠近机体内侧的位置,高度比底部LED高,从主动对接面的正面观察,CMOS摄像头恰好位于三个以LED为顶点的三角形的几何中心位置;所述的模拟红外收发传感器也设置在机器人单体的每个侧面上,并且两个模拟红外收发传感器之间的水平距离大于所在侧面上的两个LED之间的距离;The sensor positioning module mainly includes a CMOS camera, a top LED, two bottom LEDs and two analog infrared transceiver sensors, and the CMOS camera is installed on the active docking surface of the robot monomer; The LED and the two bottom LEDs form an LED group, and one LED group is arranged on each side of the robot body, wherein the two bottom LEDs are arranged on the side of the robot body at intervals, and the top LED is arranged near the inside of the body. The height is higher than that of the bottom LED. Viewed from the front of the active docking surface, the CMOS camera is exactly located in the geometric center of the three triangles with the LED as the apex; the analog infrared transceiver sensor is also set on each side of the robot body. And the horizontal distance between the two analog infrared transceiver sensors is greater than the distance between the two LEDs on the side;所述的飞行动力模块主要由螺旋桨、驱动电机和气流涵道构成,其中所述的螺旋桨直接紧固安装在驱动电机的输出轴上;所述的驱动电机通过螺纹连接固定在底座的电机安装盘上,所述的底座是与机架连接固定的;所述的气流涵道是一个由EPP材料的机壳形成的圆形气流通道;The flight power module is mainly composed of a propeller, a drive motor and an airflow duct, wherein the propeller is directly fastened and installed on the output shaft of the drive motor; the drive motor is fixed on the motor mounting plate of the base through screw connections Above, the base is connected and fixed with the frame; the airflow duct is a circular airflow channel formed by the casing of EPP material;所述的控制模块的主控电路板采用STM32 F103ZCT6,设置在主动对接面所对应位置的机架上,地面运动模块、传感定位模块和飞行控制模块中的驱动电机各由一片MEGA8单片机控制,机器人单体的姿态测量由以STM32处理器为核心的IMU模块完成,所述的IMU模块为集成有三轴加速度计、三轴陀螺仪和三轴地磁传感器的九轴复合IMU模块,以上所述的IMU模块和MEGA8单片机控制板都挂靠在I2C总线上,通过I2C总线与主控电路板通信并由主控电路板来控制;所述的主控电路板上预留有PPM遥控编码的信息接收通道,通过处理器的ICP通道解码遥控指令,方便手动飞控调试;无线通信的Zigbee模块以具有定位功能的cc2431为核心,通过USART接受主控控制,不同的机器人单体之间的通信有Zigbee和CAN两种选择方式。The main control circuit board of the described control module adopts STM32 F103ZCT6, is arranged on the frame of the corresponding position of the active docking surface, and the drive motors in the ground motion module, sensor positioning module and flight control module are each controlled by a MEGA8 single-chip microcomputer, The attitude measurement of the robot monomer is completed by the IMU module with the STM32 processor as the core. The IMU module is a nine-axis composite IMU module integrated with a three-axis accelerometer, a three-axis gyroscope and a three-axis geomagnetic sensor. The above-mentioned Both the IMU module and the MEGA8 single-chip control board are attached to the I2C bus, communicate with the main control circuit board through the I2C bus and are controlled by the main control circuit board; the information receiving channel of the PPM remote control code is reserved on the main control circuit board , through the ICP channel of the processor to decode the remote control command, which is convenient for manual flight control debugging; the Zigbee module of wireless communication is based on the cc2431 with positioning function, and accepts the main control through USART. The communication between different robot monomers has Zigbee and CAN two options.2.根据权利要求1所述的具有分布式和自组装特征的群体飞行机器人,其特征在于:所述的顶部LED的高度高于CMOS摄像头的高度。2. The swarm flying robot with distributed and self-assembly features according to claim 1, characterized in that: the height of the top LED is higher than that of the CMOS camera.3.根据权利要求1所述的具有分布式和自组装特征的群体飞行机器人,其特征在于:所述的底部LED位置高于两个模拟红外收发传感器的位置,两个模拟红外收发传感器的位置高于对接卡扣或者对接卡槽的位置。3. The group flying robot with distributed and self-assembly features according to claim 1, characterized in that: the position of the LED at the bottom is higher than the positions of the two simulated infrared transceiver sensors, and the positions of the two simulated infrared transceiver sensors The position higher than the docking buckle or the docking slot.4.根据权利要求1所述的具有分布式和自组装特征的群体飞行机器人,其特征在于:所述的对接卡扣在高度设置上不同,相互错开布置。4. The swarm flying robot with distributed and self-assembled features according to claim 1, characterized in that: the docking buckles are arranged differently in height and arranged staggered from each other.5.根据权利要求1所述的具有分布式和自组装特征的群体飞行机器人,其特征在于:所述的对接卡扣结构具体为:两个对接卡扣分别通过两个转动副转动连接在机架上,两个对接卡扣上分别连结有驱动连杆,所述的两个驱动连杆的另一端连接在驱动盘上,所述的驱动盘位于两个对接卡扣中间的位置,驱动盘中心固定连接驱动电机的驱动轴,在驱动电机的驱动下,驱动轴带动驱动盘转动,进而通过驱动盘上的驱动连杆带动对接卡扣转动,实现对接卡扣与对接卡槽的开合。5. The group flying robot with distributed and self-assembly features according to claim 1, characterized in that: the described docking buckle structure is specifically: two docking buckles are respectively connected to the machine through two rotating pairs. On the frame, the two docking buckles are respectively connected with drive links, and the other ends of the two drive links are connected to the drive disk, and the drive disk is located in the middle of the two dock buckles, and the drive disk The center is fixedly connected to the drive shaft of the drive motor. Driven by the drive motor, the drive shaft drives the drive disc to rotate, and then drives the docking buckle to rotate through the drive link on the drive disc to realize the opening and closing of the docking buckle and the docking slot.
CN201110400157XA2011-12-052011-12-05Group flying robot with distribution and self-assembly characteristicsActiveCN102556341B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201110400157XACN102556341B (en)2011-12-052011-12-05Group flying robot with distribution and self-assembly characteristics

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201110400157XACN102556341B (en)2011-12-052011-12-05Group flying robot with distribution and self-assembly characteristics

Publications (2)

Publication NumberPublication Date
CN102556341Atrue CN102556341A (en)2012-07-11
CN102556341B CN102556341B (en)2013-11-13

Family

ID=46403301

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201110400157XAActiveCN102556341B (en)2011-12-052011-12-05Group flying robot with distribution and self-assembly characteristics

Country Status (1)

CountryLink
CN (1)CN102556341B (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102913275A (en)*2012-11-012013-02-06金纯�Search and rescue system based on crawler robots
CN103217700A (en)*2013-04-102013-07-24南昌大学GPS (global positioning system), IMU (inertial measurement unit), magnetometer and barometer combinational navigation system device
CN103353768A (en)*2013-06-182013-10-16陕西理工学院Three-quadrant sunshine tracking sensing apparatus
CN104089617A (en)*2014-07-312014-10-08四川阿泰因机器人智能装备有限公司Locating device and method for mobile robot
CN104590553A (en)*2015-01-052015-05-06惠州市加迈电器有限公司Rescue equipment
CN105644777A (en)*2016-03-172016-06-08中国直升机设计研究所Assembly type multi-rotor aerocraft
CN105799923A (en)*2016-04-282016-07-27南京信息工程大学Four-rotor aircraft-based carrying manipulator
CN106005361A (en)*2016-04-072016-10-12珠海市磐石电子科技有限公司Aviation power unit and flight frame and modularization aircraft thereof
CN106339553A (en)*2016-08-292017-01-18华东师范大学Method and system for reconstructing flight control of spacecraft
CN106354930A (en)*2016-08-292017-01-25华东师范大学Adaptive reconstruction method and system for spacecraft
CN106427436A (en)*2015-08-102017-02-22汤翠华Modularization all-terrain traffic device
CN106794895A (en)*2016-05-182017-05-31深圳市创客工场科技有限公司Multi-rotor aerocraft
CN106828896A (en)*2016-12-292017-06-13东莞产权交易中心Modularization concatenation formula unmanned aerial vehicle
CN107000837A (en)*2016-05-182017-08-01深圳市创客工场科技有限公司It is a kind of can ground running unmanned plane
CN107263457A (en)*2017-06-222017-10-20清华大学Split type robot and combinations thereof, separation method
CN107472521A (en)*2017-06-222017-12-15深圳大学The control method of more rotor flying platforms and more rotor flying platforms
CN107963204A (en)*2017-11-132018-04-27西北工业大学One kind is based on modular combination culvert type rotor wing unmanned aerial vehicle
CN108394242A (en)*2018-05-152018-08-14西南交通大学A kind of air-ground amphibious modularization robot
CN108557073A (en)*2018-02-062018-09-21雷安静A kind of duct unmanned aerial vehicle Systems Air performance method
CN108557072A (en)*2018-02-062018-09-21雷安静A kind of duct unmanned aerial vehicle air show system
CN108725765A (en)*2017-04-172018-11-02深圳市静享科技有限公司A kind of means of transport of extreme low-altitude safe flight
CN109334968A (en)*2018-02-062019-02-15酷黑科技(北京)有限公司 Ducted aircraft capable of aerial real-time reconfiguration, docking and separation method and system
CN109398704A (en)*2018-12-192019-03-01向杰A kind of urgent transport flight equipment
EP3450309A1 (en)*2017-08-282019-03-06Airbus Operations GmbHA coupling device for coupling modules with each other, aircraft comprising the coupling device, method for the coupling and decoupling of modules
CN109460060A (en)*2018-12-052019-03-12四川航天系统工程研究所It is unmanned to equip intelligent coordinated control assembly and control method
CN109703751A (en)*2019-02-222019-05-03中船重工(武汉)凌久信息技术有限公司 A military detection aircraft
CN110065071A (en)*2019-05-112019-07-30西安电子科技大学A kind of group's self assembly robot modeling method based on the description of three element configurations
CN112318504A (en)*2020-10-282021-02-05浙江树人学院(浙江树人大学) A multi-sensor industrial robot cooperative motion device and its control method
CN113165728A (en)*2019-12-032021-07-23向杰Honeycomb array multi-rotor composite part, rack and aircraft
CN115122306A (en)*2022-07-282022-09-30哈尔滨工业大学(深圳) Rotationally symmetrical reconfigurable robot platform and method therefor
CN116022324A (en)*2023-01-042023-04-28浙江大学Chain type autonomous splicing and reconstructing modularized aerial robot
CN118928802B (en)*2024-08-262025-10-17西北工业大学Reconfigurable modularized robot structure for airplane surface quality detection

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP3445651A1 (en)*2016-04-222019-02-27Gozluklu, BurakThree dimensional scalable and modular aircraft
CN111666215A (en)*2020-06-042020-09-15清华大学Desktop cluster hardware platform for distributed algorithm testing and human-computer interaction research

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2005125466A (en)*2003-10-272005-05-19Sharp Corp Group robot system, sensing robot included in group robot system, base station included in group robot system, and pheromone robot included in group robot system
CN101549494A (en)*2009-05-112009-10-07北京航空航天大学Monomer automatic transformable robot with self-assembly characteristic
CN101890724A (en)*2010-07-022010-11-24上海理工大学 SWARM robot module standard quick change interface
CN101913152A (en)*2010-07-232010-12-15上海理工大学Swarm-robot passive rotating assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2005125466A (en)*2003-10-272005-05-19Sharp Corp Group robot system, sensing robot included in group robot system, base station included in group robot system, and pheromone robot included in group robot system
CN101549494A (en)*2009-05-112009-10-07北京航空航天大学Monomer automatic transformable robot with self-assembly characteristic
CN101890724A (en)*2010-07-022010-11-24上海理工大学 SWARM robot module standard quick change interface
CN101913152A (en)*2010-07-232010-12-15上海理工大学Swarm-robot passive rotating assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏洪兴等: "模块化群体机器人构型分析与自组装控制", 《机械工程学报》, vol. 46, no. 13, 31 July 2010 (2010-07-31), pages 100 - 107*

Cited By (50)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102913275A (en)*2012-11-012013-02-06金纯�Search and rescue system based on crawler robots
CN102913275B (en)*2012-11-012014-09-17金纯�Search and rescue system based on crawler robots
CN103217700A (en)*2013-04-102013-07-24南昌大学GPS (global positioning system), IMU (inertial measurement unit), magnetometer and barometer combinational navigation system device
CN103353768A (en)*2013-06-182013-10-16陕西理工学院Three-quadrant sunshine tracking sensing apparatus
CN104089617A (en)*2014-07-312014-10-08四川阿泰因机器人智能装备有限公司Locating device and method for mobile robot
CN104089617B (en)*2014-07-312017-07-04四川阿泰因机器人智能装备有限公司A kind of mobile robot positioner and localization method
CN104590553A (en)*2015-01-052015-05-06惠州市加迈电器有限公司Rescue equipment
CN104590553B (en)*2015-01-052017-06-20泉州东行贸易有限公司Rescue aid
CN106427436A (en)*2015-08-102017-02-22汤翠华Modularization all-terrain traffic device
CN105644777A (en)*2016-03-172016-06-08中国直升机设计研究所Assembly type multi-rotor aerocraft
CN106005361A (en)*2016-04-072016-10-12珠海市磐石电子科技有限公司Aviation power unit and flight frame and modularization aircraft thereof
CN106005361B (en)*2016-04-072019-06-28珠海市磐石电子科技有限公司Aviation power unit and flight frame and modularization aircraft thereof
CN105799923A (en)*2016-04-282016-07-27南京信息工程大学Four-rotor aircraft-based carrying manipulator
CN106794895B (en)*2016-05-182020-04-17深圳市创客工场科技有限公司Multi-rotor aircraft
CN107000837B (en)*2016-05-182020-10-13深圳市创客工场科技有限公司Unmanned aerial vehicle capable of walking on ground
CN106794895A (en)*2016-05-182017-05-31深圳市创客工场科技有限公司Multi-rotor aerocraft
CN107000837A (en)*2016-05-182017-08-01深圳市创客工场科技有限公司It is a kind of can ground running unmanned plane
EP3459846A4 (en)*2016-05-182020-01-15Makeblock Co., Ltd. MULTIPLE ROTOR AIRCRAFT
WO2017197602A1 (en)*2016-05-182017-11-23深圳市创客工场科技有限公司Multi-rotor aircraft
US11027832B2 (en)2016-05-182021-06-08Makeblock Co., Ltd.Multi-rotor aircraft
CN106339553B (en)*2016-08-292019-06-21华东师范大学 A reconfigured flight control method and system for a space vehicle
CN106339553A (en)*2016-08-292017-01-18华东师范大学Method and system for reconstructing flight control of spacecraft
CN106354930A (en)*2016-08-292017-01-25华东师范大学Adaptive reconstruction method and system for spacecraft
CN106354930B (en)*2016-08-292019-06-21华东师范大学 Adaptive reconstruction method and system for a space vehicle
CN106828896A (en)*2016-12-292017-06-13东莞产权交易中心Modularization concatenation formula unmanned aerial vehicle
CN108725765A (en)*2017-04-172018-11-02深圳市静享科技有限公司A kind of means of transport of extreme low-altitude safe flight
CN107472521A (en)*2017-06-222017-12-15深圳大学The control method of more rotor flying platforms and more rotor flying platforms
CN107263457A (en)*2017-06-222017-10-20清华大学Split type robot and combinations thereof, separation method
EP3450309A1 (en)*2017-08-282019-03-06Airbus Operations GmbHA coupling device for coupling modules with each other, aircraft comprising the coupling device, method for the coupling and decoupling of modules
CN107963204A (en)*2017-11-132018-04-27西北工业大学One kind is based on modular combination culvert type rotor wing unmanned aerial vehicle
CN107963204B (en)*2017-11-132020-09-22西北工业大学Duct type rotor unmanned aerial vehicle based on modular combination
CN108557072A (en)*2018-02-062018-09-21雷安静A kind of duct unmanned aerial vehicle air show system
CN109334968A (en)*2018-02-062019-02-15酷黑科技(北京)有限公司 Ducted aircraft capable of aerial real-time reconfiguration, docking and separation method and system
WO2019154118A1 (en)*2018-02-062019-08-15酷黑科技(北京)有限公司Ducted aircraft capable of implementing aerial reconstruction in real time, and docking separation method and system
CN108557073A (en)*2018-02-062018-09-21雷安静A kind of duct unmanned aerial vehicle Systems Air performance method
CN108394242A (en)*2018-05-152018-08-14西南交通大学A kind of air-ground amphibious modularization robot
CN109460060A (en)*2018-12-052019-03-12四川航天系统工程研究所It is unmanned to equip intelligent coordinated control assembly and control method
CN109398704A (en)*2018-12-192019-03-01向杰A kind of urgent transport flight equipment
CN109703751A (en)*2019-02-222019-05-03中船重工(武汉)凌久信息技术有限公司 A military detection aircraft
CN109703751B (en)*2019-02-222022-01-28韩绍泽Military detection flight instrument
CN110065071A (en)*2019-05-112019-07-30西安电子科技大学A kind of group's self assembly robot modeling method based on the description of three element configurations
CN110065071B (en)*2019-05-112021-11-09西安电子科技大学Group self-assembly robot configuration method based on three-element configuration description
CN113165728A (en)*2019-12-032021-07-23向杰Honeycomb array multi-rotor composite part, rack and aircraft
CN112318504A (en)*2020-10-282021-02-05浙江树人学院(浙江树人大学) A multi-sensor industrial robot cooperative motion device and its control method
CN112318504B (en)*2020-10-282021-09-14浙江树人学院(浙江树人大学)Multi-sensor industrial robot cooperative motion device and control method thereof
CN115122306A (en)*2022-07-282022-09-30哈尔滨工业大学(深圳) Rotationally symmetrical reconfigurable robot platform and method therefor
CN115122306B (en)*2022-07-282024-05-10哈尔滨工业大学(深圳)Rotationally symmetrical reconfigurable robot platform and method thereof
CN116022324A (en)*2023-01-042023-04-28浙江大学Chain type autonomous splicing and reconstructing modularized aerial robot
CN116022324B (en)*2023-01-042024-04-12浙江大学 A modular aerial robot with chain-like autonomous splicing and reconstruction
CN118928802B (en)*2024-08-262025-10-17西北工业大学Reconfigurable modularized robot structure for airplane surface quality detection

Also Published As

Publication numberPublication date
CN102556341B (en)2013-11-13

Similar Documents

PublicationPublication DateTitle
CN102556341A (en)Group flying robot with distribution and self-assembly characteristics
CN205891228U (en)Flying robot
Dorigo et al.Swarmanoid: a novel concept for the study of heterogeneous robotic swarms
CN113844221B (en)Amphibious three-mode flight adsorption wall climbing robot and control method
CN104494818B (en)Four rotor amphibious robots
KR101627042B1 (en)Reconfigurable Aerial Vehicle Based on Multi-rotor
US8794564B2 (en)Vehicle capable of in-air and on-ground mobility
US8794566B2 (en)Vehicle capable of stabilizing a payload when in motion
CN103645740B (en)Based on the intelligent cruise robot of wireless charging odd number axle aircraft
CN112678169B (en)Multi-mode flying robot and mode changing method thereof
CN107804474B (en)Design method of complete machine system of multi-rotor flying robot with redundant mechanical arm
CN202071985U (en)Novel plane symmetrical layout type multi-rotor unmanned air vehicle
CN105857593B (en) A four-rotor multi-purpose flying robot
CN113342058B (en)Multi-purpose unmanned system with platura stereo structure
CN105966488A (en)Six-wheel-leg movable operation robot test platform
CN104875890B (en)Quadrotor
EP3649046A1 (en)Portable integrated uav
US11702203B2 (en)Group configurations for a modular drone system
CN216069511U (en)Amphibious three-modal flying adsorption wall-climbing robot
US10974825B2 (en)Aerial system including foldable frame architecture
CN105799923A (en)Four-rotor aircraft-based carrying manipulator
CN204515534U (en)Based on the miniature quadrotor that STM32 controls
CN111137082A (en)Single-duct land air cross-domain robot and control method thereof
CN106628126A (en)Unmanned aerial vehicle capable of taking off and landing on slope
CN105573316A (en)Autonomous-formation mobile swarm robot

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
TR01Transfer of patent right
TR01Transfer of patent right

Effective date of registration:20230801

Address after:Room 407, building 5, yard 98, lianshihu West Road, Mentougou District, Beijing 102300

Patentee after:AUBO (Beijing) Intelligent Technology Co.,Ltd.

Address before:100191 No. 37, Haidian District, Beijing, Xueyuan Road

Patentee before:BEIHANG University


[8]ページ先頭

©2009-2025 Movatter.jp