Movatterモバイル変換


[0]ホーム

URL:


CN102183755A - Novel high-resolution orientation-estimating method based on Cauchy Gaussian model - Google Patents

Novel high-resolution orientation-estimating method based on Cauchy Gaussian model
Download PDF

Info

Publication number
CN102183755A
CN102183755ACN 201010619551CN201010619551ACN102183755ACN 102183755 ACN102183755 ACN 102183755ACN 201010619551CN201010619551CN 201010619551CN 201010619551 ACN201010619551 ACN 201010619551ACN 102183755 ACN102183755 ACN 102183755A
Authority
CN
China
Prior art keywords
mrow
msubsup
msub
math
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010619551
Other languages
Chinese (zh)
Inventor
蒋飚
从卫华
朱必波
郑乐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
715th Research Institute of CSIC
Original Assignee
715th Research Institute of CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 715th Research Institute of CSICfiledCritical715th Research Institute of CSIC
Priority to CN 201010619551priorityCriticalpatent/CN102183755A/en
Publication of CN102183755ApublicationCriticalpatent/CN102183755A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

The invention relates to a novel high-resolution orientation-estimating method based on a Cauchy Gaussian model. By the method, the requirements of the underwater wideband high-frequency three-dimensional imaging of a buried mine detecting sonar on a target orientation resolving power are met. The method comprises the steps of: by using the Cauchy-Gaussian signal model, expressing an orientation spectrum as a regularized space-domain Fourier transform constraint optimizing problem; providing a spectral estimator tolerant to model parameters; by seeking sparse distribution features of a source signal in a space, realizing high-resolution spectral orientation estimation within a single-frequency-domain snapshot; and resolving coherent sources without decorrelation. The method has the advantages that: by the method, the high orientation resolution is achieved within the single snapshot through the constraint optimization of a cost function; the tolerance to parameters of a signal probability distributing model is high, so that the method is practical in engineering; the numerical simulation and sea trial data analyzing results prove that the method is applicable for the high target orientation resolution of a small-aperture subarray in shortage of the snapshot.

Description

Novel high-resolution direction estimation method based on Cauchy-Gaussian model
Technical Field
The invention relates to the field of sensor array signal processing, in particular to a novel high-resolution direction estimation method based on a Cauchy-Gaussian model.
Background
The problem of signal orientation estimation has been of great research interest in the fields of sonar, radar and communications. Conventional beamforming detects and estimates target azimuth through spatial matched filtering, but target azimuth resolution depends on the aperture size of the fundamental wavelength unit. Adaptive beamforming [1] and subspace high-resolution direction of arrival (DOA) estimation algorithms, such as MUSIC, can achieve high resolution performance, but require sufficient signal-to-noise ratio conditions and longer time averaging to improve the accuracy of covariance matrix estimation. The signal subspace decomposition algorithm needs to pre-estimate the number of signal sources, and when coherent sources exist, the coherence needs to be resolved through subspace smoothing. Therefore, the conventional high-resolution processing method is difficult to be effectively applied in the occasions where the aperture of the array is limited and under the high dynamic condition.
The spatial constraint optimization (SPOC) is a novel single-snapshot high-resolution algorithm appearing in recent years, and the SPOC algorithm optimally estimates a sparse power distribution function of a signal source in space at each moment through the constraint of a signal model based on an MAP criterion, so that the limitation of fast beat number and coherent source is broken through. The SPOC algorithm is successfully applied to the azimuth high-resolution processing of the undersea synthetic aperture sonar layout target by Kam et al in korea.
The invention researches an iterative non-parametric azimuth spectrum estimation technology by utilizing the mathematical equivalence of beam forming and spatial Fourier transform. And approximating a space domain DFT signal sample by utilizing Cauchy (Cauchy) distribution, regularizing a minimum modulus constraint cost function of the signal, and optimizing the regularized cost function to obtain a space domain high-resolution DFT. A suboptimal orientation spectrum estimator tolerant of signal model parameters is proposed to improve algorithm robustness.
Disclosure of Invention
The invention aims to overcome the defects and shortcomings of the prior art and provides a novel high-resolution azimuth estimation method based on a Cauchy-Gaussian model so as to meet the requirement of underwater broadband high-frequency three-dimensional imaging buried mine detection sonar on the azimuth resolution of a target.
The invention adopts the technical scheme for solving the technical problems that: the novel high-resolution direction estimation method based on the Cauchy-Gaussian model comprises the following steps:
(1) transforming the matrix receiving time domain signal to a frequency domain:
X(k)=[X0(k),...,XM-1(k)]T(1)
representing the nth beam output signal of the kth frequency point as a spatial domain DFT form:
<math><mrow><mtext>Y</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>M</mi><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>X</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>-</mo><mi>j</mi><mn>2</mn><mi>&pi;</mi><msub><mi>f</mi><mi>k</mi></msub><mi>md</mi><mi>sin</mi><msub><mi>&theta;</mi><mi>n</mi></msub><mo>/</mo><mi>c</mi></mrow></msup></mrow></math>
<math><mrow><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>X</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>-</mo><mi>j</mi><mn>2</mn><mi>&pi;mn</mi><mo>/</mo><mi>N</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>></mo><mi>M</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math>
n is the number of DFT points in the airspace, and the nth discrete space direction satisfies
θn=asin{cn/(Nfkd)}(3)
(2) By using the properties of DFT, the spatial DFT spectrum estimation is expressed in a linear inversion solving form:
X(k)=FY(k)(6)
wherein, F is Fourier transform matrix, Y (k) wave beam output signal vector of the k frequency point;
(3) constructing a regular cost function:
<math><mrow><mover><mi>J</mi><mo>~</mo></mover><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><mi>log</mi><mrow><mo>(</mo><msup><mrow><mo>|</mo><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></msup><mo>)</mo></mrow><mo>+</mo><msubsup><mrow><mo>|</mo><mo>|</mo><mi>X</mi><mo>-</mo><mi>FY</mi><mo>|</mo><mo>|</mo></mrow><mn>2</mn><mn>2</mn></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
(4)Y=(λQ-1+FHF)-1FHX(11)
wherein,q is the diagonal matrix:
<math><mrow><mi>Q</mi><mo>=</mo><mi>diag</mi><mo>{</mo><msub><mi>I</mi><mi>N</mi></msub><mo>+</mo><msup><mi>YY</mi><mi>H</mi></msup><mo>/</mo><msubsup><mi>&sigma;</mi><mi>Y</mi><mn>2</mn></msubsup><mo>}</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mrow></math>
and (3) taking a fixed empirical value for the adjusting parameter lambda in the formula (11), and then iteratively solving the high-resolution spatial spectrum in the following mode:
1) with Y(0)DFT { X } as an initial value, and substituting formula (17) to obtain Q(0)
Q~=diag{YYH}---(17)
2) The ith iteration of
Y(i)=Q(i-1)FH(λIM+FQ(i-1)FH)-1X(5)
The Q matrix is updated using the equation:
Q(i)=diag{Y(i)Y(i)H};
3) judging a convergence condition:
|J(i)-J(i-1)|/|J(i-1)|<ε(6)
if the condition is not met, making i equal to i +1, and returning to the step 2); if the condition is met, outputting the space spectrum Y of the current iteration cycle(i)
(5) And outputting the high-resolution spatial spectrum meeting the convergence condition to a subsequent image display processing system.
The invention has the beneficial effects that: the high-resolution azimuth estimation technology based on the Cauchy-Gaussian signal model, which is researched by the invention, realizes azimuth high resolution in single snapshot through constraint optimization of cost function. And the method has high tolerance to the signal probability distribution model parameters, thereby having engineering practicability. Numerical simulation and sea test data analysis results show that the method is suitable for high resolution of the target orientation of the small-aperture array under the under-snapshot condition. Similarly, the method can be used for high-resolution line spectrum estimation of the radiation noise of the naval vessel.
Drawings
FIG. 1 is a CBF frequency-wavenumber spectrum (two signals at a normalized frequency of 0.2 cannot be resolved);
FIG. 2 is a frequency-wavenumber spectrum of the RCG-SPEC algorithm (which improves the robustness of the algorithm while ensuring high resolution performance);
Detailed Description
The invention is further illustrated by the following examples in conjunction with the accompanying drawings:
the novel high-resolution direction estimation method based on the Cauchy-Gaussian model comprises the following steps:
the method comprises the following steps: the spatial spectrum estimation is expressed as a linear inversion solving form of spatial domain DFT:
X(k)=FY(k)(6)
wherein, x (k) is a matrix frequency domain signal vector of the kth frequency point, F is a Fourier transform matrix, and y (k) is a beam output signal vector of the kth frequency point.
Step two: based on a Cauchy-Gaussian signal model, solving a constraint optimization regular solution of space domain DFT linear inversion: firstly, constructing a cost function:
<math><mrow><mi>J</mi><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><mi>log</mi><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><msup><mrow><mo>|</mo><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></msup><msubsup><mi>&sigma;</mi><mi>Y</mi><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mo>+</mo><mfrac><msubsup><mrow><mo>|</mo><mo>|</mo><mi>X</mi><mo>-</mo><mi>FY</mi><mo>|</mo><mo>|</mo></mrow><mn>2</mn><mn>2</mn></msubsup><msubsup><mi>&sigma;</mi><mi>W</mi><mn>2</mn></msubsup></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow></mrow></math>
wherein,
Figure DEST_PATH_GSB00000519694600032
in order to be the variance of the noise,
Figure DEST_PATH_GSB00000519694600033
representing the variance of the variable Y. Derivation of equation (10) and making it zero gives the cost functionThe optimal solution of numbers is
Y=(λQ-1+FHF)-1FHX(11)
Wherein,
Figure DEST_PATH_GSB00000519694600034
q is the diagonal matrix:
<math><mrow><mi>Q</mi><mo>=</mo><mi>diag</mi><mo>{</mo><msub><mi>I</mi><mi>N</mi></msub><mo>+</mo><msup><mi>YY</mi><mi>H</mi></msup><mo>/</mo><msubsup><mi>&sigma;</mi><mi>Y</mi><mn>2</mn></msubsup><mo>}</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mrow></math>
step three: model parameter broadening treatment: and (3) taking equal weight to the regular term and the minimum module term in the formula (10), neglecting the constant term, and writing into a suboptimal regular cost function form:
<math><mrow><mover><mi>J</mi><mo>~</mo></mover><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><mi>log</mi><mrow><mo>(</mo><msup><mrow><mo>|</mo><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></msup><mo>)</mo></mrow><mo>+</mo><msubsup><mrow><mo>|</mo><mo>|</mo><mi>X</mi><mo>-</mo><mi>FY</mi><mo>|</mo><mo>|</mo></mrow><mn>2</mn><mn>2</mn></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow></mrow></math>
it can be seen that the optimization solution process of equation (16) does not depend on the model parameters of Cauchy distribution, thereby improving the robustness of the algorithm. The Q matrix of equation (12) becomes:
Q~=diag{YYH}---(17)
while preserving the lambda parameter in equation (11) to satisfy the positive nature of the matrix.
Step four: iterative solution of high-resolution spatial spectra:
the iterative solution steps are as follows:
1) with Y(0)DFT { X } as an initial value, and substituting formula (17) to obtain Q(0)
2) The ith iteration of
Y(i)=Q(i-1)FH(λIM+FQ(i-1)FH)-1X(18)
The Q matrix is updated using the equation:
Q(i)=diag{Y(i)Y(i)H};
3) judging a convergence condition:
|J(i)-J(i-1)|/|J(i-1)|<ε(19)
ε is a small amount. If the condition is not met, making i equal to i +1, and returning to the step 2); if the condition is met, outputting the space spectrum Y of the current iteration cycle(i)
The method comprises the following specific steps:
the method comprises the following steps: considering an M-element equidistant linear array with an array element spacing of d, the frequency domain signal vector of the k-th frequency point can be expressed as:
X(k)=[X0(k),...,XM-1(k)]T(7)
wherein,
<math><mrow><msub><mi>X</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>D</mi></msubsup><mi>S</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mi>j</mi><mn>2</mn><mi>&pi;</mi><msub><mi>f</mi><mi>k</mi></msub><mi>md</mi><mi>sin</mi><msub><mi>&theta;</mi><mi>i</mi></msub><mo>/</mo><mi>c</mi></mrow></msup><mo>+</mo><msub><mi>W</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow></math>
the signal of the mth array element at the kth frequency point, M is 0, 1, …, M-1, wm (k) is the noise signal of the corresponding kth frequency point, c is the sound velocity, D is the signal source number, and θ i is the azimuth of the ith signal relative to the positive horizontal direction.
The nth beam output signal of the kth frequency point can be expressed as
<math><mrow><mtext>Y</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>M</mi><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>X</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>-</mo><mi>j</mi><mn>2</mn><mi>&pi;</mi><msub><mi>f</mi><mi>k</mi></msub><mi>md</mi><mi>sin</mi><msub><mi>&theta;</mi><mi>n</mi></msub><mo>/</mo><mi>c</mi></mrow></msup></mrow></math>
<math><mrow><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>X</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>-</mo><mi>j</mi><mn>2</mn><mi>&pi;mn</mi><mo>/</mo><mi>N</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>></mo><mi>M</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow></mrow></math>
The above formula is a space-domain zero-filling DFT form, N is the number of space-domain DFT points, and the nth discrete space direction satisfies
θn=asin{cn/(Nfkd)}(10)
Equations (3) and (4) show that frequency domain beamforming can be rapidly achieved by zero-padding spatial DFT. However, similar to the time-domain to frequency-domain transform, the azimuthal resolution of conventional spectral estimation cannot be improved by padding zeros in the spatial dimension, which depends on the effective physical aperture size of the array.
According to equation (3), the inverse transform (IDFT) is
<math><mrow><msub><mi>X</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mi>N</mi></mfrac><msubsup><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mi>j</mi><mn>2</mn><mi>&pi;mn</mi><mo>/</mo><mi>N</mi></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>11</mn><mo>)</mo></mrow></mrow></math>
Expressed by a system of linear equations as
X(k)=FY(k)(12)
Wherein, F is a Fourier transform matrix, and the m and n elements are as follows: [ f ] of]m,n(1/M) exp (j2 pi mn/N). Equation (6), the underdetermined linear equation set problem, can be solved by various linear inversion calculation methods. I.e. without using conventional supplementsAnd zero processing, namely inverting the sparse power distribution of the signals in the spatial direction by using limited physical array element data information. By adopting proper constraint optimization processing, the azimuth resolution can be improved, and the relative strength of signals can be reflected.
Step two: based on a Cauchy-Gaussian signal model, solving a constraint optimization regular solution of space domain DFT linear inversion:
by utilizing the sparse distribution characteristics of the space incident plane wave signals in the azimuth set, the space domain DFT inversion can be regularized, the resolution of a space azimuth spectrum can be improved, and the space complex amplitude spectrum is approximately regarded as obeying Cauchy distribution:
<math><mrow><mi>p</mi><mo>{</mo><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>}</mo><mo>&Proportional;</mo><mfrac><mn>1</mn><mrow><mn>1</mn><mo>+</mo><msup><mrow><mo>|</mo><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></msup><mo>/</mo><msubsup><mi>&sigma;</mi><mi>Y</mi><mn>2</mn></msubsup></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>13</mn><mo>)</mo></mrow></mrow></math>
accordingly, the distribution of the vector Y in which the elements are independent of each other is p { Y (k) } ═ iinp{Y(n,k)}。
Figure DEST_PATH_GSB00000519694600046
Representing the variance of the variable Y.
Assuming that the noise W obeys a complex Gaussian distributionThe conditional distribution of the matrix frequency domain signals is as follows:
<math><mrow><mi>p</mi><mrow><mo>(</mo><mi>X</mi><mo>|</mo><mi>Y</mi><mo>,</mo><msub><mi>&sigma;</mi><mi>W</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><msup><mrow><mo>(</mo><mi>&pi;</mi><msubsup><mi>&sigma;</mi><mi>W</mi><mn>2</mn></msubsup><mo>)</mo></mrow><mi>M</mi></msup></mfrac><msup><mi>e</mi><mrow><mo>-</mo><msubsup><mrow><mo>|</mo><mo>|</mo><mi>Y</mi><mo>-</mo><mi>FX</mi><mo>|</mo><mo>|</mo></mrow><mn>2</mn><mn>2</mn></msubsup><mo>/</mo><msubsup><mi>&sigma;</mi><mi>W</mi><mn>2</mn></msubsup></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>14</mn><mo>)</mo></mrow></mrow></math>
according to the Bayes (Bayes) criterion, the posterior distribution of the vector Y can be expressed as:
<math><mrow><mi>p</mi><mrow><mo>(</mo><mi>Y</mi><mo>|</mo><mi>X</mi><mo>,</mo><msub><mi>&sigma;</mi><mi>Y</mi></msub><mo>,</mo><msub><mi>&sigma;</mi><mi>W</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>p</mi><mrow><mo>(</mo><mi>Y</mi><mo>|</mo><msub><mi>&sigma;</mi><mi>Y</mi></msub><mo>)</mo></mrow><mi>p</mi><mrow><mo>(</mo><mi>X</mi><mo>|</mo><mi>Y</mi><mo>,</mo><msub><mi>&sigma;</mi><mi>W</mi></msub><mo>)</mo></mrow></mrow><mrow><mi>p</mi><mrow><mo>(</mo><mtext>X|Y,</mtext><msub><mi>&sigma;</mi><mi>Y</mi></msub><mo>,</mo><msub><mi>&sigma;</mi><mi>W</mi></msub><mo>)</mo></mrow></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>15</mn><mo>)</mo></mrow></mrow></math>
using equations (7) and (8), the maximum a posteriori probability solution (MAP) with equation (9) maximized, i.e., the cost function of the following equation, is minimized:
<math><mrow><mi>J</mi><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><mi>log</mi><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mfrac><msup><mrow><mo>|</mo><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></msup><msubsup><mi>&sigma;</mi><mi>Y</mi><mn>2</mn></msubsup></mfrac><mo>)</mo></mrow><mo>+</mo><mfrac><msubsup><mrow><mo>|</mo><mo>|</mo><mi>X</mi><mo>-</mo><mi>FY</mi><mo>|</mo><mo>|</mo></mrow><mn>2</mn><mn>2</mn></msubsup><msubsup><mi>&sigma;</mi><mi>W</mi><mn>2</mn></msubsup></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow></mrow></math>
the first term is a regular term constructed according to Cauchy distribution of angular spectrum amplitudes and serves as a measure for describing angular spectrum sparsity. According to
Figure DEST_PATH_GSB00000519694600055
Adjusting the sparsity of DFT inversion; the second term is the minimum mode error, i.e. the constraint term of the array signal itself, by noise power
Figure DEST_PATH_GSB00000519694600056
The weights between the regularization term and the min-modulo term are adjusted.
The derivation of equation (10) and making it zero gives the optimal solution of the cost function as
Y=(λQ-1+FHF)-1FHX(17)
Wherein,
Figure DEST_PATH_GSB00000519694600057
q is the diagonal matrix:
<math><mrow><mi>Q</mi><mo>=</mo><mi>diag</mi><mo>{</mo><msub><mi>I</mi><mi>N</mi></msub><mo>+</mo><msup><mi>YY</mi><mi>H</mi></msup><mo>/</mo><msubsup><mi>&sigma;</mi><mi>Y</mi><mn>2</mn></msubsup><mo>}</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>18</mn><mo>)</mo></mrow></mrow></math>
equation (11) is formally a damped minimum modulus solution. Since Q is related to Y, an estimator satisfying equation (11) must be obtained by iterative solutionDue to the fact that
FH(λIM+FQFH)=(λQ-1+FHF)QFH(19)
By positive characterization of the matrix in brackets on both sides, there are
(λQ-1+FHF)-1FH=QFH(λIM+FQFH)-1(20)
Whereby formula (11) can be written as
Y=QFH(λIM+FQFH)-1X(21)
The advantage of using equation (15) instead of equation (11) is that only the inverse of the M × M dimensional matrix needs to be solved, reducing the amount of computation.
Step three: model parameter broadening treatment:
and step two, a high-resolution spatial spectrum estimation algorithm based on a Cauchy-Gaussian model has the advantages that the covariance matrix does not need to be smoothed by utilizing multi-data snapshots, and high-resolution orientation estimation is realized in single-frequency-domain data snapshots. The above algorithm requires estimating parametersAnd
Figure DEST_PATH_GSB000005196946000511
the estimation accuracy of which will directly affect the performance of the azimuth spectrum estimation. When in useFar larger than the size of the angular spectrum, the spectral output of equation (15) will degrade to the conventional spatial spectrum, whereas, suitably, it
Figure DEST_PATH_GSB000005196946000513
The values can recover the sparsely distributed characteristics of the signal in space, so that the multi-target directions which are closely spaced can be more finely distinguished.
According to the above analysis, when
Figure DEST_PATH_GSB000005196946000514
Sometimes, resolution can be improved, and thus, the use ofAnd (3) taking equal weight for the regular term and the minimum mode term in the formula (10), and neglecting the constant term to obtain a suboptimal tolerant orientation spectrum estimation based on the Cauchy-Gaussian model:
<math><mrow><mover><mi>J</mi><mo>~</mo></mover><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><mi>log</mi><mrow><mo>(</mo><msup><mrow><mo>|</mo><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></msup><mo>)</mo></mrow><mo>+</mo><msubsup><mrow><mo>|</mo><mo>|</mo><mi>X</mi><mo>-</mo><mi>FY</mi><mo>|</mo><mo>|</mo></mrow><mn>2</mn><mn>2</mn></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>22</mn><mo>)</mo></mrow></mrow></math>
it can be seen that the optimization solution process of equation (16) does not depend on the model parameters of Cauchy distribution, thereby improving the robustness of the algorithm. The Q matrix of equation (12) becomes:
Q~=diag{YYH}---(23)
and the lambda in the formula (11) is reserved to meet the positive nature of the matrix, and by utilizing the probability distribution theory, the lambda can approximately take a fixed constant, and the empirical value can take 1/M.
Step four: iterative solution of high-resolution spatial spectra:
the iterative solution steps are as follows:
1) with Y(0)DFT { X } (conventional beamforming) as an initial value, and substituting equation (17) to obtain Q(0)
2) The ith iteration of
Y(i)=Q(i-1)FH(λIM+FQ(i-1)FH)-1X(24)
The Q matrix is updated using the equation:
Q(i)=diag{Y(i)Y(i)H};
3) judging a convergence condition:
|J(i)-J(i-1)|/|J(i-1)|<ε(25)
ε is a small amount. If the condition is not met, making i equal to i +1, and returning to the step 2); if the condition is met, outputting the space spectrum Y of the current iteration cycle(i)
The specific implementation mode of the invention is as follows:
(1) transforming the matrix receiving time domain signal to a frequency domain:
X(k)=[X0(k),...,XM-1(k)]T(26)
representing the nth beam output signal of the kth frequency point as a spatial domain DFT form:
<math><mrow><mtext>Y</mtext><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>M</mi><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>X</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>-</mo><mi>j</mi><mn>2</mn><mi>&pi;</mi><msub><mi>f</mi><mi>k</mi></msub><mi>md</mi><mi>sin</mi><msub><mi>&theta;</mi><mi>n</mi></msub><mo>/</mo><mi>c</mi></mrow></msup></mrow></math>
<math><mrow><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>X</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>-</mo><mi>j</mi><mn>2</mn><mi>&pi;mn</mi><mo>/</mo><mi>N</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>></mo><mi>M</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>27</mn><mo>)</mo></mrow></mrow></math>
n is the number of DFT points in the airspace, and the nth discrete space direction satisfies
θn=asin{cn/(Nfkd)}(28)
(2) By using the properties of DFT, the spatial DFT spectrum estimation is expressed in a linear inversion solving form:
X(k)=FY(k)(6)
wherein, F is Fourier transform matrix, and Y (k) beam output signal vector of the k frequency point.
(3) Constructing a regular cost function:
<math><mrow><mover><mi>J</mi><mo>~</mo></mover><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><mi>log</mi><mrow><mo>(</mo><msup><mrow><mo>|</mo><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></msup><mo>)</mo></mrow><mo>+</mo><msubsup><mrow><mo>|</mo><mo>|</mo><mi>X</mi><mo>-</mo><mi>FY</mi><mo>|</mo><mo>|</mo></mrow><mn>2</mn><mn>2</mn></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>29</mn><mo>)</mo></mrow></mrow></math>
(4) taking a fixed empirical value (such as 1/M) for the adjustment parameter lambda in the formula (11), and then iteratively solving the high-resolution spatial spectrum in the following manner:
1) with Y(0)DFT { X } (conventional beamforming) as an initial value, and substituting equation (17) to obtain Q(0)
2) The ith iteration of
Y(i)=Q(i-1)FH(λIM+FQ(i-1)FH)-1X(30)
The Q matrix is updated using the equation:
Q(i)=diag{Y(i)Y(i)H};
3) judging a convergence condition:
|J(i)-J(i-1)|/|J(i-1)|<ε(31)
ε is a small amount. If the condition is not met, making i equal to i +1, and returning to the step 2); if the condition is met, outputting the space spectrum Y of the current iteration cycle(i)
(5) And outputting the high-resolution spatial spectrum meeting the convergence condition to a subsequent image display processing system.
Simulation analysis example:
a simulation model: the signal is 3 unit amplitude sinusoidal plane waves, and the spatial normalized wave number (fdsin theta/c) is 0.2, 0.25 and-0.25 respectively; the normalized frequencies were 0.2, 0.2 and 0.35. The signal time length is 100 samples, the standard deviation of Gaussian noise is 0.2, and a Hamming window is added to each channel signal to transform the channel signal into a frequency domain. The frequency-wavenumber spectra of both the CBF and the forgiving CG-SPEC algorithms (noted RCG-SPEC) were compared.
Fig. 1 and 2 show normalized frequency-wavenumber spectra of two algorithms. It can be seen that CBF cannot resolve two signals at frequency 0.2 and the side lobes are high. As can be seen from FIG. 2, the RCG-SPEC algorithm proposed by the present invention has high robustness despite the small amount of clutter and the broadening of the mainlobe.
Analyzing sea test data:
and (3) checking the performance of the algorithm by using underwater high-resolution three-dimensional imaging sea test data. The transmitting signal is linear frequency modulation, and a narrow-band echo azimuth spectrum of the 9-element linear array perpendicular to the navigation direction at a frequency point of 12kHz is observed. The CBF and RCG-SPEC algorithm is used for single-snapshot depth-azimuth slice images at a certain navigation position, and bright points in the slice images are small balls suspended in water. Therefore, compared with the conventional beam forming method, the method provided by the invention effectively improves the azimuth resolution.
Because the aperture of the array is limited by the size of the underwater towed body, and the towed body is in motion, the conventional high-resolution algorithm based on covariance matrix estimation is difficult to be effectively applied, the method provided by the invention provides a feasible solution for the occasions where the physical aperture is limited and higher resolution is needed.
In addition to the above embodiments, any technical solutions formed by equivalent substitutions or equivalent transformations fall within the protection scope of the claims of the present invention.

Claims (1)

1. A novel high-resolution direction estimation method based on a Cauchy-Gaussian model is characterized by comprising the following steps: the method comprises the following steps:
(1) transforming the matrix receiving time domain signal to a frequency domain:
X(k)=[X0(k),...,XM-1(k)]T (1)
representing the nth beam output signal of the kth frequency point as a spatial domain DFT form:
<math><mrow><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>M</mi><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>X</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>-</mo><mi>j</mi><mn>2</mn><mi>&pi;</mi><msub><mi>f</mi><mi>k</mi></msub><mi>md</mi><mi>sin</mi><msub><mi>&theta;</mi><mi>n</mi></msub><mo>/</mo><mi>c</mi></mrow></msup></mrow></math>
<math><mrow><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>m</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><msub><mi>X</mi><mi>m</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mi>e</mi><mrow><mo>-</mo><mi>j</mi><mn>2</mn><mi>&pi;mn</mi><mo>/</mo><mi>N</mi></mrow></msup><mo>,</mo><mi>N</mi><mo>></mo><mi>M</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math>
n is the number of DFT points in the airspace, and the nth discrete space direction satisfies
θn=asin{cn/(Nfkd)} (3)
(2) By using the properties of DFT, the spatial DFT spectrum estimation is expressed in a linear inversion solving form:
X(k)=FY(k) (6)
wherein, F is Fourier transform matrix, Y (k) wave beam output signal vector of the k frequency point;
(3) constructing a regular cost function:
<math><mrow><mover><mi>J</mi><mo>~</mo></mover><mo>=</mo><msubsup><mi>&Sigma;</mi><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>N</mi><mo>-</mo><mn>1</mn></mrow></msubsup><mi>log</mi><mrow><mo>(</mo><msup><mrow><mo>|</mo><mi>Y</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></msup><mo>)</mo></mrow><mo>+</mo><msubsup><mrow><mo>|</mo><mo>|</mo><mi>X</mi><mo>-</mo><mi>FY</mi><mo>|</mo><mo>|</mo></mrow><mn>2</mn><mn>2</mn></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></math>
(4)Y=(λQ-1+FHF)-1FHX (11)
wherein, <math><mrow><mi>&lambda;</mi><mo>=</mo><msubsup><mi>&sigma;</mi><mi>W</mi><mn>2</mn></msubsup><mo>/</mo><msubsup><mi>&sigma;</mi><mi>Y</mi><mn>2</mn></msubsup><mo>,</mo></mrow></math>q is the diagonal matrix:
<math><mrow><mi>Q</mi><mo>=</mo><mi>diag</mi><mo>{</mo><msub><mi>I</mi><mi>N</mi></msub><mo>+</mo><msup><mi>YY</mi><mi>H</mi></msup><mo>/</mo><msubsup><mi>&sigma;</mi><mi>Y</mi><mn>2</mn></msubsup><mo>}</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mrow></math>
and (3) taking a fixed empirical value for the adjusting parameter lambda in the formula (11), and then iteratively solving the high-resolution spatial spectrum in the following mode:
1) with Y(0)DFT { X } as an initial value, and substituting formula (17) to obtain Q(0)
Q~=diag{YYH}---(17)
2) The ith iteration of
Y(i)=Q(i-1)FH(λIM+FQ(i-1)FH)-1X (5)
The Q matrix is updated using the equation:
Q(i)=diag{Y(i)Y(i)H};
3) judging a convergence condition:
|J(i)-J(i-1)|/|J(i-1)|<ε (6)
if the condition is not met, making i equal to i +1, and returning to the step 2); if the condition is met, outputting the space spectrum Y of the current iteration cycle(i)
(5) And outputting the high-resolution spatial spectrum meeting the convergence condition to a subsequent image display processing system.
CN 2010106195512010-12-222010-12-22Novel high-resolution orientation-estimating method based on Cauchy Gaussian modelPendingCN102183755A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN 201010619551CN102183755A (en)2010-12-222010-12-22Novel high-resolution orientation-estimating method based on Cauchy Gaussian model

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN 201010619551CN102183755A (en)2010-12-222010-12-22Novel high-resolution orientation-estimating method based on Cauchy Gaussian model

Publications (1)

Publication NumberPublication Date
CN102183755Atrue CN102183755A (en)2011-09-14

Family

ID=44569955

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN 201010619551PendingCN102183755A (en)2010-12-222010-12-22Novel high-resolution orientation-estimating method based on Cauchy Gaussian model

Country Status (1)

CountryLink
CN (1)CN102183755A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102867294A (en)*2012-05-282013-01-09天津大学Fourier-wavelet regularization-based coaxial phase contrast image restoration method
CN105204017A (en)*2015-09-012015-12-30北京理工大学High-resolution radar angle tracking method based on regularization optimization
CN108334932A (en)*2017-11-272018-07-27中科观世(北京)科技有限公司Frequency separation method based on echo signal feature
CN114004913A (en)*2021-12-282022-02-01成都理工大学Kouximab-based TGS image reconstruction method

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE3805268A1 (en)*1987-02-201988-09-01Olympus Optical Co ULTRASONIC DIAGNOSTIC DEVICE
CN101414002A (en)*2008-12-012009-04-22西安电子科技大学Method for counteracting airborne radar non-self-adapting clutter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE3805268A1 (en)*1987-02-201988-09-01Olympus Optical Co ULTRASONIC DIAGNOSTIC DEVICE
CN101414002A (en)*2008-12-012009-04-22西安电子科技大学Method for counteracting airborne radar non-self-adapting clutter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《声学与电子工程》 20101215 蒋飚等 单快拍约束优化的高分辨方位谱估计技术 第5-7页 1 , 第4期*
《应用声学》 20090131 蒋飚 阵形畸变条件下双线阵左右舷分辨性能分析 第27-31页 1 第28卷, 第1期*

Cited By (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102867294A (en)*2012-05-282013-01-09天津大学Fourier-wavelet regularization-based coaxial phase contrast image restoration method
CN102867294B (en)*2012-05-282015-06-17天津大学Fourier-wavelet regularization-based coaxial phase contrast image restoration method
CN105204017A (en)*2015-09-012015-12-30北京理工大学High-resolution radar angle tracking method based on regularization optimization
CN108334932A (en)*2017-11-272018-07-27中科观世(北京)科技有限公司Frequency separation method based on echo signal feature
CN108334932B (en)*2017-11-272022-03-29中科观世(北京)科技有限公司Frequency distinguishing method based on target signal characteristics
CN114004913A (en)*2021-12-282022-02-01成都理工大学Kouximab-based TGS image reconstruction method
CN114004913B (en)*2021-12-282022-03-29成都理工大学 A TGS Image Reconstruction Method Based on Cauchy Mixture Model

Similar Documents

PublicationPublication DateTitle
CN108845325B (en)Towed line array sonar subarray error mismatch estimation method
CN103353595B (en) Meter Wave Radar Altimetry Method Based on Array Interpolation Compressed Sensing
BilikSpatial compressive sensing for direction-of-arrival estimation of multiple sources using dynamic sensor arrays
CN111373282A (en) Radar Processing Chain for FMCW Radar Systems
CN106501785B (en)A kind of sane sparse recovery STAP methods and its system based on alternating direction multiplier method
CN103760546B (en)A kind of radar low target Wave arrival direction estimating method
CN103207380B (en) Broadband Target Direction Finding Method Based on Two-dimensional Frequency Domain Sparse Constraints
CN103885049B (en)The low elevation estimate method of metre wave radar based on minimal redundancy Sparse submatrix
CN105301580B (en)A kind of passive detection method based on division battle array cross-spectrum phase difference variance weighted
CN105699950B (en)Based on before and after adaptive iteration to the radar clutter suppression method of smooth conjugate gradient
CN107219511B (en) STAP method and device for beam-Doppler pattern sparsity constraint
CN106443633A (en)Shipborne high frequency ground wave radar sea clutter time domain suppression method
CN111175727B (en)Method for estimating orientation of broadband signal based on conditional wave number spectral density
CN104714235A (en)Ranging method and system for double low-frequency vector hydrophone arrays
CN108761394A (en)A kind of high-resolution low sidelobe based on space-time processing deconvolutes Power estimation method
CN105005035A (en)Target detection method based on two-dimensional sliding window robust space-time self-adaptive processing
CN108931766A (en)A kind of non-homogeneous STAP jamming target filtering method based on sparse reconstruct
CN103513238B (en)A kind of target azimuth direction-finding method of Regularization least square subspace intersection
CN116559793A (en)Radar interference suppression method, radar interference suppression device and storage medium
CN102183755A (en)Novel high-resolution orientation-estimating method based on Cauchy Gaussian model
CN105372635A (en)Improved dimension-reduction space-time adaptive processing-based ship-borne high-frequency ground wave radar sea clutter suppression method
Liu et al.Source depth estimation based on Gaussian processes using a deep vertical line array
CN110850421A (en) Underwater target detection method based on space-time adaptive processing of reverberation symmetric spectrum
CN105572642B (en)A kind of space-time adaptive processing method based on two level frameworks
Chu et al.MTSA-Net: A multiscale time self-attention network for ship radiated self-noise reduction

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C02Deemed withdrawal of patent application after publication (patent law 2001)
WD01Invention patent application deemed withdrawn after publication

Application publication date:20110914


[8]ページ先頭

©2009-2025 Movatter.jp