




















技术领域technical field
本发明属于机器人手技术领域,特别涉及一种双连杆滑块式耦合自适应欠驱动机器人手指装置的结构设计。The invention belongs to the technical field of robotic hands, and in particular relates to a structural design of a double-link slider type coupling self-adaptive underactuated robot finger device.
背景技术Background technique
机器人手作为机器人不可或缺的一部分,相对于机器人的其它部分,机器人手具有关节自由度多、体积小,非常灵巧、控制复杂等特点与难点。机器人手主要用于对物体的抓持和空间移动以及做手势等其它手部动作。目前现有的灵巧手虽然控制灵活,但由于其电机和传感器数量多,其结构非常复杂,控制难度相当大,制造和维护成本非常高,这些因素阻碍了灵巧手型机器人手在现实生活中的广泛推广应用。近年来快速发展的耦合抓取型机器人手和欠驱动抓取型机器人手虽然不具备灵巧手的高灵活度,但是电机数量少,结构简单,控制容易,大大降低了制造和使用成本,并且能较好抓取常见物体,成为发展和研究的热点。As an indispensable part of the robot, the robot hand has many joint freedoms, small size, very dexterous, complex control and other characteristics and difficulties compared with other parts of the robot. The robot hand is mainly used for grasping objects, moving in space, and making gestures and other hand movements. Although the existing dexterous hands are flexible in control, due to the large number of motors and sensors, their structures are very complex, the control is quite difficult, and the manufacturing and maintenance costs are very high. These factors hinder the application of dexterous hand-type robot hands in real life Widely promote and apply. Although the coupled grasping robot hand and the underactuated grasping robot hand developed rapidly in recent years do not have the high flexibility of the dexterous hand, they have a small number of motors, a simple structure, and easy control, which greatly reduces the cost of manufacturing and use, and can Better grasping of common objects has become a hotspot of development and research.
已有的一种双关节并联欠驱动机器人手指装置,如中国发明专利CN101633171A,包括基座、电机、近关节轴、远关节轴和末端指段,还包括分别实现耦合和欠驱动转动的传动机构以及多个簧件解耦装置等。当手指碰触物体前实现多关节耦合转动的效果,当手指碰触物体后采用多关节欠驱动方式抓取物体。该装置的不足之处为:该装置由于采用了两套传动机构分别实现耦合和欠驱动抓取,使得整个手指结构复杂,制造加工成本高;该装置耦合传动机构和欠驱动传动机构相互影响,虽然采用了3个簧件来解耦,但内耗了电机的功率;该装置的两套传动机构平行排列,再加上多个簧件在关节轴上安装,致使手指过于粗大;该装置的两套传动机构均采用柔性传动件,容易松动产生间隙,传动不够精确,要实现良好效果,还需要预紧装置,进一步增加制造、安装和维护成本和难度。An existing double-joint parallel underactuated robot finger device, such as the Chinese invention patent CN101633171A, includes a base, a motor, a proximal joint shaft, a distal joint shaft, and a terminal finger segment, and also includes a transmission mechanism for respectively realizing coupling and underactuated rotation And multiple spring decoupling devices, etc. When the finger touches the object, the effect of multi-joint coupling rotation is realized, and when the finger touches the object, the multi-joint underactuation method is used to grasp the object. The disadvantages of this device are: the device adopts two sets of transmission mechanisms to achieve coupling and under-actuated grasping respectively, which makes the structure of the whole finger complex and the cost of manufacturing and processing is high; the coupling transmission mechanism and the under-actuation transmission mechanism of the device affect each other, Although three springs are used for decoupling, the power of the motor is consumed internally; the two sets of transmission mechanisms of the device are arranged in parallel, and multiple springs are installed on the joint shaft, resulting in too thick fingers; the two sets of the device The transmission mechanism of the set adopts flexible transmission parts, which are easy to loose and cause gaps, and the transmission is not accurate enough. To achieve good results, a pre-tensioning device is needed, which further increases the cost and difficulty of manufacturing, installation and maintenance.
另有一种双关节异构并联欠驱动机器人手指装置,如中国发明专利CN101829994A,包括基座、电机、近关节轴、远关节轴和末端指段,还包括分别实现耦合和欠驱动转动的传动机构以及多个簧件解耦装置等。当手指碰触物体前实现多关节耦合转动的效果,当手指碰触物体后采用多关节欠驱动方式抓取物体。该装置的不足之处为:该装置近、远轴关节处两套传动装置异构,增加了其结构的复杂性;且异构会导致两关节转动角度只能在特定范围内近似1:1耦合,使得远轴关节的转动难以预测,控制难度增大。There is also a dual-joint heterogeneous parallel underactuated robot finger device, such as the Chinese invention patent CN101829994A, which includes a base, a motor, a proximal joint shaft, a distal joint shaft, and a terminal finger segment, and also includes a transmission mechanism that realizes coupling and underactuated rotation respectively And multiple spring decoupling devices, etc. When the finger touches the object, the effect of multi-joint coupling rotation is realized, and when the finger touches the object, the multi-joint underactuation method is used to grasp the object. The disadvantage of this device is that the two sets of transmission devices at the proximal and distal joints of the device are heterogeneous, which increases the complexity of its structure; and the heterogeneity will cause the rotation angle of the two joints to be approximately 1:1 within a specific range. Coupling makes the rotation of the distal joint difficult to predict and the difficulty of control increases.
发明内容Contents of the invention
本发明的目的是为了克服已有技术的不足之处,提供一种双连杆滑块式耦合自适应欠驱动机器人手指装置。该装置能实现1:1耦合转动与欠驱动转动相结合的效果,能最大程度上的实现耦合拟人化抓取,且具备欠驱动自适应功能,结构紧凑,传动平稳精确,制造和维护成本低,外形与人手指相似,适用于拟人机器人手。The purpose of the present invention is to overcome the disadvantages of the prior art, and provide a double-link slider type coupling adaptive underactuated robot finger device. The device can achieve the effect of combining 1:1 coupling rotation and under-actuation rotation, and can realize coupling anthropomorphic grasping to the greatest extent, and has an under-actuation self-adaptive function, compact structure, stable and precise transmission, and low manufacturing and maintenance costs , which is similar in shape to a human finger and is suitable for an anthropomorphic robot hand.
本发明采用如下技术方案:The present invention adopts following technical scheme:
本发明所述的一种双连杆滑块式耦合自适应欠驱动机器人手指装置,包括基座、左近关节半轴、第一指段、远关节轴、第二指段和电机,所述的电机设置在基座中,电机的输出轴与左近关节半轴相连;所述的左近关节半轴套设在所述的基座中,所述的远关节轴套设在第一指段中,所述的第二指段套固在所述的远关节轴上;该双连杆滑块式耦合自适应欠驱动机器人手指装置还包括第一拨盘、第一连杆、第一轴、第二轴、第一滑块、第二滑块、第二连杆、第三轴、第四轴、第二拨盘和第一簧件;所述的第一指段套固在左近关节半轴上,第一指段套设在右近关节半轴上;所述的右近关节半轴套设在基座上,右近关节半轴与左近关节半轴共轴,右近关节半轴与第一拨盘固接,所述的第一拨盘套设在左关节半轴上,第一拨盘与基座固接;所述的第一连杆与第一拨盘通过第一轴铰接,另一端与第一滑块通过第二轴铰接;所述的第一滑块镶嵌在第一指段的第一滑槽中,第二滑块镶嵌在第一指段的第二滑槽中,所述的第一滑槽和第二滑槽平行,第一滑块与第二滑块活接触;所述的第二连杆一端与第二滑块通过第三轴铰接,另一端与第二拨盘通过第四轴铰接;所述的第二拨盘套固在远关节轴上;所述的第一簧件设置在第一指段与第二指段之间并且第一簧件的两端分别与第一指段和第二指段相连接,或者所述的第一簧件设置在第二滑块与第一指段之间并且第一簧件的两端分别与第二滑块和第一指段相连接。A double-link slider coupling adaptive underactuated robot finger device according to the present invention includes a base, a left proximal joint half shaft, a first finger segment, a distal joint shaft, a second finger segment and a motor. The motor is arranged in the base, and the output shaft of the motor is connected with the left proximal joint half shaft; the left proximal joint half shaft is sleeved in the base, and the distal joint shaft is sleeved in the first finger section, The second finger segment is sleeved and fixed on the distal joint shaft; the double-link slider coupling adaptive underactuated robot finger device also includes a first dial, a first connecting rod, a first shaft, a second Two shafts, the first slider, the second slider, the second connecting rod, the third shaft, the fourth shaft, the second dial and the first spring; the first finger segment is sleeved on the left proximal joint half shaft On the top, the first finger segment is sleeved on the right proximal joint semi-axis; the right proximal joint semi-axis is sleeved on the base, the right proximal joint semi-axis is coaxial with the left proximal joint semi-axis, and the right proximal joint semi-axis is coaxial with the first dial Fixed connection, the first dial is sleeved on the half shaft of the left joint, and the first dial is fixed to the base; the first connecting rod and the first dial are hinged through the first shaft, and the other end is connected to the The first slider is hinged by the second shaft; the first slider is embedded in the first slide groove of the first finger segment, the second slider is embedded in the second slide groove of the first finger segment, and the The first chute is parallel to the second chute, and the first slider is in live contact with the second slider; one end of the second connecting rod is hinged with the second slider through a third shaft, and the other end is connected with the second dial through The fourth shaft is hinged; the second dial is sleeved on the distal joint shaft; the first spring is arranged between the first finger segment and the second finger segment and the two ends of the first spring are respectively connected to the The first finger segment is connected with the second finger segment, or the first spring part is arranged between the second slider and the first finger segment, and the two ends of the first spring part are connected with the second slider block and the first finger segment respectively. The segments are connected.
本发明所述的一种双连杆滑块式耦合自适应欠驱动机器人手指装置,包括基座、左近关节半轴、第一指段、远关节轴、第二指段和电机,所述的电机设置在基座中,电机的输出轴与左近关节半轴相连;所述的左近关节半轴套设在所述的基座中,所述的远关节轴套设在第一指段中,所述的第二指段套固在所述的远关节轴上;该双连杆滑块式耦合自适应欠驱动机器人手指装置还包括右近关节半轴、第一拨盘、第一连杆、第一轴、第二轴、第一滑块、第二滑块、第二连杆、第三轴、第四轴、第二拨盘、第一簧件和第二簧件;所述的第一指段套固在左近关节半轴上,第一指段套设在右近关节半轴上;所述的第二簧件的两端分别连接第一指段和左近关节半轴;所述的右近关节半轴套设在基座上,右近关节半轴与左近关节半轴共轴,右近关节半轴与第一拨盘固接,所述的第一拨盘套设在左关节半轴上,第一拨盘与基座固接;所述的第一连杆一端与第一拨盘通过第一轴铰接,另一端与第一滑块通过第二轴铰接;所述的第一滑块镶嵌在第一指段的第一滑槽中,第二滑块镶嵌在第一指段的第二滑槽中,所述的第一滑槽和第二滑槽平行,第一滑块与第二滑块活接触;所述的第二连杆一端与第二滑块通过第三轴铰接,另一端与第二拨盘通过第四轴铰接;所述的第二拨盘套固在远关节轴上;所述的第一簧件设置在第一指段与第二指段之间并且第一簧件的两端分别与第一指段和第二指段相连接,或者所述的第一簧件设置在第二滑块与第一指段之间并且第一簧件的两端分别与第二滑块和第一指段相连接。A double-link slider coupling adaptive underactuated robot finger device according to the present invention includes a base, a left proximal joint half shaft, a first finger segment, a distal joint shaft, a second finger segment and a motor. The motor is arranged in the base, and the output shaft of the motor is connected with the left proximal joint half shaft; the left proximal joint half shaft is sleeved in the base, and the distal joint shaft is sleeved in the first finger section, The second finger segment is sleeved on the distal joint shaft; the double-link slider coupling adaptive underactuated robot finger device also includes a right proximal joint half shaft, a first dial, a first connecting rod, The first shaft, the second shaft, the first slider, the second slider, the second connecting rod, the third shaft, the fourth shaft, the second dial, the first spring and the second spring; One finger segment is sleeved on the left proximal joint semi-axis, and the first finger segment is sleeved on the right proximal joint semi-axis; the two ends of the second spring member are respectively connected to the first finger segment and the left proximal joint semi-axis; The right proximal joint semi-axis is sleeved on the base, the right proximal joint semi-axis is coaxial with the left proximal joint semi-axis, the right proximal joint semi-axis is fixedly connected to the first dial, and the first dial is sleeved on the left proximal joint semi-axis , the first dial is fixedly connected to the base; one end of the first connecting rod is hinged with the first dial through the first shaft, and the other end is hinged with the first slider through the second shaft; the first slider Embedded in the first chute of the first finger segment, the second slider is embedded in the second chute of the first finger segment, the first chute and the second chute are parallel, the first slider and the second chute The two sliders are in live contact; one end of the second connecting rod is hinged with the second slider through the third shaft, and the other end is hinged with the second dial through the fourth shaft; the second dial is sleeved and fixed on the distal joint on the shaft; the first spring member is arranged between the first finger segment and the second finger segment and the two ends of the first spring member are respectively connected with the first finger segment and the second finger segment, or the first finger segment A spring is arranged between the second slide block and the first finger section, and the two ends of the first spring piece are respectively connected with the second slide block and the first finger section.
本发明所述的双连杆滑块式耦合自适应欠驱动机器人手指装置,所述的第一连杆、第二连杆、第一拨盘和第二拨盘的结构参数符合以下关系:设第一连杆的长度为L1,第一拨盘的中心线到第二轴的中心线的距离为R1;设第二连杆的长度为L2,第二拨盘的中心线到第四轴的中心线的距离为R2,则:L1∶R1=L2∶R2=2.5~3.5∶1。In the double-link slider type coupling adaptive underactuated robot finger device described in the present invention, the structural parameters of the first connecting rod, the second connecting rod, the first dial and the second dial conform to the following relationship: set The length of the first connecting rod is L1 , the distance from the center line of the first dial to the center line of the second shaft is R1 ; the length of the second connecting rod is L2 , the distance from the center line of the second dial to the center line of the second shaft is
本发明所述的双连杆滑块式耦合自适应欠驱动机器人手指装置,所述的远关节轴由左远关节半轴和右关节半轴组成,所述的左远关节半轴和右远关节半轴共轴套设在第一指段中。In the dual-link slider type coupling self-adaptive underactuated robot finger device described in the present invention, the distal joint axis is composed of a left distal joint semi-axis and a right joint semi-axis, and the left distal joint semi-axis and the right distal joint The joint half shaft is coaxially sleeved in the first finger segment.
本发明所述的双连杆滑块式耦合自适应欠驱动机器人手指装置,所述的第一滑块与第二滑块的活接触方式采用第一滑块与第二滑块单面接触,所述的第一滑块推动第二滑块向手指内滑移。In the double-link slider-type coupling adaptive underactuated robot finger device of the present invention, the living contact mode between the first slider and the second slider adopts single-sided contact between the first slider and the second slider, The first slider pushes the second slider to slide inwardly of the finger.
本发明所述的双连杆滑块式耦合自适应欠驱动机器人手指装置,所述的第一滑块与第二滑块的活接触方式采用绳连接,所述的第一滑块拉动第二滑块向手指内滑移。In the dual-link slider coupling self-adaptive underactuated robotic finger device of the present invention, the living contact between the first slider and the second slider is connected by a rope, and the first slider pulls the second slider. The slider slides inwards of the finger.
本发明所述的双连杆滑块式耦合自适应欠驱动机器人手指装置,所述的簧件采用压簧、扭簧或弹性绳。In the double-link slider type coupling self-adaptive underactuated robot finger device of the present invention, the spring element adopts compression spring, torsion spring or elastic rope.
本发明所述的双连杆滑块式耦合自适应欠驱动机器人手指装置,还包括传动机构,所述的传动机构包括减速器、第一齿轮和第二齿轮;所述的电机的输出轴与减速器的输入轴相连,所述的第一齿轮套固在减速器的输出轴上,所述的第二齿轮套固在近关节轴上,所述的第一齿轮与第二齿轮啮合。The double-link slider type coupling self-adaptive underactuated robot finger device of the present invention also includes a transmission mechanism, and the transmission mechanism includes a reducer, a first gear and a second gear; the output shaft of the motor is connected to the The input shafts of the reducer are connected, the first gear is sleeved on the output shaft of the reducer, the second gear is sleeved on the proximal joint shaft, and the first gear meshes with the second gear.
本发明所述的双连杆滑块式耦合自适应欠驱动机器人手指装置,所述的第二滑块表面覆盖有第二滑块表面板。In the dual-link slider coupling self-adaptive underactuated robot finger device of the present invention, the surface of the second slider is covered with a second slider surface plate.
本发明与现有技术相比,具有以下优点和突出性效果:Compared with the prior art, the present invention has the following advantages and outstanding effects:
本发明装置利用双曲柄滑块和簧件综合实现了耦合转动与欠驱动转动紧密结合的传动效果,不仅能够1:1耦合转动,使其最大限度地实现拟人化抓取物体,而且具备欠驱动功能,自适应抓取不同形状、大小的物体;该装置关节处采取相同的传动装置,使其制造加工简单,结构简洁紧凑,安装容易;该装置实现了耦合传动机构和欠驱动传动机构有机融合,不相互影响,利用滑块活接触的多种方式实现了自然解耦,此解耦不消耗电机功率,能量利用率高。其中第一指段的曲柄滑块机构能够将电机的大角度转动转化为第一滑块的短距离运动,第二指段的曲柄滑块机构能够通过第二滑块的短距离运动实现第二指段大角度的转动,上述特性大大缩减了第一指节的体积。外形与人手手指相似,可以作为拟人机器人手的一个手指或手指的一部分,也可以用多个这样的基于双曲柄滑块的并联耦合欠驱动手指组合成为机器人手,用以达到拟人机器人手高关节自由度、高自适应性的优良效果。The device of the present invention utilizes double crank sliders and spring parts to comprehensively realize the transmission effect of the close combination of coupling rotation and under-actuation rotation, not only capable of 1:1 coupling rotation, so that it can realize anthropomorphic grasping of objects to the greatest extent, but also has under-actuation Function, self-adaptively grasping objects of different shapes and sizes; the joints of the device adopt the same transmission device, making it simple to manufacture and process, simple and compact in structure, and easy to install; the device realizes the organic integration of coupling transmission mechanism and underactuated transmission mechanism , do not affect each other, and realize natural decoupling by using various ways of slider live contact. This decoupling does not consume motor power, and the energy utilization rate is high. The slider-crank mechanism of the first finger section can convert the large-angle rotation of the motor into a short-distance movement of the first slider, and the slider-crank mechanism of the second finger section can realize the second movement through the short-distance movement of the second slider. The above characteristics greatly reduce the volume of the first knuckle due to the large-angle rotation of the finger segment. The shape is similar to that of a human finger, and it can be used as a finger or a part of an anthropomorphic robot hand. It can also be combined into a robot hand with multiple parallel coupled underactuated fingers based on double crank sliders to achieve high joints in an anthropomorphic robot hand. The excellent effect of freedom degree and high adaptability.
附图说明Description of drawings
图1是本发明提供的双连杆滑块式耦合自适应欠驱动机器人手指装置的一种实施例的侧剖视图。Fig. 1 is a side sectional view of an embodiment of a double-link slider coupling adaptive underactuated robot finger device provided by the present invention.
图2是图1所示实施例的正剖视图(也是图1的左侧剖视图)。FIG. 2 is a front sectional view of the embodiment shown in FIG. 1 (also a left sectional view of FIG. 1 ).
图3是本发明又一种实施例(第一滑块和第二滑块之间的活接触采用绳连接的实施例)的侧剖视图。Fig. 3 is a side sectional view of another embodiment of the present invention (an embodiment in which the living contact between the first slider and the second slider is connected by a rope).
图4是本发明又一种实施例(具有变抓取力效果实施例)的正剖视图。Fig. 4 is a front sectional view of another embodiment of the present invention (an embodiment with variable gripping force effect).
图5是图1所示实施例外观的侧视图。Fig. 5 is a side view of the appearance of the embodiment shown in Fig. 1 .
图6是图1所示实施例外观的正视图。Fig. 6 is a front view of the appearance of the embodiment shown in Fig. 1 .
图7是图1所示实施例外观的立体图。Fig. 7 is a perspective view of the appearance of the embodiment shown in Fig. 1 .
图8是图1所示实施例的部分零件的立体图。Fig. 8 is a perspective view of some parts of the embodiment shown in Fig. 1 .
图9是图1所示实施例的三维爆炸视图。Fig. 9 is a three-dimensional exploded view of the embodiment shown in Fig. 1 .
图10、11、12、13是图1所示实施例中实现耦合抓取过程的侧面外观示意图。Figures 10, 11, 12 and 13 are schematic views of the side appearances of the process of realizing coupling grasping in the embodiment shown in Figure 1 .
图14、15、16、17是图1所示实施例中实现耦合抓取以及欠驱动自适应抓取过程的侧面外观示意图。14 , 15 , 16 , and 17 are side appearance schematic diagrams of the coupled grasping and underactuated adaptive grasping processes in the embodiment shown in FIG. 1 .
图18、19、20、21是图1所示实施例中实现先耦合后自适应欠驱动的抓取方式过程的侧面外观示意图。18 , 19 , 20 , and 21 are schematic side views of the process of realizing the grasping mode of coupling first and then adaptive underactuation in the embodiment shown in FIG. 1 .
在图1至图21中:In Figures 1 to 21:
1-基座, 11-基座架, 12-基座背板,1-base, 11-base frame, 12-base back plate,
121-第一凸块 13-基座前板, 14-基座右支承板,121-the first bump 13-the front plate of the base, 14-the right support plate of the base,
15-基座连接板, 2-电机, 3-近关节轴,15-base connecting plate, 2-motor, 3-proximal joint shaft,
31-左近关节半轴, 32-右近关节半轴, 4-第一指段,31-left proximal joint semi-axis, 32-right proximal joint semi-axis, 4-first finger segment,
41-第一指段架, 42-第一指段背板, 421-第二凸块,41-the first finger segment frame, 42-the first finger segment backboard, 421-the second bump,
43-第一指段右支承板, 5-远关节轴, 51-左远关节半轴,43-right bearing plate of the first finger segment, 5-distal joint axis, 51-left distal joint semi-axis,
52-右远关节半轴, 6-第二指段, 71-第一拨盘,52-right distal joint half shaft, 6-second finger segment, 71-first dial,
72-第一连杆, 73-第一滑块, 74-第二滑块,72-the first connecting rod, 73-the first slider, 74-the second slider,
741-滑块表面板, 75-第二连杆, 76-第二拨盘,741-slider surface plate, 75-second link, 76-second dial,
77-第一轴, 78-第二轴, 79-第三轴,77-first axis, 78-second axis, 79-third axis,
80-第四轴, 81-第一簧件, 82-第二簧件,80-the fourth shaft, 81-the first spring, 82-the second spring,
91-减速器, 92-第一齿轮, 93-第二齿轮,91-reducer, 92-first gear, 93-second gear,
94-套筒, 95-销, 96-绳,94-sleeve, 95-pin, 96-rope,
97-物体。97 - Object.
具体实施方式Detailed ways
下面结合附图及实施例进一步详细说明本发明的具体结构、工作原理及工作过程。The specific structure, working principle and working process of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
本发明设计的一种双连杆滑块式耦合自适应欠驱动机器人手指装置的实施例,剖视图如图1、2所示,外观如图5、6所示,立体外观如图7所示,部分零件如图8所示,三维爆炸图如图9所示,动作原理如图10、图11、图12、图13、图14、图15、图16、图17、图18、图19、图20、图21所示。一种双连杆滑块式耦合自适应欠驱动机器人手指装置,包括基座1、左近关节半轴31、第一指段4、远关节轴5、第二指段6和电机2,所述的电机2设置在基座1中,电机2的输出轴与左近关节半轴31相连;所述的左近关节半轴31套设在所述的基座1中,所述的远关节轴5套设在第一指段4中,所述的第二指段6套固在所述的远关节轴5上;该双连杆滑块式耦合自适应欠驱动机器人手指装置还包括右近关节半轴32、第一拨盘71、第一连杆72、第一轴77、第二轴78、第一滑块73、第二滑块74、第二连杆75、第三轴79、第四轴80、第二拨盘76和第一簧件81;所述的第一指段4套固在左近关节半轴31上,第一指段4套设在右近关节半轴32上;所述的右近关节半轴32套设在基座1上,右近关节半轴与左近关节半轴共轴,右近关节半轴与第一拨盘71固接,所述的第一拨盘71套设在左关节半轴31上,第一拨盘71与基座1固接;所述的第一连杆72一端与第一拨盘71通过第一轴77铰接,另一端与第一滑块73通过第二轴78铰接;所述的第一滑块73镶嵌在第一指段4的第一滑槽中,第二滑块74镶嵌在第一指段4的第二滑槽中,所述的第一滑槽和第二滑槽平行,第一滑块73与第二滑块74活接触;所述的第二连杆75一端与第二滑块74通过第三轴79铰接,另一端与第二拨盘76通过第四轴80铰接;所述的第二拨盘76套固在远关节轴5上;所述的第一簧件81设置在第一指段4与第二指段6之间并且第一簧件81的两端分别与第一指段4和第二指段6相连接,或者所述的第一簧件81设置在第二滑块74与第一指段4之间并且第一簧件81的两端分别与第二滑块74和第一指段4相连接。另有实施例剖视图如图3、4所示,第二簧件82的两端分别连接第一指段4和左近关节半轴31,其余结构相同。An embodiment of a dual-link slider coupling adaptive underactuated robot finger device designed by the present invention, the cross-sectional views are shown in Figures 1 and 2, the appearance is shown in Figures 5 and 6, and the three-dimensional appearance is shown in Figure 7. Some parts are shown in Figure 8, the three-dimensional exploded view is shown in Figure 9, and the action principle is shown in Figure 10, Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18, Figure 19, Shown in Figure 20 and Figure 21. A dual-link slider coupling adaptive underactuated robotic finger device, comprising a
本实施例中,所述的第一连杆、第二连杆、第一拨盘和第二拨盘的结构参数符合以下关系:设第一连杆72的长度为L1,第一拨盘71的中心线到第二轴78的中心线的距离为R1;设第二连杆75的长度为L2,第二拨盘76的中心线到第四轴80的中心线的距离为R2,则:L1∶R1=L2∶R2=2.5~3.5∶1。In this embodiment, the structural parameters of the first connecting rod, the second connecting rod, the first dial and the second dial meet the following relationship: Let the length of the first connecting
本实施例中,所述的远关节轴5由左远关节半轴51和右关节半轴52组成,所述的左远关节半轴51和右远关节半轴52共轴套设在第一指段中。In this embodiment, the distal
本实施例中,所述的第一滑块73与第二滑块74的活接触方式采用第一滑块73与第二滑块74单面接触,所述的第一滑块73推动第二滑块74向手指内滑移。In this embodiment, the living contact between the
本实施例中,所述的第一滑块73与第二滑块74的活接触方式采用绳96连接,所述的第一滑块73拉动第二滑块74向手指内滑移。In this embodiment, the living contact between the
本实施例中,所述的簧件81采用压簧、扭簧或弹性绳。In this embodiment, the
本实施例中,还包括传动机构,所述的传动机构包括减速器91、第一齿轮92和第二齿轮93;所述的电机2的输出轴与减速器91的输入轴相连,所述的第一齿轮92套固在减速器91的输出轴上,所述的第二齿轮93套固在近关节轴3上,所述的第一齿轮92与第二齿轮93啮合。In this embodiment, a transmission mechanism is also included, and the transmission mechanism includes a
本实施例中,所述的第二滑块74表面覆盖有第二滑块表面板741。In this embodiment, the surface of the
本发明还提供的一种双连杆滑块式耦合自适应欠驱动机器人手指装置的实施例,其剖视图如图3所示。第一滑块73与第二滑块74的活接触方式采用采用绳96连接,当第一滑块73向手指里移动时,第一滑块73可拉动第二滑块74向手指里滑移。当第一指段4碰到物体,第二滑块74向手指里移动时,第二滑块74对第一滑块73不会产生影响,实现了自然解耦。The present invention also provides an embodiment of a double-link slider coupling adaptive underactuated robotic finger device, the cross-sectional view of which is shown in FIG. 3 . The living contact mode between the
下面结合附图介绍图1所示的双连杆滑块式耦合自适应欠驱动机器人手指装置的实施例的工作原理。The working principle of the embodiment of the dual-link slider coupling adaptive underactuated robot finger device shown in FIG. 1 will be described below with reference to the accompanying drawings.
机器人手指的初始状态如图10所示,此时手指未接触物体97时,第一指段4相对于基座1处于伸直状态(第一凸块121顶着第一指段4使手指不致于反向弯曲);第一簧件81采用的是压簧,该压簧迫使第二指段6与第一指段4之间保持伸直的初始状态,即远关节轴5不发生转动(第二凸块421顶着第二指段6),此时整个手指保持伸直状态。The initial state of the robot finger is shown in Figure 10, when the finger does not touch the object 97, the
本实施例的抓取方式有两种,分别叙述如下:There are two grabbing modes in this embodiment, which are described as follows:
(a)耦合抓取过程(a) Coupled grabbing process
当机器人手指抓取物体97时,电机2正转,通过减速器91带动第一齿轮92转动,驱动第二齿轮93转动,使左近关节轴31正转,带动第一指段4绕左近关节轴31的中心线正转(此正转方向是指第一指段4逐渐迎向需要抓取的物体)。由于第一拨盘71套设在左近关节轴31上且与基座1固接,因此第一指段4的转动,会使得与第一连杆72被第一拨盘71反向拨动(第一连杆72向手指内部平移运动),于是镶嵌在第一指段4中的第一滑块73随着第一连杆72向手指内部平移运动。因为第二滑块74与第一滑块73单面接触,第一滑块73会带动第二滑块74向第一指段4里滑移;第二连杆75向手指里滑移,带动远关节轴5正转,第二指段6正转(迎向需要抓取的物体),直到手指接触物体。When the robot finger grabs the object 97, the
本实施例的第一拨盘71和第二拨盘76的分度圆直径相等,所以第一指段4相对于基座1转动的角度与第二指段6相对于第一指段4转动的角度相同,即实现了1:1的耦合传动。综上所述,本实施例在物体不动的情况下实现了耦合抓取的功能。具体运动过程如图10、图11、图12、图13所示。The pitch circle diameters of the
放开物体的过程与上述抓取物体的过程相同,电机2反转,将带动第一指段4和第二指段6同时反向转动,实现放开物体,最终回复到手指初始的伸直状态。The process of releasing the object is the same as the above process of grabbing the object. The reverse rotation of the
(b)欠驱动抓取过程(b) Underactuated grasping process
有两种欠驱动抓取过程:There are two underactuated grasping processes:
1)第一种欠驱动抓取过程:其他手指和外力直接挤压物体,物体挤压第二滑块74触发欠驱动抓取,最终第二指段6快速扣住物体。具体来说,当第一指段4上可滑动的第二滑块74与物体97接触,第二指段6未与物体接触,物体在其它手指或外力作用下向手指内推动第二滑块74时,第二滑块74向手指里滑移,因为第二滑块74与第一滑块73单面接触,所以不会对第一滑块73产生影响,实现了自然解耦(图3所示实施例采用绳96连接方式实现了自然解耦,原理与此相同,不再赘述)。第二滑块74的滑移会带动第二连杆75向手指里滑动,带动远关节轴5正转,使第二指段6正转直到接触物体实现了抓取,且能够自动适应物体的大小形状,是一种无需电机工作的自适应欠驱动抓取方式。具体运动过程如图14、图15、图16、图17所示。1) The first type of underactuated grasping process: other fingers and external force directly squeeze the object, the object presses the
2)第二种欠驱动抓取过程:物体固定不动(被手掌或其他手指、外力约束),此时本实施例继续转动致使第二滑块74因物体阻挡而被压入第一指段4中从而触发了欠驱动抓取,最终第二指段6快速扣住物体。具体来说,当第一指段4上可滑动的第二滑块74与物体97接触,第二指段6未与物体接触,此时由于物体被手掌或其他手指约束住固定不动,第二滑块74被物体阻挡,此时第一指段4还可以转动一个很小的角度δ,此转动将产生一个第二指段6相对于第一指段4的1:1的耦合转动角度δ(原因见前述的耦合抓取过程),而此时由于第二滑块74已经相对于第一指段4向手指内部滑动了一段较小的距离Δd,因此该变化的距离将使得第二连杆75滑动,从而带动第二拨盘76和第二指段6转动一个较大的角度θ,由于物体与第二滑块74表面的接触点到近关节轴3中心线的距离h大于第一拨盘71的分度圆半径r1,通过下面的计算可知,θ会大于α,从而实现第二指段6转过的角度是一个较大的角度θ,不再是耦合转动的角度α。计算分析如下:此时第一滑块73在第一指段4的较小角度δ的转动过程中会移动一个较小的距离d1,d1=δ·r1。而第二滑块74在第一指段4的较小角度δ的转动过程中会移动一个较大的距离d2,d2=δ·h,由于h大于r1,因此d2大于d1。此时第二滑块74与第一滑块73脱开,实现了自然解耦,第二滑块74平移一个距离d2,导致第二指段6快速扣向物体,此过程直到第二指段6紧紧扣住物体,从而实现了欠驱动抓取过程。此欠驱动抓取实现了对不同形状大小物体的抓取,具有自适应性,减轻了对控制系统的要求。第二种欠驱动抓取过程如图18、图19、图20、图21所示。2) The second under-actuated grasping process: the object is fixed (constrained by the palm or other fingers, external force), and this embodiment continues to rotate at this time, causing the
综合(a)和(b)耦合和自适应抓取过程可知,本实施例实现了一种特殊的先耦合后自适应欠驱动的抓取方式,解耦方式自然,无需损耗电机功率。本发明装置利用电机、两套曲柄滑块机构和簧件综合实现了耦合转动与欠驱动转动紧密结合的传动效果,不仅能够耦合转动比达到了1∶1,能够更拟人化地抓取物体,而且具备欠驱动功能,自适应抓取不同形状、大小的物体;该装置由于采用了一套传动机构就同时实现了耦合和欠驱动抓取,使得整个手指结构简洁紧凑,安装容易,制造加工成本低;该装置耦合传动机构和欠驱动传动机构有机融合,不相互影响,利用滑块活接触的多种方式实现了自然解耦,此解耦不消耗电机功率,能量利用率高;该装置由于采用曲柄滑块机构传动,结构简单,能将较小位移放大为较大的转动角度;其外形与人手手指相似,可以作为拟人机器人手的一个手指或手指的一部分,也可以用多个这样的双连杆滑块式耦合自适应欠驱动机器人手指组合成为机器人手,用以达到拟人机器人手高关节自由度、高自适应性的优良效果。Combining (a) and (b) the coupling and adaptive grasping process, it can be known that this embodiment implements a special grasping method that first couples and then adapts to underactuation, and the decoupling method is natural without loss of motor power. The device of the present invention utilizes the motor, two sets of crank-slider mechanisms and spring parts to comprehensively realize the transmission effect of the close combination of coupled rotation and under-driven rotation. Not only can the coupling rotation ratio reach 1:1, but it can also grasp objects more anthropomorphically. Moreover, it has the function of under-actuation, which can adaptively grasp objects of different shapes and sizes; the device realizes coupling and under-actuation grasping at the same time due to the use of a set of transmission mechanisms, which makes the whole finger structure simple and compact, easy to install, and low in manufacturing and processing costs. Low; the coupling transmission mechanism and the underactuated transmission mechanism of the device are organically integrated without mutual influence, and the natural decoupling is realized by using various methods of slider live contact. This decoupling does not consume motor power and has a high energy utilization rate; the device is due to The crank slider mechanism is used for transmission, the structure is simple, and the small displacement can be amplified into a large rotation angle; its shape is similar to that of a human finger, and it can be used as a finger or a part of an anthropomorphic robot hand, or multiple such fingers can be used The double-link slider coupling adaptive underactuated robot fingers are combined into a robot hand to achieve the excellent effects of high joint freedom and high adaptability of the anthropomorphic robot hand.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010531967CN102039598B (en) | 2010-11-04 | 2010-11-04 | Dual-link slider coupling adaptive underactuated robot finger device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 201010531967CN102039598B (en) | 2010-11-04 | 2010-11-04 | Dual-link slider coupling adaptive underactuated robot finger device |
| Publication Number | Publication Date |
|---|---|
| CN102039598Atrue CN102039598A (en) | 2011-05-04 |
| CN102039598B CN102039598B (en) | 2012-05-02 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 201010531967Expired - Fee RelatedCN102039598B (en) | 2010-11-04 | 2010-11-04 | Dual-link slider coupling adaptive underactuated robot finger device |
| Country | Link |
|---|---|
| CN (1) | CN102039598B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105965529A (en)* | 2016-05-19 | 2016-09-28 | 清华大学 | Eccentric wheel, swing rod and sliding groove type coupling self-adaptation robot finger device |
| CN107139202A (en)* | 2017-05-10 | 2017-09-08 | 王凯 | It is a kind of to become the machine finger turned round based on lever |
| CN107838934A (en)* | 2017-10-27 | 2018-03-27 | 北京理工大学 | It is a kind of can self-adapting grasping connecting rod under-actuated bionic finger |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2175877A (en)* | 1985-05-14 | 1986-12-10 | Francis Taylor Chambers | Robotic hand |
| CN1410234A (en)* | 2002-11-29 | 2003-04-16 | 清华大学 | Robot anthropomorphic multi finger band device |
| JP2003145474A (en)* | 2001-08-31 | 2003-05-20 | Hiroshima Pref Gov | Multi-finger-movable robot hand, and hold control method thereof |
| JP2004358634A (en)* | 2003-06-06 | 2004-12-24 | Akito Sano | Soft finger with built-in tactile sensor |
| JP2005131719A (en)* | 2003-10-29 | 2005-05-26 | Kawada Kogyo Kk | Walking robot |
| JP2005335025A (en)* | 2004-05-28 | 2005-12-08 | Toyota Motor Corp | Finger structure of robot hand |
| US20070035143A1 (en)* | 2005-08-11 | 2007-02-15 | Trevor Blackwell | Robotic hand and arm apparatus |
| CN101049696A (en)* | 2007-05-18 | 2007-10-10 | 清华大学 | Under drive mechanical finger device of connecting rod |
| JP2008006549A (en)* | 2006-06-29 | 2008-01-17 | New-Era Co Ltd | Small-sized rocking opening and closing chuck for robot hand |
| CN101518903A (en)* | 2009-03-27 | 2009-09-02 | 清华大学 | Crank block type under-actuated robot finger device |
| CN101602207A (en)* | 2009-07-10 | 2009-12-16 | 清华大学 | Connecting rod type under-actuated finger mechanism |
| CN101628416A (en)* | 2009-07-31 | 2010-01-20 | 清华大学 | Biarticulate sliding block type directly driving robot finger device with variable holding force |
| CN101653941A (en)* | 2009-09-11 | 2010-02-24 | 清华大学 | Sliding block type direct under-actuated bionic hand device with changeable holding power |
| CN101693372A (en)* | 2009-07-06 | 2010-04-14 | 清华大学 | Connecting rod slider-type under-actuated robot finger device with changeable grasping force |
| CN101829995A (en)* | 2010-04-30 | 2010-09-15 | 清华大学 | Crank block type flexible piece parallel coupled under-actuated finger device |
| CN101829993A (en)* | 2010-04-30 | 2010-09-15 | 清华大学 | Rack crank slide block type parallel coupling under-driving robot finger device |
| CN101829994A (en)* | 2010-04-30 | 2010-09-15 | 清华大学 | Flexible part crank block type parallel coupling underactuated robot finger device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2175877A (en)* | 1985-05-14 | 1986-12-10 | Francis Taylor Chambers | Robotic hand |
| JP2003145474A (en)* | 2001-08-31 | 2003-05-20 | Hiroshima Pref Gov | Multi-finger-movable robot hand, and hold control method thereof |
| CN1410234A (en)* | 2002-11-29 | 2003-04-16 | 清华大学 | Robot anthropomorphic multi finger band device |
| JP2004358634A (en)* | 2003-06-06 | 2004-12-24 | Akito Sano | Soft finger with built-in tactile sensor |
| JP2005131719A (en)* | 2003-10-29 | 2005-05-26 | Kawada Kogyo Kk | Walking robot |
| JP2005335025A (en)* | 2004-05-28 | 2005-12-08 | Toyota Motor Corp | Finger structure of robot hand |
| US20070035143A1 (en)* | 2005-08-11 | 2007-02-15 | Trevor Blackwell | Robotic hand and arm apparatus |
| JP2008006549A (en)* | 2006-06-29 | 2008-01-17 | New-Era Co Ltd | Small-sized rocking opening and closing chuck for robot hand |
| CN101049696A (en)* | 2007-05-18 | 2007-10-10 | 清华大学 | Under drive mechanical finger device of connecting rod |
| CN101518903A (en)* | 2009-03-27 | 2009-09-02 | 清华大学 | Crank block type under-actuated robot finger device |
| CN101693372A (en)* | 2009-07-06 | 2010-04-14 | 清华大学 | Connecting rod slider-type under-actuated robot finger device with changeable grasping force |
| CN101602207A (en)* | 2009-07-10 | 2009-12-16 | 清华大学 | Connecting rod type under-actuated finger mechanism |
| CN101628416A (en)* | 2009-07-31 | 2010-01-20 | 清华大学 | Biarticulate sliding block type directly driving robot finger device with variable holding force |
| CN101653941A (en)* | 2009-09-11 | 2010-02-24 | 清华大学 | Sliding block type direct under-actuated bionic hand device with changeable holding power |
| CN101829995A (en)* | 2010-04-30 | 2010-09-15 | 清华大学 | Crank block type flexible piece parallel coupled under-actuated finger device |
| CN101829993A (en)* | 2010-04-30 | 2010-09-15 | 清华大学 | Rack crank slide block type parallel coupling under-driving robot finger device |
| CN101829994A (en)* | 2010-04-30 | 2010-09-15 | 清华大学 | Flexible part crank block type parallel coupling underactuated robot finger device |
| Title |
|---|
| 《机械设计与研究》 20081231 吴立成,CECCARELLI Marco A Numerical Characterization for the Operation of an Underactuated Finger Mechanism , 2* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105965529A (en)* | 2016-05-19 | 2016-09-28 | 清华大学 | Eccentric wheel, swing rod and sliding groove type coupling self-adaptation robot finger device |
| CN107139202A (en)* | 2017-05-10 | 2017-09-08 | 王凯 | It is a kind of to become the machine finger turned round based on lever |
| CN107838934A (en)* | 2017-10-27 | 2018-03-27 | 北京理工大学 | It is a kind of can self-adapting grasping connecting rod under-actuated bionic finger |
| Publication number | Publication date |
|---|---|
| CN102039598B (en) | 2012-05-02 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102935642B (en) | Connection rod key slot type coupling under-actuated double-joint robot finger device | |
| CN102310411B (en) | Three-axis gear and rack composite underactuated dual-joint robot finger device | |
| CN101716767B (en) | Coupling underactuated integrated bionic hand device | |
| CN101491900B (en) | Anthropomorphic Robot Hand Finger Side Swing Device | |
| CN101941205B (en) | Flexible part and slider type parallel coupled under-actuation robot finger device | |
| CN101653941B (en) | Sliding block type direct under-actuated bionic hand device with changeable holding power | |
| CN105798938A (en) | Parallel-clamping perception self-adaptation robot finger device and control method thereof | |
| CN107309887B (en) | A coupled and adaptive underactuated bionic dexterous finger | |
| CN101829992A (en) | Three-rack slider coupling adaptive underactuated robot finger device | |
| CN102205542A (en) | Multipath flexible piece two-joint compound robot finger device | |
| CN202241307U (en) | Connecting rod slider type under-actuated bionic robot hand device | |
| CN106426239B (en) | Idle running transmission gear coupling adaptive robot finger apparatus | |
| CN101367209A (en) | Five-finger type human simulating manipulator mechanism | |
| CN102284957A (en) | Differential bevel gear rack type combination underactuated robot finger device | |
| CN101829993B (en) | Rack-crank-slider type parallel coupling underactuated robot finger device | |
| CN101829994B (en) | Flexible part crank block type parallel coupling underactuated robot finger device | |
| CN102179817A (en) | Double-flexibility piece composite under-actuated double-joint finger device for robot | |
| CN206393654U (en) | The flat folder indirect self-adaptive robot finger apparatus of rack parallel connection is put in motor | |
| CN101829995A (en) | Crank block type flexible piece parallel coupled under-actuated finger device | |
| CN102039598A (en) | Dual-connecting rod slider type coupling adaptive under-actuated robot finger device | |
| CN101664930B (en) | Coupled underactuated integrated dual-joint robot finger device | |
| CN105598992A (en) | Multi-axis wheel train robot finger device for achieving parallel opening and closing and self-adaptive enveloping | |
| CN106426240B (en) | Idle running kinematic link coupling adaptive robot finger apparatus | |
| CN101941206B (en) | Parallel coupled underactuated finger device with flexible parts and racks | |
| CN101941204B (en) | Double-slider-type parallel coupling under-actuated robot finger device |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right | Owner name:TSINGHUA UNIVERSITY Effective date:20131118 Owner name:WUXI APPLICATION TECHNOLOGY RESEARCH INSTITUTE OF Free format text:FORMER OWNER: TSINGHUA UNIVERSITY Effective date:20131118 | |
| C41 | Transfer of patent application or patent right or utility model | ||
| COR | Change of bibliographic data | Free format text:CORRECT: ADDRESS; FROM: 100084 HAIDIAN, BEIJING TO: 214072 WUXI, JIANGSU PROVINCE | |
| TR01 | Transfer of patent right | Effective date of registration:20131118 Address after:214072 Jiangsu Province Road DiCui Binhu District of Wuxi City No. 100, No. 1 building, 530 floor 12 Patentee after:WUXI RESEARCH INSTITUTE OF APPLIED TECHNOLOGIES, TSINGHUA UNIVERSITY Patentee after:Tsinghua University Address before:100084 Beijing, Haidian District, 100084 box office box office, Tsinghua University, Patentee before:Tsinghua University | |
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20120502 Termination date:20151104 | |
| EXPY | Termination of patent right or utility model |