




交叉引用cross reference
本申请要求申请号为10101429.7,申请日为2010年2月8日的香港短期专利申请的优先权,其内容被合并与此作为参考。This application claims priority from Hong Kong Short-Term Patent Application No. 10101429.7 filed 8 February 2010, the contents of which are incorporated herein by reference.
技术领域technical field
本发明是关于微波谐振技术,特别是关于一种微波加热技术,具体是关于一种微波加热器。The present invention relates to microwave resonance technology, in particular to a microwave heating technology, in particular to a microwave heater.
背景技术Background technique
现有技术中,在利用波导加热的微波加热器中,矩形波导在多个点被弯折,整体呈现出绕组形式,波导的宽度一般是确定的。然而,这种类型的微波加热器电磁能的浓度低,所以对于被加热物体,尤其是那些介质损耗小的被加热物体来说,提供的能量不能够被有效的利用。并且这种类型的微波加热器的尺寸相对较大,而波导的介电常数较小,很难进行快速加热。In the prior art, in microwave heaters heated by waveguides, the rectangular waveguide is bent at multiple points, presenting a winding form as a whole, and the width of the waveguide is generally determined. However, this type of microwave heater has a low concentration of electromagnetic energy, so for heated objects, especially those heated objects with low dielectric loss, the provided energy cannot be effectively utilized. Moreover, the size of this type of microwave heater is relatively large, and the dielectric constant of the waveguide is small, so it is difficult to perform rapid heating.
发明内容Contents of the invention
本发明的目的在于提供一种微波加热器,以快速地利用电磁能量加热液体。The object of the present invention is to provide a microwave heater to rapidly heat liquid with electromagnetic energy.
为了实现上述目的,本发明提供一种微波加热器,该微波加热器包括:微波产生电路,产生微波信号;波导,与所述的微波产生电路相耦接,接收所述的微波信号,并在所述微波信号的作用下共振,以产生能量;热产生元件,与所述的波导耦接,当从所述的波导接收能量时,向外辐射红外线;热量输出耦合模块,与所述的热产生元件连接,对液体进行加热;所述的微波产生电路以第一频率向所述的波导提供过耦合能量,以第二频率将维持所述热产生元件产生的热量。In order to achieve the above object, the present invention provides a microwave heater, which includes: a microwave generating circuit for generating a microwave signal; a waveguide coupled with the microwave generating circuit for receiving the microwave signal, and Resonate under the action of the microwave signal to generate energy; the heat generating element is coupled with the waveguide, and when receiving energy from the waveguide, radiates infrared rays outward; the heat output coupling module is connected with the heat waveguide The generating element is connected to heat the liquid; the microwave generating circuit provides overcoupling energy to the waveguide at the first frequency, and maintains the heat generated by the heat generating element at the second frequency.
本发明的有益技术效果:该微波加热器对微波的吸收能力强,能够有效地利用电磁能量加热液体。Beneficial technical effects of the present invention: the microwave heater has strong microwave absorption ability and can effectively use electromagnetic energy to heat liquid.
附图说明Description of drawings
图1为本发明实施例微波加热器示意图;Fig. 1 is the schematic diagram of the microwave heater of the embodiment of the present invention;
图2为本发明实施例微波加热器的结构示意图;Fig. 2 is the structural representation of the microwave heater of the embodiment of the present invention;
图3为本发明实施例图2微波产生电路的结构示意图;Fig. 3 is the schematic structural diagram of Fig. 2 microwave generating circuit of the embodiment of the present invention;
图4为本发明另一实施例微波加热器的结构示意图;Fig. 4 is a schematic structural view of a microwave heater according to another embodiment of the present invention;
图5为本发明另一实施例图4的微波产生电路的结构示意图。FIG. 5 is a schematic structural diagram of the microwave generating circuit shown in FIG. 4 according to another embodiment of the present invention.
具体实施方式Detailed ways
本发明提供一种微波加热器,以快速地利用电磁能量加热,下面结合附图进行详细说明。The present invention provides a microwave heater for rapid heating with electromagnetic energy, which will be described in detail below with reference to the accompanying drawings.
图1为本发明实施例微波加热器示意图,如图1所示,所述的微波加热器包括:微波产生电路101,波导102,热产生元件103及热量输出耦合模块104。FIG. 1 is a schematic diagram of a microwave heater according to an embodiment of the present invention. As shown in FIG. 1 , the microwave heater includes: a
微波产生电路101产生微波信号并输出微波信号。波导102由固体介电材料制成,固体介电材料的介电常数大于或等于2。波导102与所述的微波产生电路101相耦接,接收所述的微波信号,并在所述微波信号的作用下共振,以产生能量;热产生元件103与所述的波导101耦接,当从所述的波导101接收能量时,向外辐射红外线;热量输出耦合模块104与所述的热产生元件103连接,对液体进行加热。所述的热量输出耦合模块104可以为圆筒形、矩形、多边形或者它们的结合。液体可以放在热量输出耦合模块104中进行加热,也可以在热量输出耦合模块104的表面进行加热,本发明不限于此。The
微波加热器为矩形或者圆柱形等其他形状,本发明不依此为限。The microwave heater is in other shapes such as rectangle or cylinder, and the present invention is not limited thereto.
如图2所示,所述的波导102包括:输入耦合模块201及输入探头202,输入耦合模块201接收所述微波产生电路101产生的微波信号。输入探头202连接所述的输入耦合模块201与微波产生电路101,与微波产生电路101产生的微波信号将通过输入探头202传输到输入耦合模块201。输入探头201位于所述的输入耦合模块201中,并且靠近最小基本谐振模式的电场。As shown in FIG. 2 , the
微波产生电路101以第一频率向所述的波导提供过耦合能量,以第二频率将维持所述热产生元件产生的热量,第一频率及第二频率的取值范围为300MHz至10GHz,本发明不依此为限。The
图3为本发明实施例图2的微波产生电路的结构示意图,如图3所示,所述的输入探头202与微波产生电路101相连接,微波产生电路101包括:微波信号源301,前置放大器302,信号衰减器303,中级功率放大器304,高级功率放大器305,滤波器306,反馈探头307及控制器308(CPU)。Fig. 3 is a schematic structural diagram of the microwave generating circuit shown in Fig. 2 according to an embodiment of the present invention. As shown in Fig. 3, the
前置放大器302,中级功率放大器304及高级功率放大器305组成放大器电路,对向所述波导提供的能量进行放大。The
微波信号源301产生的微波信号W1首先经过前置放大器302进行信号放大,生成微波信号W2,然后进入信号衰减器303衰减为微波信号W3,随后经过中级功率放大器304及高级功率放大器305进行功率放大,生成微波信号W4。微波信号W4通过滤波器306进行滤波,滤掉噪声信号,得到合适的微波信号,并将该微波信号发送给输入探头202,通过输入探头202传送给波导102的输入耦合模块201,微波信号将使得波导产生共振,波导的共振产生热量。热产生元件103从波导102吸收热量,然后将热量传输给热量输出耦合模块104,热量输出耦合模块104对被加热物体进行热处理。The microwave signal W1 generated by the
在图3中,控制器308控制微波信号源301发出微波信号W1,控制信号衰减器303衰减微波信号,控制前置放大器302,中级功率放大器304及高级功率放大器305进行功率放大。经滤波器306滤波后的微波信号还要传输到反馈探头307,反馈探头307检测滤波后的信号是否合适,并将检测结果发送给控制器308,控制器308根据检测结果对微波产生电路中的元件进行调节控制,以得到适合输入到波导102的微波信号。In FIG. 3 , the
图4为本发明另一实施例微波加热器的结构示意图;图4与图2的不同之处在于图4中的微波加热器包括反馈探头307,反馈探头307检测输入探头202发送到波导102中的信号是否合适,并将检测结果发送给控制器308,控制器308根据检测结果对微波产生电路中的元件进行调节控制,以得到适合输入到波导102的微波信号。Fig. 4 is a structural schematic diagram of a microwave heater according to another embodiment of the present invention; the difference between Fig. 4 and Fig. 2 is that the microwave heater in Fig. 4 includes a
图5为本发明另一实施例图4的微波产生电路的结构示意图;如图5所示,所述的输入探头202及反馈探头307与微波产生电路相连接。微波产生电路包括:微波信号源301,前置放大器302,信号衰减器303,中级功率放大器304,高级功率放大器305,滤波器306及控制器308(CPU)。FIG. 5 is a schematic structural diagram of the microwave generating circuit shown in FIG. 4 according to another embodiment of the present invention; as shown in FIG. 5 , the
前置放大器302,中级功率放大器304及高级功率放大器305组成放大器电路,对向所述波导提供的能量进行放大。The
输入探头202为波导102提供能量输入,反馈探头307将微波产生电路通过输入探头202输入到波导102的能量输出反馈给微波产生电路。反馈探头307将反馈信号输出给微波产生电路后,首先经过信号衰减器303,控制器308控制信号衰减器303将反馈信号衰减为微波信号W1′,并将微波信号W1′发送给微波信号源301和控制器308,控制器308根据接收到的反馈信号控制微波信号源301输出微波信号W2′,微波信号W2′依次经过前置放大器302,中级功率放大器304及高级功率放大器305后放大为微波信号W3′,微波信号W3经过输入探头202传送给波导102的输入耦合模块201,微波信号将使得波导产生共振,波导的共振产生热量。热产生元件103从波导102吸收热量,然后将热量传输给热量输出耦合模块104,热量输出耦合模块104加热盛放于其中或位于其表面的液体。The
图5中的微波产生电路还包括驱动探头501,当微波加热器启动后,驱动探头501将向控制器308发送启动信号,控制器308将控制微波信号源301发送微波信号,并根据信号衰减器303发来的反馈信号控制微波信号源301发送的微波信号的强度,同时控制前置放大器302,中级功率放大器304及高级功率放大器305对信号进行放大。The microwave generating circuit in Fig. 5 also includes a
本发明的有益技术效果:该微波加热器对微波的吸收能力强,能够快速地利用电磁能量加热液体。Beneficial technical effects of the present invention: the microwave heater has a strong ability to absorb microwaves, and can rapidly use electromagnetic energy to heat liquid.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be realized by instructing related hardware through a computer program, and the program can be stored in a computer-readable storage medium. During execution, it may include the processes of the embodiments of the above-mentioned methods. Wherein, the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| HK10101429AHK1145392A2 (en) | 2010-02-08 | 2010-02-08 | A microwave heater |
| HK10101429.7 | 2010-02-08 |
| Publication Number | Publication Date |
|---|---|
| CN102149228Atrue CN102149228A (en) | 2011-08-10 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201010218190PendingCN102149228A (en) | 2010-02-08 | 2010-06-29 | Microwave heater |
| Country | Link |
|---|---|
| CN (1) | CN102149228A (en) |
| HK (1) | HK1145392A2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108684099A (en)* | 2018-05-11 | 2018-10-19 | 东北大学 | Fracturing HIGH-POWERED MICROWAVES coaxial heater in a kind of engineering rock mass hole |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5321222A (en)* | 1991-11-14 | 1994-06-14 | Martin Marietta Energy Systems, Inc. | Variable frequency microwave furnace system |
| CN1148108C (en)* | 1994-03-31 | 2004-04-28 | 马丁·马零塔能源系统有限公司 | Variable frequency microwave heating apparatus |
| WO2009157110A1 (en)* | 2008-06-25 | 2009-12-30 | パナソニック株式会社 | Microwave heating device |
| CN101841948A (en)* | 2009-03-20 | 2010-09-22 | 惠而浦有限公司 | Microwave heating device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5321222A (en)* | 1991-11-14 | 1994-06-14 | Martin Marietta Energy Systems, Inc. | Variable frequency microwave furnace system |
| CN1148108C (en)* | 1994-03-31 | 2004-04-28 | 马丁·马零塔能源系统有限公司 | Variable frequency microwave heating apparatus |
| WO2009157110A1 (en)* | 2008-06-25 | 2009-12-30 | パナソニック株式会社 | Microwave heating device |
| CN101841948A (en)* | 2009-03-20 | 2010-09-22 | 惠而浦有限公司 | Microwave heating device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108684099A (en)* | 2018-05-11 | 2018-10-19 | 东北大学 | Fracturing HIGH-POWERED MICROWAVES coaxial heater in a kind of engineering rock mass hole |
| CN108684099B (en)* | 2018-05-11 | 2020-09-29 | 东北大学 | A high-power microwave coaxial heater for in-hole fracturing of engineering rock mass |
| Publication number | Publication date |
|---|---|
| HK1145392A2 (en) | 2011-04-15 |
| Publication | Publication Date | Title |
|---|---|---|
| US20180245983A1 (en) | Temperature measurement arrangement | |
| CN106322452B (en) | Microwave oven no-load detection method, equipment and microwave oven | |
| CN105698228B (en) | A kind of solid state microwave furnace and implementation method | |
| CN101502169A (en) | Microwave induction heating device | |
| CN109587861B (en) | Multi-frequency solid-state microwave oven and heating method using same | |
| JP5268047B2 (en) | Microwave chemical reactor | |
| WO2013038715A1 (en) | Microwave treatment device | |
| KR20230151345A (en) | Generating aerosol method and electronic device performing the method | |
| CN102149228A (en) | Microwave heater | |
| WO2006055192A3 (en) | Diesel particulate filter using micro-wave regeneration | |
| Das et al. | Microwave drilling of materials | |
| JP6883587B2 (en) | Dielectric heating device | |
| JP2007228219A (en) | Microwave device | |
| CN113330821B (en) | Microwave processing apparatus | |
| Bokaei et al. | Spatiotemporal evolution of high power laser pulses in relativistic magnetized inhomogeneous plasmas | |
| Kybartas et al. | Single mode circular waveguide applicator for microwave heating of oblong objects in food research | |
| Renz | Moderate high power 1 to 20µs and kHz Ho: YAG thin disk laser pulses for laser lithotripsy | |
| Gupta et al. | Stimulated Raman scattering of self-focused Laguerre–Gaussian laser beams in axially inhomogeneous plasma | |
| KR20100136836A (en) | Microwave Cooking Machine | |
| CN107271454A (en) | Microwave and magnetized plasma interaction means | |
| WO2006061451A3 (en) | Near-field lens for electromagnetic waves | |
| Bakunov et al. | Frequency self-upshifting of intense microwave radiation producing ionization in a thin gaseous layer | |
| CN100539774C (en) | Microwave device structure capable of stabilizing output power | |
| KR101242603B1 (en) | Bio-samples fixing apparatus and fixing method | |
| Arkhipenko et al. | Suppression and Feedback Control of Anomalous Induced Backscattering<? format?> by Pump-Frequency Modulation |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20110810 |