Movatterモバイル変換


[0]ホーム

URL:


CN102514008A - Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously - Google Patents

Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
Download PDF

Info

Publication number
CN102514008A
CN102514008ACN2011103716880ACN201110371688ACN102514008ACN 102514008 ACN102514008 ACN 102514008ACN 2011103716880 ACN2011103716880 ACN 2011103716880ACN 201110371688 ACN201110371688 ACN 201110371688ACN 102514008 ACN102514008 ACN 102514008A
Authority
CN
China
Prior art keywords
joint
layer
acceleration
quadratic programming
limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103716880A
Other languages
Chinese (zh)
Other versions
CN102514008B (en
Inventor
张雨浓
郭东生
李克讷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen UniversityfiledCriticalSun Yat Sen University
Priority to CN201110371688.0ApriorityCriticalpatent/CN102514008B/en
Publication of CN102514008ApublicationCriticalpatent/CN102514008A/en
Application grantedgrantedCritical
Publication of CN102514008BpublicationCriticalpatent/CN102514008B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Landscapes

Abstract

Translated fromChinese

本发明提供了一种冗余度机械臂的不同层性能指标同时优化方法,如下:根据所需要优化的角度层、速度层和加速度层性能指标,通过引入权值调节因子,建立相应的冗余度解析方案,所述的解析方案受约束于速度、加速度的雅可比矩阵等式、机械臂的动力学方程、关节角度极限、关节速度极限、关节加速度极限和关节力矩极限;利用上述三层性能指标的等效性及引入等效性参数,将冗余度解析方案转化为一个统一的二次型规划问题;将二次型规划问题运用二次型规划求解器进行求解;下位机控制器根据求解结果,驱动机械臂使其完成给定的末端任务。本发明通过引入权值调节因子,将不同层的性能指标实现同时优化,同时也使得机械臂完成给定的末端任务。

Figure 201110371688

The present invention provides a method for simultaneously optimizing the performance indexes of different layers of a redundant manipulator, as follows: according to the performance indexes of the angle layer, velocity layer and acceleration layer to be optimized, by introducing a weight adjustment factor, a corresponding redundancy is established Degree analysis scheme, the analysis scheme is constrained by the Jacobian matrix equation of velocity and acceleration, the dynamic equation of the manipulator, joint angle limit, joint velocity limit, joint acceleration limit and joint torque limit; using the above three layers of performance The equivalence of indicators and the introduction of equivalence parameters transform the redundancy analysis scheme into a unified quadratic programming problem; use the quadratic programming solver to solve the quadratic programming problem; the lower computer controller according to Solve the result and drive the robotic arm to complete the given end task. The present invention realizes simultaneous optimization of performance indexes of different layers by introducing weight adjustment factors, and also enables the mechanical arm to complete a given terminal task.

Figure 201110371688

Description

Translated fromChinese
一种冗余度机械臂的不同层性能指标同时优化方法A Simultaneous Optimization Method for Performance Indexes of Different Layers of a Redundant Manipulator

技术领域technical field

本发明涉及冗余度机械臂运动规划及控制领域,具体涉及一种冗余度机械臂的不同层性能指标同时优化方法。The invention relates to the field of motion planning and control of a redundant manipulator, in particular to a method for simultaneously optimizing performance indexes of different layers of a redundant manipulator.

背景技术Background technique

冗余度机械臂是一种自由度大于执行末端任务所需最少自由度的机械装置,其末端运动任务包括焊接、油漆、组装、挖掘和绘图等。冗余度机械臂操作的一个关键问题是冗余度解析问题(包括逆运动学问题和逆动力学问题),即,通过已知机械臂末端位姿来确定机械臂的关节角度问题。目前有效的冗余度解析方案都是在单一/同层(如速度层、加速度层或力矩层)上进行解析。然而,单一/同层的优化方案存在着不足:单纯的速度层解析方案难以考虑加速度极限和力矩极限;而单纯的加速度层和单纯的力矩层解析方案又容易出现速度发散和末态速度不为零的现象。A redundant manipulator is a mechanical device with more degrees of freedom than the minimum required to perform terminal tasks, such as welding, painting, assembly, digging, and drawing. A key problem in the operation of redundant manipulators is the problem of redundancy analysis (including inverse kinematics and inverse dynamics), that is, the problem of determining the joint angle of the manipulator by knowing the end pose of the manipulator. Currently effective redundancy analysis schemes are all analyzed on a single/same layer (such as velocity layer, acceleration layer or moment layer). However, there are deficiencies in the single/same-level optimization scheme: the pure velocity layer analysis scheme is difficult to consider the acceleration limit and torque limit; and the pure acceleration layer and pure torque layer analysis scheme is prone to velocity divergence and final state velocity. zero phenomenon.

发明内容Contents of the invention

本发明的目的在于提供一种操作方便、工作量小的冗余度机械臂的不同层性能指标同时优化方法。The purpose of the present invention is to provide a method for simultaneously optimizing performance indexes of different layers of a redundant mechanical arm with convenient operation and low workload.

为了实现上述发明目的,采用的技术方案如下。In order to realize the object of the above invention, the technical solution adopted is as follows.

一种冗余度机械臂的不同层性能指标同时优化方法,包括以下步骤:A method for simultaneously optimizing performance indexes of different layers of a redundant manipulator, comprising the following steps:

根据角度层、速度层和加速度层性能指标,通过引入权值调节因子,所述权值调节因子用于调节上述三层上需要优化的性能指标在总的优化指标中的权重或比重,建立相应的冗余度解析方案,所述的解析方案受约束于速度、加速度的雅可比矩阵等式、机械臂的动力学方程、关节角度极限、关节速度极限、关节加速度极限和关节力矩极限;According to the angle layer, speed layer and acceleration layer performance index, by introducing the weight adjustment factor, the weight adjustment factor is used to adjust the weight or proportion of the performance index to be optimized on the above three layers in the total optimization index, and establish a corresponding A redundancy analysis scheme, the analysis scheme is constrained by the Jacobian matrix equation of velocity and acceleration, the dynamic equation of the manipulator, the joint angle limit, the joint velocity limit, the joint acceleration limit and the joint torque limit;

利用角度层、速度层和加速度层性能指标的等效性及引入等效性参数,所述等效性参数用于推导不同层性能指标的等效性的过程中,通过设定该参数的值,使到两个在不同层上优化的指标就可以达到性能等效的目的或效果,从而可以将冗余度解析方案转化为一个统一的二次型规划问题;Utilize the equivalence of angle layer, speed layer and acceleration layer performance index and introduce equivalence parameter, described equivalence parameter is used in the process of deriving the equivalence of different layer performance index, by setting the value of this parameter , so that two indicators optimized on different layers can achieve the purpose or effect of equivalent performance, so that the redundancy analysis scheme can be transformed into a unified quadratic programming problem;

通过二次型规划求解器对二次型规划问题进行求解;The quadratic programming problem is solved by the quadratic programming solver;

下位机控制器根据二次型规划问题的求解结果,驱动机械臂使其完成给定的末端任务。The controller of the lower computer drives the manipulator to complete the given terminal task according to the solution result of the quadratic programming problem.

上述技术方案中,所述角度层、速度层和加速度层性能指标同时优化的冗余度解析方案设计为:In the above technical solution, the redundancy analysis scheme for simultaneous optimization of the performance indicators of the angle layer, the velocity layer and the acceleration layer is designed as:

最小化minimize

受约束于Jθ·=r·,Jθ··=r··-J·θ·,τ=Hθ··+c+g,θ-≤θ≤θ+θ·-≤θ·≤θ·+,θ··-≤θ··≤θ··+,τ-≤τ≤τ+subject to J θ &Center Dot; = r &Center Dot; , J θ &Center Dot; · = r · · - J · θ &Center Dot; , τ = h θ &Center Dot; &Center Dot; + c + g , θ ≤ θ ≤ θ+ , θ &Center Dot; - ≤ θ &Center Dot; ≤ θ &Center Dot; + , θ &Center Dot; &Center Dot; - ≤ θ &Center Dot; &Center Dot; ≤ θ &Center Dot; &Center Dot; + , τ- ≤ τ ≤ τ+ ;

其中,

Figure BDA0000110705830000027
Figure BDA0000110705830000028
分别对应于在角度层、速度层和加速度层上欲优化的性能指标,α1≥0、α2≥0和α3≥0为权值调节因子且保证两个或两个以上权值调节因子同时不为零;θ表示关节角度,表示关节速度,
Figure BDA00001107058300000210
表示关节加速度,τ表示关节力矩;等式约束对应于机械臂在速度层的末端运动轨迹,J表示机械臂的雅可比矩阵,
Figure BDA00001107058300000212
表示机械臂末端执行器的速度;等式约束对应于机械臂在加速度层的末端运动轨迹,
Figure BDA00001107058300000214
表示雅可比矩阵J的时间导数,
Figure BDA00001107058300000215
表示机械臂末端执行器的加速度;等式约束
Figure BDA00001107058300000216
为机械臂的动力学方程,H表示机械臂的惯性矩阵,c表示离心力变量,g表示重力变量;θ±和τ±表示关节角度极限、关节速度极限、关节加速度极限和关节力矩极限。in,
Figure BDA0000110705830000027
and
Figure BDA0000110705830000028
Corresponding to the performance indicators to be optimized on the angle layer, velocity layer and acceleration layer respectively, α1 ≥ 0, α2 ≥ 0 and α3 ≥ 0 are weight adjustment factors and two or more weight adjustment factors are guaranteed At the same time, it is not zero; θ represents the joint angle, represents the joint velocity,
Figure BDA00001107058300000210
Represents the joint acceleration, τ represents the joint torque; the equality constraint Corresponding to the end motion trajectory of the manipulator in the velocity layer, J represents the Jacobian matrix of the manipulator,
Figure BDA00001107058300000212
represents the velocity of the end effector of the manipulator; the equation constraint Corresponding to the end motion trajectory of the manipulator in the acceleration layer,
Figure BDA00001107058300000214
Denotes the time derivative of the Jacobian matrix J,
Figure BDA00001107058300000215
represents the acceleration of the end effector of the manipulator; the equation constraints
Figure BDA00001107058300000216
is the dynamic equation of the manipulator, H represents the inertia matrix of the manipulator, c represents the centrifugal force variable, g represents the gravity variable; θ± , and τ± denote joint angle limit, joint velocity limit, joint acceleration limit and joint torque limit.

所述利用角度层、速度层和加速度层性能指标的等效性和引入等效性参数,将不同层性能指标同时优化的冗余度解析方案转化为一个统一的二次型规划问题,其性能指标为xTOx/2+pTx,约束条件为Cx=d,Ax≤b,x-≤x≤x+,其中,只考虑不同层能量最小化方案时,当α3>0时,决策变量x表示关节加速度,Q可由权值调节因子α1,α2,α3对单位矩阵I、惯性矩阵H和H2的加权和获得,p可由权值调节因子α1,α2,α3及等效性参数对

Figure BDA0000110705830000031
c,g和H的加权和获得,C=J,
Figure BDA0000110705830000032
当α3=0时,决策变量x表示关节速度,Q可由权值调节因子α1,α2对单位矩阵I的加权和获得,p可由权值调节因子α1,θ和等效性参数的乘积获得,C=J,
Figure BDA0000110705830000033
上标T表示矩阵或向量的转置,Ax≤b用于关节力矩极限和无穷范数约束,x±表示的x上下限。Using the equivalence of the performance indicators of the angle layer, the velocity layer and the acceleration layer and introducing the equivalence parameters, the redundancy analysis scheme that optimizes the performance indicators of different layers at the same time is transformed into a unified quadratic programming problem, and its performance The index is xT Ox/2+pT x, and the constraints are Cx=d, Ax≤b, x- ≤x≤x+ , where, when only energy minimization schemes of different layers are considered, when α3 >0, The decision variable x represents the joint acceleration, Q can be obtained by the weighted sum of the weight adjustment factors α1 , α2 , α3 on the identity matrix I, inertia matrix H and H2 , p can be obtained by the weight adjustment factors α1 , α2 , α3 and equivalence parameter pairs
Figure BDA0000110705830000031
c, the weighted sum of g and H is obtained, C=J,
Figure BDA0000110705830000032
When α3 =0, the decision variable x represents the joint velocity, Q can be obtained by the weighted sum of the weight adjustment factors α1 , α2 on the identity matrix I, p can be obtained by the weight adjustment factors α1 , θ and the equivalent parameter The product is obtained, C=J,
Figure BDA0000110705830000033
The superscriptT indicates the transpose of a matrix or vector, Ax ≤ b is used for joint torque limits and infinite norm constraints, and x± indicates the upper and lower limits of x.

如果方案含有最小力性能指标时,根据α3取值的不同,决策变量x为上述对应变量加上辅助变量s的向量增广,辅助变量s是二次型规划问题中用于辅助对应最小力性能指标变量求解的变量,同时,它是一个非负数,并且取值为最小力性能指标中的最大分量的绝对值。系数矩阵Q和C以及系数向量p也对应加0进行增广。If the scheme contains the minimum force performance index, according to the value ofα3 , the decision variable x is the vector augmentation of the above corresponding variable plus the auxiliary variable s, and the auxiliary variable s is used to assist the corresponding minimum force in the quadratic programming problem The performance index variable is the variable to be solved. At the same time, it is a non-negative number, and its value is the absolute value of the largest component in the minimum force performance index. The coefficient matrices Q and C and the coefficient vector p are also correspondingly augmented by adding 0.

通过二次型规划求解器对二次型规划问题进行求解,具体为:将所述二次型规划问题进一步变换为分段线性投影方程,从而构造相应的二次型规划求解器(如,二次型规划数值算法)进行求解;The quadratic programming problem is solved by a quadratic programming solver, specifically: the quadratic programming problem is further transformed into a piecewise linear projection equation, thereby constructing a corresponding quadratic programming solver (such as a quadratic programming solver) Subtype programming numerical algorithm) to solve;

下位机控制器根据二次型规划问题的求解结果,驱动机械臂使其完成给定的末端任务。The controller of the lower computer drives the manipulator to complete the given terminal task according to the solution result of the quadratic programming problem.

本发明与先有技术相比,具有以下优点:Compared with the prior art, the present invention has the following advantages:

本发明能有效克服单一/同层优化方案存在的不足,提供了一种操作方便、工作量小的冗余度机械臂的不同层性能指标同时优化方法。The invention can effectively overcome the shortcomings of the single/same-layer optimization scheme, and provides a method for simultaneously optimizing performance indexes of different layers of a redundant mechanical arm with convenient operation and small workload.

附图说明Description of drawings

图1为本发明的流程图。Fig. 1 is a flowchart of the present invention.

具体实施方式Detailed ways

下面结合附图对本发明做进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings.

图1所示的一种冗余度机械臂的不同层性能指标同时优化方法主要由建立不同层性能指标同时优化的冗余度解析方案1、转为二次型规划问题2、二次型规划求解器3、下位机控制器4、冗余度机械臂5组成。A simultaneous optimization method for different layers of performance indicators of a redundant manipulator shown in Figure 1 is mainly composed of establishing a redundancy analysis scheme for simultaneous optimization of different layers of performance indicators 1, converting to a quadratic programming problem 2, quadratic programming Thesolver 3, the lower computer controller 4, and the redundant mechanical arm 5 are composed.

首先根据所需要优化的不同层性能指标,通过引入权值调节因子,建立相应的冗余度解析方案;然后利用不同层性能指标的等效性及引入等效性参数,将该方案转化为一个统一的二次型规划问题;从而构造相应的二次型规划求解器(如,二次型规划数值算法)来求解该问题;最后将求解结果用于驱动机械臂的各个关节电机使机械臂完成给定的末端任务。First, according to the performance indicators of different layers to be optimized, a corresponding redundancy analysis scheme is established by introducing weight adjustment factors; then, the scheme is transformed into a A unified quadratic programming problem; thereby constructing a corresponding quadratic programming solver (such as a quadratic programming numerical algorithm) to solve the problem; finally, the solution result is used to drive each joint motor of the manipulator to make the manipulator complete given terminal task.

根据所需要优化的不同层性能指标,通过引入权值调节因子,不同层性能指标同时优化的冗余度解析方案可设计为:According to the performance indicators of different layers that need to be optimized, by introducing weight adjustment factors, the redundancy analysis scheme for simultaneous optimization of performance indicators of different layers can be designed as:

最小化:

Figure BDA0000110705830000041
minimize:
Figure BDA0000110705830000041

约束条件:Jθ·=r·,---(2)Restrictions: J θ &Center Dot; = r &Center Dot; , - - - ( 2 )

JJθθ·&Center Dot;·&Center Dot;==rr·&Center Dot;·&Center Dot;--JJ·&Center Dot;θθ·&Center Dot;,,------((33))

ττ==Hhθθ·&Center Dot;·&Center Dot;++cc++gg,,------((44))

θ-≤θ≤θ+,(5)θ ≤ θ ≤ θ+ , (5)

θθ·&Center Dot;--≤≤θθ·&Center Dot;≤≤θθ·&Center Dot;++,,------((66))

θθ·&Center Dot;·&Center Dot;--≤≤θθ·&Center Dot;·&Center Dot;≤≤θθ·&Center Dot;·&Center Dot;++,,------((77))

τ-≤τ≤τ+,(8)τ- ≤ τ ≤ τ+ , (8)

其中,

Figure BDA0000110705830000052
分别对应于在角度层、速度层和加速度层上欲优化的性能指标,α1≥0、α2≥0和α3≥0为权值调节因子且保证两个或两个以上权值调节因子同时不为零;θ表示关节角度,
Figure BDA0000110705830000054
表示关节速度,
Figure BDA0000110705830000055
表示关节加速度,τ表示关节力矩;等式约束
Figure BDA0000110705830000056
对应于机械臂在速度层的末端运动轨迹,J表示雅可比矩阵,表示机械臂末端执行器的速度;等式约束
Figure BDA0000110705830000058
对应于机械臂在加速度层的末端运动轨迹,
Figure BDA0000110705830000059
表示雅可比矩阵J的时间导数,
Figure BDA00001107058300000510
表示机械臂末端执行器的加速度;等式约束
Figure BDA00001107058300000511
为机械臂的动力学方程,H表示机械臂的惯性矩阵,c表示离心力变量,g表示重力变量;θ±
Figure BDA00001107058300000512
和τ±分别表示关节角度极限、关节速度极限、关节加速度极限和关节力矩极限。in,
Figure BDA0000110705830000052
and Corresponding to the performance indicators to be optimized on the angle layer, velocity layer and acceleration layer respectively, α1 ≥ 0, α2 ≥ 0 and α3 ≥ 0 are weight adjustment factors and two or more weight adjustment factors are guaranteed At the same time, it is not zero; θ represents the joint angle,
Figure BDA0000110705830000054
represents the joint velocity,
Figure BDA0000110705830000055
Represents the joint acceleration, τ represents the joint torque; the equality constraint
Figure BDA0000110705830000056
Corresponding to the end motion trajectory of the manipulator in the velocity layer, J represents the Jacobian matrix, represents the velocity of the end effector of the manipulator; the equation constraint
Figure BDA0000110705830000058
Corresponding to the end motion trajectory of the manipulator in the acceleration layer,
Figure BDA0000110705830000059
Denotes the time derivative of the Jacobian matrix J,
Figure BDA00001107058300000510
represents the acceleration of the end effector of the manipulator; the equation constraints
Figure BDA00001107058300000511
is the dynamic equation of the manipulator, H represents the inertia matrix of the manipulator, c represents the centrifugal force variable, g represents the gravity variable; θ± ,
Figure BDA00001107058300000512
and τ± represent joint angle limit, joint velocity limit, joint acceleration limit and joint torque limit, respectively.

利用不同层性能指标等效性原理以及引入等效性参数,上述带物理约束的冗余度机械臂的不同层性能指标同时优化方法(1)-(8)便可描述为如下的二次型规划问题:Using the principle of equivalence of performance indicators of different layers and introducing equivalence parameters, the simultaneous optimization method (1)-(8) of the performance indicators of different layers of the above-mentioned redundant manipulator with physical constraints can be described as the following quadratic form Planning questions:

最小化:xTQx/2+pTx,(9)Minimize: xT Qx/2+pT x, (9)

约束条件:Cx=d,(10)Constraints: Cx=d, (10)

Ax≤b,(11)Ax≤b, (11)

x-≤x≤x+,(12)x ≤ x ≤ x+ , (12)

其中,只考虑不同层能量最小化方案时,当α3>0时,决策变量x表示关节加速度,Q可由权值调节因子α1,α2,α3对单位矩阵I、惯性矩阵H和H2的加权和获得,p可由权值调节因子α1,α2,α3及等效性参数对θ,c,g和H的加权和获得,C=J,

Figure BDA0000110705830000061
当α3=0时,决策变量x表示关节速度,Q可由权值调节因子α1,α2对单位矩阵I的加权和获得,p可由权值调节因子α1,θ和等效性参数的乘积获得,C=J,
Figure BDA0000110705830000062
如果方案含有最小力性能指标时,根据α3取值的不同,决策变量x为上述对应变量加上辅助变量s的向量增广,系数矩阵Q和C以及系数向量p也对应加0进行增广。上标T表示矩阵或向量的转置,Ax≤b用于关节力矩极限和无穷范数约束,x±表示x的上下限。为了容易理解,考虑一个性能指标为“最小化
Figure BDA0000110705830000063
”且受约束于(2)-(8)的冗余度解析方案,其中α2>0和α3>0,||·||2表示向量的二范数,利用不同层性能指标等效性及引入等效性参数,可将该方案转化为如(9)-(12)所描述的二次型规划问题,且相应的参数定义如下:Among them, when only the energy minimization schemes of different layers are considered, when α3 >0, the decision variable x represents the joint acceleration, and Q can be adjusted by the weight adjustment factors α1 , α2 , α3 on the identity matrix I, inertia matrices H and H2 , p can be obtained by the weighted sum of weight adjustment factors α1 , α2 , α3 and equivalent parameters to θ, c, g and H, C=J,
Figure BDA0000110705830000061
When α3 =0, the decision variable x represents the joint velocity, Q can be obtained by the weighted sum of the weight adjustment factors α1 , α2 on the identity matrix I, p can be obtained by the weight adjustment factors α1 , θ and the equivalent parameter The product is obtained, C=J,
Figure BDA0000110705830000062
If the scheme contains the minimum force performance index, according to the different values of α3 , the decision variable x is the vector augmentation of the above corresponding variable plus the auxiliary variable s, and the coefficient matrices Q and C and the coefficient vector p are correspondingly augmented with 0 . The superscriptT indicates the transpose of a matrix or vector, Ax ≤ b is used for joint torque limits and infinite norm constraints, and x± indicates the upper and lower limits of x. For ease of understanding, consider a performance metric as "minimizing
Figure BDA0000110705830000063
” and is constrained by the redundancy analysis scheme of (2)-(8), where α2 >0 and α3 >0, ||·|| and introducing equivalence parameters, the scheme can be transformed into a quadratic programming problem as described in (9)-(12), and the corresponding parameters are defined as follows:

x=θ··,Q=(α23)I,p=α2λθ·,x = θ &Center Dot; &Center Dot; , Q=(α23 )I, p = α 2 λ θ · ,

C=J,d=r··-J·θ·,A=H-H,b=τ+-c-gc+g-τ-,C=J, d = r · · - J · θ · , A = h - h , b = τ + - c - g c + g - τ - ,

xx--==maxmax{{κκpp((θθ--++υυ--θθ)),,κκVV((θθ··----θθ··)),,θθ·&Center Dot;·&Center Dot;--}},,xx++==minmin{{κκpp((θθ++--υυ--θθ)),,κκVV((θθ··++--θθ·&Center Dot;)),,θθ·&Center Dot;·&Center Dot;++}},,

其中,I表示单位矩阵,等效性参数λ为正数且远大于0,关节极限转换参数κp>0和κv>0,关节极限转换裕量υ>0。Among them, I represents the identity matrix, the equivalence parameter λ is a positive number and much greater than 0, the joint limit conversion parameters κp >0 and κv >0, and the joint limit conversion margin υ>0.

并且,上述的二次型规划问题(9)-(12)等价于如下的分段线性投影方程:Moreover, the above quadratic programming problems (9)-(12) are equivalent to the following piecewise linear projection equations:

PΩ(y-(My+q))-y=0,(13)PΩ (y-(My+q))-y=0, (13)

其中PΩ(·)表示分段线性投影算子。分段线性投影方程(13)中的原对偶决策变向量y,增广系数矩阵M和向量q分别定义如下:where PΩ (·) represents the piecewise linear projection operator. The original dual decision variable vector y, the augmented coefficient matrix M and the vector q in the piecewise linear projection equation (13) are respectively defined as follows:

ythe y==xxuuvv,,Mm==QQ--CCTTAATTCC0000--AA0000,,qq==pp--ddbb,,

其中,对偶决策变量u和v分别对应于等式约束(10)和不等式约束(11)。对于上述的分段线性投影方程(13)和二次型规划问题(9)-(12),可采用如下的二次型规划数值算法(即,二次型规划求解器)来求解:Among them, the dual decision variables u and v correspond to equality constraints (10) and inequality constraints (11), respectively. For the above-mentioned piecewise linear projection equation (13) and quadratic programming problems (9)-(12), the following quadratic programming numerical algorithm (ie, quadratic programming solver) can be used to solve:

e(yk)=yk-PΩ(yk-(Myk+q)),e(yk )=yk -PΩ (yk -(Myk +q)),

yk+1=yk-ρ(yk)φ(yk),yk+1 = yk -ρ(yk )φ(yk ),

φ(yk)=(MT+I)e(yk),φ(yk )=(MT +I)e(yk ),

ρρ((ythe ykk))==||||ee((ythe ykk))||||2222//||||φφ((ythe ykk))||||2222,,

其中,迭代次数k=0,1,2,...。给定初始值y0,通过该算法的不断迭代,便可得到分段线性投影方程(13)的解,从而得到二次型规划问题(9)-(12)的最优解,也即不同层性能指标同时优化的冗余度解析方案(1)-(8)的最优解。Wherein, the number of iterations k=0, 1, 2, . . . Given the initial value y0 , through continuous iteration of the algorithm, the solution of piecewise linear projection equation (13) can be obtained, thereby obtaining the optimal solution of quadratic programming problems (9)-(12), that is, different The optimal solution of redundancy resolution schemes (1)-(8) with simultaneous optimization of layer performance indicators.

通过二次型规划求解器得到该二次型规划问题的解后,再将求解结果传递给下位机控制器驱动机械臂的运动,从而使得机械臂完成给定的末端任务。After obtaining the solution of the quadratic programming problem through the quadratic programming solver, the solution result is passed to the lower computer controller to drive the movement of the manipulator, so that the manipulator can complete the given end task.

Claims (6)

1. A method for simultaneously optimizing performance indexes of different layers of a redundant manipulator is characterized by comprising the following steps:
according to performance indexes of an angle layer, a speed layer and an acceleration layer, establishing a corresponding redundancy analysis scheme by introducing weight adjusting factors, wherein the redundancy analysis scheme is restricted by a Jacobian matrix equation of speed and acceleration, a kinetic equation of a mechanical arm, a joint angle limit, a joint speed limit, a joint acceleration limit and a joint moment limit;
converting the redundancy resolution scheme into a uniform quadratic programming problem by utilizing the equivalence of performance indexes of an angle layer, a speed layer and an acceleration layer and introducing equivalence parameters;
solving the quadratic programming problem through a quadratic programming solver;
and the lower computer controller drives the mechanical arm to complete a given end task according to the solution result of the quadratic programming problem.
2. The method of claim 1, wherein the redundancy resolution scheme for simultaneously optimizing the performance indexes of different layers of the manipulator is designed as follows:
minimization
Wherein
Figure 2011103716880100001DEST_PATH_IMAGE004
Figure 2011103716880100001DEST_PATH_IMAGE006
And
Figure 2011103716880100001DEST_PATH_IMAGE008
respectively corresponding to performance indexes to be optimized on an angle layer, a speed layer and an acceleration layer,
Figure 2011103716880100001DEST_PATH_IMAGE010
Figure 2011103716880100001DEST_PATH_IMAGE012
and
Figure 2011103716880100001DEST_PATH_IMAGE014
is a weight value adjustment factorTwo or more weight value adjusting factors are not zero at the same time;
Figure 2011103716880100001DEST_PATH_IMAGE016
the angle of the joint is represented by,
Figure DEST_PATH_IMAGE018
the velocity of the joint is represented by,the acceleration of the joint is represented by,representing the joint moment.
3. The method of simultaneously optimizing performance indexes of different layers of a redundant manipulator according to claim 2, wherein the redundancy resolution scheme for simultaneously optimizing performance indexes of an angle layer, a velocity layer and an acceleration layer is constrained by:
Figure DEST_PATH_IMAGE024
Figure DEST_PATH_IMAGE026
Figure DEST_PATH_IMAGE028
Figure DEST_PATH_IMAGE030
Figure DEST_PATH_IMAGE032
Figure DEST_PATH_IMAGE034
Figure DEST_PATH_IMAGE036
;
wherein the equality constrains
Figure 635632DEST_PATH_IMAGE024
Corresponding to the motion track of the mechanical arm at the tail end of the speed layer,
Figure DEST_PATH_IMAGE038
a jacobian matrix representing the mechanical arm,
Figure DEST_PATH_IMAGE040
representing a velocity of the end effector of the robotic arm; constraint of equality
Figure 615089DEST_PATH_IMAGE026
Corresponding to the motion track of the mechanical arm at the tail end of the acceleration layer,
Figure DEST_PATH_IMAGE042
representing a Jacobian matrix
Figure 204946DEST_PATH_IMAGE038
The time derivative of (a) of (b),
Figure DEST_PATH_IMAGE044
representing an acceleration of the end effector of the robotic arm; constraint of equality
Figure 662472DEST_PATH_IMAGE028
Is a kinetic equation of the mechanical arm,
Figure DEST_PATH_IMAGE046
a matrix of inertia representing the arm of the robot,which represents a variable of the centrifugal force,
Figure DEST_PATH_IMAGE050
to indicate gravityA variable;
Figure DEST_PATH_IMAGE052
Figure DEST_PATH_IMAGE054
Figure DEST_PATH_IMAGE056
and
Figure DEST_PATH_IMAGE058
respectively representing joint angle limit, joint velocity limit, joint acceleration limit and joint moment limit.
4. The method of claim 3, wherein the quadratic programming problem has a performance index of
Figure DEST_PATH_IMAGE060
With the constraint condition of
Figure DEST_PATH_IMAGE062
Figure DEST_PATH_IMAGE066
Wherein only different layer energy minimization schemes are considered when
Figure DEST_PATH_IMAGE068
Time, decision variables
Figure DEST_PATH_IMAGE070
The acceleration of the joint is represented by,
Figure DEST_PATH_IMAGE072
adjusted by weightFactor(s)
Figure DEST_PATH_IMAGE074
Figure DEST_PATH_IMAGE076
Figure DEST_PATH_IMAGE078
For unit matrixInertia matrix
Figure 975379DEST_PATH_IMAGE046
And
Figure DEST_PATH_IMAGE082
the weighted sum of (a) and (b) is obtained,
Figure DEST_PATH_IMAGE084
adjusting the factor by the weight
Figure 673208DEST_PATH_IMAGE074
Figure 139142DEST_PATH_IMAGE078
And equivalence parameter pairs
Figure 621070DEST_PATH_IMAGE018
Figure 614433DEST_PATH_IMAGE048
Figure 431080DEST_PATH_IMAGE050
And
Figure 168092DEST_PATH_IMAGE046
the weighted sum of (a) and (b) is obtained,
Figure DEST_PATH_IMAGE086
Figure DEST_PATH_IMAGE088
(ii) a When in useTime, decision variablesThe velocity of the joint is represented by,adjusting the factor by the weight
Figure 71870DEST_PATH_IMAGE074
,
Figure 346993DEST_PATH_IMAGE076
For unit matrix
Figure 52781DEST_PATH_IMAGE080
The weighted sum of (a) and (b) is obtained,adjusting the factor by the weight
Figure 929919DEST_PATH_IMAGE074
Figure 8733DEST_PATH_IMAGE016
And an equivalence parameter, and obtaining the product of the equivalence parameter,
Figure 569027DEST_PATH_IMAGE086
Figure DEST_PATH_IMAGE092
(ii) a Upper label
Figure DEST_PATH_IMAGE094
Representing a transpose of a matrix or a vector,
Figure 153724DEST_PATH_IMAGE064
for joint moment limit and infinite norm constraints,
Figure DEST_PATH_IMAGE096
to represent
Figure 166679DEST_PATH_IMAGE070
The upper and lower limits of (2).
5. The method of claim 4, wherein the simultaneous optimization of performance indexes of different layers of the redundant manipulator is performed according to the minimum force performance index if the simultaneous optimization of performance indexes of different layers includes the minimum force performance index
Figure 49184DEST_PATH_IMAGE078
Difference in value, decision variable
Figure 214718DEST_PATH_IMAGE070
Adding auxiliary variables to the above-mentioned correspondent variables
Figure DEST_PATH_IMAGE098
Vector augmentation of, the auxiliary variable
Figure 219583DEST_PATH_IMAGE098
The value is the absolute value of the maximum component in the minimum force performance index, and the coefficient matrix
Figure 657517DEST_PATH_IMAGE072
And
Figure DEST_PATH_IMAGE100
and coefficient vector
Figure 888254DEST_PATH_IMAGE084
Also correspondingly addAnd (4) carrying out augmentation.
6. The method for simultaneously optimizing performance indexes of different layers of a redundant manipulator according to claims 1 to 5, wherein a quadratic programming problem is solved by a quadratic programming solver, specifically: and further transforming the quadratic programming problem into a piecewise linear projection equation, thereby constructing a corresponding quadratic programming solver for solving.
CN201110371688.0A2011-11-212011-11-21Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneouslyExpired - Fee RelatedCN102514008B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201110371688.0ACN102514008B (en)2011-11-212011-11-21Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201110371688.0ACN102514008B (en)2011-11-212011-11-21Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously

Publications (2)

Publication NumberPublication Date
CN102514008Atrue CN102514008A (en)2012-06-27
CN102514008B CN102514008B (en)2014-03-19

Family

ID=46285212

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201110371688.0AExpired - Fee RelatedCN102514008B (en)2011-11-212011-11-21Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously

Country Status (1)

CountryLink
CN (1)CN102514008B (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103144111A (en)*2013-02-262013-06-12中山大学QP unified and coordinated motion describing and programming method for movable manipulator
CN103231381A (en)*2013-05-032013-08-07中山大学Novel acceleration layer repetitive motion planning method for redundant manipulator
CN104760041A (en)*2015-03-192015-07-08中山大学Barrier escaping motion planning method based on impact degree
CN105563490A (en)*2016-03-032016-05-11吉首大学Fault tolerant motion planning method for obstacle avoidance of mobile manipulator
CN106625680A (en)*2017-02-072017-05-10华侨大学Redundant manipulator acceleration layer noise-tolerant control method
CN106842907A (en)*2017-02-162017-06-13香港理工大学深圳研究院A kind of cooperative control method and device of multi-redundant mechanical arm system
CN108098777A (en)*2018-01-122018-06-01华侨大学 A control method for moment layer repetitive motion of redundant manipulator
CN109249388A (en)*2017-07-142019-01-22欧姆龙株式会社Movement generation method, motion generation device, motion generation system and storage medium
CN110014427A (en)*2019-03-262019-07-16华侨大学 A high-precision motion planning method for redundant manipulators based on pseudo-inverse
CN110308727A (en)*2019-07-122019-10-08沈阳城市学院A kind of control method for eliminating biped robot's upper body posture shaking
CN110561440A (en)*2019-09-272019-12-13华侨大学multi-objective planning method for acceleration layer of redundant manipulator
CN110900605A (en)*2019-12-022020-03-24浙江大学Multi-constraint machining optimization method for coordinated mechanical arm based on speed reconfiguration
CN112720455A (en)*2020-12-012021-04-30深圳众为兴技术股份有限公司Optimal joint acceleration and deceleration calculation method and device and application thereof
CN114714351A (en)*2022-04-062022-07-08上海工程技术大学 Anti-saturation target tracking control method and control system for mobile manipulator
CN116834008A (en)*2023-07-192023-10-03广东技术师范大学Different-layer motion control method of redundancy mechanical arm
CN116945178A (en)*2023-08-082023-10-27海南大学 Neurodynamic posture adjustment method of acceleration layer for three-wheeled omnidirectional mobile manipulator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105538327A (en)*2016-03-032016-05-04吉首大学Redundant manipulator repeated motion programming method based on abrupt acceleration

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4999553A (en)*1989-12-281991-03-12The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod and apparatus for configuration control of redundant robots
JPH09128024A (en)*1995-10-271997-05-16Fanuc LtdMethod for optimizing operation program of robot having redundant axis
JP2007136590A (en)*2005-11-162007-06-07Kawasaki Heavy Ind Ltd Control device and control method for redundant robot having redundant joints
CN101804627A (en)*2010-04-022010-08-18中山大学Redundant manipulator motion planning method
CN101927495A (en)*2010-08-252010-12-29中山大学 A repetitive motion planning method for a redundant manipulator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4999553A (en)*1989-12-281991-03-12The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod and apparatus for configuration control of redundant robots
JPH09128024A (en)*1995-10-271997-05-16Fanuc LtdMethod for optimizing operation program of robot having redundant axis
JP2007136590A (en)*2005-11-162007-06-07Kawasaki Heavy Ind Ltd Control device and control method for redundant robot having redundant joints
CN101804627A (en)*2010-04-022010-08-18中山大学Redundant manipulator motion planning method
CN101927495A (en)*2010-08-252010-12-29中山大学 A repetitive motion planning method for a redundant manipulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张雨浓 等: "基于新型性能指标的冗余度机械臂重复运动规划之方案分析与验证", 《武汉理工大学学报》*

Cited By (26)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103144111A (en)*2013-02-262013-06-12中山大学QP unified and coordinated motion describing and programming method for movable manipulator
CN103144111B (en)*2013-02-262015-11-04中山大学 A unified and coordinated quadratic planning method for motion description and planning of mobile manipulators
CN103231381A (en)*2013-05-032013-08-07中山大学Novel acceleration layer repetitive motion planning method for redundant manipulator
CN103231381B (en)*2013-05-032015-10-21中山大学A kind of novel acceleration layer repetitive motion planning method of redundancy mechanical arm
CN104760041A (en)*2015-03-192015-07-08中山大学Barrier escaping motion planning method based on impact degree
CN104760041B (en)*2015-03-192016-08-03中山大学A kind of Obstacle avoidance motion planning method based on impact degree
CN105563490A (en)*2016-03-032016-05-11吉首大学Fault tolerant motion planning method for obstacle avoidance of mobile manipulator
CN106625680A (en)*2017-02-072017-05-10华侨大学Redundant manipulator acceleration layer noise-tolerant control method
CN106625680B (en)*2017-02-072019-07-09华侨大学A kind of redundancy mechanical arm acceleration layer appearance is made an uproar control method
CN106842907A (en)*2017-02-162017-06-13香港理工大学深圳研究院A kind of cooperative control method and device of multi-redundant mechanical arm system
CN109249388A (en)*2017-07-142019-01-22欧姆龙株式会社Movement generation method, motion generation device, motion generation system and storage medium
CN108098777A (en)*2018-01-122018-06-01华侨大学 A control method for moment layer repetitive motion of redundant manipulator
CN110014427A (en)*2019-03-262019-07-16华侨大学 A high-precision motion planning method for redundant manipulators based on pseudo-inverse
CN110014427B (en)*2019-03-262021-11-02华侨大学 A high-precision motion planning method for redundant manipulators based on pseudo-inverse
CN110308727A (en)*2019-07-122019-10-08沈阳城市学院A kind of control method for eliminating biped robot's upper body posture shaking
CN110561440B (en)*2019-09-272022-06-07华侨大学Multi-objective planning method for acceleration layer of redundant manipulator
CN110561440A (en)*2019-09-272019-12-13华侨大学multi-objective planning method for acceleration layer of redundant manipulator
CN110900605A (en)*2019-12-022020-03-24浙江大学Multi-constraint machining optimization method for coordinated mechanical arm based on speed reconfiguration
CN112720455A (en)*2020-12-012021-04-30深圳众为兴技术股份有限公司Optimal joint acceleration and deceleration calculation method and device and application thereof
CN112720455B (en)*2020-12-012022-05-10深圳众为兴技术股份有限公司Optimal joint acceleration and deceleration calculation method and device and application thereof
CN114714351A (en)*2022-04-062022-07-08上海工程技术大学 Anti-saturation target tracking control method and control system for mobile manipulator
CN114714351B (en)*2022-04-062023-06-23上海工程技术大学Anti-saturation target tracking control method and control system for mobile mechanical arm
CN116834008A (en)*2023-07-192023-10-03广东技术师范大学Different-layer motion control method of redundancy mechanical arm
CN116834008B (en)*2023-07-192024-12-27广东技术师范大学 A method for controlling different levels of motion of redundant manipulators
CN116945178A (en)*2023-08-082023-10-27海南大学 Neurodynamic posture adjustment method of acceleration layer for three-wheeled omnidirectional mobile manipulator
CN116945178B (en)*2023-08-082025-09-12海南大学 A neural dynamics posture adjustment method based on the acceleration layer of a three-wheeled omnidirectional mobile manipulator

Also Published As

Publication numberPublication date
CN102514008B (en)2014-03-19

Similar Documents

PublicationPublication DateTitle
CN102514008B (en)Method for optimizing performance indexes of different layers of redundancy mechanical arm simultaneously
CN101927495B (en)Repetitive motion planning method for redundant manipulator
CN101804627B (en)Redundant manipulator motion planning method
CN110561440B (en)Multi-objective planning method for acceleration layer of redundant manipulator
CN106426164B (en) A multi-index coordinated motion planning method for redundant dual manipulators
MillerOptimal design and modeling of spatial parallel manipulators
CN104760041B (en)A kind of Obstacle avoidance motion planning method based on impact degree
CN108527372B (en) An adaptive control method for robot joints with variable stiffness series elastic actuators
CN104908040B (en)A kind of fault-tolerant planing method of redundancy mechanical arm acceleration layer
CN107891424A (en)A kind of finite time Neural network optimization for solving redundant mechanical arm inverse kinematics
CN106625680B (en)A kind of redundancy mechanical arm acceleration layer appearance is made an uproar control method
CN110103225A (en)A kind of the mechanical arm repeating motion control method and device of data-driven
CN102207988A (en)Efficient dynamic modeling method for multi-degree of freedom (multi-DOF) mechanical arm
CN107962566A (en)A kind of mobile mechanical arm repetitive motion planning method
CN105538327A (en)Redundant manipulator repeated motion programming method based on abrupt acceleration
CN104070525B (en)For the method for space manipulator continuous trajectory tracking
CN105159096A (en)Redundancy space manipulator joint torque optimization method based on particle swarm algorithm
CN109129486B (en)Redundant manipulator repetitive motion planning method for suppressing periodic noise
CN103235513A (en)Genetic-algorithm-based trajectory planning optimization method for mobile mechanical arm
CN105598984B (en)A kind of initial method of redundancy mechanical arm acceleration layer motion planning
CN103144111A (en)QP unified and coordinated motion describing and programming method for movable manipulator
CN105988366A (en)Space robot minimal base disturbance trajectory planning method
CN108098777B (en)Redundant manipulator moment layer repetitive motion control method
CN103984230A (en)Zero-disturbance optimization control method for base of space manipulator
CN107169196A (en)Dynamic modeling method of the robot for space from end effector to pedestal

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20140319

Termination date:20181121

CF01Termination of patent right due to non-payment of annual fee

[8]ページ先頭

©2009-2025 Movatter.jp