Movatterモバイル変換


[0]ホーム

URL:


CN102411313A - Satellite flight control closed loop simulation system based on component simulator - Google Patents

Satellite flight control closed loop simulation system based on component simulator
Download PDF

Info

Publication number
CN102411313A
CN102411313ACN2011103632137ACN201110363213ACN102411313ACN 102411313 ACN102411313 ACN 102411313ACN 2011103632137 ACN2011103632137 ACN 2011103632137ACN 201110363213 ACN201110363213 ACN 201110363213ACN 102411313 ACN102411313 ACN 102411313A
Authority
CN
China
Prior art keywords
simulator
sensor
data
actuator
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103632137A
Other languages
Chinese (zh)
Other versions
CN102411313B (en
Inventor
张育林
王兆魁
范丽
项军华
杨雪榕
党朝辉
安梅岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua UniversityfiledCriticalTsinghua University
Priority to CN 201110363213priorityCriticalpatent/CN102411313B/en
Publication of CN102411313ApublicationCriticalpatent/CN102411313A/en
Application grantedgrantedCritical
Publication of CN102411313BpublicationCriticalpatent/CN102411313B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Landscapes

Abstract

Translated fromChinese

本发明提供一种基于部件模拟器的卫星飞行控制闭环仿真系统,应用于包括动力学仿真服务器、敏感器模拟器、执行器模拟器和星载计算机的系统中,其中,敏感器模拟器向星载计算机输出的数据格式与实际敏感器向星载计算机输出的数据格式相同,而且,执行器模拟器接收的来自星载计算机数据的格式,即执行器输入的数据格式与实际执行器输入的数据格式相同,所以能有效提高卫星飞行控制闭环仿真系统的仿真可信度,又由于所采用的为部件模拟器,而不是采用的真实物理器件,所以又具有仿真系统成本低、复杂度低的优点,同时还具有通用性强、灵活性强、自动化程度高的特点,因此,能有效缩短卫星的研制周期,减少卫星的研制成本。

Figure 201110363213

The invention provides a satellite flight control closed-loop simulation system based on a component simulator, which is applied to a system including a dynamics simulation server, a sensor simulator, an actuator simulator and an on-board computer, wherein the sensor simulator The format of the data output by the onboard computer is the same as the data format output from the actual sensor to the onboard computer, and the format of the data received by the actuator simulator from the onboard computer, that is, the format of the data input by the actuator is the same as that of the actual actuator. The format is the same, so it can effectively improve the simulation reliability of the satellite flight control closed-loop simulation system, and because the component simulator is used instead of the real physical device, it has the advantages of low cost and low complexity of the simulation system , At the same time, it also has the characteristics of strong versatility, strong flexibility and high degree of automation. Therefore, it can effectively shorten the development cycle of satellites and reduce the development cost of satellites.

Figure 201110363213

Description

Translated fromChinese
基于部件模拟器的卫星飞行控制闭环仿真系统Closed-loop Simulation System of Satellite Flight Control Based on Parts Simulator

技术领域technical field

本发明属于卫星仿真测试技术领域,具体涉及一种基于部件模拟器的卫星飞行控制闭环仿真系统。The invention belongs to the technical field of satellite simulation testing, in particular to a satellite flight control closed-loop simulation system based on component simulators.

背景技术Background technique

在航天工程领域,由于卫星的研制费用较高,并且卫星的运行环境十分复杂恶劣,所以,一般都需要对卫星的飞行控制系统进行仿真,从而验证卫星的飞行控制系统的方案设计的正确性,以及检验卫星的飞行控制系统的功能和性能。In the field of aerospace engineering, due to the high cost of satellite development and the complex and harsh operating environment of satellites, it is generally necessary to simulate the flight control system of the satellite to verify the correctness of the design of the flight control system of the satellite. And test the function and performance of the satellite's flight control system.

通常,卫星的飞行控制仿真系统可采用半物理仿真和全物理仿真。其中,全物理仿真系统中,由于将各种真实物理器件直接接入仿真回路,所以这些真实物理器件对仿真控制系统性能的影响能直观而有效地反映在仿真试验的结果中,从而具有仿真可信度较高的优点,但使用各种真实物理器件直接增加了仿真系统的成本和复杂度,从而限制了全物理仿真系统的应用范围。半物理仿真系统中,硬件参与仿真回路中,同时部分硬件又采用数学仿真的方式,即:半物理仿真系统结合了数学仿真和物理仿真,因此,半物理仿真系统具有成本低、操作简单、且仿真可信度高等优点,在卫星控制仿真系统中使用广泛。Usually, the flight control simulation system of the satellite can adopt semi-physical simulation and full-physical simulation. Among them, in the all-physical simulation system, since various real physical devices are directly connected to the simulation loop, the influence of these real physical devices on the performance of the simulation control system can be directly and effectively reflected in the results of the simulation test, so that the simulation can The advantages of high reliability, but the use of various real physical devices directly increases the cost and complexity of the simulation system, thus limiting the application range of the full physical simulation system. In the semi-physical simulation system, the hardware participates in the simulation loop, and at the same time, part of the hardware adopts the method of mathematical simulation, that is, the semi-physical simulation system combines mathematical simulation and physical simulation. Therefore, the semi-physical simulation system has low cost, simple operation, and It has the advantages of high simulation reliability and is widely used in satellite control simulation systems.

现有的半物理仿真系统中,敏感器或执行器有以下两种接入卫星控制仿真系统的方式:(1)采用数学仿真的方式接入卫星控制仿真系统,即:利用计算机根据对应的数学模拟对敏感器或执行器进行仿真,但该方法仿真输出的敏感器或执行器数据格式与敏感器或执行器真实物理器件输出的数据格式不同,即:该方法没有实现按真实物理器件的工作模式进行仿真的效果,从而影响了仿真结果的可信度。(2)采用实物的方式接入卫星控制仿真系统,即:将真实的敏感器或执行器直接接入卫星控制仿真系统中,由于采用真实物理器件,从而增加了仿真系统的成本和复杂度。In the existing semi-physical simulation system, the sensors or actuators have the following two ways of accessing the satellite control simulation system: (1) accessing the satellite control simulation system by means of mathematical simulation, namely: using the computer according to the corresponding mathematical The simulation simulates the sensor or actuator, but the data format of the sensor or actuator simulated by this method is different from the data format output by the real physical device of the sensor or actuator, that is, this method does not realize the work according to the real physical device The effect of the model to simulate, thus affecting the credibility of the simulation results. (2) Access to the satellite control simulation system in the form of physical objects, that is, to directly connect real sensors or actuators to the satellite control simulation system. Due to the use of real physical devices, the cost and complexity of the simulation system are increased.

因此,寻找一种能够有效增加敏感器或执行器在卫星控制仿真系统中的可信度,同时又不增加仿真系统的成本和复杂度的方法,具有重要现实意义。Therefore, it is of great practical significance to find a method that can effectively increase the reliability of sensors or actuators in the satellite control simulation system without increasing the cost and complexity of the simulation system.

发明内容Contents of the invention

针对现有技术存在的缺陷,本发明提供一种基于部件模拟器的卫星飞行控制闭环仿真系统,由于所采用的部件模拟器输出或输入的数据格式与对应的真实物理部件的输入或输出的数据格式相同,能够有效模拟对应真实物理部件的功能,所以能有效提高卫星飞行控制闭环仿真系统的仿真可信度,又由于所采用的为部件模拟器,而不是采用的真实物理器件,所以又具有仿真系统成本低、复杂度低的优点,同时还具有通用性强、灵活性强、自动化程度高的特点,因此,能有效缩短卫星的研制周期,减少卫星的研制成本。Aiming at the deficiencies in the prior art, the present invention provides a satellite flight control closed-loop simulation system based on component simulators. Since the output or input data format of the component simulator used is the same as the input or output data of the corresponding real physical components The same format can effectively simulate the functions of the corresponding real physical components, so it can effectively improve the simulation reliability of the satellite flight control closed-loop simulation system, and because it uses component simulators instead of real physical devices, it also has The simulation system has the advantages of low cost and low complexity, and also has the characteristics of strong versatility, flexibility and high degree of automation. Therefore, it can effectively shorten the development cycle of satellites and reduce the development cost of satellites.

本发明所采用的技术方案如下:The technical scheme adopted in the present invention is as follows:

本发明提供一种基于部件模拟器的卫星飞行控制闭环仿真系统,应用于包括动力学仿真服务器、敏感器模拟器、执行器模拟器和星载计算机的系统中,包括以下步骤:The invention provides a satellite flight control closed-loop simulation system based on a component simulator, which is applied to a system including a dynamic simulation server, a sensor simulator, an actuator simulator and an on-board computer, including the following steps:

(1)所述动力学仿真服务器根据预存的卫星动力学数学模型以及初始控制力信息和初始控制力矩信息计算得到当前卫星的轨道参数信息和姿态四元数信息,并将该轨道参数信息和姿态四元数信息发送给所述敏感器模拟器;(1) The dynamics simulation server calculates the orbit parameter information and attitude quaternion information of the current satellite according to the pre-stored satellite dynamic mathematical model and initial control force information and initial control moment information, and stores the orbit parameter information and attitude Quaternion information is sent to the sensor simulator;

(2)所述敏感器模拟器接收所述轨道参数信息和姿态四元数信息,并结合与所述敏感器模拟器对应的敏感器数学模型进行仿真计算,得到所述敏感器的模拟测量值,并将该模拟测量值的数据格式转化为真实测量值的数据格式,得到真实格式模拟测量值,并将该真实格式模拟测量值发送给所述星载计算机;其中,所述真实格式模拟测量值的数据格式为实际敏感器在实际卫星控制系统中实际输出的数据格式;(2) The sensor simulator receives the orbit parameter information and attitude quaternion information, and performs simulation calculation in combination with the sensor mathematical model corresponding to the sensor simulator, to obtain the simulated measurement value of the sensor , and convert the data format of the simulated measured value into the data format of the real measured value, obtain the simulated measured value in the real format, and send the simulated measured value in the real format to the on-board computer; wherein, the simulated measured value in the real format The data format of the value is the data format actually output by the actual sensor in the actual satellite control system;

(3)所述星载计算机接收所述真实格式模拟测量值,并根据预存的卫星目标姿态信息和/或卫星目标轨道信息以及控制算法进行计算,得到控制指令,并将该控制指令发送给所述执行器模拟器;其中,所述控制指令的数据格式为实际执行器在实际卫星控制系统中实际接收到的数据格式;(3) The on-board computer receives the simulated measurement value in the real format, and calculates according to the pre-stored satellite target attitude information and/or satellite target orbit information and control algorithm, obtains a control command, and sends the control command to the The actuator simulator; wherein, the data format of the control instruction is the data format actually received by the actual actuator in the actual satellite control system;

(4)所述执行器模拟器接收所述控制指令,并将该控制指令的数据格式转化为模拟控制指令的数据格式,得到所述模拟控制指令,然后根据所述模拟控制指令和预存的与所述执行器模拟器对应的执行器的数学模型进行仿真计算,得到新的控制力信息和新的控制力矩信息,并将该新的控制力信息和新的控制力矩信息发送给所述动力学仿真服务器;(4) The actuator simulator receives the control instruction, and converts the data format of the control instruction into the data format of the analog control instruction to obtain the analog control instruction, and then according to the analog control instruction and the pre-stored and The mathematical model of the actuator corresponding to the actuator simulator is simulated and calculated to obtain new control force information and new control torque information, and send the new control force information and new control torque information to the dynamic simulation server;

(5)所述动力学仿真服务器用接收到的所述新的控制力信息和新的控制力矩信息更新所述初始控制力信息和初始控制力矩信息,然后重复执行步骤(1)-(5),直到达到预设仿真时间,结束上述流程。(5) The dynamics simulation server updates the initial control force information and initial control torque information with the received new control force information and new control torque information, and then repeatedly executes steps (1)-(5) , until the preset simulation time is reached, and the above process ends.

优选的,步骤(1)中所述卫星动力学数学模型包括卫星姿态动力学模型和卫星轨道动力学模型。Preferably, the satellite dynamics mathematical model in step (1) includes a satellite attitude dynamics model and a satellite orbit dynamics model.

优选的,步骤(2)中所述模拟测量值的数据格式为符合以太网协议的数据格式;所述真实格式模拟测量值的数据格式为符合CAN协议的数据格式;步骤(3)中所述控制指令的数据格式为符合CAN协议的数据格式,步骤(4)中所述模拟控制指令的数据格式为符合以太网协议的数据格式。Preferably, the data format of the simulated measured value described in step (2) is a data format conforming to the Ethernet protocol; the data format of the real format simulated measured value is a data format conformed to the CAN protocol; described in the step (3) The data format of the control command is a data format conforming to the CAN protocol, and the data format of the analog control command described in step (4) is a data format conforming to the Ethernet protocol.

优选的,所述敏感器模拟器包括:星敏感器模拟器、太阳敏感器模拟器、磁强计模拟器、光纤陀螺模拟器、GPS模拟器中的一种或几种;Preferably, the sensor simulator includes: one or more of a star sensor simulator, a sun sensor simulator, a magnetometer simulator, a fiber optic gyro simulator, and a GPS simulator;

所述执行器模拟器包括:飞轮模拟器、磁力矩器模拟器、推力器模拟器中的一种或几种。The actuator simulator includes: one or more of a flywheel simulator, a magnetic torque simulator, and a thruster simulator.

优选的,所述敏感器模拟器包括:敏感器仿真服务器和敏感器数据接口转换器;Preferably, the sensor simulator includes: a sensor simulation server and a sensor data interface converter;

所述敏感器仿真服务器用于:将接收到的来自所述动力学仿真服务器的所述轨道参数信息和姿态四元数信息结合预存的与所述敏感器模拟器对应的敏感器的数学模型进行仿真计算,得到所述敏感器的模拟测量值,并将该模拟测量值发送给所述敏感器数据接口转换器;The sensor simulation server is used to: combine the received orbit parameter information and attitude quaternion information from the dynamics simulation server with the pre-stored mathematical model of the sensor corresponding to the sensor simulator Simulation calculation to obtain the analog measurement value of the sensor, and send the analog measurement value to the sensor data interface converter;

所述敏感器数据接口转换器用于将接收到的所述模拟测量值转化为真实格式模拟测量值,并将该真实格式模拟测量值发送给所述星载计算机。The sensor data interface converter is used to convert the received analog measurement value into a real format analog measurement value, and send the real format analog measurement value to the on-board computer.

优选的,所述敏感器数据接口转换器为单个或多个;每一个敏感器数据接口转换器用于将属于同一类敏感器的模拟测量值的数据格式转化为真实格式模拟测量值的数据格式和/或每一个敏感器数据接口转换器用于将属于不同类敏感器的模拟测量值的数据格式转化为真实格式模拟测量值的数据格式。Preferably, the sensor data interface converter is single or multiple; each sensor data interface converter is used to convert the data format of the analog measurement value belonging to the same type of sensor into the data format of the real format analog measurement value and and/or each sensor data interface converter for converting the data format of the analog measured values belonging to different types of sensors into the data format of the real format analog measured values.

优选的,所述执行器模拟器包括:执行器仿真服务器和执行器数据接口转换器;Preferably, the actuator simulator includes: an actuator simulation server and an actuator data interface converter;

所述执行器数据接口转换器用于接收来自所述星载计算机的控制指令,并将该控制指令的数据格式转化为模拟控制指令的数据格式,得到所述模拟控制指令,然后将该模拟控制指令发送给所述执行器仿真服务器;The actuator data interface converter is used to receive the control command from the on-board computer, and convert the data format of the control command into the data format of the analog control command to obtain the simulated control command, and then the simulated control command Send to the actuator simulation server;

所述执行器仿真服务器用于接收来自所述执行器数据接口转换器的模拟控制指令,然后根据所述模拟控制指令和预存的所述执行器的数学模型进行仿真计算,得到新的控制力信息和新的控制力矩信息,并将该新的控制力信息和新的控制力矩信息发送给所述动力学仿真服务器。The actuator simulation server is used to receive the analog control instruction from the actuator data interface converter, and then perform simulation calculation according to the analog control instruction and the pre-stored mathematical model of the actuator to obtain new control force information and new control torque information, and send the new control force information and new control torque information to the dynamics simulation server.

优选的,所述执行器数据接口转换器为单个或多个;每一个执行器数据接口转换器用于将属于同一类执行器的控制指令的数据格式转化为模拟控制指令的数据格式和/或每一个执行器数据接口转换器用于将属于不同类执行器的控制指令的数据格式转化为模拟控制指令的数据格式。Preferably, the actuator data interface converter is single or multiple; each actuator data interface converter is used to convert the data format of the control instruction belonging to the same type of actuator into the data format of the analog control instruction and/or each An actuator data interface converter is used to convert the data format of control instructions belonging to different types of actuators into the data format of analog control instructions.

优选的,还包括:数据存储服务器,所述数据存储服务器与所述星载计算机相连,所述星载计算机将接收到的所述真实格式模拟测量值以及计算得到的所述控制指令发送给所述数据存储服务器,由所述数据存储器进行存储。Preferably, it also includes: a data storage server, the data storage server is connected to the on-board computer, and the on-board computer sends the received simulation measurement value in real format and the calculated control instruction to the The data storage server is stored by the data storage.

优选的,还包括:地面站模拟器,所述地面站模拟器接收该卫星飞行控制闭环仿真系统发送的当前卫星的轨道参数信息和姿态四元数信息,然后,绘制并显示所接收到的所述当前卫星的运动参数随时间的变化曲线;和/或所述地面站模拟器接收该卫星飞行控制闭环仿真系统发送的当前卫星的轨道参数信息和姿态四元数信息,然后,存储并显示所述执行器模拟器输出给所述仿真服务器的信息;和/或所述地面站模拟器接收该卫星飞行控制闭环仿真系统发送的当前卫星的轨道参数信息和姿态四元数信息,然后,存储并显示所述敏感器模拟器输出给所述星载计算机的信息。Preferably, it also includes: a ground station simulator, which receives the orbit parameter information and attitude quaternion information of the current satellite sent by the satellite flight control closed-loop simulation system, and then draws and displays the received The change curve of the motion parameters of the current satellite over time; and/or the ground station simulator receives the orbit parameter information and attitude quaternion information of the current satellite sent by the satellite flight control closed-loop simulation system, and then stores and displays the The information that the actuator simulator outputs to the simulation server; and/or the ground station simulator receives the orbit parameter information and attitude quaternion information of the current satellite sent by the satellite flight control closed-loop simulation system, and then stores and displaying information output by the sensor simulator to the onboard computer.

本发明的有益效果如下:本发明提供的基于部件模拟器的卫星飞行控制闭环仿真系统,所采用的部件模拟器为敏感器模拟器和执行器模拟器,由于敏感器模拟器向星载计算机输出的数据格式与实际敏感器向星载计算机输出的数据格式相同,而且,执行器模拟器接收的来自星载计算机的数据格式,即执行器输入的数据格式与实际执行器输入的数据格式相同,所以能有效提高卫星飞行控制闭环仿真系统的仿真可信度,又由于所采用的为部件模拟器,而不是采用的真实物理器件,所以又具有仿真系统成本低、复杂度低的优点,同时还具有通用性强、灵活性强、自动化程度高的特点,因此,能有效缩短卫星的研制周期,减少卫星的研制成本。The beneficial effects of the present invention are as follows: the satellite flight control closed-loop simulation system based on component simulators provided by the present invention, the component simulators adopted are sensor simulators and actuator simulators, since the sensor simulators output The data format of the sensor is the same as the data format output from the actual sensor to the on-board computer, and the data format received by the actuator simulator from the on-board computer, that is, the data format input by the actuator is the same as the data format input by the actual actuator, Therefore, it can effectively improve the simulation reliability of the satellite flight control closed-loop simulation system, and because the component simulator is used instead of the real physical device, it has the advantages of low cost and low complexity of the simulation system. It has the characteristics of strong versatility, strong flexibility and high degree of automation. Therefore, it can effectively shorten the development cycle of satellites and reduce the development cost of satellites.

附图说明Description of drawings

图1为本发明实施例一提供的一种仿真系统进行闭环仿真的流程示意图;FIG. 1 is a schematic flow diagram of a closed-loop simulation performed by a simulation system provided inEmbodiment 1 of the present invention;

图2为本发明实施例一提供的星载计算机中CPU板的电路模块图;Fig. 2 is the circuit block diagram of the CPU board in the on-board computer provided by Embodiment 1 of the present invention;

图3为本发明实施例二提供的基于部件模拟器的卫星飞行控制闭环仿真系统的结构示意图。FIG. 3 is a schematic structural diagram of a satellite flight control closed-loop simulation system based on a component simulator provided by Embodiment 2 of the present invention.

具体实施方式Detailed ways

以下结合附图对本发明的具体的实施方式进行说明。Specific embodiments of the present invention will be described below in conjunction with the accompanying drawings.

实施例一Embodiment one

本发明实施例提供一种基于部件模拟器的卫星飞行控制闭环仿真系统,应用于包括动力学仿真服务器、敏感器模拟器、执行器模拟器和星载计算机的系统中,如图1所示,为本发明实施例提供的一种仿真系统进行闭环仿真的流程示意图,包括以下步骤:An embodiment of the present invention provides a satellite flight control closed-loop simulation system based on a component simulator, which is applied to a system including a dynamic simulation server, a sensor simulator, an actuator simulator and an on-board computer, as shown in FIG. 1 , A schematic flow diagram of a closed-loop simulation of a simulation system provided by an embodiment of the present invention, including the following steps:

步骤101:所述动力学仿真服务器根据预存的卫星动力学数学模型以及初始控制力信息和初始控制力矩信息计算得到当前卫星的轨道参数信息和姿态四元数信息,并将该轨道参数信息和姿态四元数信息发送给所述敏感器模拟器。Step 101: The dynamics simulation server calculates the orbit parameter information and attitude quaternion information of the current satellite according to the pre-stored satellite dynamic mathematical model, initial control force information and initial control moment information, and stores the orbit parameter information and attitude Quaternion information is sent to the sensor simulator.

其中,所述卫星动力学数学模型包括卫星姿态动力学模型和卫星轨道动力学模型。Wherein, the satellite dynamics mathematical model includes a satellite attitude dynamics model and a satellite orbit dynamics model.

敏感器模拟器包括:星敏感器模拟器、太阳敏感器模拟器、磁强计模拟器、光纤陀螺模拟器、GPS模拟器中的一种或几种。Sensor simulators include: one or more of star sensor simulators, sun sensor simulators, magnetometer simulators, fiber optic gyro simulators, and GPS simulators.

在实际仿真应用中,动力学仿真服务器可以采用工作站构成,其上分别安装有Windows XP x64版本以上操作系统、Visual Studio 6.0以上等软件开发环境。In actual simulation applications, the dynamics simulation server can be composed of workstations, on which Windows XP x64 or above operating systems and Visual Studio 6.0 or above software development environments are installed.

步骤102:所述敏感器模拟器根据接收到的所述轨道参数信息和姿态四元数信息和预存的与所述敏感器模拟器对应的敏感器的数学模型进行仿真计算,得到所述敏感器的模拟测量值,并将该模拟测量值的数据格式转化为真实测量值的数据格式,得到所述真实格式模拟测量值,并将该真实格式模拟测量值发送给所述星载计算机;其中,所述真实格式模拟测量值的数据格式为实际敏感器在实际卫星控制系统中实际输出的数据格式。Step 102: The sensor simulator performs simulation calculation according to the received orbit parameter information and attitude quaternion information and the pre-stored mathematical model of the sensor corresponding to the sensor simulator to obtain the sensor the simulated measured value, and convert the data format of the simulated measured value into the data format of the real measured value, obtain the simulated measured value in the real format, and send the simulated measured value in the real format to the on-board computer; wherein, The data format of the simulated measurement value in the real format is the data format actually output by the actual sensor in the actual satellite control system.

本步骤中,由于敏感器模拟器进行仿真计算后,得到的敏感器的模拟测量值的数据格式与实际卫星系统中敏感器真实器件输出的数据格式不同,所以,为了提高仿真可信度,根据不同敏感器真实器件输出的数据格式的类型,本发明将模拟测量值的数据格式转化为真实测量值的数据格式。例如:现有真实卫星系统中,星上设备间是通过CAN(Controller Area Network,控制器局域网)总线进行数据通讯的,也就是说,星上敏感器输出的数据格式为符合CAN协议的数据格式类型,而仿真系统中,敏感器模拟器输出的数据格式常为以太网数据格式,因此,可以通过设置以太网/CAN接口转换器来实现模拟测量值和真实测量值间数据格式的转换。在敏感器模拟器和星载计算机间设置以太网/CAN接口转换器的具体系统参见实施例二,在此不再赘述。In this step, since the sensor simulator performs simulation calculations, the data format of the simulated measurement value of the sensor obtained is different from the data format output by the real device of the sensor in the actual satellite system. Therefore, in order to improve the reliability of the simulation, according to According to the type of the data format output by the real device of different sensors, the invention converts the data format of the analog measurement value into the data format of the real measurement value. For example: in the existing real satellite system, data communication between on-board devices is carried out through the CAN (Controller Area Network, Controller Area Network) bus, that is to say, the data format output by the on-board sensor is in accordance with the CAN protocol data format In the simulation system, the data format output by the sensor simulator is usually the Ethernet data format. Therefore, the data format conversion between the simulated measurement value and the real measurement value can be realized by setting the Ethernet/CAN interface converter. For the specific system of setting the Ethernet/CAN interface converter between the sensor simulator and the on-board computer, please refer to Embodiment 2, which will not be repeated here.

另外,本步骤中,敏感器模拟器的输出数据直接上传给星载计算机,与实际卫星控制系统中敏感器真实器件的输出直接上传给星载计算机相同,从而提高了仿真可信度。In addition, in this step, the output data of the sensor simulator is directly uploaded to the on-board computer, which is the same as the output of the real device of the sensor in the actual satellite control system is directly uploaded to the on-board computer, thereby improving the reliability of the simulation.

步骤103:所述星载计算机接收所述真实格式模拟测量值,并根据预存的卫星目标姿态信息和/或卫星目标轨道信息以及控制算法进行计算,得到控制指令,并将该控制指令发送给所述执行器模拟器;其中,所述控制指令的数据格式为实际执行器在实际卫星控制系统中实际接收到的数据格式。Step 103: The on-board computer receives the simulated measurement value in the real format, performs calculations according to the pre-stored satellite target attitude information and/or satellite target orbit information and control algorithms, obtains a control command, and sends the control command to the The actuator simulator; wherein, the data format of the control instruction is the data format actually received by the actual actuator in the actual satellite control system.

其中,所述执行器模拟器包括:动量轮模拟器、磁力矩器模拟器、推力器模拟器中的一种或几种。Wherein, the actuator simulator includes: one or more of a momentum wheel simulator, a magnetic torque simulator, and a thruster simulator.

本步骤中,星载计算机直接将控制指令输出给执行器模拟器,从而直接控制执行器模拟器的动作,这与实际卫星控制系统中装置间驱动关系相同,而现有技术中,星载计算机输出的控制指令需要首先传输给仿真计算机,再通过仿真计算机控制执行器模拟器的动作。因此,本发明中,通过星载计算机直接驱动执行器模拟器,从而提高了仿真可信度。In this step, the on-board computer directly outputs the control command to the actuator simulator, thereby directly controlling the action of the actuator simulator, which is the same as the driving relationship between the devices in the actual satellite control system. In the prior art, the on-board computer The output control instructions need to be transmitted to the simulation computer first, and then the actions of the actuator simulator are controlled by the simulation computer. Therefore, in the present invention, the actuator simulator is directly driven by the on-board computer, thereby improving the reliability of the simulation.

另外,本步骤中,星载计算机向执行器模拟器输出的控制指令的数据格式与实际执行器在实际卫星控制系统中实际接收到的数据格式相同,从而也提高了仿真可信度。In addition, in this step, the data format of the control command output by the on-board computer to the actuator simulator is the same as the data format actually received by the actual actuator in the actual satellite control system, thereby also improving the reliability of the simulation.

在实际仿真应用中,星载计算机可以由国防科大六院开发的采用基于ARM(Advanced RISC Machines)处理器的双CAN总线结构并且运行Linux操作系统的计算机。星载计算机由电源仲裁板、通信背板、机箱与接口、CPU板组成。电源仲裁板提供星载计算平台所需的各种电源电压,例如:5V、3.3V、1.8V、1.5V等,并含有一个双机温备控制模块,用来接受主从机的心跳信号,并根据两个CPU板的状态分别发送中断信号、重启信号和主机标志信号;通信背板用于各板之间信号的连通,包括CPU板与CPU板、CPU板与电源仲裁板之间的通信,背板上有一块双口RAM(Random Access Memory,随机存取存储器),主要负责双机通讯,确保采集到的数据不会因为主机故障而丢失;CPU板是一个完整的单板计算机,如图2所示,为本实施例提供的星载计算机中CPU板的电路模块图,主要特征如下:CPU型号为AT91RM9200,200MIPS180MHz;PROM(Programmable Read-Only Memory,可编程只读存储器)为32KB;SRAM(StaticRandom Access Memory,静态随机存取存储器)为6MB;FLASH为16MB;包括各种接口,接口主要用于星载计算机平台与其他控制平台的连接,具体包括:RS232接口、TAG接口、网口、与外部设备通信的双CAN总线接口等,该CPU板中还对关键器件进行了抗SEL保护;星载计算机还包括:机箱,机箱用于固定并安装星载计算平台,规格为:体积:长*宽*高为186×134×194mm3,重量为1.9kg。在星载计算机上运行的程序模块主要包括:卫星轨道控制算法模块、卫星姿态控制算法模块、遥测和通信程序模块、LINUX操作系统和CAN接口程序模块。In the actual simulation application, the onboard computer can be a computer developed by the Sixth Academy of the National University of Defense Technology, which adopts the dual CAN bus structure based on the ARM (Advanced RISC Machines) processor and runs the Linux operating system. The onboard computer is composed of a power arbitration board, a communication backplane, a chassis and interface, and a CPU board. The power arbitration board provides various power supply voltages required by the on-board computing platform, such as: 5V, 3.3V, 1.8V, 1.5V, etc., and contains a dual-machine temperature standby control module, which is used to receive the heartbeat signal of the master and slave machines, And according to the state of the two CPU boards, the interrupt signal, restart signal and host flag signal are sent respectively; the communication backplane is used for the communication of signals between the boards, including the communication between the CPU board and the CPU board, and between the CPU board and the power arbitration board , there is a dual-port RAM (Random Access Memory) on the backboard, which is mainly responsible for two-machine communication, ensuring that the collected data will not be lost due to host failure; the CPU board is a complete single-board computer, such as As shown in Fig. 2, the circuit block diagram of the CPU board in the onboard computer provided by the present embodiment, the main features are as follows: the CPU model is AT91RM9200, 200MIPS180MHz; PROM (Programmable Read-Only Memory, programmable read-only memory) is 32KB; SRAM (Static Random Access Memory, static random access memory) is 6MB; FLASH is 16MB; including various interfaces, the interface is mainly used for the connection between the on-board computer platform and other control platforms, specifically including: RS232 interface, TAG interface, network port , dual CAN bus interfaces for communication with external devices, etc. The CPU board also protects key components against SEL; the on-board computer also includes: a chassis, which is used to fix and install the on-board computing platform. The specifications are: volume: The length*width*height is 186×134×194mm3 , and the weight is 1.9kg. The program modules running on the on-board computer mainly include: satellite orbit control algorithm module, satellite attitude control algorithm module, telemetry and communication program module, LINUX operating system and CAN interface program module.

步骤104:所述执行器模拟器接收所述控制指令,并将该控制指令的数据格式转化为模拟控制指令的数据格式,得到所述模拟控制指令,然后根据所述模拟控制指令和预存的与所述执行器模拟器对应的执行器的数学模型进行仿真计算,得到新的控制力信息和新的控制力矩信息,并将该新的控制力信息和新的控制力矩信息发送给所述动力学仿真服务器。Step 104: The actuator simulator receives the control instruction, converts the data format of the control instruction into the data format of the simulated control instruction, obtains the simulated control instruction, and then according to the simulated control instruction and the pre-stored and The mathematical model of the actuator corresponding to the actuator simulator is simulated and calculated to obtain new control force information and new control torque information, and send the new control force information and new control torque information to the dynamic Simulation server.

步骤105:所述动力学仿真服务器用接收到的所述新的控制力信息和新的控制力矩信息更新所述初始控制力信息和初始控制力矩信息,然后重复执行步骤101-105,直到达到预设仿真时间,结束上述流程。Step 105: The dynamics simulation server updates the initial control force information and initial control torque information with the received new control force information and new control torque information, and then repeatedly executes steps 101-105 until reaching a predetermined value. Set the simulation time and end the above process.

需要说明的是,本实施例提供的卫星飞行控制闭环仿真系统在进行仿真时,仿真系统可以在任意时间判断是否达到预设仿真时间,如果没有达到,则重复执行仿真过程;如果达到,则结束流程。It should be noted that when the satellite flight control closed-loop simulation system provided in this embodiment is performing simulation, the simulation system can judge whether the preset simulation time is reached at any time, if not, repeat the simulation process; if it is reached, then end process.

另外,本实施例提供的卫星飞行控制闭环仿真系统还包括:数据存储服务器,所述数据存储服务器与所述星载计算机相连,所述星载计算机将接收到的所述真实测量值以及计算得到的所述控制指令发送给所述数据存储服务器,由所述数据存储器进行存储。In addition, the satellite flight control closed-loop simulation system provided by this embodiment also includes: a data storage server, the data storage server is connected to the on-board computer, and the on-board computer calculates the received real measured value and The control instruction is sent to the data storage server and stored by the data storage.

具体的,数据存储服务器采用PC机构造,其操作系统为Windows XPProfessional。数据存储服务器通过直通RS232串口线、交叉以太网线与星载计算机相连接。在数据存储服务器上建立一个超级终端,启动超级终端,给星载计算机上电启动之后,星载计算机的运行状态会在数据存储服务器的超级终端上显示出来。在数据存储服务器机上安装一个虚拟机软件,虚拟机的操作系统为Red Hat9,启动数据存储服务器机上的虚拟机,把开发好的卫星飞行控制程序复制到虚拟机上,在虚拟机上编译链接飞行控制程序生成一个执行程序,把该执行程序复制到数据存储服务器机上,启动数据存储服务器机上的tftp(Trivial FileTransfer Protocol,简单文件传输协议),采用tftp将执行程序下载到星载计算机的flash模块上。Specifically, the data storage server adopts a PC structure, and its operating system is Windows XP Professional. The data storage server is connected to the on-board computer through a straight-through RS232 serial cable and a crossover Ethernet cable. Build a hyperterminal on the data storage server, start the hyperterminal, power on and start the onboard computer, the running status of the onboard computer will be displayed on the hyperterminal of the data storage server. Install a virtual machine software on the data storage server, the operating system of the virtual machine is Red Hat9, start the virtual machine on the data storage server, copy the developed satellite flight control program to the virtual machine, compile and link the flight on the virtual machine The control program generates an execution program, copies the execution program to the data storage server machine, starts tftp (Trivial File Transfer Protocol, simple file transfer protocol) on the data storage server machine, and uses tftp to download the execution program to the flash module of the on-board computer .

还包括:地面站模拟器,所述地面站模拟器接收该卫星飞行控制闭环仿真系统发送的当前卫星的轨道参数信息和姿态四元数信息,然后,绘制并显示所接收到的所述当前卫星的运动参数随时间的变化曲线;和/或所述地面站模拟器接收该卫星飞行控制闭环仿真系统发送的当前卫星的轨道参数信息和姿态四元数信息,然后,存储并显示所述执行器模拟器输出给所述仿真服务器的信息;和/或所述地面站模拟器接收该卫星飞行控制闭环仿真系统发送的当前卫星的轨道参数信息和姿态四元数信息,然后,存储并显示所述敏感器模拟器输出给所述星载计算机的信息。Also includes: a ground station simulator, the ground station simulator receives the orbit parameter information and attitude quaternion information of the current satellite sent by the satellite flight control closed-loop simulation system, and then draws and displays the received current satellite and/or the ground station simulator receives the orbit parameter information and attitude quaternion information of the current satellite sent by the satellite flight control closed-loop simulation system, and then stores and displays the actuator The information that the simulator outputs to the simulation server; and/or the ground station simulator receives the orbit parameter information and the attitude quaternion information of the current satellite sent by the satellite flight control closed-loop simulation system, and then stores and displays the Information output by the sensor simulator to the onboard computer.

具体的,地面站模拟器通过串口线与一个无线网络收发器建立连接,从无线网络收发器读取数据。另外,在地面站模拟器上安装了LabView软件,使用该软件来开发一个图形化的界面,将各种参数随时间变化的曲线绘制出来。Specifically, the ground station simulator establishes a connection with a wireless network transceiver through a serial port line, and reads data from the wireless network transceiver. In addition, the LabView software is installed on the ground station simulator, and a graphical interface is developed using this software to draw the curves of various parameters changing with time.

本实施例提供的仿真系统还包括:CAN转以太网设备,CAN转以太网设备具体为TNode-232,主要实现CAN网和以太网数据通信的接口转换工作。该设备的主要工作是完成接口配置。The simulation system provided in this embodiment also includes: a CAN-to-Ethernet device, specifically the CAN-to-Ethernet device is TNode-232, which mainly realizes the interface conversion between the CAN network and the Ethernet data communication. The main job of this device is to complete the interface configuration.

还包括:无线网络收发器。具体的,在闭环仿真回路中可以使用两个无线网络收发器,即:第一无线网络收发器和第二无线网络收发器。其中,第一无线网络收发器用于接收CAN总线上需要传给地面站模拟器的数据,然后通过无线网络发送给地面站模拟器;第二无线网络收发器用于接收来自第一无线网络收发器传输过来的数据,并将该数据传输给地面站模拟器。Also includes: wireless network transceiver. Specifically, two wireless network transceivers may be used in the closed-loop simulation loop, namely: a first wireless network transceiver and a second wireless network transceiver. Among them, the first wireless network transceiver is used to receive the data that needs to be transmitted to the ground station simulator on the CAN bus, and then send it to the ground station simulator through the wireless network; the second wireless network transceiver is used to receive data transmitted from the first wireless network transceiver incoming data and transmit that data to the ground station simulator.

还包括:高速交换机。具体的,可以采用100M Cisco可配置交换机,用于实现各路数据的快速交换。Also includes: High-speed switch. Specifically, a 100M Cisco configurable switch can be used to realize fast exchange of data from various channels.

还包括:多组输出直流电源。该电源可以输出不同幅值的电压,用于给星载计算机、CAN转以太网设备、以太网交换机、无线网络收发器供电。Also includes: multiple output DC power supplies. The power supply can output voltages of different amplitudes to supply power to onboard computers, CAN-to-Ethernet devices, Ethernet switches, and wireless network transceivers.

本实施例中,一方面,敏感器模拟器直接将仿真计算得到的测量值发送给星载计算机,而星载计算机直接将计算得到的控制指令发送给执行器模拟器,这种设备间通信方式与实际卫星控制系统相同,从而提高了仿真可信度;另一方面,敏感器模拟器向星载计算机输出的真实测量值的数据格式与实际敏感器在实际卫星控制系统中实际输出的数据格式相同,并且,星载计算机向执行器模拟器输出的控制指令的数据格式与实际执行器在实际卫星控制系统中实际接收到的数据格式相同,从而进一步增加了仿真可信度。In this embodiment, on the one hand, the sensor simulator directly sends the measured value obtained by simulation calculation to the on-board computer, and the on-board computer directly sends the calculated control command to the actuator simulator. This inter-device communication method It is the same as the actual satellite control system, thus improving the reliability of the simulation; on the other hand, the data format of the actual measured value output by the sensor simulator to the on-board computer is the same as the data format actually output by the actual sensor in the actual satellite control system The same, and the data format of the control command output by the on-board computer to the actuator simulator is the same as the data format actually received by the actual actuator in the actual satellite control system, thereby further increasing the credibility of the simulation.

实施例二Embodiment two

本实施例和实施例一的不同在于,本实施例提供的基于部件模拟器的卫星飞行控制闭环仿真系统中,敏感器模拟器包括:敏感器仿真服务器和敏感器数据接口转换器,通过敏感器数据接口转换器连接敏感器仿真服务器和星载计算机,敏感器数据接口转换器用于转换敏感器仿真服务器和星载计算机间通信的数据格式;而执行器模拟器包括:执行器仿真服务器和执行器数据接口转换器,通过执行器数据接口转换器连接执行器仿真服务器和星载计算机,执行器数据接口转换器用于转换执行器仿真服务器和星载计算机间通信的数据格式。The difference between this embodiment andEmbodiment 1 is that in the satellite flight control closed-loop simulation system based on the component simulator provided by this embodiment, the sensor simulator includes: a sensor simulation server and a sensor data interface converter. The data interface converter connects the sensor simulation server and the onboard computer, and the sensor data interface converter is used to convert the data format of the communication between the sensor simulation server and the onboard computer; and the actuator simulator includes: the actuator simulation server and the actuator The data interface converter connects the actuator simulation server and the onboard computer through the actuator data interface converter, and the actuator data interface converter is used to convert the data format of the communication between the actuator simulation server and the onboard computer.

进一步的,由于现有实际卫星系统中,星上设备间是通过CAN总线进行数据通讯的,也就是说,星上敏感器向星载计算机输出的数据格式为符合CAN协议的数据格式类型,而星载计算机向星上执行器实际输出的数据格式为符合CAN协议的数据格式类型,因此,本实施例提供的基于部件模拟器的卫星飞行控制闭环仿真系统中,部件模拟器输出或输入的数据格式以符合CAN协议的数据格式为例进行说明。但需要说明的是,本发明并不局限于此,当星上设备间采用其他数据格式,例如:A类数据格式进行通讯时,本发明提供的仿真系统中,部件模拟器输出或输入的数据格式也可以进行相应的变化,凡是符合该种构想的情况均在本发明保护范围之内。Further, in the existing actual satellite system, data communication between on-board devices is carried out through the CAN bus, that is to say, the data format output from the on-board sensor to the on-board computer is a data format type conforming to the CAN protocol, while The data format that the on-board computer actually outputs to the on-board actuator is a data format type that conforms to the CAN protocol. Therefore, in the satellite flight control closed-loop simulation system based on the component simulator provided in this embodiment, the data output or input by the component simulator The format is described by taking the data format conforming to the CAN protocol as an example. However, it should be noted that the present invention is not limited thereto. When other data formats, such as Type A data format, are used for communication between devices on the star, in the simulation system provided by the present invention, the data output or input by the component simulator The format can also be changed accordingly, and all situations that conform to this idea are within the protection scope of the present invention.

具体的,本实施例提供的基于部件模拟器的卫星飞行控制闭环仿真系统,应用于包括动力学仿真服务器、敏感器模拟器、执行器模拟器和星载计算机的系统中,其中,敏感器模拟器包括:敏感器仿真服务器和敏感器数据接口转换器;执行器模拟器包括:执行器仿真服务器和执行器数据接口转换器,又由于现有实际卫星系统中,星上设备间是通过CAN总线进行数据通讯的,因此,本实施例中,以敏感器数据接口转换器为敏感器以太网/CAN数据接口转换器,执行器数据接口转换器为执行器以太网/CAN数据接口转换器为例进行说明,如图3所示,为本发明实施例二提供的基于部件模拟器的卫星飞行控制闭环仿真系统的结构示意图,具体包括以下步骤:Specifically, the component simulator-based satellite flight control closed-loop simulation system provided in this embodiment is applied to a system including a dynamics simulation server, a sensor simulator, an actuator simulator and an on-board computer, wherein the sensor simulation The device includes: the sensor simulation server and the sensor data interface converter; the actuator simulator includes: the actuator simulation server and the actuator data interface converter, and because in the existing actual satellite system, the devices on the star are connected through the CAN bus For data communication, therefore, in this embodiment, the sensor data interface converter is the sensor Ethernet/CAN data interface converter, and the actuator data interface converter is the actuator Ethernet/CAN data interface converter as an example For illustration, as shown in FIG. 3 , it is a schematic structural diagram of a satellite flight control closed-loop simulation system based on a component simulator provided by Embodiment 2 of the present invention, which specifically includes the following steps:

步骤201,动力学仿真服务器根据预存的卫星动力学数学模型以及初始控制力信息和初始控制力矩信息计算得到当前卫星的轨道参数信息和姿态四元数信息,并将该轨道参数信息和姿态四元数信息发送给所述敏感器模拟器。Step 201, the dynamics simulation server calculates the orbital parameter information and attitude quaternion information of the current satellite according to the pre-stored satellite dynamics mathematical model and initial control force information and initial control moment information, and stores the orbital parameter information and attitude quaternion information Number information is sent to the sensor simulator.

本发明中,敏感器模拟器包括:敏感器仿真服务器和敏感器数据接口转换器,所以,本步骤中,动力学仿真服务器是将轨道参数信息和姿态四元数信息发送给敏感器模拟器中的敏感器仿真服务器。In the present invention, the sensor simulator includes: a sensor simulation server and a sensor data interface converter, so, in this step, the dynamics simulation server sends the track parameter information and attitude quaternion information to the sensor simulator sensor emulation server for .

步骤202,敏感器仿真服务器根据接收到的所述轨道参数信息和姿态四元数信息和预存的与所述敏感器模拟器对应的敏感器的数学模型进行仿真计算,得到所述敏感器的模拟测量值,并将该模拟测量值发送给敏感器以太网/CAN数据接口转换器。Step 202, the sensor simulation server performs simulation calculations according to the received orbit parameter information and attitude quaternion information and the pre-stored mathematical model of the sensor corresponding to the sensor simulator, to obtain the simulation of the sensor measured value and send this analog measured value to the sensor Ethernet/CAN data interface converter.

其中,在卫星仿真系统中,模拟测量值的数据格式为符合以太网协议的数据格式;而真实测量值的数据格式为符合CAN协议的数据格式,因此,敏感器以太网/CAN数据接口转换器用于将符合以太网协议的数据格式转化为符合CAN协议的数据格式。Among them, in the satellite simulation system, the data format of the simulated measurement value is a data format conforming to the Ethernet protocol; while the data format of the real measurement value is a data format conforming to the CAN protocol. Therefore, the sensor Ethernet/CAN data interface converter is used It is used to convert the data format conforming to the Ethernet protocol into a data format conforming to the CAN protocol.

另外,由于在实际卫星系统中,敏感器可以为多类,例如:星敏感器、太阳敏感器、磁强计、光纤陀螺、GPS中的一种或几种,因此,本步骤中,敏感器仿真服务器基于不同的敏感器的数学模型,可以计算得到不同敏感器的模拟测量值,例如:星敏感器模拟测量值、太阳敏感器模拟测量值、磁强计模拟测量值、光纤陀螺模拟测量值、GPS模拟测量值等,然后将这些不同类的模拟测量值可以发送给同一个敏感器以太网/CAN数据接口转换器,也可以分别发送给对应的敏感器以太网/CAN数据接口转换器。也就是说,本发明提供的敏感器以太网/CAN数据接口转换器既可以将属于同一类敏感器的符合以太网协议的数据格式转化为符合CAN协议的数据格式,也可以将属于不同类敏感器的符合以太网协议的数据格式转化为符合CAN协议的数据格式。为方便说明,下面将符合以太网协议的数据格式的数据简称为以太网数据,将符合CAN协议的数据格式的数据简单为CAN数据。In addition, since in the actual satellite system, the sensors can be of many types, for example: one or more of star sensors, sun sensors, magnetometers, fiber optic gyroscopes, and GPS, therefore, in this step, the sensors The simulation server can calculate the simulated measurement values of different sensors based on the mathematical models of different sensors, such as: star sensor simulation measurement values, sun sensor simulation measurement values, magnetometer simulation measurement values, fiber optic gyroscope simulation measurement values , GPS analog measurement values, etc., and then these different types of analog measurement values can be sent to the same sensor Ethernet/CAN data interface converter, or to the corresponding sensor Ethernet/CAN data interface converters respectively. That is to say, the sensor Ethernet/CAN data interface converter provided by the present invention can convert the data format conforming to the Ethernet protocol belonging to the same type of sensor into the data format conforming to the CAN protocol, and can also convert the data format belonging to different types of sensors into a data format conforming to the CAN protocol. The data format conforming to the Ethernet protocol of the device is converted into a data format conforming to the CAN protocol. For the convenience of description, the data in the data format conforming to the Ethernet protocol is simply referred to as Ethernet data, and the data in the data format conforming to the CAN protocol is simply referred to as CAN data.

例如:敏感器仿真服务器基于预存的太阳敏感器的数学模型进行仿真计算,得到太阳敏感器的以太网数据,基于预存的星敏感器的数学模型进行仿真计算,得到星敏感器的以太网数据,则太阳敏感器的以太网数据和星敏感器的以太网数据可以通过以下两种方式进行发送:(一)只设置一个敏感器以太网/CAN数据接口转换器,则太阳敏感器的以太网数据和星敏感器的以太网数据均发送给该敏感器以太网/CAN数据接口转换器,该敏感器以太网/CAN数据接口转换器既将太阳敏感器的以太网数据转化为CAN数据,同时也将星敏感器的以太网数据转化为CAN数据。(二)分别设置太阳敏感器以太网/CAN数据接口转换器和星敏感器以太网/CAN数据接口转换器,由太阳敏感器以太网/CAN数据接口转换器将太阳敏感器的以太网数据转化为CAN数据,由星敏感器以太网/CAN数据接口转换器将星敏感器的以太网数据转化为CAN数据,但需要说明的是,太阳敏感器以太网/CAN数据接口转换器和星敏感器以太网/CAN数据接口转换器的硬件相同,区别仅在于传输内容的不同。For example: the sensor simulation server performs simulation calculation based on the pre-stored mathematical model of the sun sensor to obtain the Ethernet data of the sun sensor, performs simulation calculation based on the pre-stored mathematical model of the star sensor, and obtains the Ethernet data of the star sensor. Then the Ethernet data of the sun sensor and the Ethernet data of the star sensor can be sent in the following two ways: (1) only one sensor Ethernet/CAN data interface converter is set, and the Ethernet data of the sun sensor Both the Ethernet data of the star sensor and the star sensor are sent to the sensor Ethernet/CAN data interface converter, and the sensor Ethernet/CAN data interface converter not only converts the Ethernet data of the sun sensor into CAN data, but also Convert the Ethernet data of the star sensor to CAN data. (2) Set the sun sensor Ethernet/CAN data interface converter and the star sensor Ethernet/CAN data interface converter respectively, and convert the Ethernet data of the sun sensor by the sun sensor Ethernet/CAN data interface converter For CAN data, the Ethernet data of the star sensor is converted into CAN data by the star sensor Ethernet/CAN data interface converter, but it should be noted that the sun sensor Ethernet/CAN data interface converter and the star sensor The hardware of the Ethernet/CAN data interface converter is the same, the only difference lies in the transmission content.

步骤203:敏感器以太网/CAN数据接口转换器将接收到的所述模拟测量值转化为真实格式模拟测量值,并将该真实格式模拟测量值发送给所述星载计算机。Step 203: The sensor Ethernet/CAN data interface converter converts the received analog measurement value into a real format analog measurement value, and sends the real format analog measurement value to the onboard computer.

具体的,敏感器以太网/CAN数据接口转换器将接收到的以太网数据转化为CAN数据,然后将该CAN数据发送给星载计算机。Specifically, the sensor Ethernet/CAN data interface converter converts the received Ethernet data into CAN data, and then sends the CAN data to the on-board computer.

因此,敏感器以太网/CAN数据接口转换器发送给星载计算机的数据为CAN数据,与实际卫星系统中,敏感器向星载计算机输出的数据格式相同,从而提高了仿真可信度。Therefore, the data sent by the sensor Ethernet/CAN data interface converter to the onboard computer is CAN data, which is the same format as the data output from the sensor to the onboard computer in the actual satellite system, thereby improving the reliability of the simulation.

步骤204:星载计算机接收所述真实格式模拟测量值,并根据预存的卫星目标姿态信息和卫星目标轨道信息以及控制算法进行计算,得到控制指令,并将该控制指令发送给执行器以太网/CAN数据接口转换器。Step 204: The on-board computer receives the simulated measurement value in the real format, calculates according to the pre-stored satellite target attitude information, satellite target orbit information and control algorithm, obtains a control command, and sends the control command to the actuator Ethernet/ CAN data interface converter.

其中,星载计算机仿真计算,得到的控制指令为符合CAN协议的控制指令,以下简称CAN控制指令。也就是说,执行器以太网/CAN数据接口转换器接收到的来自星载计算机的控制指令为CAN控制指令,与实际执行器在实际卫星控制系统中实际接收到的数据格式的类型相同,从而提高仿真可信度。Among them, the control command obtained by the simulation calculation of the on-board computer is a control command conforming to the CAN protocol, hereinafter referred to as the CAN control command. That is to say, the control command received by the actuator Ethernet/CAN data interface converter from the on-board computer is a CAN control command, which is the same type as the data format actually received by the actual actuator in the actual satellite control system, thus Improve simulation confidence.

与敏感器以太网/CAN数据接口转换器可以为一个或多个相同,本实施例提供的执行器以太网/CAN数据接口转换器也可以为一个或多个。Just as there can be one or more sensor Ethernet/CAN data interface converters, the actuator Ethernet/CAN data interface converters provided in this embodiment can also be one or more.

具体的,由于在实际卫星系统中,执行器可以为多类,例如:动量轮、磁力矩器、推力器等,因此,本步骤中,星载计算机根据要控制的执行器的类别的不同,得到对不同类执行器的控制指令后,可以发送给同一个执行器以太网/CAN数据接口转换器,也可以发送给对应的执行器以太网/CAN数据接口转换器。也就是说,本发明提供的执行器以太网/CAN数据接口转换器既可以将属于同一类执行器的CAN控制指令转化为以太网控制指令,也可以将属于不同类执行器的CAN控制指令转化为以太网控制指令,其中,以太网控制指令代表符合以太网协议的控制指令。Specifically, since in the actual satellite system, actuators can be of many types, such as: momentum wheels, magnetic torque devices, thrusters, etc., therefore, in this step, the on-board computer depends on the types of actuators to be controlled, After obtaining the control instructions for different types of actuators, they can be sent to the same actuator Ethernet/CAN data interface converter, or to the corresponding actuator Ethernet/CAN data interface converter. That is to say, the actuator Ethernet/CAN data interface converter provided by the present invention can convert CAN control instructions belonging to the same type of actuators into Ethernet control instructions, and can also convert CAN control instructions belonging to different types of actuators. is an Ethernet control command, wherein the Ethernet control command represents a control command conforming to the Ethernet protocol.

例如:星载计算机根据要控制的执行器的类别,得到对磁力矩器的CAN控制指令和对推力器的CAN控制指令,则对磁力矩器的CAN控制指令和对推力器的CAN控制指令可以通过以下两种方式进行发送:(一)只设置一个执行器以太网/CAN数据接口转换器,则对磁力矩器的CAN控制指令和对推力器的CAN控制指令均发送给该执行器以太网/CAN数据接口转换器,由该执行器以太网/CAN数据接口转换器既将对磁力矩器的CAN控制指令转化为以太网控制指令,同时也将对推力器的CAN控制指令转化为以太网控制指令。(二)分别设置磁力矩器以太网/CAN数据接口转换器和推力器以太网/CAN数据接口转换器,由磁力矩器以太网/CAN数据接口转换器将对磁力矩器的CAN控制指令转化为以太网控制指令,由推力器以太网/CAN数据接口转换器将对推力器的CAN控制指令转化为以太网控制指令,但需要说明的是,磁力矩器以太网/CAN数据接口转换器和推力器以太网/CAN数据接口转换器的硬件相同,区别仅在于传输内容的不同。进一步的,本实施例提供的执行器以太网/CAN数据接口转换器和敏感器以太网/CAN数据接口转换器可以为同一个硬件设备,也可以为不同的硬件设备。For example, the onboard computer obtains the CAN control command for the magnetic torquer and the CAN control command for the thruster according to the category of the actuator to be controlled, then the CAN control command for the magnetic torquer and the CAN control command for the thruster can be The transmission is carried out in the following two ways: (1) Only one actuator Ethernet/CAN data interface converter is set, and the CAN control command for the magnetic torque device and the CAN control command for the thruster are both sent to the actuator Ethernet /CAN data interface converter, the actuator Ethernet/CAN data interface converter not only converts the CAN control command to the magnetic torque device into the Ethernet control command, but also converts the CAN control command to the thruster into Ethernet Control instruction. (2) Set up the magnetic torquer Ethernet/CAN data interface converter and the thruster Ethernet/CAN data interface converter respectively, and the magnetic torquer Ethernet/CAN data interface converter will convert the CAN control command to the magnetic torquer It is an Ethernet control command, and the CAN control command to the thruster is converted into an Ethernet control command by the thruster Ethernet/CAN data interface converter, but it should be noted that the magnetic torque device Ethernet/CAN data interface converter and The hardware of the thruster Ethernet/CAN data interface converter is the same, the only difference lies in the transmission content. Further, the actuator Ethernet/CAN data interface converter and the sensor Ethernet/CAN data interface converter provided in this embodiment may be the same hardware device or different hardware devices.

步骤205:执行器以太网/CAN数据接口转换器接收来自星载计算机的CAN控制指令,并将CAN控制指令转化为以太网控制指令,然后根据所述以太网控制指令和预存的所述执行器的数学模型进行仿真计算,得到新的控制力信息和新的控制力矩信息,并将该新的控制力信息和新的控制力矩信息发送给所述动力学仿真服务器。Step 205: The actuator Ethernet/CAN data interface converter receives the CAN control command from the on-board computer, and converts the CAN control command into an Ethernet control command, and then according to the Ethernet control command and the pre-stored actuator The mathematical model is simulated to obtain new control force information and new control torque information, and the new control force information and new control torque information are sent to the dynamics simulation server.

步骤206:所述动力学仿真服务器用接收到的所述新的控制力信息和新的控制力矩信息更新所述初始控制力信息和初始控制力矩信息,然后重复执行步骤201-205,直到达到预设仿真时间,结束上述流程。Step 206: The dynamics simulation server updates the initial control force information and initial control torque information with the received new control force information and new control torque information, and then repeatedly executes steps 201-205 until a predetermined value is reached. Set the simulation time and end the above process.

因此,本实施例提供的基于部件模拟器的卫星飞行控制闭环仿真系统中,敏感器模拟器包括:敏感器仿真服务器和敏感器数据接口转换器,其中,敏感器数据接口转换器为敏感器以太网/CAN数据接口转换器,用于将来自敏感器仿真服务器的以太网数据转化为CAN数据,并将该CAN数据上传给星载计算机;而执行器模拟器包括:执行器仿真服务器和执行器数据接口转换器,其中,执行器数据接口转换器为执行器以太网/CAN数据接口转换器,用于将来自星载计算机的CAN控制指令转化为以太网控制指令,并将该以太网控制指令上传给执行器仿真服务器。因此,本实施例实现了敏感器模拟器向星载计算机输出的数据格式与实际卫星系统中敏感器输出的数据格式相同,而执行器模拟器接收的来自星载计算机的数据格式与实际卫星系统中执行器输入的数据格式相同,从而提高了仿真可信度。Therefore, in the satellite flight control closed-loop simulation system based on the component simulator provided in this embodiment, the sensor simulator includes: a sensor simulation server and a sensor data interface converter, wherein the sensor data interface converter is the sensor Ethernet Network/CAN data interface converter, used to convert the Ethernet data from the sensor simulation server into CAN data, and upload the CAN data to the onboard computer; and the actuator simulator includes: actuator simulation server and actuator A data interface converter, wherein the actuator data interface converter is an actuator Ethernet/CAN data interface converter, which is used to convert the CAN control command from the onboard computer into an Ethernet control command, and convert the Ethernet control command Upload to the actuator simulation server. Therefore, this embodiment realizes that the data format output by the sensor simulator to the on-board computer is the same as the data format output by the sensor in the actual satellite system, and the data format received by the actuator simulator from the on-board computer is the same as that of the actual satellite system. The input data format of the actuators is the same, which improves the reliability of the simulation.

Claims (10)

10. according to each described system of claim 1-8; It is characterized in that; Also comprise: land station's simulator; Said land station simulator receives the orbit parameter information and the attitude quaternion information of the current satellite that this satellite flight control closed-loop simulation system sends, and then, draws and the kinematic parameter that shows received said current satellite curve over time; And/or said land station simulator receives the orbit parameter information and the attitude quaternion information of the current satellite that this satellite flight control closed-loop simulation system sends, and then, stores and shows that said actuator simulator exports to the information of said emulation server; And/or said land station simulator receives the orbit parameter information and the attitude quaternion information of the current satellite that this satellite flight control closed-loop simulation system sends, and then, stores and shows that said sensor simulator exports to the information of said spaceborne computer.
CN 2011103632132011-11-162011-11-16Satellite flight control closed loop simulation system based on component simulatorExpired - Fee RelatedCN102411313B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN 201110363213CN102411313B (en)2011-11-162011-11-16Satellite flight control closed loop simulation system based on component simulator

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN 201110363213CN102411313B (en)2011-11-162011-11-16Satellite flight control closed loop simulation system based on component simulator

Publications (2)

Publication NumberPublication Date
CN102411313Atrue CN102411313A (en)2012-04-11
CN102411313B CN102411313B (en)2013-06-05

Family

ID=45913435

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN 201110363213Expired - Fee RelatedCN102411313B (en)2011-11-162011-11-16Satellite flight control closed loop simulation system based on component simulator

Country Status (1)

CountryLink
CN (1)CN102411313B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103064300A (en)*2013-01-292013-04-24哈尔滨工业大学Autonomous interpreting and processing device and method of satellite closed-loop testing system data
CN103412493A (en)*2013-07-292013-11-27北京航空航天大学Solid-liquid power cruising aircraft flight mission planning simulation system
CN104009882A (en)*2014-04-292014-08-27上海科梁信息工程有限公司Equivalent satellite power supply system testing method and system based on distributed architecture
CN104571097A (en)*2015-01-232015-04-29北京控制工程研究所On-orbit closed loop verification system for satellite control system
CN105319993A (en)*2015-11-272016-02-10上海新跃仪表厂Hardware intermediate layer-based mini-type real-time simulation system
CN105974907A (en)*2016-05-122016-09-28上海微小卫星工程中心Satellite attitude control ground simulation testing system
CN107544469A (en)*2017-09-252018-01-05中国航空工业集团公司西安飞机设计研究所A kind of automatic winged control closed loop test system with configuration
CN108639394A (en)*2018-05-242018-10-12北京仿真中心A kind of simulating flywheel semi-matter simulating system and method
CN109143280A (en)*2018-10-102019-01-04上海微小卫星工程中心 A satellite integrated state closed-loop test system and corresponding test method
CN109856995A (en)*2019-03-042019-06-07北京空间飞行器总体设计部A kind of whole star control subsystem analog platform towards test method verifying assessment
CN111796304A (en)*2020-06-242020-10-20深圳航天东方红海特卫星有限公司Universal serial port tester for microsatellite
CN112052560A (en)*2020-07-302020-12-08上海航天控制技术研究所Closed-loop simulation design method for system-level on-board computer maintenance mode
CN112083661A (en)*2020-08-042020-12-15上海航天控制技术研究所Integrated virtual simulation test system
CN112099518A (en)*2020-09-212020-12-18中国科学院微小卫星创新研究院Satellite attitude control simulation test method and system
CN112363410A (en)*2020-11-132021-02-12浙江大学Intelligent autonomous control research and verification system for spacecraft
CN112558624A (en)*2020-12-112021-03-26北京控制工程研究所Spacecraft autonomous task planning, verification and deployment integrated intelligent computing system
CN114167751A (en)*2021-11-302022-03-11东方红卫星移动通信有限公司Constellation semi-physical simulation system and simulation method
CN115599112A (en)*2022-10-212023-01-13清华大学(Cn) A real-time simulation test system and method for micro-nano satellite attitude and orbit control

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20020144272A1 (en)*2001-02-272002-10-03Mclain Christopher J.EIRP statistical calculation method
EP1813955A1 (en)*2006-01-192007-08-01Alcatel LucentDevice controlling relative position(s) using power measurements for use by a spacecraft in a group of spacecraft in formation
CN101226561A (en)*2007-12-282008-07-23南京航空航天大学 Micro-simulation support system and working method for micro-spacecraft attitude-orbit control system
CN101226113A (en)*2008-01-302008-07-23北京航空航天大学 Star sensor function test method and device based on electric injection star map
CN101320524A (en)*2008-04-222008-12-10北京航空航天大学 Multiprocessor real-time simulation platform
CN101814107A (en)*2010-05-062010-08-25哈尔滨工业大学Satellite dynamics simulation system and method based on satellite dynamics model library

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20020144272A1 (en)*2001-02-272002-10-03Mclain Christopher J.EIRP statistical calculation method
EP1813955A1 (en)*2006-01-192007-08-01Alcatel LucentDevice controlling relative position(s) using power measurements for use by a spacecraft in a group of spacecraft in formation
CN101226561A (en)*2007-12-282008-07-23南京航空航天大学 Micro-simulation support system and working method for micro-spacecraft attitude-orbit control system
CN101226113A (en)*2008-01-302008-07-23北京航空航天大学 Star sensor function test method and device based on electric injection star map
CN101320524A (en)*2008-04-222008-12-10北京航空航天大学 Multiprocessor real-time simulation platform
CN101814107A (en)*2010-05-062010-08-25哈尔滨工业大学Satellite dynamics simulation system and method based on satellite dynamics model library

Cited By (27)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103064300B (en)*2013-01-292015-08-19哈尔滨工业大学The autonomous interpretation treating apparatus of satellite closed cycle test macro data and disposal route thereof
CN103064300A (en)*2013-01-292013-04-24哈尔滨工业大学Autonomous interpreting and processing device and method of satellite closed-loop testing system data
CN103412493A (en)*2013-07-292013-11-27北京航空航天大学Solid-liquid power cruising aircraft flight mission planning simulation system
CN103412493B (en)*2013-07-292016-01-20北京航空航天大学Solid-liquid power cruise vehicle aerial mission planning simulation system
CN104009882B (en)*2014-04-292017-06-13上海科梁信息工程股份有限公司The method of testing and system of the equivalent satellite power-supply system based on distributed structure/architecture
CN104009882A (en)*2014-04-292014-08-27上海科梁信息工程有限公司Equivalent satellite power supply system testing method and system based on distributed architecture
CN104571097A (en)*2015-01-232015-04-29北京控制工程研究所On-orbit closed loop verification system for satellite control system
CN105319993A (en)*2015-11-272016-02-10上海新跃仪表厂Hardware intermediate layer-based mini-type real-time simulation system
CN105974907A (en)*2016-05-122016-09-28上海微小卫星工程中心Satellite attitude control ground simulation testing system
CN107544469A (en)*2017-09-252018-01-05中国航空工业集团公司西安飞机设计研究所A kind of automatic winged control closed loop test system with configuration
CN108639394A (en)*2018-05-242018-10-12北京仿真中心A kind of simulating flywheel semi-matter simulating system and method
CN109143280A (en)*2018-10-102019-01-04上海微小卫星工程中心 A satellite integrated state closed-loop test system and corresponding test method
CN113495497A (en)*2018-10-102021-10-12上海微小卫星工程中心Satellite simulation in-orbit working condition closed-loop test system
CN113495497B (en)*2018-10-102024-05-14上海微小卫星工程中心Satellite simulation on-orbit working condition closed loop test system
CN109856995A (en)*2019-03-042019-06-07北京空间飞行器总体设计部A kind of whole star control subsystem analog platform towards test method verifying assessment
CN111796304A (en)*2020-06-242020-10-20深圳航天东方红海特卫星有限公司Universal serial port tester for microsatellite
CN112052560A (en)*2020-07-302020-12-08上海航天控制技术研究所Closed-loop simulation design method for system-level on-board computer maintenance mode
CN112083661A (en)*2020-08-042020-12-15上海航天控制技术研究所Integrated virtual simulation test system
CN112083661B (en)*2020-08-042024-07-09上海航天控制技术研究所Integrated virtual simulation test system
CN112099518A (en)*2020-09-212020-12-18中国科学院微小卫星创新研究院Satellite attitude control simulation test method and system
CN112363410A (en)*2020-11-132021-02-12浙江大学Intelligent autonomous control research and verification system for spacecraft
CN112363410B (en)*2020-11-132022-09-30浙江大学Intelligent autonomous control research and verification system for spacecraft
CN112558624A (en)*2020-12-112021-03-26北京控制工程研究所Spacecraft autonomous task planning, verification and deployment integrated intelligent computing system
CN112558624B (en)*2020-12-112023-09-29北京控制工程研究所Spacecraft autonomous mission planning verification deployment integrated intelligent computing system
CN114167751A (en)*2021-11-302022-03-11东方红卫星移动通信有限公司Constellation semi-physical simulation system and simulation method
CN114167751B (en)*2021-11-302024-01-02中国星网网络应用有限公司Constellation semi-physical simulation system and simulation method
CN115599112A (en)*2022-10-212023-01-13清华大学(Cn) A real-time simulation test system and method for micro-nano satellite attitude and orbit control

Also Published As

Publication numberPublication date
CN102411313B (en)2013-06-05

Similar Documents

PublicationPublication DateTitle
CN102411313B (en)Satellite flight control closed loop simulation system based on component simulator
CN107132771B (en)A kind of carrier rocket flight quality efficient emulation verification method
CN110928201B (en) A semi-physical test method and system for aircraft avionics system
CN103246204B (en)Multiple no-manned plane system emulation and verification method and device
CN101320524B (en)Multiprocessor real-time simulation platform
CN103092212B (en)The simulation and verification platform of micro-gastric carcinoma system and implementation method
CN107942720A (en)A kind of online flight Simulation System of portable type ground
CN101995825A (en)Satellite dynamic and control distributed simulation platform
CN103365214A (en)Single rotor wing unmanned aerial vehicle three-freedom degree semi-physical simulation platform and experimental method
CN103869700B (en)Semi-physical platform for satellite executing mechanism online reconstitution and control method
CN101995824A (en)Semi-physical simulation system for attitude control of star-arrow integrated spacecraft
CN103970031B (en)A kind of satellite simulator Integrated simulation system and emulation mode
CN104267614A (en)Unmanned aerial vehicle real-time simulation system and developing method thereof
CN103792851A (en)Wireless ad hoc network-based cluster spacecraft semi-physical simulation system and method
CN108312146B (en) Modular robot decentralized control method and system
CN112558624B (en)Spacecraft autonomous mission planning verification deployment integrated intelligent computing system
CN110806701A (en)Unmanned helicopter control system simulation platform
CN104122800B (en)Robot for space Electricity Federation examination ATD system
CN104155969B (en)A kind of zero momentum wheel friction suppresses and offsets checking system
CN104135214A (en)Embedded type motor modularization servo controller of flight simulation rotary table
CN105159144A (en)Spacecraft control system ground simulation high-speed control development system
CN104536302B (en)A kind of satellite simulation system and method
CN103941592A (en)Online modeling method of flying robot dynamics model
CN102411312A (en)Sensor simulator and satellite closed-loop simulation system with same
CN113348764B (en)System and method for overall process digital simulation of lunar aircraft

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20130605

Termination date:20201116

CF01Termination of patent right due to non-payment of annual fee

[8]ページ先頭

©2009-2025 Movatter.jp