



技术领域technical field
本发明涉及一种脑电信号的处理和分析方法,特别是涉及一种基于有效时间序列和电极重组的脑电信号分类系统和方法。The invention relates to a method for processing and analyzing electroencephalogram signals, in particular to an electroencephalogram signal classification system and method based on effective time series and electrode reorganization.
背景技术Background technique
在当今这个人际关系日益紧密的社会,正确地识别他人的表情有重要的生存意义。这不仅可以使人们及时调节自己的行为来适应环境,而且还能有效地避免不必要的危险,有利于社会交往和环境适应。同时,对正常人的研究也可为临床诊断和治疗提供参考,用于预防和治疗工作。目前,人脸表情识别技术主要的应用领域包括人机交互、安全、机器人制造、医疗、通信和汽车领域等。In today's society with increasingly close interpersonal relationships, it is of great survival significance to correctly recognize other people's expressions. This not only enables people to adjust their behavior in time to adapt to the environment, but also effectively avoids unnecessary dangers and is conducive to social interaction and environmental adaptation. At the same time, research on normal people can also provide references for clinical diagnosis and treatment, and can be used for prevention and treatment. At present, the main application fields of facial expression recognition technology include human-computer interaction, security, robot manufacturing, medical treatment, communication and automobile fields.
在有关表情识别的文献中,主要通过图像表情识别和语音信号分析来判断表情,但这些表情评估的传统方法具有主观性,很容易被他人所否认。然而另一种可用的表情识别办法是生理脑电信号分析,它是一个更直观、有效的表情识别手段,因为表情状态本来就是由神经系统的活动来反映的。In the literature on expression recognition, expressions are mainly judged by image expression recognition and speech signal analysis, but these traditional methods of expression evaluation are subjective and easily denied by others. However, another available expression recognition method is physiological EEG signal analysis, which is a more intuitive and effective means of expression recognition, because the expression state is originally reflected by the activity of the nervous system.
发明内容Contents of the invention
本发明的目的在于针对表情刺激产生的脑电信号,提出一种基于有效时间序列和电极重组的脑电信号分类系统和方法。以避免特征的主观性,通过采用并行计算策略提高执行效率。The object of the present invention is to propose an EEG signal classification system and method based on effective time series and electrode reorganization for EEG signals generated by expression stimulation. In order to avoid the subjectivity of features, the execution efficiency is improved by adopting a parallel computing strategy.
本发明是采用以下技术手段实现的:The present invention is realized by adopting the following technical means:
一种基于有效时间序列和电极重组的脑电信号分类系统,包括:脑电信号采集模块、脑电信号预处理模块、脑电信号特征选择模块、脑电信号表情分类实施模块。An EEG signal classification system based on effective time series and electrode reorganization, including: EEG signal acquisition module, EEG signal preprocessing module, EEG signal feature selection module, EEG signal expression classification implementation module.
脑电信号信息采集模块,采集被试在高兴、中性和悲伤的不同表情刺激下的原始脑电信号,并将采集到的脑电信号传递给脑电信号预处理模块;脑电信号预处理模块将采集到的原始脑电信号进行去噪(噪声包括水平眼电和垂直眼电),之后将纯净的脑电信号转换成全局场强送入脑电特征选择模块;脑电信号特征选择模块,通过全局场强脑电信号的峰值特征确定脑电信号的有效时间区域,在对有效时间区域上的脑电信号进行电极重组,将重组后的脑电信号降维后视为脑电信号表情识别的最终特征,并将此特征传送到脑电信号表情分类实施模块;脑电信号表情分类实施模块用经典分类算法(Fisher分类器)进行脑电信号分类。The EEG signal information acquisition module collects the original EEG signals of the subjects under the stimulation of different expressions of happiness, neutrality and sadness, and transmits the collected EEG signals to the EEG signal preprocessing module; EEG signal preprocessing The module denoises the collected original EEG signals (noise includes horizontal and vertical EEG signals), and then converts the pure EEG signals into global field strength and sends them to the EEG feature selection module; the EEG signal feature selection module , the effective time area of the EEG signal is determined by the peak characteristics of the global field strength EEG signal, and the electrode reorganization is performed on the EEG signal in the effective time area, and the reorganized EEG signal is regarded as the expression of the EEG signal after dimensionality reduction Identify the final feature, and send this feature to the EEG signal expression classification implementation module; the EEG expression classification implementation module uses a classic classification algorithm (Fisher classifier) to perform EEG signal classification.
一种基于有效时间序列和电极重组的脑电信号分类方法,包括以下步骤:A method for classifying EEG signals based on effective time series and electrode reorganization, comprising the following steps:
步骤1,受试者带上电极帽,原始脑电信号是通过66导国际脑电图学会标定的10/20法的EEG放大器进行采集,并选取所有电极位置,采集不同表情刺激过程的受试者脑电信号;
步骤2,将采集到的脑电信号输入到预处理模块,预处理模块主要对采集到的脑电信号进行去噪,并得到脑电信号的全场强,脑电信号的全场强即为所有电极信号的叠加平均值;Step 2: Input the collected EEG signals into the preprocessing module. The preprocessing module mainly denoises the collected EEG signals and obtains the full field strength of the EEG signals. The full field strength of the EEG signals is Superimposed average of all electrode signals;
步骤3,通过特征提取模块对脑电信号全场强的分析,确定脑电信号特征选择的有效时间区域;
步骤4,由于不同电极产生的脑电信号具有不同的生理学意义,因此通过特征提取模块对特征选择的脑电信号进行电极重组;
步骤5,为了降低脑电信号的冗余信息,对步骤4所得到的重组后的脑电信号通过主成分分析(PCA)方法进行降维;Step 5, in order to reduce the redundant information of the EEG signal, perform dimensionality reduction on the reorganized EEG signal obtained in
步骤6,对特征提取模块提取后的脑电信号使用脑电信号表情分类实施模块中的线性判别函数分类器(Fisher)进行分类学习与测试;Step 6, use the linear discriminant function classifier (Fisher) in the EEG signal expression classification implementation module to carry out classification learning and testing for the EEG signals extracted by the feature extraction module;
测试表情识别时,通过脑电信号采集模块,采集待测被试的脑电信号,将脑电信号送入脑电信号预处理模块,去除噪声后,再根据脑电信号特征提取模块计算生成被试对应的特征向量,然后将这一特征向量送入脑电信号表情分类实施模块,最后得到表情刺激的脑电信号分类结果。When testing expression recognition, collect the EEG signals of the subject to be tested through the EEG signal acquisition module, send the EEG signals to the EEG signal preprocessing module, remove the noise, and then calculate and generate the EEG signals according to the EEG signal feature extraction module. Test the corresponding eigenvector, and then send this eigenvector to the EEG signal expression classification implementation module, and finally obtain the EEG signal classification result of the expression stimulation.
脑电信号的有效时间区域的选择,根据全局场强的峰值和高能量值来确定的有效时间区域;电极重组的过程是在有效时间区域的基础上,对不同电极进行重新组合的过程;脑电信号表情分类的过程是在并行的基础上,对选择的脑电信号特征进行分类。The selection of the effective time area of the EEG signal is the effective time area determined according to the peak value of the global field strength and the high energy value; the process of electrode reorganization is the process of recombining different electrodes on the basis of the effective time area; The process of electrical signal expression classification is to classify selected EEG signal features on a parallel basis.
本发明一种基于有效时间序列和电极重组的脑电信号分类系统和方法,与现有技术相比具有以下优点:An EEG signal classification system and method based on effective time series and electrode reorganization of the present invention has the following advantages compared with the prior art:
1、与传统方法相比,本发明利用生理脑电信号,避免了特征的主观性。1. Compared with traditional methods, the present invention utilizes physiological EEG signals, avoiding the subjectivity of features.
2、本发明在步骤(3)中根据脑电信号的全场强进行特征选择是一种合理且有效的新方法。2. In the present invention, it is a reasonable and effective new method to perform feature selection according to the full field strength of the EEG signal in step (3).
3、本发明在步骤(5)中所使用的主成分分析方法是统计学习中的经典方法,在许多数值计算平台中能够找到比较成熟的实现算法。3. The principal component analysis method used in step (5) of the present invention is a classic method in statistical learning, and relatively mature implementation algorithms can be found in many numerical computing platforms.
4、本发明的主要计算量集中在步骤(6),由于在步骤(4)会产生多种电极组合,因此步骤(6)要对每种组合下的脑电特征进行分类器训练和评价,因此可以采用并行计算策略来提高执行效率。4. The main calculation amount of the present invention is concentrated in step (6). Since multiple electrode combinations can be produced in step (4), step (6) will carry out classifier training and evaluation to the EEG features under each combination. Therefore, parallel computing strategies can be used to improve execution efficiency.
附图说明Description of drawings
图1是本发明所涉及方法全过程的流程图与系统模块划分情况;Fig. 1 is the flow chart of the whole process of the method involved in the present invention and the system module division situation;
图2是本发明所涉及采集脑电信号的实验设计流程图;Fig. 2 is the experimental design flow chart of collecting EEG signal involved in the present invention;
图3是本发明所涉及基于全场强的脑电信号图;Fig. 3 is the EEG signal diagram based on the full field strength involved in the present invention;
图4是本发明图1中“脑电信号处理”部分的具体流程。Fig. 4 is the specific flow of the "EEG signal processing" part in Fig. 1 of the present invention.
具体实施方式Detailed ways
下面结合具体实施方式对本发明做进一步的说明。The present invention will be further described below in combination with specific embodiments.
本发明在训练表情识别分类器时的步骤有如下6个步骤:The present invention has following 6 steps in the step when training facial expression recognition classifier:
首先在步骤1中根据设计好的实验进行脑电信号的采集,在试验采集的过程中,选用三类人脸表情作为刺激图片,包括高兴表情、中性表情和悲伤表情,每个表情有18种脸型,每个被试者执行408次试验,三类任务各占136次。每次试验过程如下:首先给被试者显示提示语,待被试者按下空格键后,显示一个正向或倒向的,表情为高兴、中性、悲伤三种表情之一的图片,待被试者对表情进行清楚辨别并按下相应的按键后,表示一次试验结束,具体过程如图2所示。被试数据采集自12名年龄在20-30岁的健康人。Firstly, in
接下来对步骤1采集到的原始脑电信号进行预处理,预处理模块包括2个步骤:Next, preprocess the original EEG signals collected in
步骤2.1由于脑电信号微弱,极易受到眼电信号的影响。因此,去除脑电信号中的噪声就显得尤为重要,本发明方法中利用NeuroScan软件对采集到的脑电信号进行去噪。Step 2.1 Because the EEG signal is weak, it is easily affected by the oculoelectric signal. Therefore, it is particularly important to remove the noise in the EEG signal. In the method of the present invention, NeuroScan software is used to denoise the collected EEG signal.
步骤2.2在步骤2.1获得清洁的脑电信号EEG的基础上,通过NeuroScan软件获得66导电极原始脑电信号对应的全场强,即GFP,它是通过对各个电极的信号进行叠加平均得到的。Step 2.2 On the basis of the clean EEG signal obtained in step 2.1, the full field strength corresponding to the original EEG signal of 66 conductive electrodes, that is, GFP, is obtained by NeuroScan software, which is obtained by superimposing and averaging the signals of each electrode.
接下来步骤3根据特征提取模块对三类原始脑电信号的全场强(GFP)进行对比分析,如图3所示,结果发现全场强的峰值分布在88ms、154ms、232ms处,而350ms-650ms处为慢电位反映。因此,我们根据全场强(GFP)能量的时间分布(70-110ms,125ms-185ms,200ms-250ms,350ms-650ms)来确定原始脑电信号(EEG)特征选择的有效时间段(即有效时间区域)。The
步骤4中,特征提取模块中我们采用启发式研究方法,启发函数是线性判别函数分类器的性能,即我们以性能优劣来分析重组的有效性。首先通过电极重组对脑电信号特征选择做进一步提取,即在步骤3所确定的有效特征区域进行重组,重组的过程是采用穷举的方式按照不同时间区域和不同电极进行排列组合。公式如下:In
i∈{1,…,64},j∈{1,…,5},i∈{1,...,64}, j∈{1,...,5},
其中,i是电极个数,j是时间序列段个数,Eij指的是第i个电极第j个时间段的脑电信号,当αi=1时,表示第i个单电极的脑电信号被作为特征,当βj=1时,表示第j个时间区域的脑电信号被作为特征。Among them, i is the number of electrodes, j is the number of time series segments, Eij refers to the EEG signal of the i-th electrode in the j-th time period, when αi =1, it means the brain signal of the i-th single electrode The electrical signal is used as a feature, and when βj =1, the EEG signal representing the jth time zone is used as a feature.
接下来步骤5对步骤4中各种的电极组合进行主成分分析方法降维。因为当脑电信号特征选择进行电极重组后,都会产生高维的脑电信号,从而影响了脑电信号的分类效率和结果,所以脑电信号的降维过程显得尤为重要。本专利把脑电信号特征降到400维。Next, in step 5, the principal component analysis method is used to reduce the dimensionality of various electrode combinations in
之后步骤6对降维后的脑电信号使用脑电信号表情分类实施模块中的线性判别函数分类器进行分类,由于步骤4中脑电信号重组的过程选用穷举方式,经验可知,穷举方法带来了计算空间大,复杂度高的问题,因此,在这里我们为解决这个问题引入并行计算,并行主要针对分类过程,通过并行运算从而大大提高了分类时间和速率。如图4,详细显示步骤2-6的具体流程。Then step 6 uses the linear discriminant function classifier in the EEG signal expression classification implementation module to classify the dimensionally reduced EEG signals. Since the EEG signal recombination process in
本发明在测试表情识别时的步骤如下:The steps of the present invention when testing expression recognition are as follows:
通过脑电信号采集模块,采集待测被试的脑电信号(方法与上述对应步骤一致),将脑电信号送入脑电信号预处理模块,去除噪声后,再根据脑电信号特征提取模块计算生成被试对应的特征向量(方法与上述对应步骤一致),然后将这一特征向量送入脑电信号表情分类实施模块,最后生成基于表情刺激的分类结果。结果表明,最高识别率超过了90%,平均识别率在85%左右,能够实现对表情刺激的脑电信号识别。Through the EEG signal acquisition module, collect the EEG signal of the subject to be tested (the method is consistent with the corresponding steps above), send the EEG signal to the EEG signal preprocessing module, remove the noise, and then extract the EEG signal according to the EEG signal feature extraction module Calculate and generate the eigenvector corresponding to the subject (the method is consistent with the corresponding steps above), and then send this eigenvector to the EEG expression classification implementation module, and finally generate the classification result based on the expression stimulus. The results show that the highest recognition rate exceeds 90%, and the average recognition rate is about 85%, which can realize the recognition of EEG signals for expression stimuli.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110344311.6ACN102499676B (en) | 2011-11-03 | 2011-11-03 | EEG signal classification system and method based on efficient time series and electrode reorganization |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201110344311.6ACN102499676B (en) | 2011-11-03 | 2011-11-03 | EEG signal classification system and method based on efficient time series and electrode reorganization |
| Publication Number | Publication Date |
|---|---|
| CN102499676A CN102499676A (en) | 2012-06-20 |
| CN102499676Btrue CN102499676B (en) | 2014-01-29 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201110344311.6AExpired - Fee RelatedCN102499676B (en) | 2011-11-03 | 2011-11-03 | EEG signal classification system and method based on efficient time series and electrode reorganization |
| Country | Link |
|---|---|
| CN (1) | CN102499676B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103413050B (en)* | 2013-08-20 | 2016-08-24 | 北京工业大学 | Mental imagery EEG signals temporal voting strategy sorting technique based on very fast learning machine |
| CN103654773B (en)* | 2013-12-20 | 2016-02-03 | 北京飞宇星电子科技有限公司 | Electroencephalo experimental teaching unit |
| CN103750844B (en)* | 2014-01-15 | 2015-07-29 | 杭州电子科技大学 | A kind of based on the phase locked personal identification method of brain electricity |
| CN103876734B (en)* | 2014-03-24 | 2015-09-02 | 北京工业大学 | A kind of EEG signals feature selection approach based on decision tree |
| CN104127179B (en)* | 2014-04-13 | 2016-04-06 | 北京工业大学 | The brain electrical feature extracting method of a kind of advantage combination of electrodes and empirical mode decomposition |
| CN103971124B (en)* | 2014-05-04 | 2017-02-15 | 杭州电子科技大学 | Multi-class motor imagery brain electrical signal classification method based on phase synchronization |
| CN104361345A (en)* | 2014-10-10 | 2015-02-18 | 北京工业大学 | Electroencephalogram signal classification method based on constrained extreme learning machine |
| CN106338935A (en)* | 2015-04-23 | 2017-01-18 | 恒爱高科(北京)科技有限公司 | Robot emotion recognition method and system |
| CN105395192A (en)* | 2015-12-09 | 2016-03-16 | 恒爱高科(北京)科技有限公司 | Wearable emotion recognition method and system based on electroencephalogram |
| CN105894039A (en)* | 2016-04-25 | 2016-08-24 | 京东方科技集团股份有限公司 | Emotion recognition modeling method, emotion recognition method and apparatus, and intelligent device |
| CN106725452A (en)* | 2016-11-29 | 2017-05-31 | 太原理工大学 | Based on the EEG signal identification method that emotion induces |
| CN106778186A (en)* | 2017-02-14 | 2017-05-31 | 南方科技大学 | Identity recognition method and device for virtual reality interaction equipment |
| CN109044350A (en)* | 2018-09-15 | 2018-12-21 | 哈尔滨理工大学 | A kind of eeg signal acquisition device and detection method |
| CN111543988B (en)* | 2020-05-25 | 2021-06-08 | 五邑大学 | Adaptive cognitive activity recognition method and device and storage medium |
| CN112241952B (en)* | 2020-10-22 | 2023-09-05 | 平安科技(深圳)有限公司 | Brain midline identification method, device, computer equipment and storage medium |
| CN113197551B (en)* | 2021-05-07 | 2023-08-04 | 中国医学科学院生物医学工程研究所 | Multimode physiological nerve signal detection and experimental stimulation time alignment method |
| CN113197573B (en)* | 2021-05-19 | 2022-06-17 | 哈尔滨工业大学 | Film watching impression detection method based on expression recognition and electroencephalogram fusion |
| CN114021605A (en)* | 2021-11-02 | 2022-02-08 | 深圳市大数据研究院 | A risk prediction method, device, system, computer equipment and storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6266624B1 (en)* | 1996-03-19 | 2001-07-24 | Siemens Aktiengesellschaft | Method conducted in a computer for classification of a time series having a prescribable number of samples |
| CN101339455A (en)* | 2008-08-07 | 2009-01-07 | 北京师范大学 | Brain-computer interface system based on the N170 component of the specific wave for face recognition |
| CN101862194A (en)* | 2010-06-17 | 2010-10-20 | 天津大学 | Imaginative Action EEG Identity Recognition Method Based on Fusion Feature |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0902643A4 (en)* | 1996-04-10 | 1999-06-16 | Univ Sydney Tech | Eeg based activation system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6266624B1 (en)* | 1996-03-19 | 2001-07-24 | Siemens Aktiengesellschaft | Method conducted in a computer for classification of a time series having a prescribable number of samples |
| CN101339455A (en)* | 2008-08-07 | 2009-01-07 | 北京师范大学 | Brain-computer interface system based on the N170 component of the specific wave for face recognition |
| CN101862194A (en)* | 2010-06-17 | 2010-10-20 | 天津大学 | Imaginative Action EEG Identity Recognition Method Based on Fusion Feature |
| Title |
|---|
| JP特表2000-507867A 2000.06.27 |
| Publication number | Publication date |
|---|---|
| CN102499676A (en) | 2012-06-20 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102499676B (en) | EEG signal classification system and method based on efficient time series and electrode reorganization | |
| Zou et al. | Constructing multi-scale entropy based on the empirical mode decomposition (EMD) and its application in recognizing driving fatigue | |
| CN114781442B (en) | Fatigue classification method based on four-dimensional attention convolutional recurrent neural network | |
| CN101219048B (en) | Method for extracting brain electrical character of imagine movement of single side podosoma | |
| CN102184415B (en) | Electroencephalographic-signal-based fatigue state recognizing method | |
| CN102722727A (en) | Electroencephalogram feature extracting method based on brain function network adjacent matrix decomposition | |
| CN107260166A (en) | A kind of electric artefact elimination method of practical online brain | |
| CN113208613B (en) | Multimodal BCI timing optimization method based on FHLS feature selection | |
| Bozhkov et al. | EEG-based subject independent affective computing models | |
| CN105054928A (en) | Emotion display equipment based on BCI (brain-computer interface) device electroencephalogram acquisition and analysis | |
| Suhail et al. | Distinguishing cognitive states using electroencephalography local activation and functional connectivity patterns | |
| CN112426162A (en) | Fatigue detection method based on electroencephalogram signal rhythm entropy | |
| CN107479702A (en) | A kind of human emotion's dominance classifying identification method using EEG signals | |
| CN114081503A (en) | A method for removing electrooculography artifacts in EEG signals | |
| CN107292296A (en) | A kind of human emotion wake-up degree classifying identification method of use EEG signals | |
| Awan et al. | Effective classification of EEG signals using K-nearest neighbor algorithm | |
| CN117158970B (en) | Emotion recognition method, system, medium and computer | |
| CN109657646B (en) | Method and device for representing and extracting features of physiological time series and storage medium | |
| Vicnesh et al. | Accurate detection of seizure using nonlinear parameters extracted from EEG signals | |
| CN118013340A (en) | EEG recognition method and system based on temporal self-attention and dynamic graph convolution | |
| CN116369950A (en) | Target detection method based on electroencephalogram tracing and multi-feature extraction | |
| CN119272125A (en) | A multimodal fusion feature emotion recognition method | |
| Chai et al. | Classification of driver fatigue in an electroencephalography-based countermeasure system with source separation module | |
| Shrivastava et al. | On the potential of EEG for biometrics: combining power spectral density with a statistical test | |
| CN117332259A (en) | Information fusion-based motor imagery brain-computer interface time-frequency combination optimization method |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20140129 | |
| CF01 | Termination of patent right due to non-payment of annual fee |