






技术领域technical field
本发明是有关于一种存储器电路,尤指一种可以降低漏电流的存储器电路以及控制存储器电路的方法。The invention relates to a memory circuit, in particular to a memory circuit capable of reducing leakage current and a method for controlling the memory circuit.
背景技术Background technique
请参考图1,图1为已知静态随机存取存储器(Static Random AccessMemory,SRAM)单元100的示意图。如图1所示,SRAM单元100包含有六个晶体管N1~N4以及P1~P2,而SRAM单元100可以通过切换字组线WL、位线BL以及互补位线电压电平来进行数据存取,此外,因为本领域技术人员应了解SRAM单元100存取的操作,因此相关细节在此不予赘述。Please refer to FIG. 1 , which is a schematic diagram of a known static random access memory (Static Random Access Memory, SRAM) unit 100 . As shown in FIG. 1, the SRAM unit 100 includes six transistors N1-N4 and P1-P2, and the SRAM unit 100 can switch word line WL, bit line BL and complementary bit line Data access is performed at a voltage level. In addition, because those skilled in the art should understand the operation of accessing the SRAM cell 100 , relevant details are not repeated here.
参考图1,当SRAM单元100位于非运作模式时(亦即晶体管N3、N4为非导通状态),则节点A、B的电压电平会因为漏电流而改变,进而影响到之后读取SRAM单元100时数据的正确性。举例来说,假设目前SRAM单元100位于非运作模式,且节点A、B的电压电平分别为VDD、VSS,则节点A与电压源VSS之间会形成两个漏电流通路,亦即晶体管N1所形成的次临界漏电流(sub-threshold leakage current)以及晶体管N2所形成的栅极漏电流(gateleakage current);类似地,节点B与电压源VDD之间亦会形成两个漏电流通路,亦即晶体管P2所形成的次临界漏电流以及晶体管P1所形成的栅极漏电流。随着制程技术进入深次微米(deep sub-micron),此等漏电流将呈指数型剧增,甚至成为集成电路的主要功率消耗的来源。Referring to FIG. 1, when the SRAM unit 100 is in the non-operation mode (that is, the transistors N3 and N4 are in a non-conductive state), the voltage levels of the nodes A and B will change due to the leakage current, which will affect the subsequent reading of the SRAM. Correctness of the data at unit 100. For example, assuming that the SRAM cell 100 is currently in the non-operation mode, and the voltage levels of the nodes A and B are VDD and VSS respectively, two leakage current paths will be formed between the node A and the voltage source VSS, that is, the transistor N1 The formed sub-threshold leakage current (sub-threshold leakage current) and the gate leakage current (gate leakage current) formed by the transistor N2; similarly, two leakage current paths are also formed between the node B and the voltage source VDD, also That is, the subthreshold leakage current formed by transistor P2 and the gate leakage current formed by transistor P1. As the process technology enters deep sub-micron, the leakage current will increase exponentially, and even become the main power consumption source of integrated circuits.
为了解决上述SRAM单元100的漏电流问题,美国专利US7,110,317揭露了一种可以减少SRAM漏电流的技术,如图2所示的美国专利US7,110,317中的SRAM单元501,其晶体管P1、P2是经由偏压电路510(包含晶体管511~513)连接至电压源VDD,且晶体管N1、N2是经由偏压电路520(包含晶体管521~523)连接至电压源VSS。在SRAM单元501位于非运作模式时,其SRAM单元501所连接到的电压源分别为(VDD-Vth)以及(VSS+Vth)(其中Vth为晶体管512~513、522~523的临界电压),因为节点A、B与电压源之间的电压差降低了,因此可以确实减少漏电流。然而,因为晶体管的临界电压Vth会因为制程、电压、温度(PVT)变异而有所变动,因此,会影响到SRAM单元501于非运作模式时所连接到的电压源(VDD-Vth)以及(VSS+Vth)的电平,并有可能会造成SRAM单元501中数据的遗失。In order to solve the leakage current problem of the above-mentioned SRAM unit 100, U.S. Patent No. 7,110,317 discloses a technology that can reduce the leakage current of SRAM, as shown in FIG. The transistors N1 and N2 are connected to the voltage source VSS through the bias circuit 520 (including transistors 521 - 523 ). When the
此外,美国专利US5,581,500亦揭露了一种可以减少漏电流的技术,如图3所示的美国专利US5,581,500的SRAM单元10,其包含一(VSS+Δ)产生器30,当SRAM单元10位于非运作模式时,图3所示的节点A的电压为(VSS+Δ),因此反向器12、14中储存高电位数据的节点与节点A的电压差会降低,因此可以有效减少漏电流。然而,采用美国专利US5,581,500技术的SRAM阵列会具有很高的制造成本(SRAM阵列中每一列都需要有一个(VSS+Δ)产生器30),而且(VSS+Δ)产生器30本身亦会有漏电流的现象。In addition, U.S. Patent No. 5,581,500 also discloses a technology that can reduce leakage current. The
发明内容Contents of the invention
因此,本发明的目的之一在于提供一种存储器电路以及控制存储器电路的方法,其可以有效降低漏电流且对制程、电压、温度(PVT)变异具有较高的容许量,以解决上述的问题。Therefore, one of the objects of the present invention is to provide a memory circuit and a method for controlling the memory circuit, which can effectively reduce the leakage current and have a higher tolerance for process, voltage, temperature (PVT) variation, so as to solve the above problems .
依据本发明的一实施例,一种存储器电路包含有一第一存储器阵列、一第二存储器阵列以及一开关模块,其中该第一存储器阵列具有一第一端点以及一第二端点,该第二存储器阵列具有一第三端点以及一第四端点,该第一端点耦接于一第一供应电压,该第四端点耦接于小于该第一供应电压的一第二供应电压,该开关模块耦接于该第二端点、该第三端点、该第一供应电压以及该第二供应电压。当该存储器电路操作于一非运作模式时,该开关模块将该第二端点电性连接至该第三端点,且将该第二端点电性阻绝于该第二供应电压,以及将该第三端点电性阻绝于该第一供应电压。According to an embodiment of the present invention, a memory circuit includes a first memory array, a second memory array and a switch module, wherein the first memory array has a first terminal and a second terminal, and the second The memory array has a third terminal and a fourth terminal, the first terminal is coupled to a first supply voltage, the fourth terminal is coupled to a second supply voltage lower than the first supply voltage, the switch module coupled to the second terminal, the third terminal, the first supply voltage and the second supply voltage. When the memory circuit operates in a non-operating mode, the switch module electrically connects the second terminal to the third terminal, and electrically isolates the second terminal from the second supply voltage, and the third terminal The terminal is electrically isolated from the first supply voltage.
依据本发明的另一实施例,其揭露一种控制一存储器电路的方法,其中该存储器电路包含有一第一存储器阵列以及一第二存储器阵列,该第一存储器阵列具有一第一端点以及一第二端点,该第二存储器阵列具有一第三端点以及一第四端点,该第一端点耦接于一第一供应电压,该第四端点耦接于小于该第一供应电压的一第二供应电压,该方法包含有:当该存储器电路操作于一非运作模式时:将该第二端点电性连接至该第三端点;将该第二端点电性阻绝于该第二供应电压;以及将该第三端点电性阻绝于该第一供应电压。According to another embodiment of the present invention, it discloses a method of controlling a memory circuit, wherein the memory circuit includes a first memory array and a second memory array, the first memory array has a first terminal and a The second terminal, the second memory array has a third terminal and a fourth terminal, the first terminal is coupled to a first supply voltage, and the fourth terminal is coupled to a first supply voltage lower than the first supply voltage two supply voltages, the method comprising: when the memory circuit operates in a non-operating mode: electrically connecting the second terminal to the third terminal; electrically isolating the second terminal from the second supply voltage; and electrically isolating the third terminal from the first supply voltage.
附图说明Description of drawings
图1为已知SRAM单元的示意图。FIG. 1 is a schematic diagram of a known SRAM cell.
图2所示为美国专利US7,110,317中的SRAM单元。Figure 2 shows the SRAM cell in US Patent No. 7,110,317.
图3所示为美国专利US5,581,500中的SRAM单元。Figure 3 shows the SRAM cell in US Patent No. 5,581,500.
图4为依据本发明一实施例的存储器电路的示意图。FIG. 4 is a schematic diagram of a memory circuit according to an embodiment of the invention.
图5为控制信号GP、GN、PI、PB以及端点N2、N3的电压电平VVN、VVP于运作模式以及非运作模式下的示意图。5 is a schematic diagram of the control signals GP, GN, PI, PB and the voltage levels VVN, VVP of the terminals N2, N3 in the operation mode and the non-operation mode.
图6为依据本发明的一实施例的控制存储器电路的方法的流程图。FIG. 6 is a flowchart of a method for controlling a memory circuit according to an embodiment of the invention.
图7为当图4所示的存储器电路操作于非运作模式时的等效电路图。FIG. 7 is an equivalent circuit diagram when the memory circuit shown in FIG. 4 operates in a non-operating mode.
图8为依据本发明另一实施例的存储器电路的示意图。FIG. 8 is a schematic diagram of a memory circuit according to another embodiment of the invention.
图9为依据本发明另一实施例的存储器电路的示意图。FIG. 9 is a schematic diagram of a memory circuit according to another embodiment of the invention.
图10为当存储器电路包含有n个存储器阵列,且存储器电路操作于非运作模式时的等效电路图。FIG. 10 is an equivalent circuit diagram when the memory circuit includes n memory arrays and the memory circuit operates in a non-operating mode.
[主要元件标号说明][Description of main component labels]
具体实施方式Detailed ways
请参考图4,图4为依据本发明一实施例的存储器电路400的示意图。如图4所示,存储器电路400包含有存储器阵列410、420、以及一开关模块430,其中存储器阵列410具有一第一端点N1、一第二端点N2,存储器阵列420具有一第三端点N3、一第四端点N4,开关模块430包含有三个开关SW1、SW2、SW3。此外,端点N1耦接于供应电压Vcc、端点N4耦接于供应电压GND、开关SW1耦接于端点N2与供应电压GND之间、开关SW2耦接于端点N2与端点N3之间、且开关SW3耦接于端点N3与供应电压Vcc之间。此外,于本实施例中,存储器阵列410、420为SRAM阵列,亦即存储器阵列410、420分别包含有多个SRAM单元,其中存储器阵列410、420中的SRAM单元与图1所示的SRAM单元类似,所差异的地方仅在于:存储器阵列410中SRAM单元的晶体管N1、N2是连接于端点N2,而非直接连接至供应电压;存储器阵列420中SRAM单元的晶体管P1、P2是连接于端点N3,而非直接连接至供应电压。Please refer to FIG. 4 , which is a schematic diagram of a
此外,在图4所示的实施例中,开关SW1、SW2、SW3为互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor,CMOS)传输门,且开关SW1、SW3是由控制信号GP、GN来控制其导通状态,开关SW2是由控制信号PI、PB来控制其导通状态。In addition, in the embodiment shown in FIG. 4, the switches SW1, SW2, and SW3 are complementary metal-oxide-semiconductor (Complementary Metal-Oxide-Semiconductor, CMOS) transmission gates, and the switches SW1, SW3 are controlled by control signals GP, GN. To control its conduction state, the switch SW2 is controlled by the control signals PI and PB.
请同时参考图4、图5以及图6,图5为控制信号GP、GN、PI、PB以及端点N2、N3的电压电平VVN、VVP于运作模式以及非运作模式下的示意图,图6为依据本发明的一实施例的控制存储器电路400的方法的流程图。请注意,若是有实质上相同的结果,本发明的控制存储器电路400的方法的流程并不以图6所示的执行顺序为限。参考图4~6,流程叙述如下:Please refer to FIG. 4, FIG. 5 and FIG. 6 at the same time. FIG. 5 is a schematic diagram of the control signals GP, GN, PI, PB and the voltage levels VVN and VVP of the terminals N2 and N3 in the operation mode and the non-operation mode. FIG. 6 is A flowchart of a method for controlling the
首先,假设目前存储器电路400是操作于一运作模式,亦即存储器电路400目前正在被读取或是写入数据,则于步骤600中,一控制信号产生器(未绘示)产生控制信号GP、GN、PI、PB以控制开关SW1、SW2、SW3的导通状态,其中控制信号GP、PI为低电压电平且控制信号GN、PB为高电压电平,因此,此时开关SW1、SW3为导通状态且开关SW2为非导通状态,且端点N2的电压电平VVN为低电压电平(GND),且端点N3的电压电平VVP为高电压电平(Vcc)。First, assuming that the
接着,于步骤602,存储器电路400由运作模式切换至非运作模式中的待机模式(亦即,图5所示的时间点t1),此时,控制信号GP、GN会分别切换至高电压电平以及低电压电平,以将开关SW1、SW3关闭(亦即将端点N2电性隔绝于供应电压GND,且将端点N3电性隔绝于供应电压Vcc)。Next, in
接着,于步骤604中,在图5所示的时间点t2,控制信号PI、PB会分别切换至高电压电平以及低电压电平,以将开关SW2导通(亦即将端点N2电性连接于端点N3)。在开关SW2导通之后,端点N2、N3的电压电平逐渐变成0.5*Vcc,而此时,图4所示的存储器电路400的等效电路可以如图7所示,存储器阵列410、420的跨压分别为0.5*Vcc,亦即存储器阵列410、420中每一个SRAM单元的轨对轨电压(rail-to-rail voltage)为0.5*Vcc,因此,可以确实降低SRAM单元的漏电流。Next, in
在步骤606中,存储器电路400准备由非运作模式切换至运作模式时,控制信号PI、PB会先分别切换至低电压电平以及高电压电平,以将开关SW2关闭,之后控制信号GP、GN再分别切换至低电压电平以及高电压电平,以将开关SW1、SW3导通以进入唤醒模式(如图5所示的时间点t3)。在进入唤醒模式之后的一段时间,端点N2的电压电平VVN会回到低电压电平(GND),且端点N 3的电压电平VVP会回到高电压电平(Vcc),此时存储器电路400进入运作模式(如图5所示的时间点t4)。In
此外,为了降低本体效应(body effect),于图8所示本发明的另一实施例中,图8所示的存储器电路800与图4所示的存储器电路400类似,其差异只在于存储器电路800中MOS元件的N型井与P型井的连接方式。如图8所示,存储器阵列810中每个MOS元件的N型井是连接至供应电压Vcc、P型井则连接至端点N2;存储器阵列820中每个MOS元件的N型井是连接至端点N3、P型井则连接至供应电压GND;开关SW1的P型井连接至供应电压GND、N型井连接至端点N3;开关SW3的N型井连接至供应电压Vcc、P型井连接至端点N2。In addition, in order to reduce the body effect, in another embodiment of the present invention shown in FIG. 8, the
此外,在图4所示的实施例中,开关SW1、SW2、SW3为CMOS传输门,然而,于本发明的其它实施例中,开关SW1、SW2、SW3可以用其它具有类似功能的半导体元件来实作,这些设计上的变化均应隶属于本发明的范畴。In addition, in the embodiment shown in FIG. 4, the switches SW1, SW2, and SW3 are CMOS transmission gates. However, in other embodiments of the present invention, the switches SW1, SW2, and SW3 can be implemented by other semiconductor elements with similar functions. In practice, these design changes should fall within the scope of the present invention.
此外,在图4~6所示的实施例中,当存储器电路400由运作模式切换为非运作模式时,开关SW1、SW3要先关闭(图5所示的时间点t1),之后过一段时间等到端点N2、N3的电压电平VVN、VVP比较接近的时候(因为端点N3的电压电平VVP会因为漏电流而逐渐下降、以及端点N2的电压电平VVN会因为漏电流而逐渐上升)才将开关SW2导通(图6所示的时间点t2),如此一来可以避免过射现象(overshoot/undershoot)或是有电流尖峰(current spike)发生而影响到存储器阵列410、420中的数据。至于如何决定将开关SW2导通的时间点t2,大致上可以有以下两种方式:一、在开关SW1、SW3关闭后的一固定时间,将开关SW2导通,亦即图5所示的时间点t1、t2之间的差距为一固定值;二、使用一检测电路来检测端点N2、N3中至少一端点的电压电平来判断何时将开关SW2导通,以下图9所示的实施例将说明使用检测电路来判断何时将开关SW2导通。In addition, in the embodiments shown in FIGS. 4-6, when the
请参考图9,图9为依据本发明另一实施例的存储器电路900的示意图。如图9所示,存储器电路900包含有存储器阵列910、920、一检测电路(于本实施例中,是以一电压比较器930为例)、以及三个开关SW1、SW2、SW3,其中存储器阵列910具有一第一端点N1、一第二端点N2,存储器阵列920具有一第三端点N3、一第四端点N4。此外,端点N1耦接于供应电压Vcc、端点N4耦接于供应电压GND、开关SW1耦接于端点N2与供应电压GND之间、开关SW2耦接于端点N2与端点N3之间、且开关SW3耦接于端点N3与供应电压Vcc之间。Please refer to FIG. 9 , which is a schematic diagram of a
存储器电路900与图4所示的存储器电路400的架构类似,所差异的地方仅在于存储器电路900中用来控制开关SW2的控制信号PI、PB是由电压比较器930比较端点N2、N3的电压电平VVN、VVP而产生。详细来说,当电压电平VVP大于电压电平VVN时,电压比较器930所产生的控制信号PI、PB分别为低电压电平以及高电压电平,亦即开关SW2为非导通状态;而当电压电平VVP小于电压电平VVN时,电压比较器930所产生的控制信号PI、PB分别为高电压电平以及低电压电平,亦即开关SW2为导通状态。The structure of the
此外,虽然于上述图4、8、9所示的实施例中,存储器电路仅具有两个存储器阵列,然而,于本发明的其它实施例中,存储器电路可以包含有多个存储器阵列,只要存储器电路操作在一非运作模式时,其等效电路可以如图10所示的n个迭接存储器阵列(存储器阵列1000_1~1000_n),使得每个存储器阵列的跨压为(1/n)Vcc,这些设计上的变化均应隶属于本发明的范畴。In addition, although in the above-mentioned embodiments shown in FIGS. When the circuit operates in a non-operating mode, its equivalent circuit can be n consecutive memory arrays (memory arrays 1000_1-1000_n) as shown in FIG. 10 , so that the cross voltage of each memory array is (1/n)Vcc, These design changes should all belong to the category of the present invention.
简要归纳本发明,于本发明的存储器电路以及控制存储器电路的方法中,当存储器电路操作于非运作模式时,两个存储器阵列为形成一个堆栈架构,而使得每一个存储器阵列的跨压只有当存储器电路操作于运作模式时的一半,如此一来,便可以有效地降低存储器阵列中每一个存储器单元于非运作模式时的漏电流。此外,本发明的存储器电路具有简单的架构,且对制程、电压、温度(PVT)变异具有较高的容许量。To briefly summarize the present invention, in the memory circuit and the method for controlling the memory circuit of the present invention, when the memory circuit operates in the non-operating mode, the two memory arrays form a stack structure, so that the cross voltage of each memory array is only when The operation of the memory circuit is half of the operating mode, so that the leakage current of each memory cell in the memory array in the non-operating mode can be effectively reduced. In addition, the memory circuit of the present invention has a simple structure and has high tolerance to process, voltage, temperature (PVT) variation.
以上所述仅为本发明的较佳实施例,凡依本发明权利要求范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010003227CN102122527B (en) | 2010-01-11 | 2010-01-11 | Memory circuit and method of controlling memory circuit |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010003227CN102122527B (en) | 2010-01-11 | 2010-01-11 | Memory circuit and method of controlling memory circuit |
| Publication Number | Publication Date |
|---|---|
| CN102122527A CN102122527A (en) | 2011-07-13 |
| CN102122527Btrue CN102122527B (en) | 2013-02-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201010003227Expired - Fee RelatedCN102122527B (en) | 2010-01-11 | 2010-01-11 | Memory circuit and method of controlling memory circuit |
| Country | Link |
|---|---|
| CN (1) | CN102122527B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6657911B2 (en)* | 2001-10-23 | 2003-12-02 | Hitachi, Ltd. | Semiconductor device with low power consumption memory circuit |
| CN101135791A (en)* | 2006-08-31 | 2008-03-05 | 株式会社半导体能源研究所 | Liquid crystal display device having a plurality of pixel electrodes |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6657911B2 (en)* | 2001-10-23 | 2003-12-02 | Hitachi, Ltd. | Semiconductor device with low power consumption memory circuit |
| CN101135791A (en)* | 2006-08-31 | 2008-03-05 | 株式会社半导体能源研究所 | Liquid crystal display device having a plurality of pixel electrodes |
| Publication number | Publication date |
|---|---|
| CN102122527A (en) | 2011-07-13 |
| Publication | Publication Date | Title |
|---|---|---|
| KR100634183B1 (en) | Method to improve cache capacity of soi and bulk | |
| US7336533B2 (en) | Electronic device and method for operating a memory circuit | |
| KR100604876B1 (en) | SRM device with virtual rail scheme that is stable against various PPT changes | |
| US7428164B2 (en) | Semiconductor memory device | |
| JP5822914B2 (en) | High-performance static memory retain-tilted-accessed (RTA) power-saving mode | |
| US9455021B2 (en) | Array power supply-based screening of static random access memory cells for bias temperature instability | |
| TWI485705B (en) | Memory cells having a row-based read and/or write support circuitry | |
| JP6238431B2 (en) | SRAM bit cell with reduced bit line precharge voltage | |
| US8605535B2 (en) | Integrated circuits, systems, and methods for reducing leakage currents in a retention mode | |
| US7436206B2 (en) | Semiconductor integrated circuit | |
| US9548131B1 (en) | Reduced power read sensing for one-time programmable memories | |
| CN107731261A (en) | Memory system with miniature antifuse circuit with boosting capability | |
| US20070211517A1 (en) | System and method for operating a memory circuit | |
| US9559693B2 (en) | Semiconductor device | |
| CN103650052B (en) | Circuit and method for memory | |
| CN102637689B (en) | Memory edge cell | |
| US20050052926A1 (en) | Nonvolatile semiconductor memory device | |
| US20110157964A1 (en) | Memory Cell Using Leakage Current Storage Mechanism | |
| TWI763273B (en) | Electronic device and method for operating electronic device | |
| US7499357B2 (en) | Semiconductor memory device | |
| US8228752B2 (en) | Memory circuit and method for controlling memory circuit | |
| Yokoyama et al. | 40nm Ultra-low leakage SRAM at 170 deg. C operation for embedded flash MCU | |
| CN102122527B (en) | Memory circuit and method of controlling memory circuit | |
| TWI434282B (en) | Memory circuit and method for controlling memory circuit | |
| US20060092719A1 (en) | Semiconductor memory device |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20130206 Termination date:20190111 | |
| CF01 | Termination of patent right due to non-payment of annual fee |