技术领域technical field
本发明涉及无线通信系统,更具体地说,本发明涉及用于控制上行发送功率的方法和装置。The present invention relates to a wireless communication system, and more specifically, the present invention relates to a method and device for controlling uplink transmission power.
背景技术Background technique
已经广泛采用无线通信系统,以提供各种类型的通信服务,如语音或数据。通常,无线通信系统是能够通过共享可用系统资源(带宽,发送功率等)来支持与多用户进行通信的多址系统。多址系统的示例包括码分多址(CDMA)系统、频分多址(FDMA)系统、时分多址(TDMA)系统、正交频分多址(OFDMA)系统、单载波频分多址(SC-FDMA)系统、多载波频分多址(MC-FDMA)系统等。Wireless communication systems have been widely adopted to provide various types of communication services, such as voice or data. Generally, a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.). Examples of multiple-access systems include Code Division Multiple Access (CDMA) systems, Frequency Division Multiple Access (FDMA) systems, Time Division Multiple Access (TDMA) systems, Orthogonal Frequency Division Multiple Access (OFDMA) systems, Single Carrier Frequency Division Multiple Access ( SC-FDMA) system, multi-carrier frequency division multiple access (MC-FDMA) system, etc.
发明内容Contents of the invention
技术问题technical problem
本发明的一个目的是提供用于在无线通信系统中发送多个信号时高效控制发送功率的方法和装置。An object of the present invention is to provide a method and apparatus for efficiently controlling transmission power when transmitting a plurality of signals in a wireless communication system.
本发明的另一个目的是提供用于在无线通信系统中发送多个信号时信号的发送功率之和超过最大发送功率时高效控制发送功率的方法和装置。Another object of the present invention is to provide a method and apparatus for efficiently controlling transmission power when a sum of transmission powers of signals exceeds a maximum transmission power when a plurality of signals are transmitted in a wireless communication system.
本发明要解决的技术问题不限于上述技术问题,并且本领域技术人员根据下面的描述可以清楚地理解上面未提到的其他技术问题。The technical problems to be solved by the present invention are not limited to the above technical problems, and those skilled in the art can clearly understand other technical problems not mentioned above from the following description.
技术方案Technical solutions
在本发明的一个方面中,一种用于在无线通信系统中发送信号的方法包括以下步骤:独立地确定第一信道和第二信道的发送功率;如果第一和第二信道的发送功率之和超过了最大发送功率,则考虑信道优先级,降低第一和第二信道的发送功率中的至少一个发送功率;以及通过第一和第二信道同时向基站发送信号。In one aspect of the present invention, a method for transmitting a signal in a wireless communication system includes the steps of: independently determining the transmission power of the first channel and the second channel; and exceeds the maximum transmission power, considering channel priority, reducing at least one of the transmission powers of the first and second channels; and simultaneously transmitting signals to the base station through the first and second channels.
在本发明的另一个方面中,用户设备(UE)包括射频(RF)单元,该射频单元用于向基站(BS)发送无线信号和从基站(BS)接收无线信号;存储器,该存储器用于存储向BS发送的信息、从BS接收的信息以及UE操作需要的参数;以及处理器,该处理器连接至RF单元和存储器,并且被构造为控制RF单元和存储器,以操作UE,其中,处理器独立确定第一信道和第二信道的发送功率;如果第一和第二信道的发送功率之和超过了最大发送功率,则考虑信道优先级,降低第一和第二信道的发送功率中的至少一个发送功率;以及通过第一和第二信道同时向基站发送信号。In another aspect of the present invention, a user equipment (UE) includes a radio frequency (RF) unit for transmitting and receiving wireless signals to and from a base station (BS); a memory for storing information transmitted to the BS, information received from the BS, and parameters required for UE operation; and a processor connected to the RF unit and the memory and configured to control the RF unit and the memory to operate the UE, wherein the processing The transmitter independently determines the transmission power of the first channel and the second channel; if the sum of the transmission power of the first and the second channel exceeds the maximum transmission power, then consider the priority of the channel, and reduce the transmission power of the first and the second channel. at least one transmit power; and simultaneously transmit signals to the base station over the first and second channels.
第一和第二信道中的各个信道可以包括一个或更多个单载波频分多址(SC-FDMA)符号。同时,可以考虑信道类型或信道信息中的至少一种来确定信道优先级。各个信道可以包括物理上行共享信道(PUSCH)、物理上行控制信道(PUCCH)或探测基准信号(SRS)中的任意一种。Each of the first and second channels may include one or more single carrier frequency division multiple access (SC-FDMA) symbols. Meanwhile, channel priority may be determined in consideration of at least one of channel type or channel information. Each channel may include any one of Physical Uplink Shared Channel (PUSCH), Physical Uplink Control Channel (PUCCH) or Sounding Reference Signal (SRS).
如果第一信道和第二信道都是PUSCH,则可以考虑发送格式、重传/非重传、或重传次数来确定信道优先级。如果降低PUSCH的发送功率,则考虑降低的功率量,可以将应用于该PUSCH的调制和编码方案(MCS)控制为低值。如果第一信道是发送ACK的PUCCH,而第二信道是PUSCH,则可以向PUSCH分配高信道优先级。If both the first channel and the second channel are PUSCH, the channel priority may be determined in consideration of the transmission format, retransmission/non-retransmission, or number of retransmissions. If the transmission power of the PUSCH is reduced, the modulation and coding scheme (MCS) applied to the PUSCH can be controlled to a low value in consideration of the reduced power amount. If the first channel is a PUCCH that transmits ACK and the second channel is a PUSCH, a high channel priority may be assigned to the PUSCH.
在本发明的另一个方面中,一种无线通信系统中用于在用户设备(UE)发送信号的方法,该方法包括以下步骤:确认多个分量载波中的每个分量载波的最大发送功率(P_CC_MAX)和所述UE的最大发送功率(P_UE_MAX);计算被调度为通过一个或更多个分量载波同时向基站(BS)发送的多个信道各自的发送功率;独立地调节所述多个信道的所述发送功率,以不超过所述P_CC_MAX和所述P_UE_MAX;以及通过已经调节了所述发送功率的所述多个信道向所述BS发送信号。In another aspect of the present invention, a method for transmitting a signal in a user equipment (UE) in a wireless communication system, the method includes the following steps: confirming the maximum transmission power ( P_CC_MAX) and the maximum transmit power (P_UE_MAX) of the UE; calculating respective transmit powers of a plurality of channels scheduled to be simultaneously transmitted to a base station (BS) through one or more component carriers; independently adjusting the plurality of channels the transmission power of the BS so as not to exceed the P_CC_MAX and the P_UE_MAX; and transmit signals to the BS through the plurality of channels for which the transmission power has been adjusted.
在本发明的另一个方面中,用户设备(UE)包括射频(RF)单元,该射频单元用于向基站(BS)发送无线信号和从基站(BS)接收无线信号;存储器,该存储器用于存储向所述BS发送的信息、从向所述BS接收的信息、以及操作所述UE所需的参数;以及处理器,该处理器连接至所述RF单元和所述存储器,并且被构造为控制所述RF单元和所述存储器,以操作所述UE,其中,所述处理器:确认多个分量载波中的每个分量载波的最大发送功率(P_CC_MAX)和所述UE的最大发送功率(P_UE_MAX);计算被调度为通过一个或更多个分量载波同时向基站(BS)发送的多个信道各自的发送功率;独立地调节所述多个信道的所述发送功率,以不超过所述P_CC_MAX和所述P_UE_MAX;以及通过已经调节了所述发送功率的所述多个信道向所述BS发送信号。In another aspect of the present invention, a user equipment (UE) includes a radio frequency (RF) unit for transmitting and receiving wireless signals to and from a base station (BS); a memory for storing information transmitted to the BS, information received from the BS, and parameters required to operate the UE; and a processor connected to the RF unit and the memory and configured to controlling the RF unit and the memory to operate the UE, wherein the processor: confirms a maximum transmission power (P_CC_MAX) of each of a plurality of component carriers and a maximum transmission power of the UE ( P_UE_MAX); calculate the respective transmission powers of a plurality of channels that are scheduled to be simultaneously transmitted to the base station (BS) through one or more component carriers; independently adjust the transmission powers of the plurality of channels so as not to exceed the P_CC_MAX and the P_UE_MAX; and transmitting signals to the BS through the plurality of channels for which the transmit power has been adjusted.
用于设置所述P_CC_MAX的信息和用于设置所述P_UE_MAX的信息可以通过广播消息或无线资源控制(RRC)消息以信号发送。The information for setting the P_CC_MAX and the information for setting the P_UE_MAX may be signaled through a broadcast message or a radio resource control (RRC) message.
所述多个信道的所述发送功率的调节可以包括独立地降低各信道的发送功率,使得所述多个信道的发送功率之和不超过所述P_UE_MAX;以及在降低各信道的发送功率之后,独立地降低每个分量载波的相应信道的发送功率,使得所述相应信道的发送功率之和不超过相应的P_CC_MAX。在该情况下,从所述相应信道所降低的功率的至少一部分用于增大其他分量载波的发送功率。The adjustment of the transmission power of the plurality of channels may include independently reducing the transmission power of each channel so that the sum of the transmission powers of the plurality of channels does not exceed the P_UE_MAX; and after reducing the transmission power of each channel, The transmission power of the corresponding channel of each component carrier is independently reduced such that the sum of the transmission powers of the corresponding channels does not exceed the corresponding P_CC_MAX. In this case at least a part of the reduced power from said corresponding channel is used to increase the transmit power of the other component carriers.
所述多个信道的所述发送功率的调节可以包括独立地降低每个分量载波的相应信道的发送功率,使得所述相应信道的发送功率之和不超过相应的P_CC_MAX;以及在降低各信道的发送功率之后,独立降低各信道的发送功率,使得所述多个信道的发送功率之和不超过所述P_UE_MAX。The adjustment of the transmission power of the plurality of channels may include independently reducing the transmission power of the corresponding channel of each component carrier, so that the sum of the transmission power of the corresponding channels does not exceed the corresponding P_CC_MAX; After sending the power, reduce the sending power of each channel independently, so that the sum of the sending powers of the multiple channels does not exceed the P_UE_MAX.
所述多个信道的所述发送功率的调节可以包括将衰减系数独立地应用于各信道。The adjustment of the transmission power of the plurality of channels may include independently applying an attenuation coefficient to each channel.
所述信道中的各个信道可以包括一个或更多个单载波频分多址(SC-FDMA)符号。在该情况下,所述信道中的各个信道可以包括物理上行共享信道(PUSCH)、物理上行控制信道(PUCCH)或探测基准信号(SRS)中的任意一种。Each of the channels may include one or more single carrier frequency division multiple access (SC-FDMA) symbols. In this case, each of the channels may include any one of a Physical Uplink Shared Channel (PUSCH), a Physical Uplink Control Channel (PUCCH) or a Sounding Reference Signal (SRS).
在本发明的另一个方面中,一种在无线通信系统中用于在用户设备(UE)发送信号的方法包括以下步骤:计算多根天线中的各根天线的发送功率;如果所计算出的发送功率超过了相应天线的最大发送功率,则计算发送功率衰减比;将所述发送功率衰减比中的最大衰减比同等地应用于所述多根天线;以及通过所述多根天线向基站(BS)发送信号。In another aspect of the present invention, a method for transmitting a signal in a user equipment (UE) in a wireless communication system includes the following steps: calculating the transmit power of each antenna among a plurality of antennas; if the calculated If the transmit power exceeds the maximum transmit power of the corresponding antenna, then calculate the transmit power attenuation ratio; apply the maximum attenuation ratio in the transmit power attenuation ratio to the multiple antennas equally; and transmit the signal to the base station ( BS) to send a signal.
技术效果technical effect
根据本发明的示例性实施方式,当在无线通信系统中发送多个信号时可以高效控制发送功率。而且,当信号的发送功率之和超过了最大发送功率时可以高效控制发送功率。According to an exemplary embodiment of the present invention, transmission power can be efficiently controlled when transmitting a plurality of signals in a wireless communication system. Moreover, the transmission power can be efficiently controlled when the sum of the transmission powers of the signals exceeds the maximum transmission power.
附图说明Description of drawings
附图被包括进来以提供对本发明的进一步理解,其被并入且构成本申请的一部分,附图示出了本发明的实施方式,并与说明书一起用于解释本发明的原理。附图中:The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the attached picture:
图1示出了演进通用移动通信系统(E-UMTS)的网络结构;Fig. 1 shows the network structure of Evolved Universal Mobile Telecommunications System (E-UMTS);
图2示出了基于3GPP无线接入网络标准的UE和E-UTRAN之间的无线接口协议的结构;Figure 2 shows the structure of the radio interface protocol between UE and E-UTRAN based on the 3GPP radio access network standard;
图3示出了用于OFDMA和SC-FDMA的发送器和接收器的框图;Figure 3 shows a block diagram of a transmitter and receiver for OFDMA and SC-FDMA;
图4示出了LTE系统中使用的无线帧的结构;FIG. 4 shows the structure of a radio frame used in an LTE system;
图5示出了在单分量载波环境中执行通信的示例;FIG. 5 shows an example of performing communication in a single component carrier environment;
图6A示出了LTE系统中使用的UL子帧的结构;FIG. 6A shows the structure of a UL subframe used in an LTE system;
图6B示出了LTE系统中使用的UL控制信道的结构;FIG. 6B shows the structure of the UL control channel used in the LTE system;
图7示出了在多分量载波环境中执行通信的示例;Figure 7 shows an example of performing communication in a multi-component carrier environment;
图8示出了根据本发明的实施方式的示例性发送功率控制;FIG. 8 shows exemplary transmission power control according to an embodiment of the present invention;
图9示出了根据本发明的实施方式的发送多个信号的示例;FIG. 9 shows an example of transmitting multiple signals according to an embodiment of the present invention;
图10示出了当以一个或更多个分量载波为单位限制最大发送功率时根据本发明实施方式的控制发送功率的示例;FIG. 10 shows an example of controlling transmission power according to an embodiment of the present invention when the maximum transmission power is limited in units of one or more component carriers;
图11示出了当以一个或更多个分量载波为单位限制最大发送功率时根据本发明实施方式的控制发送功率的另一示例;以及11 shows another example of controlling transmission power according to an embodiment of the present invention when the maximum transmission power is limited in units of one or more component carriers; and
图12示出了可应用于本发明的实施方式的基站和用户设备。Fig. 12 shows a base station and user equipment applicable to the embodiments of the present invention.
具体实施方式Detailed ways
可以通过参照附图而描述的本发明实施方式来理解本发明的构造、操作和其他特征。这里,本发明的实施方式可以用于各种无线接入技术,如CDMA、FDMA、TDMA、OFDMA、SC-FDMA和MC-FDMA。可以利用如通用地面无线接入(UTRA,UniversalTerrestrial Radio Access)或CDMA200实现CDMA。可以利用如全球移动通信系统(GSM,Global System for Mobile communication)/通用分组无线业务(GPRS,GeneralPacket Radio Service)/GSM演进增强型数据率(EDGE,Enhanced Data Rates for GSMEvolution)的无线技术实现TDMA。可以利用如IEEE802.11(Wi-Fi)、IEEE802.16(WiMAX)、IEEE802.20和E-UTRA(演进UTRA)的无线技术实现OFDMA。UTRA是通用移动通信系统(UMTS)的一部分。第三代合作伙伴计划(3GPP,3rd GenerationPartnership Project)长期演进(LTE)是演进UMTS(E-UMTS)的一部分,其使用E-UTRA。LTE-A(高级)是3GPP LTE的演进版本。The construction, operation, and other features of the present invention can be understood through the embodiments of the present invention described with reference to the accompanying drawings. Here, embodiments of the present invention can be used for various radio access technologies such as CDMA, FDMA, TDMA, OFDMA, SC-FDMA, and MC-FDMA. CDMA can be implemented using, for example, Universal Terrestrial Radio Access (UTRA, Universal Terrestrial Radio Access) or CDMA200. TDMA can be implemented by using a wireless technology such as Global System for Mobile Communication (GSM, Global System for Mobile communication)/General Packet Radio Service (GPRS, General Packet Radio Service)/GSM Evolution Enhanced Data Rates (EDGE, Enhanced Data Rates for GSMEvolution). OFDMA can be implemented using wireless technologies such as IEEE802.11 (Wi-Fi), IEEE802.16 (WiMAX), IEEE802.20, and E-UTRA (Evolved UTRA). UTRA is part of the Universal Mobile Telecommunications System (UMTS). 3rd Generation Partnership Project (3GPP,3rd Generation Partnership Project) Long Term Evolution (LTE) is a part of Evolved UMTS (E-UMTS), which uses E-UTRA. LTE-A (Advanced) is an evolved version of 3GPP LTE.
本发明的以下实施方式主要描述应用于3GPP系统的本发明的技术特征的示例。但是,这仅仅是示例性的。因此,本发明将不限于这里描述的本发明的实施方式。The following embodiments of the present invention mainly describe examples of technical features of the present invention applied to the 3GPP system. However, this is only exemplary. Accordingly, the present invention shall not be limited to the embodiments of the present invention described herein.
图1示出了E-UMTS的网络结构。E-UMTS还被称为LTE系统。为了了解UMTS和E-UMTS的技术规范的细节,分别参照“3rd Generation Partnership Project;TechnicalSpecification Group Radio Access Network(第三代伙伴合作计划;技术规范组无线接入网络)”的第七版和第八版。Fig. 1 shows the network structure of E-UMTS. E-UMTS is also called an LTE system. In order to understand the details of the technical specifications of UMTS and E-UMTS, refer to the seventh edition and the first edition of "3rd Generation Partnership Project; Technical Specification Group Radio Access Network (3rd Generation Partnership Project; Technical Specification Group Radio Access Network)" respectively. Eight editions.
参照图1,E-UMTS包括用户设备(UE,User Equipment)120、e节点B(或eNB)110a和110b、以及接入网关(AG,Access Gateway),接入网关位于网络(E-UTRAN)的一端并且连接至外部网络。e节点B可以同时发送用于广播服务、多播服务和/或单播服务的多个数据流。每个e节点B可以存在一个或更多个小区。小区被设置为使用1.25MHz、2.5MHz、5MHz、10MHz和20MHz带宽中的一个带宽。不同的小区可以被设置为提供不同的带宽。e节点B针对多个UE控制数据发送和接收。e节点B针对DL数据发送下行链路(DL,DownLink)调度信息,以告知相应UE要发送数据的时域/频域、编码、数据尺寸和与混合自动重传请求(HARQ,Hybrid AutomaticRepeat and reQuest)有关的信息。此外,e节点B针对UL数据发送上行(UL,UpLink)调度信息,以通知相应UE可用时域/频域、编码、数据尺寸和与HARQ有关的信息。核心网络(CN,Core Network)可以包括AG、用于UE的用户注册的网络节点等。AG基于跟踪区(TA,Tracking Area)管理UE的移动性,其中,一个TA包括多个小区。Referring to FIG. 1, E-UMTS includes user equipment (UE, User Equipment) 120, eNodeB (or eNB) 110a and 110b, and an access gateway (AG, Access Gateway), which is located in the network (E-UTRAN) and connected to the external network. An eNodeB may simultaneously transmit multiple data streams for broadcast services, multicast services and/or unicast services. There may be one or more cells per eNodeB. A cell is set to use one of bandwidths of 1.25MHz, 2.5MHz, 5MHz, 10MHz, and 20MHz. Different cells can be set to provide different bandwidths. The eNodeB controls data transmission and reception for a plurality of UEs. The eNodeB sends downlink (DL, DownLink) scheduling information for DL data to inform the corresponding UE of the time domain/frequency domain, coding, data size and hybrid automatic repeat request (HARQ, Hybrid Automatic Repeat and reQuest) of the data to be sent ) related information. In addition, the eNodeB sends uplink (UL, UpLink) scheduling information for UL data, so as to inform the corresponding UE of available time domain/frequency domain, coding, data size and information related to HARQ. A core network (CN, Core Network) may include an AG, a network node for UE user registration, and the like. The AG manages the mobility of the UE based on a Tracking Area (TA, Tracking Area), where one TA includes multiple cells.
图2示出了基于3GPP无线接入网络标准的、UE和E-UTRAN之间的无线接口协议的控制面和用户面的结构。控制面指的是用于发送UE和网络中用于管理呼叫的控制消息的路径。用户面指的是用于发送在应用层中生成的数据(如,语音数据或因特网包数据)的路径。Fig. 2 shows the structure of the control plane and the user plane of the radio interface protocol between UE and E-UTRAN based on the 3GPP radio access network standard. The control plane refers to a path for transmitting control messages in the UE and the network for managing calls. The user plane refers to a path for transmitting data generated in the application layer, such as voice data or Internet packet data.
物理(PHY)层(其是第一层)利用物理信道向上层提供信息传送服务。PHY层通过传输信道连接至上层的媒体访问控制(MAC,Medium Access Control)层。通过传输信道在MAC层和PHY层之间传输数据。还通过物理信道在发送侧的物理层和接收侧的物理层之间传输数据。物理信道将时间和频率用作无线资源。具体地,在DL中利用OFDMA方案来调制物理信道,并且在UL中利用SC-FDMA方案来调制物理信道。A physical (PHY) layer, which is the first layer, provides an information transfer service to an upper layer using a physical channel. The PHY layer is connected to the upper MAC (Medium Access Control) layer through a transport channel. Data is transferred between the MAC layer and the PHY layer through the transport channel. Data is also transferred between the physical layer on the sending side and the physical layer on the receiving side through the physical channel. Physical channels use time and frequency as radio resources. Specifically, the physical channel is modulated with the OFDMA scheme in DL, and the physical channel is modulated with the SC-FDMA scheme in UL.
第二层的MAC层通过逻辑信道向上层的无线链路控制(RLC,Radio LinkControl)层提供服务。第二层的RLC层支持可靠数据发送。通过MAC内的功能块可以实现RLC层的功能。第二层的分组数据会聚协议(PDCP,Packet Data ConvergenceProtocol)层执行报头压缩功能,以减少不必要的控制信息,以在具有窄带宽的无线接口中高效地发送因特网协议(IP,Internet Protocol)分组(诸如IPv4、IPv6等)。The MAC layer of the second layer provides services to the radio link control (RLC, Radio LinkControl) layer of the upper layer through a logical channel. The RLC layer of the second layer supports reliable data transmission. Functions of the RLC layer can be realized through functional blocks in the MAC. The Packet Data Convergence Protocol (PDCP, Packet Data Convergence Protocol) layer of the second layer performs the header compression function to reduce unnecessary control information to efficiently send Internet Protocol (IP, Internet Protocol) packets in the wireless interface with narrow bandwidth (such as IPv4, IPv6, etc.).
仅在控制面内定义了位于第三层最下部的无线资源控制(RRC,Radio ResourceControl)层。RRC层控制与无线承载(RB)的配置、重新配置、以及释放有关的物理信道、逻辑信道和传输信道。RB指的是由第二层提供的、在UE和网络之间发送数据的服务。为此,UE的RRC层和网络的RRC层交换RRC消息。如果已经在无线网络的RRC层和UE的RRC层之间建立了RRC连接,则UE处于RRC连接模式。否则,UE处于RRC空闲模式。位于RRC层上级的非接入层(NAS,Non-AccessStratum)执行如会话管理和移动性管理的功能。Only the radio resource control (RRC, Radio Resource Control) layer located at the bottom of the third layer is defined in the control plane. The RRC layer controls physical channels, logical channels, and transport channels related to configuration, reconfiguration, and release of radio bearers (RBs). The RB refers to a service provided by the second layer to transmit data between the UE and the network. To this end, the RRC layer of the UE and the RRC layer of the network exchange RRC messages. If an RRC connection has been established between the RRC layer of the radio network and the RRC layer of the UE, the UE is in RRC connected mode. Otherwise, the UE is in RRC idle mode. The Non-Access Stratum (NAS, Non-Access Stratum) located above the RRC layer performs functions such as session management and mobility management.
用于从网络向UE进行数据发送的DL传输信道包括用于发送系统信息的广播信道(BCH,Broadcast Channel)、用于发送寻呼消息的寻呼信道(PCH,Paging Channel)和用于发送用户业务量或控制消息的DL共享信道(DL-SCH,DL Shared Channel)。同时,用于从UE向网络进行数据发送的UL传输信道包括用于发送初始控制消息的随机接入信道(RACH,Random Access Channel)和用于发送用户业务量或控制消息的UL共享信道(UL-SCH,UL Shared Channel)。The DL transport channel used for data transmission from the network to the UE includes a broadcast channel (BCH, Broadcast Channel) for sending system information, a paging channel (PCH, Paging Channel) for sending paging messages, and a channel for sending user DL Shared Channel (DL-SCH, DL Shared Channel) for traffic or control messages. At the same time, the UL transport channels used for data transmission from the UE to the network include a Random Access Channel (RACH, Random Access Channel) for sending initial control messages and a UL Shared Channel (UL Shared Channel) for sending user traffic or control messages. -SCH, UL Shared Channel).
图3示出了用于OFDMA和SC-FDMA的发送器和接收器的框图。在UL中,发送器(402-414)是UE的一部分,而接收器(416-430)是e节点B的一部分。在DL中,发送器是e节点B的一部分,并且接收器是UE的一部分。Figure 3 shows a block diagram of a transmitter and receiver for OFDMA and SC-FDMA. In the UL, the transmitters (402-414) are part of the UE and the receivers (416-430) are part of the eNodeB. In DL, the transmitter is part of the eNodeB and the receiver is part of the UE.
参照图3,OFDMA发送器包括串并转换器402、子载波映射模块406、M点离散傅里叶逆变换(IDFT,Inverse Discrete Fourier Transform)模块408、循环前缀(CP,Cyclic Prefix)添加模块410、并串转换器412和射频(RF,Radio Frequency)/数模转换器(DAC)模块414。Referring to Fig. 3, the OFDMA transmitter includes a serial-to-parallel converter 402, a subcarrier mapping module 406, an M-point discrete inverse Fourier transform (IDFT, Inverse Discrete Fourier Transform) module 408, a cyclic prefix (CP, Cyclic Prefix) adding module 410 , a parallel-to-serial converter 412 and a radio frequency (RF, Radio Frequency)/digital-to-analog converter (DAC) module 414.
OFDMA发送器中的信号处理如下进行。首先,比特流被调制为数据符号序列。可以通过对从MAC层发送的数据块执行包括信道编码、交织、加扰等的各种信号处理,获得比特流。比特流还被称为码字并且等同于从MAC层接收到的数据块。从MAC层接收到的数据块还被称为传输块。调制方案可以包括,但不限于,二进制相移键控(BPSK,Binary Phase Shift Keying)、正交相移键控(QPSK,Quadrature PhaseShift Keying)和n正交振幅调制(n-QAM,n-Quadrature Amplitude Modulation)。接着,串行数据符号序列被转换成并行的N个数据符号(402)。N个数据符号被映射到在总共M个子载波中所分配的N个子载波,并且(M-N)个剩余子载波填充0(406)。在频域中映射的数据符号通过M点IFFT处理被转换成时域序列(408)。此后,为了减少符号间干扰(ISI,Inter-Symbol Interference)和载波间干扰(ICI,Inter-CarrierInterference),通过向时域序列添加CP来生成OFDMA符号(410)。所生成的并行OFDMA符号被转换成串行OFDMA符号(412)。接着,通过数模转换、频率上变换等向接收器发送OFDMA符号(414)。在(M-N)个剩余子载波中的可用子载波分配给其他用户。同时,OFDMA接收器包括RF/模数转换器(ADC)模块416、串并转换器418、CP去除模块420、M点离散傅里叶变换(DFT)模块422、子载波解映射/均衡模块424、并串转换器428和检测模块430。OFDMA接收器的信号处理过程具有与OFDMA发送器相反的配置。Signal processing in an OFDMA transmitter proceeds as follows. First, the bit stream is modulated into a sequence of data symbols. The bit stream can be obtained by performing various signal processing including channel coding, interleaving, scrambling, etc. on the data block transmitted from the MAC layer. A bit stream is also called a codeword and is equivalent to a data block received from the MAC layer. Data blocks received from the MAC layer are also called transport blocks. Modulation schemes may include, but are not limited to, Binary Phase Shift Keying (BPSK, Binary Phase Shift Keying), Quadrature Phase Shift Keying (QPSK, Quadrature PhaseShift Keying) and n-Quadrature Amplitude Modulation (n-QAM, n-Quadrature Amplitude Modulation). Next, the sequence of serial data symbols is converted into parallel N data symbols (402). N data symbols are mapped to allocated N subcarriers out of a total of M subcarriers, and the (M-N) remaining subcarriers are filled with zeros (406). The data symbols mapped in the frequency domain are converted into time domain sequences by M-point IFFT processing (408). Thereafter, in order to reduce Inter-Symbol Interference (ISI, Inter-Symbol Interference) and Inter-Carrier Interference (ICI, Inter-Carrier Interference), OFDMA symbols are generated by adding CP to the time-domain sequence (410). The generated parallel OFDMA symbols are converted to serial OFDMA symbols (412). The OFDMA symbols are then sent to the receiver via digital-to-analog conversion, frequency up-conversion, etc. (414). Available subcarriers among the (M-N) remaining subcarriers are allocated to other users. Meanwhile, the OFDMA receiver includes an RF/analog-to-digital converter (ADC) module 416, a serial-to-parallel converter 418, a CP removal module 420, an M-point discrete Fourier transform (DFT) module 422, and a subcarrier demapping/equalization module 424 , a parallel-to-serial converter 428 and a detection module 430 . The signal processing procedure of the OFDMA receiver has the opposite configuration to that of the OFDMA transmitter.
同时,与OFDMA发送器相比,SC-FDMA发送器还包括位于子载波映射模块406之前的N-点DFT模块404。SC-FDMA发送器在IDFT处理前通过DFT扩展频域中的多个数据,由此与OFDMA方案相比,很大程度地降低发送信号的峰均功率比(PAPR,Peak-to-Average Power Ratio)。与OFDMA接收器相比,SC-FDMA接收器还包括在子载波解映射模块424之后的N点IDFT模块426。SC-FDMA接收器的信号处理过程具有与SC-FDMA发送器相反的配置。Meanwhile, compared with the OFDMA transmitter, the SC-FDMA transmitter also includes an N-point DFT module 404 before the subcarrier mapping module 406 . The SC-FDMA transmitter spreads multiple data in the frequency domain through DFT before IDFT processing, thereby greatly reducing the peak-to-average power ratio (PAPR, Peak-to-Average Power Ratio) of the transmitted signal compared with the OFDMA scheme. ). Compared with the OFDMA receiver, the SC-FDMA receiver also includes an N-point IDFT module 426 after the subcarrier demapping module 424 . The signal processing procedure of the SC-FDMA receiver has the opposite configuration to that of the SC-FDMA transmitter.
图4示出了LTE系统中使用的无线帧的结构。FIG. 4 shows the structure of a radio frame used in the LTE system.
参照图4,无线帧具有10ms(327200Ts)的长度并且包括10个相同尺寸的子帧。各个子帧具有1ms的长度并且包括两个时隙。各个时隙具有0.5ms(15360Ts)的长度。在该情况下,Ts表示采样时间,并且由Ts=1/(15kHz×2048)=3.2552×10-8(大约33ns)来表示。各时隙在时域中包括多个OFDM符号并且在频域中包括多个资源块(RB,Resource Block)。在LTE系统中,一个RB包括12个子载波×7(或6)个OFDM符号。可以以一个或更多个子帧为单位确定作为用于数据发送的单位时间的发送时间间隔(TTI,Transmission Time Interval)。上述无线帧结构完全是示例性的,并且可以对无线帧中包括的子帧数、时隙数或OFDM符号数进行各种修改。Referring to FIG. 4 , a radio frame has a length of 10ms (327200Ts ) and includes 10 subframes of the same size. Each subframe has a length of 1 ms and includes two slots. Each slot has a length of 0.5ms (15360Ts ). In this case, Ts represents the sampling time, and is represented by Ts =1/(15kHz×2048)=3.2552×10-8 (approximately 33ns). Each slot includes multiple OFDM symbols in the time domain and multiple resource blocks (RB, Resource Block) in the frequency domain. In the LTE system, one RB includes 12 subcarriers×7 (or 6) OFDM symbols. A transmission time interval (TTI, Transmission Time Interval) which is a unit time for data transmission may be determined in units of one or more subframes. The radio frame structure described above is purely exemplary, and various modifications may be made to the number of subframes, the number of slots, or the number of OFDM symbols included in a radio frame.
图5示出了单分量载波环境中执行通信的示例。图5可以对应于LTE系统中的通信的示例。Fig. 5 shows an example of performing communication in a single component carrier environment. FIG. 5 may correspond to an example of communication in an LTE system.
参照图5,在FDD方案中,通常通过一个DL带并通过与DL带相对应的一个UL带来执行通信。在TDD方案中,通过DL持续时间和与DL持续时间相对应的UL持续时间来执行通信。在FDD或TDD方案中,数据和/或控制信息可以以子帧为单位进行发送和接收。通过在发送过程中增大较差信道环境中的功率并且降低较好信道环境中的功率,UE减小由过大发送功率造成的、与相邻小区的干扰,并且通过功率控制方案来优化所用功率量。在信道环境不好的情况下,基站(BS,Base Station)命令提高UE的功率。但是,忽视表示UE功率超过了UE的最大发送功率(即,发送功率极限PUEMax或PMax)。Referring to FIG. 5 , in the FDD scheme, communication is generally performed through one DL band and through one UL band corresponding to the DL band. In the TDD scheme, communication is performed through a DL duration and an UL duration corresponding to the DL duration. In the FDD or TDD scheme, data and/or control information may be transmitted and received in units of subframes. By increasing the power in a poor channel environment and reducing the power in a better channel environment during transmission, the UE reduces the interference with neighboring cells caused by excessive transmission power and optimizes the power used by the power control scheme. amount of power. When the channel environment is not good, the base station (BS, Base Station) commands to increase the power of the UE. However, ignore means that the UE power exceeds the UE's maximum transmit power (ie, transmit power limit PUEMax or PMax ).
图6A示出了LTE系统中使用的UL子帧的结构。FIG. 6A shows the structure of a UL subframe used in the LTE system.
参照图6A,UL子帧包括多个时隙(例如,两个时隙)。根据CP长度,时隙可以包括不同个数的SC-FDMA符号。例如,在正常CP中,时隙包括7个SC-FDMA符号。UL子帧被划分成数据区和控制区。数据区包括物理上行共享信道(PUSCH,Physical Uplink Shared CHannel)并且用于发送数据信号,如,语音和图像。基于相同区域中所包括的基准信号(RS,Reference Signal)的功率来确定数据信号的功率。例如,可以基于解调基准信号(DMRS,DeModulation Reference Signal)的功率确定数据信号的功率。Referring to FIG. 6A , a UL subframe includes a plurality of slots (eg, two slots). Depending on the CP length, a slot may include a different number of SC-FDMA symbols. For example, in a normal CP, a slot includes 7 SC-FDMA symbols. A UL subframe is divided into a data region and a control region. The data area includes a Physical Uplink Shared CHannel (PUSCH, Physical Uplink Shared CHannel) and is used for sending data signals, such as voice and images. The power of the data signal is determined based on the power of a reference signal (RS, Reference Signal) included in the same area. For example, the power of the data signal may be determined based on the power of a demodulation reference signal (DMRS, DeModulation Reference Signal).
控制区包括物理上行控制信道(PUCCH,Physical Uplink Control CHannel),并且向UL发送各种控制信息。PUCCH包括在频域中位于数据区两端的资源块(RB,Resource Block)对并且基于时隙跳跃。基于位于PUCCH中的控制信道基准信号的发送功率,来确定控制信息的发送功率。后面将参照图6B来描述PUCCH的结构细节。用于UL信道测量的探测基准信号(SRS,Sounding Reference Signal)位于子帧的最后一个SC-FDMA符号中,并且通过数据区的所有或一些带来发送。The control area includes a physical uplink control channel (PUCCH, Physical Uplink Control CHannel), and sends various control information to the UL. The PUCCH includes resource block (RB, Resource Block) pairs located at both ends of the data area in the frequency domain and is based on time slot hopping. The transmission power of the control information is determined based on the transmission power of the control channel reference signal in the PUCCH. The structural details of the PUCCH will be described later with reference to FIG. 6B . The Sounding Reference Signal (SRS, Sounding Reference Signal) used for UL channel measurement is located in the last SC-FDMA symbol of the subframe, and is sent through all or some bands of the data region.
LTE系统中的UL发送利用SC-FDMA表现出单载波特性,并且不允许同时发送PUSCH、PUCCH和SRS。与多载波系统(如,OFDM)相比,通过保持低PAPR,SC-FDMA使得能够高效使用功率放大器。因此,如果应该同时发送数据和控制信号,则应当通过PUCCH发送的信息以捎带(piggyback)方式与数据复用。而且,在发送SRS的SC-FDMA符号中,不发送PUSCH或PUCCH。PUSCH的功率控制与PUCCH的功率控制独立。UL transmission in the LTE system exhibits single-carrier characteristics using SC-FDMA and does not allow simultaneous transmission of PUSCH, PUCCH, and SRS. SC-FDMA enables efficient use of power amplifiers by keeping PAPR low compared to multi-carrier systems (eg, OFDM). Therefore, if data and control signals should be transmitted simultaneously, information that should be transmitted through the PUCCH is multiplexed with data in a piggyback manner. Also, no PUSCH or PUCCH is transmitted in the SC-FDMA symbol in which the SRS is transmitted. The power control of PUSCH is independent of the power control of PUCCH.
图6B示出了LTE系统中使用的PUCCH的结构。FIG. 6B shows the structure of the PUCCH used in the LTE system.
参照图6B,在正常CP中,在位于时隙中间的三个连续符号中传送UL中RS,并且在其余四个符号中传送控制信息(即,ACK/NACK)。在扩展CP中,时隙包括6个符号,并且在第三符号和第四符号中传送RS。控制信息还包括信道质量指示符(CQI,Channel Quality Indicator)、调度请求(SR,Scheduling Request)、预编码矩阵索引(PMI,Precoding Matrix Index)、秩指示符(RI,Rank Indicator)等。基于UL中RS的发送功率确定控制信息的发送功率。在PUCCH的结构中,UL中RS的个数和位置根据控制信息的类型而变化。利用计算机生成的恒幅零自相关(CG-CAZAC,Computer Generated Constant Amplitude Zero Auto Correlation)序列的不同循环移位(CS,Cyclic Shifts)(频率扩展)和/或不同伍尔什(Walsh)/DFT正交码(时间扩展)来区分用于控制信息的资源。即使IFFT之后相乘的w0、w1、w2和w3在IFFT之前相乘,也获得相同的结果。相应长度的正交掩码(OC,OrthogonalCover)序列可以被乘到RS上。Referring to FIG. 6B , in a normal CP, an RS in UL is transmitted in three consecutive symbols located in the middle of a slot, and control information (ie, ACK/NACK) is transmitted in the remaining four symbols. In an extended CP, a slot includes 6 symbols, and RSs are transmitted in a third symbol and a fourth symbol. The control information also includes a channel quality indicator (CQI, Channel Quality Indicator), a scheduling request (SR, Scheduling Request), a precoding matrix index (PMI, Precoding Matrix Index), a rank indicator (RI, Rank Indicator) and the like. The transmission power of the control information is determined based on the transmission power of the RS in UL. In the structure of PUCCH, the number and position of RSs in UL vary according to the type of control information. Different cyclic shifts (CS, Cyclic Shifts) (frequency extension) and/or different Walsh/DFT of Computer Generated Constant Amplitude Zero Auto Correlation (CG-CAZAC, Computer Generated Constant Amplitude Zero Auto Correlation) sequence Orthogonal codes (time spreading) to differentiate the resources used for control information. Even if w0, w1, w2, and w3 multiplied after IFFT are multiplied before IFFT, the same result is obtained. An orthogonal mask (OC, OrthogonalCover) sequence of a corresponding length can be multiplied onto the RS.
图7示出了多分量载波环境中执行通信的示例。目前,无线通信系统(例如,LTE-A系统)使用通过聚合多个UL/DL频率块以采用更宽的频带来使用更宽的UL/DL带宽的带宽聚合或载波聚合技术。利用分量载波(CC,Component Carrier)来发送各频率块。在该说明书中,根据上下文,CC可以指的是用于载波聚合的频率块或频率块的中间载波,并且它们可以混用。Fig. 7 shows an example of performing communication in a multi-component carrier environment. Currently, a wireless communication system (eg, LTE-A system) uses a bandwidth aggregation or carrier aggregation technology that uses a wider UL/DL bandwidth by aggregating multiple UL/DL frequency blocks to use a wider frequency band. Each frequency block is transmitted using a component carrier (CC, Component Carrier). In this specification, depending on context, CC may refer to a frequency block used for carrier aggregation or an intermediate carrier of a frequency block, and they may be mixed.
参照图7,各个UL/DL的五个20MHz的CC可以支持100MHz的带宽。各CC可以在频域中彼此相邻,或者可以不相邻。为了方便,图7示出了UL CC的带宽和DL CC的带宽相同并且对称的情况。但是,可以独立地确定各CC的带宽。例如,UL CC的带宽可以被构造为5MHz(AUL)+20MHz(BUL)+20MHz(CUL)+20MHz(DUL)+5MHz(EUL)。还可以构造非对称载波聚合,其中,UL CC的个数与DL CC的个数不同。由于可用频带的限制可以生成非对称载波聚合,或者可以在网络建立过程中有意地执行非对称载波聚合。例如,即使整个系统带由N个CC组成,特定UE可以接收的频带也可以被限制为M(<N)个CC。用于载波聚合的各种参数可以根据具体小区(cell-specifically)、具体UE组(UEgroup-specifically)或具体UE(UE-specifically)来设置。Referring to FIG. 7 , five 20MHz CCs for each UL/DL can support a bandwidth of 100MHz. The CCs may or may not be adjacent to each other in the frequency domain. For convenience, FIG. 7 shows the case that the bandwidth of the UL CC and the bandwidth of the DL CC are the same and symmetrical. However, the bandwidth of each CC can be determined independently. For example, the bandwidth of the UL CC can be configured as 5MHz(AUL )+20MHz(BUL )+20MHz(CUL )+20MHz(DUL )+5MHz(EUL ). Asymmetric carrier aggregation can also be constructed, where the number of UL CCs is different from the number of DL CCs. Asymmetric carrier aggregation may be generated due to limitations in available frequency bands, or may be intentionally performed during network establishment. For example, even if the entire system band is composed of N CCs, a frequency band that a specific UE can receive may be limited to M (<N) CCs. Various parameters for carrier aggregation may be set according to a specific cell (cell-specifically), a specific UE group (UEgroup-specifically) or a specific UE (UE-specifically).
在LTE-A系统中,发送端可以通过单个CC或多个CC同时发送多个信号/(物理)信道。例如,可以同时发送从PUSCH、PUCCH或SRS选择的相同或不同的两个或更多个信道。因此,如果在不保持单载波发送特性的情况下,发送多个(物理)信道,则当针对所述多个(物理)信道计算出的发送功率之和达到最大发送功率极限时,需要考虑UE的操作。除非以其他方式在本说明书中提出,否则多个信号/(物理)信道指的是发送功率被独立地确定的信号/(物理)信道。例如,多个信号/(物理)信道包括与不同的单独RS相关联的信号/(物理)信道。在该说明书中,(物理)信道的发送指的是通过(物理)信道进行信号的发送。在该说明书中,信号和(物理)信道可以混用。In the LTE-A system, the transmitting end can simultaneously transmit multiple signals/(physical) channels through a single CC or multiple CCs. For example, the same or different two or more channels selected from PUSCH, PUCCH, or SRS may be simultaneously transmitted. Therefore, if multiple (physical) channels are transmitted without maintaining single-carrier transmission characteristics, when the sum of the calculated transmit powers for the multiple (physical) channels reaches the maximum transmit power limit, UE needs to consider operation. Unless otherwise stated in this specification, a plurality of signals/(physical) channels refers to signals/(physical) channels whose transmission powers are independently determined. For example, the plurality of signals/(physical) channels includes signals/(physical) channels associated with different individual RSs. In this specification, transmission of a (physical) channel refers to transmission of a signal through a (physical) channel. In this specification, signals and (physical) channels can be used interchangeably.
其后,将参照图8至图11详细描述控制发送功率的方法。为了方便,尽管以示例的方式从UE的角度给出了图8至图11的描述,但是即使当BS发送多个信号时,其也可以通过修改简单应用。在本发明的实施方式中,发送功率可以被表示为线性标度或dB标度。根据本发明的实施方式的操作可以在功率域或幅度域中执行。Hereinafter, a method of controlling transmission power will be described in detail with reference to FIGS. 8 to 11 . For convenience, although the description of FIGS. 8 to 11 is given from the perspective of the UE by way of example, it can be easily applied by modification even when the BS transmits a plurality of signals. In embodiments of the present invention, transmit power may be represented on a linear scale or on a dB scale. Operations according to embodiments of the present invention may be performed in the power domain or the amplitude domain.
实施方式1:考虑(信道)优先级的功率控制Embodiment 1: Power control considering (channel) priority
图8示出了根据本发明的实施方式的示例性发送功率控制。在该实施方式中,提出了当多个物理信道的发送功率之和超过最大发送功率时,考虑(信道)优先级来控制物理信道的发送功率。FIG. 8 shows exemplary transmission power control according to an embodiment of the present invention. In this embodiment, when the sum of the transmission powers of multiple physical channels exceeds the maximum transmission power, it is proposed to control the transmission power of the physical channel in consideration of (channel) priority.
参照图8,UE可以从BS接收一个或更多个发送功率控制(TPC,Transmit PowerControl)命令(S810)。TPC命令可以包括在对用于随机接入的前导码的响应消息中,或者可以通过物理下行控制信道(PDCCH,Physical Downlink Control CHannel)来发送。根据下行控制信息(DCI,Downlink Control Information),PDCCH可以具有各种格式,并且根据格式,可以具有不同的TPC命令。例如,UE可以接收各种格式的PDCCH,如用于DL调度的格式、用于UL调度的格式、用于PUSCH的TPC专用格式和用于PUCCH的TPC专用格式。TPC命令可以用于确定各CC的发送功率、CC组的发送功率或所有CC的发送功率。TPC命令还可以用于确定各信号(如,PUSCH、PUCCH等)的发送功率。可以通过各种格式的PDCCH(如,用于DL调度的格式、用于UL调度的格式、用于UL数据信道(如,PUSCH)的TPC专用格式和用于UL控制信道(如,PUCCH)的TPC专用格式)接收TPC命令。Referring to FIG. 8, the UE may receive one or more transmit power control (TPC, Transmit Power Control) commands from the BS (S810). The TPC command may be included in a response message to the preamble for random access, or may be sent through a Physical Downlink Control Channel (PDCCH, Physical Downlink Control CHannel). According to downlink control information (DCI, Downlink Control Information), the PDCCH can have various formats, and according to the formats, can have different TPC commands. For example, a UE may receive PDCCH in various formats, such as a format for DL scheduling, a format for UL scheduling, a TPC-specific format for PUSCH, and a TPC-specific format for PUCCH. The TPC command can be used to determine the transmit power of each CC, the transmit power of a CC group, or the transmit power of all CCs. The TPC command can also be used to determine the transmission power of each signal (eg, PUSCH, PUCCH, etc.). PDCCH in various formats (e.g., format for DL scheduling, format for UL scheduling, TPC-specific format for UL data channel (e.g., PUSCH) and UL control channel (e.g., PUCCH) TPC-specific format) to receive TPC commands.
如果存在被调度为同时向BS发送的多个物理信道,则UE针对多个UL物理信道分别确定发送功率P1,P2,…,PN(其中,N≥2)(S820)。各个UL物理信道包括一个或更多个连续的OFDMA符号或SC-FDMA符号。图9中,但不限于图9,示出了UE向UL发送多个信号的情况的示例。参照图9,可以利用单个CC或多个CC同时发送多个物理信道。例如,多个PUCCH、多个PUSCH或多个SRS可以同时发送(实例1至3),或者可以同时发送PUCCH、PUSCH和/或SRS的组合(实例4至7)。在PUCCH的情况下,可以详细分类为发送ACK/NACK、CQI和SR的情况。If there are a plurality of physical channels scheduled to be simultaneously transmitted to the BS, the UE respectively determines transmission powers P1 , P2 , . . . , PN (wherein, N≧2) for the plurality of UL physical channels (S820). Each UL physical channel includes one or more consecutive OFDMA symbols or SC-FDMA symbols. In FIG. 9 , but not limited to FIG. 9 , an example of a case where a UE transmits a plurality of signals to UL is shown. Referring to FIG. 9 , multiple physical channels may be simultaneously transmitted using a single CC or multiple CCs. For example, multiple PUCCHs, multiple PUSCHs or multiple SRSs may be sent simultaneously (Examples 1 to 3), or a combination of PUCCHs, PUSCHs and/or SRSs may be sent simultaneously (Examples 4 to 7). In the case of PUCCH, it can be classified into cases where ACK/NACK, CQI, and SR are transmitted in detail.
如果确定了UL发送功率,则UE检查UL物理信道的发送功率的总和∑Pn(其中,1≤n≤N)是否大于最大功率值PMax(S830)。可以以CC、CC组或全部CC为单位确定最大功率值。最大功率值基本上取决于UE的物理能力,但是可以根据通信系统预先确定。可以考虑到小区中的允许功率、负载平衡等改变最大功率值。因此,在该说明书中,最大功率值可以与最大允许功率值混用,并且这两者可以互换使用。关于最大功率值的信息可以在小区内通过广播消息(例如,系统信息)来广播,或者可以通过RRC消息以信号发送。关于最大功率值的信息可以通过DL控制信道(如,PDCCH)向UE发送。可以根据信道环境永久地、半永久地或动态地设置最大功率值。当通过向BS发送信号来限制最大功率值时,最大功率值可以具有与小区内最大允许功率相同的含义。例如,最大功率值可以预先确定,或者可以根据具体小区、具体UE组、具体UE、具体CC组或具体CC指定。If the UL transmission power is determined, the UE checks whether the sum ΣPn (where 1≤n≤N) of the transmission power of the UL physical channels is greater than the maximum power value PMax (S830). The maximum power value may be determined in units of CCs, CC groups, or all CCs. The maximum power value basically depends on the physical capabilities of the UE, but can be predetermined according to the communication system. The maximum power value may be changed in consideration of allowed power in a cell, load balance, and the like. Therefore, in this description, the maximum power value may be mixed with the maximum allowable power value, and the two may be used interchangeably. Information on the maximum power value may be broadcast within a cell through a broadcast message (eg, system information), or may be signaled through an RRC message. Information about the maximum power value may be sent to the UE through a DL control channel (eg, PDCCH). The maximum power value can be set permanently, semi-permanently or dynamically according to the channel environment. When the maximum power value is limited by signaling to the BS, the maximum power value may have the same meaning as the maximum allowed power within a cell. For example, the maximum power value may be predetermined, or may be specified according to a specific cell, a specific UE group, a specific UE, a specific CC group, or a specific CC.
如果UL物理信道的发送功率的总和∑Pn(其中,1≤n≤N)等于或小于最大功率值PMax,则保持相应的UL物理信道的发送功率。同时,如果UL物理信道的UL发送功率的总和大于最大功率值,则考虑优先级,控制一个或更多个UL物理信道的发送功率,使得UL物理信道的发送功率的总和不超过最大功率值(S840)。可以考虑UL物理信道的类型和UL物理信道上承载的信息来确定优先级。下面将详细描述优先级。可以针对所有带、或者以CC组或CC为单位来控制发送功率。If the sum ΣPn (where 1≤n≤N) of the transmission power of the UL physical channels is equal to or smaller than the maximum power value PMax , then the transmission power of the corresponding UL physical channel is maintained. At the same time, if the sum of the UL transmission power of the UL physical channels is greater than the maximum power value, the priority is considered to control the transmission power of one or more UL physical channels so that the sum of the transmission powers of the UL physical channels does not exceed the maximum power value ( S840). The priority may be determined in consideration of the type of the UL physical channel and information carried on the UL physical channel. The priority will be described in detail below. Transmission power can be controlled for all bands, or in units of CC groups or CCs.
如果控制UL物理信道的发送功率,则UE生成具有相应发送功率的多个UL物理信道(S850)。在IFFT之前,可以在频域中控制UL物理信道的发送功率(图3中408)。但是,本发明不限于此。在该情况下,可以以子载波为单位执行发送功率的控制。例如,可以通过将映射到子载波的调制值乘以权重,来控制发送功率。可以使用各元素表示与发送功率有关的值的对角矩阵(功率对角矩阵)来乘以权重。在多输入多输出(MIMO,Multiple Input Multiple Output)系统的情况下,可以利用合并了权重的预编码矩阵来控制发送功率,或者可以将预编码后的调制值乘以功率对角矩阵来控制发送功率。因此,即使多个物理信道包括在应用了相同IFFT的频带中,也可以容易地控制各物理信道的发送功率。与频域中的功率控制一起或与频域中的功率控制分开,可以在IFFT之后在时域中控制UL物理信道的发送功率。具体地,可以在各种功能块中执行时域中的发送功率控制。例如,可以在DAC块和/或RF块(图3的414)中执行发送功率的控制。此后,UE通过一个或更多个CC向BS发送多个生成的UL物理信道(S860)。在该说明书中,同时或相同时间段包括相同TTI或子帧。If the transmission power of the UL physical channel is controlled, the UE generates a plurality of UL physical channels with corresponding transmission power (S850). Before the IFFT, the transmit power of the UL physical channel can be controlled in the frequency domain (408 in FIG. 3 ). However, the present invention is not limited thereto. In this case, control of transmission power can be performed in units of subcarriers. For example, transmission power can be controlled by multiplying modulation values mapped to subcarriers by weights. The weights can be multiplied using a diagonal matrix (power diagonal matrix) whose elements represent values related to transmission power. In the case of a multiple input multiple output (MIMO, Multiple Input Multiple Output) system, a precoding matrix incorporating weights can be used to control the transmit power, or the precoded modulation value can be multiplied by the power diagonal matrix to control the transmit power power. Therefore, even if a plurality of physical channels are included in the frequency band to which the same IFFT is applied, the transmission power of each physical channel can be easily controlled. Together with or separately from power control in the frequency domain, the transmit power of the UL physical channel can be controlled in the time domain after the IFFT. Specifically, transmission power control in the time domain can be performed in various functional blocks. For example, control of transmit power may be performed in the DAC block and/or the RF block (414 of FIG. 3). Thereafter, the UE transmits a plurality of generated UL physical channels to the BS through one or more CCs (S860). In this specification, simultaneous or same time periods include the same TTI or subframe.
将详细描述在图8的步骤840中考虑优先级来控制UL信道的发送功率的方法。为了方便,将描述当仅存在两个信道时根据相同顺序或优先级的示例性功率控制方法。但是,本发明可应用于三个或更多个相同或不同类型的信道或其组合。A method of controlling transmission power of a UL channel in consideration of priority in step 840 of FIG. 8 will be described in detail. For convenience, an exemplary power control method according to the same order or priority when there are only two channels will be described. However, the present invention is applicable to three or more channels of the same or different types or combinations thereof.
为了描述方便,定义以下符号。For convenience of description, the following symbols are defined.
PPUSCH:其表示计算出要分配给PUSCH的功率。通过功率限制,实际分配的功率可能小于PPUSCH。如果没有表示出dB,则这可以表示线性标度。PPUSCH : It indicates the calculated power to be allocated to the PUSCH. Through power limitation, the actual allocated power may be less than PPUSCH . If dB is not shown, this may represent a linear scale.
PPUCCH:其表示计算出要分配给PUCCH的功率。通过功率限制,实际分配的功率可能小于PPUCCH。如果没有表示出dB,则这可以表示线性标度。PPUCCH : It indicates the calculated power to be allocated to the PUCCH. Through power limitation, the actual allocated power may be smaller than PPUCCH . If dB is not shown, this may represent a linear scale.
PSRS:其表示计算出要分配给SRS的功率。通过功率限制,实际分配的功率可能小于PSRS。如果没有表示出dB,则这可以表示线性标度。PSRS : It indicates the calculated power to be allocated to the SRS. Through power limitation, the actual allocated power may be less than PSRS . If dB is not shown, this may represent a linear scale.
实例1-1:PExample 1-1: PPUSCHPUSCH+P+PPUSCHPUSCH>P>PMaxMax
实例1-1对应于在多个不同CC中同时发送的多个PUSCH达到最大发送极限的情况。在该情况下,可以减小或降低各PUSCH的发送功率。具体地,可以考虑以下选项。Example 1-1 corresponds to the situation that multiple PUSCHs transmitted simultaneously in multiple different CCs reach the maximum transmission limit. In this case, the transmission power of each PUSCH can be reduced or lowered. Specifically, the following options can be considered.
选项1:可以赋予PUSCH相同的优先级。如果这样,可以以相同的比率减小PUSCH的功率,或者减小PUSCH的相同量的功率。即,可以应用相同的衰减率或者减去相同值。Option 1: PUSCH can be given the same priority. If so, the power of the PUSCH can be reduced at the same rate, or by the same amount. That is, the same decay rate can be applied or the same value can be subtracted.
选项2:可以考虑PUSCH的传输格式,向PUSCH赋予优先级。例如,可以根据传输块尺寸(TBS,Transport Block Size)或者调制和编码方案(MCS,Modulationand Coding Scheme)确定优先级,以顺序地减小或降低具有低优先级的PUSCH的发送功率。期望地,赋予具有小TBS(数据量)、低MCS(低码率)或低调制阶数(modulation order)的PUSCH低优先级。在该情况下,可以将更大的衰减率应用于具有低优先级的PUSCH。但是,如果即使由于PUSCH的减少(drop)仅保留一个PUSCH,发送功率仍超过最大发送极限,则在发送过程中相应PUSCH的功率也减小到PMax。Option 2: The transmission format of the PUSCH can be considered, and priority can be given to the PUSCH. For example, the priority may be determined according to the transport block size (TBS, Transport Block Size) or the modulation and coding scheme (MCS, Modulation and Coding Scheme), so as to sequentially reduce or reduce the transmission power of the PUSCH with low priority. Desirably, low priority is given to PUSCH with small TBS (data volume), low MCS (low code rate), or low modulation order. In this case, a larger attenuation rate can be applied to PUSCH with low priority. However, if the transmission power exceeds the maximum transmission limit even though only one PUSCH remains due to PUSCH drop, the power of the corresponding PUSCH is also reduced to PMax during transmission.
实例1-2:PExample 1-2: PPUCCH(ACK/NACK)PUCCH (ACK/NACK)+P+PPUSCHPUSCH>P>PMaxMax
实例1-2是当在不同CC中或一个CC中,PUSCH和发送ACK/NACK的PUCCH的发送功率之和达到最大功率极限时的情况。可以考虑下面的选项。Example 1-2 is the case when the sum of the transmission power of the PUSCH and the PUCCH for transmitting ACK/NACK reaches the maximum power limit in different CCs or in one CC. Consider the following options.
选项1:可以赋予ACK/NACK优先级。UL ACK/NACK用于报告DL数据接收的成功或失败。如果未正确进行这样的报告,则DL资源被浪费。因此,将高优先级分配给ACK/NACK的发送,并且在发送过程中减小或降低PUSCH的发送功率。在减小PUSCH的发送功率的情况下,发送功率可以首先分配给PUCCH,而剩余的功率可以分配给PUSCH。这可以通过下面的式子来表示:PPUSCH=Pmax-PPUCCH(ACK/NACK)。这里,可以附加应用下面的选项。Option 1: ACK/NACK can be given priority. UL ACK/NACK is used to report success or failure of DL data reception. If such reporting is not done correctly, DL resources are wasted. Therefore, high priority is assigned to the transmission of ACK/NACK, and the transmission power of PUSCH is reduced or lowered during the transmission. In the case of reducing the transmission power of the PUSCH, the transmission power can be allocated to the PUCCH first, and the remaining power can be allocated to the PUSCH. This can be expressed by the following formula: PPUSCH =Pmax -PPUCCH(ACK/NACK) . Here, the following options can be additionally applied.
选项1.1:由于给PUCCH分配发送功率之后剩余的功率用于PUSCH,所以使PUSCH的错误率增加。因此,在发送过程中减小向PUSCH发送的数据的MCS,使得可以以与功率减小前的错误率相同的错误率接收PUSCH。为此,可以用信号向BS发送与减小后的MCS有关的信息。Option 1.1: Since the remaining power after allocating transmission power to PUCCH is used for PUSCH, the error rate of PUSCH is increased. Therefore, the MCS of data transmitted to the PUSCH is reduced during transmission so that the PUSCH can be received with the same error rate as that before the power reduction. To this end, information on the reduced MCS may be signaled to the BS.
选项2:可以赋予PUSCH优先级。如果减小发送ACK/NACK的PUCCH的功率,则由于UL中ACK/NACK的接收错误而浪费了DL资源。尤其,如果NACK被识别为ACK,则出现上层的重传,并且更加延迟DL数据的发送。同时,如果ACK被识别为NACK,则仅在物理层中出现重传的浪费。因此,在发送紧急数据的情况下,为由于以连续低功率发送PUSCH而使数据延迟的情况作准备,可以考虑首先向PUSCH分配功率,并向PUCCH分配剩余功率(降低的功率)。在该情况下,期望将PUCCH的功率降低限于PUCCH发送ACK的情况。Option 2: PUSCH can be given priority. If the power of the PUCCH for transmitting ACK/NACK is reduced, DL resources are wasted due to reception errors of ACK/NACK in UL. Especially, if NACK is recognized as ACK, retransmission of upper layer occurs, and transmission of DL data is further delayed. Meanwhile, if the ACK is recognized as NACK, the waste of retransmission occurs only in the physical layer. Therefore, in case of transmitting urgent data, to prepare for the case where data is delayed due to continuous low power transmission of PUSCH, it may be considered to allocate power to PUSCH first and allocate remaining power (reduced power) to PUCCH. In this case, it is desirable to limit the power reduction of the PUCCH to the case where the PUCCH transmits ACK.
实例1-3:PExamples 1-3: PSRSSRS+P+PPUSCHPUSCH>P>PMaxMax
实例1-3对应于在不同CC中或一个CC中SRS和PUSCH的发送功率之和达到最大功率极限的情况相对应。可以考虑下面的选项。Examples 1-3 correspond to the case where the sum of the transmission power of the SRS and the PUSCH reaches the maximum power limit in different CCs or in one CC. Consider the following options.
选项1:可以赋予SRS发送优先级。当BS通过测量UL信道状态而执行最佳UL调度时,使用SRS。考虑到下一次调度的效率,可以给SRS分配高优先级。接着,在发送过程中,减小或降低PUSCH的发送功率。为了减小PUSCH的发送功率,发送功率可以首先分配给SRS,并且剩余功率可以分配给PUSCH。这可以表示为:PPUSCH=PMax-PSRS。在该情况下,可以附加应用以下选项。Option 1: SRS transmission priority can be given. The SRS is used when the BS performs optimal UL scheduling by measuring the UL channel state. Considering the efficiency of the next scheduling, a high priority can be assigned to the SRS. Next, during the sending process, reduce or lower the sending power of the PUSCH. In order to reduce the transmission power of PUSCH, transmission power may be allocated to SRS first, and the remaining power may be allocated to PUSCH. This can be expressed as: PPUSCH =PMax -PSRS . In this case, the following options can be additionally applied.
选项1.1:由于向SRS分配发送功率之后剩余的功率用于PUSCH,所以PUSCH的错误率增大。因此,在发送过程中减小向PUSCH发送的数据的MCS,使得可以以与功率减小前的错误率相同的错误率接收PUSCH。为此,可以以信号向BS发送与减小后的MCS有关的信息。Option 1.1: Since the remaining power after allocating transmission power to SRS is used for PUSCH, the error rate of PUSCH increases. Therefore, the MCS of data transmitted to the PUSCH is reduced during transmission so that the PUSCH can be received with the same error rate as that before the power reduction. To this end, information on the reduced MCS may be signaled to the BS.
选项2:可以赋予PUSCH发送优先级。如果减小SRS的发送功率,则因为BS未意识到接收功率的减小是由于UL无线信道的环境状态差造成的还是由于UE降低了功率的发送造成的,所以可能对信道信息误判。因此,如果发送功率是不足,则可以降低SRS。Option 2: PUSCH transmission priority can be assigned. If the transmission power of the SRS is reduced, the BS may misjudge the channel information because the BS does not realize whether the reduction of the received power is due to the poor environmental state of the UL wireless channel or the UE's reduced power transmission. Therefore, if the transmit power is insufficient, the SRS can be lowered.
实例1-4:PExamples 1-4: PPUCCH(ACK/NACK)PUCCH (ACK/NACK)+P+PPUCCH(ACK/NACK)PUCCH (ACK/NACK)>P>PMaxMax
实例1-4对应于发送ACK/NACK的多个PUCCH的发送功率之和达到最大功率极限的情况。在该情况下,减小或降低各PUCCH的发送功率。具体地,可以考虑以下选项。Examples 1-4 correspond to the case where the sum of the transmission powers of multiple PUCCHs that transmit ACK/NACK reaches the maximum power limit. In this case, the transmission power of each PUCCH is reduced or lowered. Specifically, the following options can be considered.
选项1:可以赋予发送ACK/NACK的PUCCH相同的优先级。如果这样,则可以以相同比率减小PUCCH的功率,或者减小PUCCH的相同量的功率。即,可以应用相同的衰减率或者减去相同值。Option 1: The PUCCH sending ACK/NACK can be given the same priority. If so, the power of the PUCCH can be reduced at the same rate, or by the same amount. That is, the same decay rate can be applied or the same value can be subtracted.
选项2:根据优先级,可以减小或降低一部分PUCCH的功率。Option 2: According to the priority, the power of a part of PUCCH can be reduced or lowered.
选项2.1:如果NACK被识别为ACK,则与ACK被识别为NACK的情况相比,资源浪费和发送延迟更严重。因此,首先减小或降低发送ACK的PUCCH的发送功率。可以考虑设置特定阈值并且将功率减小到该阈值。Option 2.1: If a NACK is recognized as an ACK, resource waste and transmission delays are more serious than if an ACK is recognized as a NACK. Therefore, first reduce or reduce the transmission power of the PUCCH for transmitting ACK. It may be considered to set a certain threshold and reduce the power to that threshold.
选项2.2:根据与各PUCCH的ACK/NACK相对应的PDSCH的TBS或MCS来确定PUCCH的优先级,并且减小或降低具有低优先级的PUCCH的发送功率。期望的是,向小TBS或低MCS的PDSCH分配低优先级。但是,在减少PUCCH的情况下,如果即使仅保留一个PUCCH,发送功率也超过最大功率极限,则在发送过程中将相应的PUCCH的功率减小到Pmax。Option 2.2: Determine the priority of the PUCCH according to the TBS or MCS of the PDSCH corresponding to the ACK/NACK of each PUCCH, and reduce or reduce the transmission power of the PUCCH with low priority. It is desirable to assign low priority to PDSCHs with small TBS or low MCS. However, in the case of reducing PUCCH, if the transmission power exceeds the maximum power limit even if only one PUCCH is reserved, the power of the corresponding PUCCH is reduced to Pmax during transmission.
实例1-5:PExamples 1-5: PPUCCH(CQI)PUCCH (CQI)+P+PPUCCH(CQI)PUCCH (CQI)>P>PMaxMax
实例1-5对应于在不同CC中发送CQI的多个PUCCH的发送功率之和达到最大功率极限的情况。CQI用于通过识别DL无线信道的状态来执行高效DL调度。可以考虑以下选项。Examples 1-5 correspond to the case where the sum of the transmit powers of multiple PUCCHs that transmit CQIs in different CCs reaches the maximum power limit. The CQI is used to perform efficient DL scheduling by identifying the state of a DL wireless channel. The following options can be considered.
选项1:可以赋予发送CQI的PUCCH相同的优先级。如果这样,可以以相同的比率减小PUCCH的功率,或者减小PUCCH相同量的功率。即,可以应用相同的衰减率,或者减去相同值。Option 1: The PUCCH that sends the CQI can be given the same priority. If so, it is possible to reduce the power of the PUCCH at the same rate, or reduce the power of the PUCCH by the same amount. That is, the same decay rate can be applied, or the same value can be subtracted.
选项2:可以根据优先级减小或降低一部分PUCCH的功率。BS通过选择具有高CQI的无线信道来执行针对UE的调度。由于具有低CQI的信道不太可能被BS选择,所以正确接收不太重要。因此,在发送过程中首先减小或降低具有低CQI的PUCCH的发送功率。可以设置特定阈值,并且可以考虑将功率减小到该阈值。Option 2: The power of a part of PUCCH can be reduced or lowered according to the priority. The BS performs scheduling for UEs by selecting a wireless channel with a high CQI. Since a channel with a low CQI is less likely to be selected by the BS, correct reception is less important. Therefore, in the transmission process, the transmission power of the PUCCH with low CQI is first reduced or reduced. A certain threshold can be set, and a power reduction down to that threshold can be considered.
实例1-6:PExamples 1-6: PPUCCH(ACK/NACK)PUCCH (ACK/NACK)+P+PPUCCH(CQI)PUCCH (CQI)>P>PMaxMax
当发送CQI和ACK/NACK的多个PUCCH的发送功率之和达到最大功率极限时,应用实例1-6。如更早描述的,赋予ACK/NACK高优先级。同时,CQI用于高效DL调度,作为向BS发送DL信道状态的信息。即使向UE分配更好的信道,如果不能准确地确认数据的正常接收,也会出现不必要的重传。因此,赋予CQI低优先级。即,首先向发送ACK/NACK的PUCCH分配功率,并且向发送CQI的PUCCH分配剩余功率,或者降低发送CQI的PUCCH。同时,以与发送ACK/NACK的PUCCH相同的方式处理发送CQI和ACK/NACK二者的PUSCH。Instances 1-6 are applied when the sum of the transmit powers of multiple PUCCHs that transmit CQI and ACK/NACK reaches the maximum power limit. As described earlier, ACK/NACK is given high priority. Meanwhile, the CQI is used for efficient DL scheduling as information for sending DL channel status to the BS. Even if a better channel is allocated to the UE, if the normal reception of data cannot be confirmed accurately, unnecessary retransmission will occur. Therefore, low priority is given to CQI. That is, power is first allocated to the PUCCH for transmitting ACK/NACK, and the remaining power is allocated to the PUCCH for transmitting CQI, or the PUCCH for transmitting CQI is reduced. Meanwhile, a PUSCH transmitting both CQI and ACK/NACK is processed in the same manner as a PUCCH transmitting ACK/NACK.
实例1-7:PExamples 1-7: PPUCCH(SR)PUCCH(SR)+P+PPUCCH(ACK/NACK)PUCCH (ACK/NACK)>P>PMaxMax
实例1-7对应于发送SR和ACK/NACK的多个PUCCH的发送功率之和达到最大功率极限的情况。可以考虑以下选项。Examples 1-7 correspond to the case where the sum of the transmission powers of multiple PUCCHs that transmit SR and ACK/NACK reaches the maximum power limit. The following options can be considered.
选项1:可以赋予ACK/NACK发送高优先级。因此,首先向发送ACK/NACK的PUCCH分配功率,并且向发送SR的PUCCH分配剩余功率,或者减少发送SR的PUCCH。同时,如果由于发送ACK/NACK的PUCCH长时间连续存在而减少发送SR的PUCCH,则不可能进行UL调度。为了对此进行补偿,如果发送SR的PUCCH被延迟了特定时间,则可以减少发送ACK/NACK的PUCCH。Option 1: ACK/NACK transmission can be given high priority. Therefore, power is first allocated to the PUCCH that transmits ACK/NACK, and the remaining power is allocated to the PUCCH that transmits SR, or the PUCCH that transmits SR is reduced. Meanwhile, if the PUCCH for transmitting SR is reduced due to the continuous existence of PUCCH for transmitting ACK/NACK for a long time, it is impossible to perform UL scheduling. To compensate for this, if the PUCCH for transmitting SR is delayed for a certain time, the PUCCH for transmitting ACK/NACK may be reduced.
选项2:可以赋予SR发送高优先级。由于通过重传解决了ACK/NACK发送错误,所以考虑到调度是重要的,可以向SR发送分配高优先级,并且可以在发送过程中减小或降低发送ACK/NACK的PUCCH的发送功率。在减小发送ACK/NACK的PUCCH的发送功率的情况下,发送功率可以首先分配给发送SR的PUCCH,并且剩余功率可以分配给发送ACK/NACK的PUCCH。这可以被表示为:PPUCCH(ACK/NACK)=PMax-PSR。Option 2: SR sending can be given high priority. Since ACK/NACK transmission errors are solved by retransmission, considering that scheduling is important, high priority can be assigned to SR transmission, and the transmission power of PUCCH for transmitting ACK/NACK can be reduced or lowered during transmission. In the case of reducing the transmission power of the PUCCH that transmits ACK/NACK, the transmission power may be allocated to the PUCCH that transmits SR first, and the remaining power may be allocated to the PUCCH that transmits ACK/NACK. This can be expressed as: PPUCCH(ACK/NACK) = PMax - PSR .
选项3:UE向发送SR的PUCCH发送ACK/NACK。接着,BS可以通过能量检测在PUCCH中检测到开关键控(on/off keyed)的SR,并且可以通过符号解码判断ACK/NACK。在该情况下,如果存在发送ACK/NACK的多个PUCCH,则可以使用ACK/NACK捆绑(bundling)或PUCCH选择发送。ACK/NACK捆绑表示:当没有任何错误地接收到多个DL PDSCH而应当发送所有ACK时发送一个ACK,并且当甚至在任意一个DL PDSCH中存在错误时发送一个NACK。PUCCH选择发送表示一旦接收到多个DL PDSCH,通过从多个占用的PUCCH资源中选择的一个PUCCH资源发送调制值的多个ACK/NACK结果。Option 3: UE sends ACK/NACK to the PUCCH that sends SR. Then, the BS can detect an on/off keyed SR in the PUCCH through energy detection, and can judge ACK/NACK through symbol decoding. In this case, if there are a plurality of PUCCHs for transmitting ACK/NACK, ACK/NACK bundling or PUCCH selection may be used for transmission. ACK/NACK bundling means that one ACK is sent when multiple DL PDSCHs are received without any error and all ACKs should be sent, and one NACK is sent when there is an error even in any one DL PDSCH. PUCCH selection transmission means that once multiple DL PDSCHs are received, multiple ACK/NACK results of modulation values are transmitted through one PUCCH resource selected from multiple occupied PUCCH resources.
实例1-8:PExamples 1-8: PPUSCH(UCI)PUSCH (UCI)+P+PPUSCHPUSCH>P>PMaxMax
实例1-8对应于不同CC中发送上行控制信息(UCI,Uplink Control Information)的PUSCH和仅发送数据的PUCCH的发送功率之和达到最大功率极限的情况。可以考虑以下选项。Examples 1-8 correspond to the case where the sum of the transmit powers of the PUSCH that transmits uplink control information (UCI, Uplink Control Information) and the PUCCH that only transmits data in different CCs reaches the maximum power limit. The following options can be considered.
选项1:在不考虑UCI的情况下使用在实例1-1中描述的优先级确定方法。例如,可以赋予PUSCH相同的优先级。在该情况下,PUSCH的功率可以以相同比率减小。考虑到PUSCH的传输格式,可以向PUSCH分配不同的优先级。Option 1: Use the prioritization method described in Example 1-1 without considering UCI. For example, PUSCH may be given the same priority. In this case, the power of PUSCH can be reduced at the same rate. Considering the transmission format of PUSCH, different priorities can be assigned to PUSCH.
选项2:由于控制信息包括在上面捎带有UCI的PUSCH中,所以高优先级可以分配给上面捎带有UCI的信道。因此,在发送过程中减小或降低仅发送数据的PUSCH的发送功率。在减小仅发送数据的PUSCH的发送功率的情况下,首先向上面捎带有UCI的PUSCH分配发送功率,接着可以向仅发送数据的PUSCH分配剩余功率。这可以被表示为:PPUSCH=PMax-PPUSCH(UCI)。在降低仅发送数据的PUSCH的发送功率的情况下,更高的衰减率可以应用于仅发送数据的PUSCH。但是,如果即使由于PUCCH的减少而仅保留一个PUSCH,发送功率也超过最大发送功率,则在发送过程中将相应PUSCH的功率降低到PMax。Option 2: Since the control information is included in the PUSCH piggybacked with UCI, high priority can be assigned to the channel piggybacked with UCI. Therefore, during the transmission process, the transmission power of the PUSCH that only transmits data is reduced or lowered. In the case of reducing the transmission power of the PUSCH that only transmits data, the transmission power is first allocated to the PUSCH on which UCI is piggybacked, and then the remaining power may be allocated to the PUSCH that only transmits data. This can be expressed as: PPUSCH =PMax -PPUSCH(UCI) . In the case of reducing the transmission power of the PUSCH that only transmits data, a higher attenuation rate can be applied to the PUSCH that only transmits data. However, if the transmission power exceeds the maximum transmission power even though only one PUSCH is reserved due to the reduction of the PUCCH, the power of the corresponding PUSCH is reduced to PMax during transmission.
实例1-9:PExamples 1-9: PPUSCH(Retransmission)PUSCH (Retransmission)+P+PPUSCHPUSCH>P>PMaxMax
实例1-9对应于发送重传数据的PUSCH和发送新数据的PUSCH的发送功率之和达到最大功率极限的情况。Examples 1-9 correspond to the case where the sum of the transmission power of the PUSCH for transmitting retransmission data and the PUSCH for transmitting new data reaches the maximum power limit.
选项1:在不考虑重传的情况下使用在实例1-1中描述的优先级确定方法。例如,可以赋予PUSCH相同的优先级。在该情况下,可以以相同的比率减小PUSCH的功率。考虑到PUSCH的传输格式,可以为PUSCH分配不同的优先级。Option 1: Use the prioritization method described in Example 1-1 without considering retransmissions. For example, PUSCH may be given the same priority. In this case, the power of PUSCH can be reduced at the same rate. Considering the transmission format of PUSCH, different priorities can be assigned to PUSCH.
选项2:由于重传可能是由于在之前的发送过程中发送功率的减小而出现的,所以高优先级可以分配给重传的PUSCH,以提高PUSCH的接收率。Option 2: Since the retransmission may occur due to the reduction of the transmit power during the previous transmission, high priority can be assigned to the retransmitted PUSCH to improve the reception rate of the PUSCH.
实例1-10:PExamples 1-10: PPUSCH(Retransmission)PUSCH (Retransmission)+P+PPUSCH(Retransmission)PUSCH (Retransmission)>P>PMaxMax
实例1-10对应于发送重传数据的PUSCH的发送功率之和达到最大功率极限的情况。可以考虑下面的选项。Example 1-10 corresponds to the case where the sum of the transmission powers of the PUSCHs for transmitting retransmission data reaches the maximum power limit. Consider the following options.
选项1:在不考虑重传的情况下,可以使用实例1-1中描述的优先级确定方法。例如,可以赋予PUSCH相同的优先级。在该情况下,可以以相同比率减小PUSCH的功率。考虑到PUSCH的发送格式,不同的优先级可以分配给PUSCH。Option 1: In cases where retransmissions are not considered, the prioritization method described in Example 1-1 can be used. For example, PUSCH may be given the same priority. In this case, the power of PUSCH can be reduced at the same rate. Considering the transmission format of PUSCH, different priorities can be assigned to PUSCH.
选项2:由于重传可能是由于在之前的发送过程中发送功率的减小而出现的,所以高优先级可以分配给具有较大重传次数的PUSCH,以提高重传的PUSCH的接收率。Option 2: Since the retransmission may occur due to the reduction of the transmission power in the previous transmission process, high priority can be assigned to the PUSCH with a larger number of retransmissions to improve the reception rate of the retransmitted PUSCH.
实例1-11:PExample 1-11: PPUSCH(Retransmission)PUSCH (Retransmission)+P+PPUCCHPUCCH/P/PSRSSRS>P>PMaxMax
实例1-11对应于发送重传数据的PUSCH的发送功率与PUCCH/SRS的发送功率之和达到最大功率极限的情况。可以考虑以下选项。Example 1-11 corresponds to the case where the sum of the transmit power of the PUSCH for sending retransmission data and the transmit power of the PUCCH/SRS reaches the maximum power limit. The following options can be considered.
选项1:在不考虑重传的情况下,可以使用实例1-2和实例1-3中描述的优先级确定方法。Option 1: In cases where retransmissions are not considered, the prioritization methods described in Example 1-2 and Example 1-3 can be used.
选项2:由于重传可能是由于在之前的发送过程中发送功率的减小而出现的,所以高优先级可以分配给重传的PUSCH,以提高PUSCH的接收率。Option 2: Since the retransmission may occur due to the reduction of the transmit power during the previous transmission, high priority can be assigned to the retransmitted PUSCH to improve the reception rate of the PUSCH.
实施方式2:每CC(组)的功率控制Embodiment 2: Power control per CC (group)
当UE具有一个功率放大器时,到目前为止描述的UE的发送功率控制方法是有用的。但是,在LTE-A系统中,多个CC可以分配给UE,并且所分配的CC在频域中可以是连续或分离的带。如果所分配的CC作为分离带而存在,则由于难以使UE仅使用一个功率放大器在宽频域中对功率进行放大,所以可能需要多个功率放大器。在该情况下,各功率放大器可以负责仅一个CC或者由一些CC组成的仅一个CC组的功率放大。因此,即使UE具有多个功率放大器,通过将上面提出的方法扩展到每个CC或CC组的功率控制方法,也可以自然地应用功率控制。The UE's transmission power control method described so far is useful when the UE has one power amplifier. However, in the LTE-A system, a plurality of CCs may be allocated to a UE, and the allocated CCs may be continuous or separated bands in the frequency domain. If the allocated CC exists as a separate band, since it is difficult for the UE to amplify power in a wide frequency domain using only one power amplifier, multiple power amplifiers may be required. In this case, each power amplifier may be responsible for power amplification of only one CC or only one CC group consisting of some CCs. Therefore, even if a UE has multiple power amplifiers, power control can be naturally applied by extending the above proposed method to a power control method for each CC or CC group.
此后,将描述存在每个CC(组)的发送功率极限和UE的总发送功率极限二者的环境中,当UE达到特定CC(组)的发送功率限制时,UE达到总发送功率极限,或者UE达到上述两个功率极限时,根据本发明的示例性实施方式的UE的操作。Hereinafter, an environment where there are both a transmission power limit per CC (group) and a total transmission power limit of the UE, when the UE reaches the transmission power limit of a specific CC (group), the UE reaches the total transmission power limit, or When the UE reaches the above two power limits, the operation of the UE according to the exemplary embodiment of the present invention.
通常,可以如由下式1所示,限制UE的UL发送功率:In general, the UL transmit power of the UE may be limited as shown by Equation 1 below:
[式1][Formula 1]
如果UE的功率放大器的量化级足够高,则可以满足如由式2表示的相等:If the quantization level of the UE's power amplifier is high enough, the equality as expressed by Equation 2 can be satisfied:
[式2][Formula 2]
上式中使用的符号如下定义。The symbols used in the above formula are defined as follows.
PUE:UE的UL发送功率PUE : UL transmit power of UE
UE的最大发送功率(或者发送功率极限值)。换句话说,这表示对于所有CC的最大发送功率(或者发送功率极限值)。UE的最大发送功率值可以由UE的总发送功率确定,或者可以通过网络(如,BS)中所设置的值的组合来确定。与UE的最大发送功率值有关的信息可以通过上层信令来表示。例如,与UE的最大发送功率值有关的信息可以通过广播消息根据具体小区(cell-specifically)以信号发送,或者可以通过RRC消息而根据具体UE或具体UE组以信号发送。 The maximum transmit power (or limit value of transmit power) of the UE. In other words, this indicates the maximum transmission power (or transmission power limit value) for all CCs. The maximum transmission power value of the UE may be determined by the total transmission power of the UE, or may be determined by a combination of values set in the network (eg, BS). Information related to the maximum transmit power value of the UE may be expressed through upper layer signaling. For example, the information on the maximum transmission power value of the UE may be signaled cell-specifically through a broadcast message, or may be signaled according to a specific UE or a specific group of UEs through an RRC message.
第i个CC(组)中最大发送功率(或发送功率极限值)。每个CC(组)的最大发送功率值可以由UE的总的可发送功率或每个CC(组)的可发送功率确定,或者可以通过网络(如,BS)中针对每个CC(组)所设置的值的组合来确定。与每个CC(组)的最大发送功率值有关的信息可以通过上层信令表示。例如,与每个CC(组)的最大发送功率值有关的信息可以通过广播消息根据具体小区(cell-specifically)以信号发送,或者可以通过RRC消息根据具体UE或具体UE组而以信号发送。同时,考虑到关于与其他UE(或CC(组))的干扰(或覆盖)的信息,可以将每个CC(组)的最大发送功率值以信号发送。与每个CC(组)的最大发送功率值有关的信息可以包括关于与其他UE(或CC(组))的干扰(或覆盖)的信息。在所有CC(CC组)中,每个CC(组)的最大发送功率可以具有相同的值。 The maximum transmit power (or limit value of transmit power) in the i-th CC (group). The maximum transmit power value of each CC (group) can be determined by the total transmit power of the UE or the transmit power of each CC (group), or can be determined by the network (for example, BS) for each CC (group) Combinations of the set values are determined. Information related to the maximum transmission power value of each CC (group) can be expressed through upper layer signaling. For example, information on the maximum transmission power value of each CC (group) may be signaled cell-specifically through a broadcast message, or may be signaled according to a specific UE or a specific UE group through an RRC message. Meanwhile, the maximum transmission power value of each CC (group) may be signaled in consideration of information on interference (or coverage) with other UEs (or CC (group)). The information on the maximum transmission power value of each CC (group) may include information on interference (or coverage) with other UEs (or CC (group)). In all CCs (CC groups), the maximum transmission power of each CC (group) may have the same value.
第i个CC(组)的第j个信道的发送功率。 The transmission power of the jth channel of the ith CC (group).
实例2-1:Example 2-1:
实例2-1是当所有CC(CC组)中的CC(CC组)的最大发送功率之和小于UE的最大发送功率并且同时所有CC(CC组)的信道的最大发送功率之和小于UE的最大发送功率时。由于UE的发送功率不限于总发送功率值,所以可以满足简化的式3:Example 2-1 is when the sum of the maximum transmit powers of CCs (CC groups) in all CCs (CC groups) is less than the maximum transmit power of the UE and at the same time the sum of the maximum transmit powers of the channels of all CCs (CC groups) is less than the UE’s at maximum transmit power. Since the transmit power of the UE is not limited to the total transmit power value, the simplified formula 3 can be satisfied:
[式3][Formula 3]
如果UE的功率放大器的量化级足够高,则可以满足如由式4表示的相等:If the quantization level of the UE's power amplifier is high enough, the equality as expressed by Equation 4 can be satisfied:
[式4][Formula 4]
在式3和式4中,集合S指的是CC(组)内信道的发送功率之和超过CC(组)的最大发送功率值(即,)的CC(组)的集合。在该情况下,控制发送功率之和,以不超过仅集合S中CC(组)的最大发送功率。通过引入衰减系数可以执行功率控制。例如,功率控制可以简化为搜索各信道的发送功率的衰减系数的方法,如由式5所示:In Equation 3 and Equation 4, the set S refers to the sum of the transmission power of the channels in the CC (group) exceeding the maximum transmission power value of the CC (group) (that is, ) collection of CC(groups). In this case, the sum of the transmission powers is controlled so as not to exceed the maximum transmission power of the CCs (groups) in the set S only. Power control can be performed by introducing attenuation coefficients. For example, power control can be simplified as searching for the attenuation coefficient of the transmit power of each channel method, as shown by formula 5:
[式5][Formula 5]
实例2-2:Example 2-2:
实例2-2对应于UE的最大发送功率小于CC(组)的最大发送功率之和并且同时小于所有信道的发送功率之和的情况。由于UE的发送功率受最大发送功率值限制,所以满足式6:Example 2-2 corresponds to the case where the maximum transmit power of the UE is less than the sum of the maximum transmit powers of CCs (groups) and simultaneously less than the sum of the transmit powers of all channels. Since the transmit power of the UE is limited by the maximum transmit power value, formula 6 is satisfied:
[式6][Formula 6]
如果UE的功率放大器的量化级足够高,则可以满足如由式7表示的相等:If the quantization level of the UE's power amplifier is high enough, the equality as expressed by Equation 7 can be satisfied:
[式7][Formula 7]
在情况下,如在实例2-1中,UE的发送功率可以减小到UE的最大发送功率。各CC(组)内信道的发送功率之和应当小于CC(组)的最大发送功率,并且所有CC(组)的发送功率之和应当小于UE的最大发送功率值。功率控制可以简化为搜索各信道的发送功率的衰减系数的方法,如由式8所示:In this case, as in Example 2-1, the transmit power of the UE may be reduced to the maximum transmit power of the UE. The sum of the transmit power of the channels in each CC (group) should be less than the maximum transmit power of the CC (group), and the sum of the transmit power of all CCs (groups) should be less than the maximum transmit power value of the UE. Power control can be simplified as searching for the attenuation coefficient of the transmit power of each channel method, as shown by formula 8:
[式8][Formula 8]
由于实例2-1和实例2-2中描述的方法通过最佳化两种情况的极限(总发送功率极限和CC(组)发送功率极限)来计算衰减系数,所以可能出现利用有些复杂的方法执行优化的问题。因此,参照图10和图11描述用于高效计算衰减系数的方法。Since the methods described in Example 2-1 and Example 2-2 calculate the attenuation coefficient by optimizing the limits of the two cases (the total transmit power limit and the CC (group) transmit power limit), it may appear that using a somewhat complicated method Perform optimization problems. Therefore, a method for efficiently calculating an attenuation coefficient is described with reference to FIGS. 10 and 11 .
在图10和图11中,水平轴表示CC(组),而垂直轴表示功率强度。各CC(组)中的阴影框表示相应CC(组)内的信道。为了方便地表示信道,示出了阴影。各阴影可以表示不同信道或相同信道。在图10和图11中,假设CC(CC组)的发送功率之和大于UE的最大发送功率值P_UE_MAX,并且CC(CC组)1和3内的信道的发送功率之和分别超过CC(CC组)的最大发送功率P_CC1_MAX和P_CC3_MAX(图10的(a)和图11的(a))。CC(CC组)1和3组成参照式3和式4描述的集合S。In FIGS. 10 and 11 , the horizontal axis represents CC (group), and the vertical axis represents power intensity. Shaded boxes in each CC (group) indicate channels within the corresponding CC (group). Shading is shown for convenience in representing channels. Each shading may represent a different channel or the same channel. In Figure 10 and Figure 11, it is assumed that the sum of the transmit power of the CC (CC group) is greater than the maximum transmit power value P_UE_MAX of the UE, and the sum of the transmit power of the channels in CC (CC group) 1 and 3 respectively exceeds the CC (CC group) maximum transmit power P_CC1_MAX and P_CC3_MAX ((a) of FIG. 10 and (a) of FIG. 11 ). CC (CC group) 1 and 3 constitute a set S described with reference to Equation 3 and Equation 4.
图10示出了根据本发明的实施方式的用于计算用于功率控制的衰减系数的方法。参照图10,用两个步骤计算用于功率控制的衰减系数。在第一步骤中,可以衰减集合S中的信道的发送功率,以满足CC(组)的发送功率极限准则。在第一步骤中,可以根据式9独立地确定衰减系数FIG. 10 shows a method for calculating an attenuation coefficient for power control according to an embodiment of the present invention. Referring to FIG. 10, the attenuation coefficient for power control is calculated in two steps. In a first step, the transmit power of the channels in the set S may be attenuated to satisfy the transmit power limit criterion of the CC (group). In the first step, the attenuation coefficient can be determined independently according to Equation 9
[式9][Formula 9]
从图10的(b)可以看出CC(CC组)1和3内信道的发送功率之和分别减小到相应CC(CC组)的最大发送功率值。It can be seen from (b) of FIG. 10 that the sum of the transmission power of the channels in CC (CC group) 1 and 3 is respectively reduced to the maximum transmission power value of the corresponding CC (CC group).
但是,在图10的(b)中,CC(CC组)的发送功率之和仍然大于UE的最大发送功率值P_UE_MAX。由此,如果即使集合S内信道的发送功率减小,也不满足UE的总发送功率极限,则在第二步骤中,减小所有CC(CC组)的所有信道的发送功率,以满足总发送功率极限。在第二步骤中,可以根据式10独立确定衰减系数However, in (b) of FIG. 10 , the sum of the transmission powers of the CCs (CC groups) is still greater than the maximum transmission power value P_UE_MAX of the UE. Thus, if the total transmit power limit of the UE is not satisfied even if the transmit power of channels in the set S is reduced, then in the second step, the transmit power of all channels of all CCs (CC groups) is reduced to satisfy the total Send power limit. In the second step, the attenuation coefficient can be determined independently according to Equation 10
[式10][Formula 10]
从图10的(c)可以看出,所有信道的发送功率之和减小到UE的总发送功率极限值P_UE_MAX。为了简明,集合S中信道的衰减系数可以被设置为1,并且可以仅针对集合S的补集合来确定另选地,集合S的补集合中信道的衰减系数可以被设置为1,并且可以仅针对集合S来确定It can be seen from (c) of FIG. 10 that the sum of the transmit powers of all channels is reduced to the total transmit power limit value P_UE_MAX of the UE. For simplicity, the attenuation coefficients of the channels in the set S can be set to 1, and can be determined only for the complement of set S Alternatively, the attenuation coefficient of the channel in the complementary set of set S can be set to 1, and can be determined only for the set S
图11示出了根据本发明的另一个实施方式的用于计算用于功率控制的衰减系数的方法。参照图11,主要用两个步骤来计算用于功率控制的衰减系数,并且还可以包括附加步骤用于功率补偿。在第一步骤中,可以衰减所有CC(CC组)中信道的发送功率,以满足UE的总发送功率极限准则。可以根据式11独立地确定衰减系数FIG. 11 shows a method for calculating an attenuation coefficient for power control according to another embodiment of the present invention. Referring to FIG. 11 , two steps are mainly used to calculate the attenuation coefficient for power control, and an additional step for power compensation may also be included. In a first step, the transmit power of channels in all CCs (CC group) can be attenuated to meet the total transmit power limit criterion of the UE. The attenuation coefficient can be determined independently according to Equation 11
[式11][Formula 11]
从图11的(b)可以看出,减小所有CC(CC组)中信道的发送功率,使得所有信道的发送功率之和与UE的总发送功率极限值P_UE_MAX一致。It can be seen from (b) of FIG. 11 that the transmit power of channels in all CCs (CC groups) is reduced so that the sum of transmit power of all channels is consistent with the total transmit power limit value P_UE_MAX of the UE.
但是,在图11的(b)中,CC(组)3的信道的发送功率之和仍然大于CC(组)3的功率极限值P_CC3_MAX。因此,如果存在即使减小所有CC(CC组)中信道的发送功率,也不满足CC(组)的发送功率极限的CC(组)(即,集合S),则在第二步骤中可以减小集合S内所有CC(CC组)的信道的发送功率。可以根据式12的条件来独立确定衰减系数However, in (b) of FIG. 11 , the sum of the transmission powers of the channels of CC (group) 3 is still greater than the power limit value P_CC3_MAX of CC (group) 3 . Therefore, if there is a CC (group) (i.e., set S) that does not satisfy the transmission power limit of the CC (group) even if the transmission power of channels in all CCs (CC groups) is reduced, then in the second step, the The transmit power of the channels of all CCs (CC groups) in the small set S. The attenuation coefficient can be determined independently according to the condition of Equation 12
[式12][Formula 12]
从图11的(c)可以看出,CC(组)3(即,集合S)的信道的发送功率之和减小到相应CC(组)的最大发送功率值P_CC3_MAX。It can be seen from (c) of FIG. 11 that the sum of the transmission powers of the channels of CC (group) 3 (ie, set S) is reduced to the maximum transmission power value P_CC3_MAX of the corresponding CC (group).
接着,在第三步骤中,对于集合S的补集中的信道,可以补偿从集合S的信道减小的功率量信道的补偿后功率不应当超过相应CC(组)的最大发送功率值。参照图11的(d),在第二步骤中从CC(组)3减小的功率补偿给CC(组)2。与图11的(d)相反,在第二步骤中从CC(组)3减小的功率可以补偿给CC(组)1。下述认为是功率补偿方法。Then, in a third step, for the channels in the complement of set S, the amount of power reduced from the channels of set S can be compensated by The compensated power of the channel should not exceed the maximum transmission power value of the corresponding CC (group). Referring to (d) of FIG. 11 , the power reduced from CC (group) 3 is compensated to CC (group) 2 in the second step. Contrary to (d) of FIG. 11 , the power reduced from CC(group)3 in the second step can be compensated to CC(group)1. The following is considered a power compensation method.
①优先级准则:根据信道(PUCCH、PUSCH和SRS)中消息的重要度或紧急度来分配优先级,并且向具有更高优先级的信道分配更多的功率。①Priority criterion: Assign priorities according to the importance or urgency of messages in channels (PUCCH, PUSCH, and SRS), and allocate more power to channels with higher priorities.
②相同的补偿量:针对集合S的补集的所有信道,补偿相同量的功率。②Same compensation amount: Compensate the same amount of power for all channels of the complement set of set S.
③相同的补偿率:针对集合S的补集的所有信道,以相同比率补偿功率。③Same compensation rate: for all channels of the complement set of set S, the power is compensated at the same rate.
④利用①、②和③的可能组合来补偿功率。④ Make use of possible combinations of ①, ② and ③ to compensate the power.
可以以各种方式确定参照图10和图11描述的衰减系数和用于确定衰减系数和的准则可以考虑,但不限于优先级、相同的衰减量、相同的衰减速率或其组合。The attenuation coefficients described with reference to Figures 10 and 11 can be determined in various ways and Used to determine the attenuation factor and The criteria for can consider, but are not limited to, priority, same amount of decay, same decay rate, or a combination thereof.
在优先级准则方法中,根据信道(如,PUCCH、PUSCH和SRS)中的消息的重要度或紧急度,向各信道分配优先级,并且向具有更高优先级的信道分配更大的衰减系数值。即,该方法确保为具有高优先级的信道提高接收率,并且向具有低优先级的信道提供统计上较低的接收率。因此,从具有低优先级的信道开始降低功率。可以根据上述实例1-1至1-11确定信道的优先级,并且可以附加考虑CC之间的优先级。例如,如果UE尝试利用多个CC进行UL发送,则可以首先向特定CC发送UL发送消息中的重要控制信息或重要消息。在该情况下,可以向发送重要控制信息的特定CC分配高优先级。In the priority criterion method, each channel is assigned a priority according to the importance or urgency of the messages in the channel (e.g., PUCCH, PUSCH, and SRS), and channels with higher priority are assigned larger attenuation factors value. That is, the method ensures an increased reception rate for channels with high priority and provides a statistically lower reception rate for channels with low priority. Therefore, power is reduced starting from channels with low priority. The priority of the channel can be determined according to the above-mentioned examples 1-1 to 1-11, and the priority between CCs can be additionally considered. For example, if the UE tries to use multiple CCs for UL transmission, it may first send important control information or important messages in the UL transmission message to a specific CC. In this case, high priority can be assigned to a specific CC that transmits important control information.
通过将衰减系数限制为0或1可以将优先级准则方法修改为更简单的方法。即,可以从CC(组)内具有低优先级的信道开始按顺序分配发送功率0,使得信道的发送功率之和小于CC(组)的发送功率极限值因此,不发送具有低优先级的信道,并且以原始发送功率发送具有高优先级的信道。By limiting the decay factor to 0 or 1 The priority criterion approach can be modified to a simpler approach. That is, the transmission power 0 can be allocated sequentially from the channel with low priority in the CC (group), so that the sum of the transmission power of the channels is less than the transmission power limit value of the CC (group) Therefore, channels with low priority are not transmitted, and channels with high priority are transmitted with original transmission power.
相同衰减量准则方法用于使超过CC(组)的发送功率极限的各CC(组)内所有信道减小相同量的功率。即,CC(组)内所有的信道经受相同的功率衰减的损失。当CC(组)内信道的发送功率之和与CC(组)的最大发送功率值之间的差不明显时,该方法可以是有用的。相同衰减率准则方法可以将相同的衰减系数应用于各CC(组)内的超过CC(组)的发送功率极限的所有信道。相同衰减量准则方法对应于用于以线性标度减小相同量的功率的方法,而相同衰减率准则方法对应于用于以dB标度减小相同量的功率的方法。The same attenuation amount criterion method is used to reduce the power of all channels in each CC (group) exceeding the transmission power limit of the CC (group) by the same amount. That is, all channels within a CC (group) suffer the same loss of power attenuation. This method may be useful when the difference between the sum of the transmission powers of the channels within the CC (group) and the maximum transmission power value of the CC (group) is not significant. The same attenuation rate criterion method can apply the same attenuation coefficient to all channels within each CC (group) exceeding the transmission power limit of the CC (group). The same attenuation amount criterion method corresponds to the method for reducing power by the same amount on a linear scale, and the same attenuation rate criterion method corresponds to the method for reducing power by the same amount on a dB scale.
实施方式3:MIMO中每根天线的功率控制Embodiment 3: Power Control of Each Antenna in MIMO
即使在通过利用MIMO发送(Tx)分集或空间复用的发送中,也以相同方式应用上述功率控制方法。在该情况下,上述方法与层、流或天线中的操作相对应。如果UE包括多条发送天线,则各天线的功率放大器中的最大发送功率可以限制为(其中,n是天线索引)。各天线的最大发送功率可以受功率放大器的特性(如,级)限制,或者可以通过广播或RRC信令(附加)限制。UE可以使用的发送功率的上限由以下二者的最小值限制:天线的最大发送功率之和与UE的最大发送功率,如式13所示:Even in transmission by utilizing MIMO transmit (Tx) diversity or spatial multiplexing, the power control method described above is applied in the same manner. In this case, the methods described above correspond to operations in layers, streams or antennas. If the UE includes multiple transmit antennas, the maximum transmit power in the power amplifier of each antenna can be limited to (where n is the antenna index). The maximum transmission power of each antenna may be limited by the characteristics (eg, level) of the power amplifier, or may be (additionally) limited by broadcast or RRC signaling. The upper limit of the transmit power that the UE can use is limited by the minimum of the sum of the maximum transmit power of the antenna and the maximum transmit power of the UE, as shown in Equation 13:
[式13][Formula 13]
如果限制每个CC(组)的发送功率,则UE可以使用的发送功率的上限可以由式14表示:If the transmission power of each CC (group) is limited, the upper limit of the transmission power that the UE can use can be expressed by Equation 14:
[式14][Formula 14]
此后,当针对各根天线独立执行功率控制时,提出UE的操作。为了方便,以示例的方式,仅描述两根天线,但是可以将本发明应用于三条或更多根天线。定义了以下符号。Thereafter, when power control is independently performed for each antenna, an operation of the UE is proposed. For convenience, by way of example, only two antennas are described, but the present invention can be applied to three or more antennas. The following symbols are defined.
计算出分配给第n根天线的功率。实际分配的功率由于功率限制可能小于该功率。当没有dB符号时,这可以表示线性标度。X-CH表示向天线n发送的所有物理信道(如,PUSCH、PUCCH、SRS或其组合)。 Calculate the power allocated to the nth antenna. The actual power allocated may be less than this power due to power limitations. This can represent a linear scale when there is no dB symbol. X-CH represents all physical channels (eg, PUSCH, PUCCH, SRS or combinations thereof) transmitted to antenna n.
如果
步骤1:根据每个CC(组)的最大发送功率极限可以如实施方式2中,控制用于各CC(组)的发送功率。即,如果每个CC(组)的所有天线的信道的发送功率之和超过则控制发送功率。仅在执行每个CC(组)的功率控制的情况下,包括步骤1。Step 1: According to the maximum transmission power limit of each CC (group) As in Embodiment 2, the transmission power for each CC (group) can be controlled. That is, if the sum of the transmit power of all antenna channels of each CC (group) exceeds Then control the transmission power. Step 1 is included only if power control per CC (group) is performed.
步骤2:考虑到天线的最大发送功率,可以如以下选项中地控制各天线的发送功率。可以通过应用实施方式1和实施方式2中描述的各种方法(如,优先级),来控制天线的发送功率。Step 2: Considering the maximum transmit power of the antenna, the transmit power of each antenna can be controlled as in the following options. The transmission power of the antenna can be controlled by applying various methods (eg, priority) described in Embodiment Mode 1 and Embodiment Mode 2.
选项1:当使用多条发送天线时,可以执行预编码,用于发送。为了使接收端对经预编码的信号进行解码,接收端应当通过识别发送端中使用的预编码矩阵来以发送端的相反顺序执行解码。但是,如果由于天线的功率限制未保持天线的功率比,则在从发送端应用的预编码矩阵中可能出现失真,由此错误率增大。因此,通过根据具有发送功率极限的天线,以相同比率调节没有发送功率极限的天线的功率,可以防止预编码矩阵的失真。即,未达到最大功率极限的天线的发送功率与超过功率极限的天线的发送功率一起减小,使得发送功率比维持在相同的水平。如果存在三条或更多根天线,则根据以最大比率减小的天线的发送功率,可以以相同的比率调节其他天线的发送功率。在选项1中,实际发送功率如下:Option 1: When multiple transmit antennas are used, precoding can be performed for transmission. In order for the receiving end to decode the precoded signal, the receiving end should perform decoding in the reverse order of the transmitting end by identifying the precoding matrix used in the transmitting end. However, if the power ratio of the antenna is not maintained due to the power limitation of the antenna, distortion may occur in the precoding matrix applied from the transmitting end, whereby an error rate increases. Therefore, distortion of the precoding matrix can be prevented by adjusting the power of the antenna without the transmission power limit at the same rate according to the antenna with the transmission power limit. That is, the transmission power of the antennas that have not reached the maximum power limit is reduced together with the transmission power of the antennas that exceed the power limit so that the transmission power ratio is maintained at the same level. If there are three or more antennas, according to the transmission power of the antenna reduced at the largest rate, the transmission power of the other antennas can be adjusted at the same rate. In option 1, the actual transmit power as follows:
[式15][Formula 15]
式15表示当不存在功率限制时的实际发送功率。Equation 15 represents the actual transmission power when there is no power limitation.
[式16][Formula 16]
式16表示存在功率限制时的实际发送功率。参照式16,由于天线n中信道的发送功率之和超过最大发送功率,所以天线n的实际发送功率被限制为最大发送功率。同时,即使天线m的信道的发送功率之和未超过最大发送功率,以比例减小天线m的发送功率,使得保持与天线n的发送功率比。Equation 16 represents the actual transmission power when there is power limitation. Referring to Equation 16, since the sum of the transmit powers of channels in antenna n exceeds the maximum transmit power, the actual transmit power of antenna n is limited to the maximum transmit power. At the same time, even if the sum of the transmit powers of the channels of antenna m does not exceed the maximum transmit power, proportional to The transmission power of antenna m is reduced so that the transmission power ratio to antenna n is maintained.
选项2:如果由于任意一根天线的功率限制而无法保持由功率控制信号表示的各天线的功率比,则在从发送端施加的预编码矩阵中出现失真。如果接收端未识别失真度,则接收错误率增大。但是,当通过专用基准信号(DRS,Dedicated Reference Signal)间接估计发送端中使用的预编码矩阵时,接收端还可以根据天线的发送功率比的变化而估计预编码矩阵的失真。在该情况下,如选项1中,可以不降低没有功率限制的天线的发送功率,以控制发送功率比。因此,可以通过钳制相应天线的最大发送功率,仅发送达到最大功率极限的天线的发送功率。选项2中实际发送中使用的功率如下:Option 2: If the power ratio of each antenna indicated by the power control signal cannot be maintained due to the power limitation of any one antenna, distortion occurs in the precoding matrix applied from the transmitting end. If the degree of distortion is not recognized at the receiving end, the reception error rate increases. However, when the precoding matrix used in the transmitting end is indirectly estimated through a dedicated reference signal (DRS, Dedicated Reference Signal), the receiving end can also estimate the distortion of the precoding matrix according to the change of the transmission power ratio of the antenna. In this case, as in option 1, the transmission power of the antenna without power limitation may not be reduced to control the transmission power ratio. Therefore, only the transmit power of the antenna reaching the maximum power limit can be transmitted by clamping the maximum transmit power of the corresponding antenna. The power used in the actual transmission in option 2 is as follows:
[式17][Formula 17]
式17表示不存在功率限制时的实际发送功率。Equation 17 represents the actual transmission power when there is no power limitation.
[式18][Formula 18]
式18表示存在功率限制时的实际发送功率。参照式18,由于天线n中信道的发送功率之和超过最大发送功率,所以天线n的实际发送功率限于最大发送功率。同时,由于天线m中信道的发送功率之和未超过最大发送功率,所以在没有功率控制的情况下执行发送。Equation 18 represents the actual transmission power when there is power limitation. Referring to Equation 18, since the sum of the transmit powers of channels in antenna n exceeds the maximum transmit power, the actual transmit power of antenna n is limited to the maximum transmit power. Meanwhile, since the sum of the transmission powers of the channels in the antenna m does not exceed the maximum transmission power, transmission is performed without power control.
图12示出了可用于本发明的实施方式的BS和UE。FIG. 12 shows a BS and UE applicable to embodiments of the present invention.
参照图12,无线通信系统包括BS 110和UE 120。在DL中,发送器是BS 110的一部分,而接收器是UE 120的一部分。在UL中,发送器是UE 120的一部分,而接收器是BS 110的一部分。BS 110包括处理器112、存储器114和RF单元116。处理器112可以被构造为实现本发明中提出的处理和/或方法。存储器114连接至处理器112并且存储与处理器112的操作有关的各种信息。RF单元116连接至处理器112并且发送和接收无线信号。UE 120包括处理器122、存储器124和RF单元126。处理器122可以被构造为实现本发明中提出的处理和/或方法。存储器124连接至存储器122并且存储与处理器122的操作有关的信息。RF单元126连接至处理器122并且发送和接收无线信号。BS 110和/或UE 120可以包括单根天线或多根天线。12, the wireless communication system includes BS 110 and UE 120. In DL, the transmitter is part of the BS 110 and the receiver is part of the UE 120. In UL, the transmitter is part of UE 120 and the receiver is part of BS 110. BS 110 includes processor 112, memory 114 and RF unit 116. The processor 112 may be configured to implement the processes and/or methods proposed in the present invention. The memory 114 is connected to the processor 112 and stores various information related to the operation of the processor 112 . The RF unit 116 is connected to the processor 112 and transmits and receives wireless signals. UE 120 includes processor 122, memory 124 and RF unit 126. The processor 122 may be configured to implement the processes and/or methods proposed in the present invention. The memory 124 is connected to the memory 122 and stores information related to the operation of the processor 122 . The RF unit 126 is connected to the processor 122 and transmits and receives wireless signals. BS 110 and/or UE 120 may include a single antenna or multiple antennas.
上述示例性实施方式是本发明的要素和特征的组合。这些要素或特征可以被认为是选择性的,除非以其他方式提到。可以在不与其他要素或特征组合的情况下实践各要素或特征。进一步地,通过组合部分要素和/特征,可以构造本发明的实施方式。在本发明的实施方式中描述的操作顺序可以重新排列。任意一个实施方式的一些构造可以包括在其他实施方式中,并且可以用其他实施方式的相应构造替换。显然,可以通过不具有所附权利要求书中明确引用关系的权利要求的组合来构成实施方式,或者申请后通过修改可以包括新权利要求。The above-described exemplary embodiments are combinations of elements and features of the present invention. These elements or characteristics can be considered optional unless mentioned otherwise. Each element or feature may be practiced without being combined with other elements or features. Further, the embodiments of the present invention can be configured by combining some elements and/or features. Operation orders described in the embodiments of the present invention may be rearranged. Some constructions of any one embodiment may be included in other embodiments and may be replaced with corresponding constructions of other embodiments. Apparently, an embodiment may be constituted by a combination of claims that do not have an explicit citation relationship in the appended claims, or new claims may be included through amendment after application.
在本文件中,已经对UE和BS之间的数据发送和接收关系进行了描述。这里,被描述为由BS执行的特定操作可以由BS的上节点执行。即,显而易见的是,在由包括BS的多个网络节点组成的网络中,与UE进行通信而执行的各种操作可以由BS执行,或者可以由除BS之外的其他网络节点来执行。术语BS可以用术语固定站、节点B、e节点B(eNB)、接入点等来替换。术语UE可以用术语移动站(MS)、移动用户站(MSS)等来替换。In this document, the data transmission and reception relationship between UE and BS has been described. Here, a specific operation described as being performed by the BS may be performed by an upper node of the BS. That is, it is apparent that in a network composed of a plurality of network nodes including a BS, various operations performed for communicating with a UE may be performed by the BS, or may be performed by other network nodes than the BS. The term BS may be replaced with the terms fixed station, Node B, eNode B (eNB), access point, and the like. The term UE may be replaced with the term Mobile Station (MS), Mobile Subscriber Station (MSS) and the like.
本发明的示例性实施方式可以通过各种方式(如,硬件、固件、软件或其组合)来实现。在硬件构造中,本发明的示例性实施方式可以由一个或更多个专用集成电路(ASIC,Application Specific Integrated Circuits)、数字信号处理器(DSP,Digital SignalProcessors)、数字信号处理装置(DSPD,Digital Signal Processing Devices)、可编程逻辑装置(PLD,Programmable Logic Devices)、现场可编程门阵列(FPGA,FieldProgrammable Gate Arrays)、处理器、控制器、微控制器、微处理器等来实现。Exemplary embodiments of the present invention can be implemented in various ways (eg, hardware, firmware, software, or a combination thereof). In hardware configuration, exemplary embodiments of the present invention may be composed of one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuits), digital signal processors (DSP, Digital Signal Processors), digital signal processing devices (DSPD, Digital Signal Processing Devices), Programmable Logic Devices (PLD, Programmable Logic Devices), Field Programmable Gate Arrays (FPGA, Field Programmable Gate Arrays), processors, controllers, microcontrollers, microprocessors, etc. to achieve.
在固件或软件构造中,本发明的示例性实施方式可以由执行上述功能或操作的模块、过程、功能等来实现。软件代码可以存储在存储单元中并且处理器执行软件代码。存储单元可以位于处理器的内部或外部,并且可以通过各种已知方式向处理器发送数据和从处理器接收数据。In a firmware or software configuration, the exemplary embodiments of the present invention may be implemented by modules, procedures, functions, etc. that perform the above-described functions or operations. Software codes may be stored in a memory unit and executed by a processor. The memory unit may be located inside or outside the processor, and may send data to and receive data from the processor in various known ways.
本领域技术人员很清楚,在不偏离本发明的精神或范围的情况下,可以对本发明进行各种修改和变型。因而,如果这些修改和变型落入所附权利要求书及其等同物的范围内,则本发明亦涵盖这些修改和变型。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, the present invention also covers the modifications and variations provided they fall within the scope of the appended claims and their equivalents.
工业应用industrial application
本发明可以应用于无线通信系统。具体地,本发明可以应用于用于控制UL发送功率的方法和装置。The present invention can be applied to wireless communication systems. In particular, the present invention can be applied to a method and apparatus for controlling UL transmission power.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510391738.XACN104918312B (en) | 2009-01-29 | 2010-01-28 | For controlling the method and device thereof of signal transmitting power |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14836809P | 2009-01-29 | 2009-01-29 | |
| US61/148,368 | 2009-01-29 | ||
| US22928009P | 2009-07-29 | 2009-07-29 | |
| US61/229,280 | 2009-07-29 | ||
| US24648909P | 2009-09-28 | 2009-09-28 | |
| US61/246,489 | 2009-09-28 | ||
| US25586809P | 2009-10-29 | 2009-10-29 | |
| US61/255,868 | 2009-10-29 | ||
| US28638009P | 2009-12-15 | 2009-12-15 | |
| US61/286,380 | 2009-12-15 | ||
| KR10-2010-0007528 | 2010-01-27 | ||
| KR1020100007528AKR101674940B1 (en) | 2009-01-29 | 2010-01-27 | Method and apparatus of controlling transmission power |
| PCT/KR2010/000510WO2010087622A2 (en) | 2009-01-29 | 2010-01-28 | Method for controlling signal transmission power and device for same |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510391738.XADivisionCN104918312B (en) | 2009-01-29 | 2010-01-28 | For controlling the method and device thereof of signal transmitting power |
| Publication Number | Publication Date |
|---|---|
| CN102301801A CN102301801A (en) | 2011-12-28 |
| CN102301801Btrue CN102301801B (en) | 2015-08-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201080005813.XAActiveCN102301801B (en) | 2009-01-29 | 2010-01-28 | Method and device for controlling signal transmission power |
| CN201510391738.XAActiveCN104918312B (en) | 2009-01-29 | 2010-01-28 | For controlling the method and device thereof of signal transmitting power |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510391738.XAActiveCN104918312B (en) | 2009-01-29 | 2010-01-28 | For controlling the method and device thereof of signal transmitting power |
| Country | Link |
|---|---|
| JP (2) | JP5302417B2 (en) |
| CN (2) | CN102301801B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2244515A1 (en)* | 2009-04-23 | 2010-10-27 | Panasonic Corporation | Logical channel prioritization procedure for generating multiple uplink transport blocks |
| EP2484156B1 (en)* | 2009-10-02 | 2017-07-12 | InterDigital Patent Holdings, Inc. | Method and apparatus for controlling transmit power of transmissions on more than one component carrier |
| JP5520003B2 (en) | 2009-10-28 | 2014-06-11 | シャープ株式会社 | Radio communication system, base station apparatus, mobile station apparatus, radio communication system control method, base station apparatus control program, and mobile station apparatus control program |
| CN108124287B (en) | 2010-02-12 | 2021-07-20 | 交互数字技术公司 | Wireless transmit and receive unit WTRU and method |
| WO2012060067A1 (en)* | 2010-11-05 | 2012-05-10 | パナソニック株式会社 | Wireless communication terminal device and power allocation method |
| EP2647259B1 (en) | 2010-12-03 | 2018-01-03 | Interdigital Patent Holdings, Inc. | Methods and apparatus for performing multi-radio access technology carrier aggregation |
| KR101776873B1 (en)* | 2011-01-11 | 2017-09-11 | 삼성전자 주식회사 | Method and apparatus for setting uplink transmission power in mobile communication system |
| US9107175B2 (en) | 2011-01-11 | 2015-08-11 | Samsung Electronics Co., Ltd. | Uplink transmission power configuration method and apparatus for mobile communication system |
| CN110366255B (en) | 2011-07-29 | 2023-08-18 | 交互数字专利控股公司 | Method and apparatus for radio resource management in a multi-radio access technology wireless system |
| CN114245444B (en)* | 2011-11-04 | 2024-08-30 | 交互数字专利控股公司 | Method and apparatus for power control for wireless transmission on multiple component carriers associated with multiple timing advances |
| JP5952315B2 (en)* | 2012-01-30 | 2016-07-13 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | Wireless communication terminal apparatus and transmission power control method |
| CN103580816B (en)* | 2012-08-03 | 2018-05-15 | 中兴通讯股份有限公司 | A kind of uplink receiving method and device |
| WO2014031989A1 (en) | 2012-08-23 | 2014-02-27 | Interdigital Patent Holdings, Inc. | Operating with multiple schedulers in a wireless system |
| SG11201501279UA (en) | 2012-08-23 | 2015-04-29 | Interdigital Patent Holdings | Providing physical layer resources to different serving sites |
| CN103826294B (en)* | 2012-11-16 | 2017-05-24 | 电信科学技术研究院 | Power control method and device |
| CN104904154B (en)* | 2013-01-03 | 2018-06-19 | Lg电子株式会社 | For sending the method and apparatus of uplink signal in a wireless communication system |
| US9876620B2 (en)* | 2013-01-10 | 2018-01-23 | Samsung Electronics Co., Ltd. | Uplink control information transmissions/receptions in wireless networks |
| CN104683082B (en)* | 2013-12-03 | 2018-10-09 | 索尼公司 | Wireless communication system and method for performing wireless communication in the wireless communication system |
| CN104812046B (en) | 2014-01-28 | 2019-03-05 | 电信科学技术研究院 | A kind of Poewr control method and device of up channel |
| JP2015142349A (en)* | 2014-01-30 | 2015-08-03 | 株式会社Nttドコモ | User device and transmission control method |
| JP5865937B2 (en)* | 2014-04-04 | 2016-02-17 | シャープ株式会社 | Mobile station apparatus, communication method, integrated circuit, and base station apparatus |
| US9585102B2 (en)* | 2014-09-26 | 2017-02-28 | Kt Corporation | Method of controlling the transmission power of uplink channels and signals and apparatuses thereof |
| US10462769B2 (en) | 2015-07-02 | 2019-10-29 | Lg Electronics Inc. | Method for transmitting and receiving uplink data in wireless communication system and device for same |
| WO2017061158A1 (en) | 2015-10-06 | 2017-04-13 | ソニー株式会社 | Device and method |
| WO2017077770A1 (en)* | 2015-11-04 | 2017-05-11 | シャープ株式会社 | Wireless device |
| JP2019054314A (en)* | 2016-02-02 | 2019-04-04 | シャープ株式会社 | Terminal apparatus and method |
| CN107888267B (en)* | 2016-09-30 | 2023-11-10 | 华为技术有限公司 | Uplink power control method and device |
| WO2018203732A1 (en) | 2017-05-04 | 2018-11-08 | 엘지전자 주식회사 | Method for transmitting uplink signal in wireless communication system and device therefor |
| WO2019030237A1 (en)* | 2017-08-11 | 2019-02-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Autonomous transmission of uplink control information |
| US10993190B2 (en)* | 2018-06-15 | 2021-04-27 | Qualcomm Incorporated | Power control for spatial multiplexing of uplink channels |
| CN111615120B (en)* | 2019-06-19 | 2024-12-31 | 维沃移动通信有限公司 | A priority updating method, device and system |
| CN116528189A (en)* | 2022-01-21 | 2023-08-01 | 西安紫光展锐科技有限公司 | Communication method, communication device, storage medium, and program product |
| CN118804251A (en)* | 2023-04-12 | 2024-10-18 | 中兴通讯股份有限公司 | Power scheduling method, device and computer readable storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1695335A (en)* | 2002-10-23 | 2005-11-09 | 株式会社日立国际电气 | transmitter |
| CN101123599A (en)* | 2006-08-11 | 2008-02-13 | 华为技术有限公司 | Data transmission method, data transmission system and device |
| CN101170331A (en)* | 2007-11-13 | 2008-04-30 | 中兴通讯股份有限公司 | Marking method and device for carrier transmission power of multi-carrier radio communication system |
| CN101340413A (en)* | 2007-07-05 | 2009-01-07 | 中兴通讯股份有限公司 | Method for solving uncontrollability of OFDMA system terminal power spectral density |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4420329B2 (en)* | 2003-11-11 | 2010-02-24 | ソニー・エリクソン・モバイルコミュニケーションズ株式会社 | Mobile communication terminal and transmission power control method |
| CN100583718C (en)* | 2004-06-09 | 2010-01-20 | 三星电子株式会社 | Method and apparatus for data transmission in a mobile telecommunication system |
| JP2007019594A (en)* | 2005-07-05 | 2007-01-25 | Nec Corp | Wireless base station and transmission power adjustment method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1695335A (en)* | 2002-10-23 | 2005-11-09 | 株式会社日立国际电气 | transmitter |
| CN101123599A (en)* | 2006-08-11 | 2008-02-13 | 华为技术有限公司 | Data transmission method, data transmission system and device |
| CN101340413A (en)* | 2007-07-05 | 2009-01-07 | 中兴通讯股份有限公司 | Method for solving uncontrollability of OFDMA system terminal power spectral density |
| CN101170331A (en)* | 2007-11-13 | 2008-04-30 | 中兴通讯股份有限公司 | Marking method and device for carrier transmission power of multi-carrier radio communication system |
| Publication number | Publication date |
|---|---|
| JP2012516607A (en) | 2012-07-19 |
| CN104918312A (en) | 2015-09-16 |
| JP5302417B2 (en) | 2013-10-02 |
| CN102301801A (en) | 2011-12-28 |
| CN104918312B (en) | 2019-08-27 |
| JP2013093910A (en) | 2013-05-16 |
| JP5486099B2 (en) | 2014-05-07 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102301801B (en) | Method and device for controlling signal transmission power | |
| CN102301800B (en) | Method and device for controlling transmission power | |
| US9756576B2 (en) | Method for controlling signal transmission power and device for same |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |