



本发明涉及光电池的正面基板,尤其是透明玻璃基板,和涉及包含这种基板的光电池。The invention relates to front-side substrates for photovoltaic cells, in particular transparent glass substrates, and to photovoltaic cells comprising such substrates.
在光电池中,具有在入射辐射作用作用下产生电能的光电材料的光电系统被置于背面基板和正面基板之间,这种正面基板是入射辐射在到达光电材料之前穿过的第一基板。In a photovoltaic cell, a photovoltaic system with a photovoltaic material that generates electricity in response to incident radiation is placed between a back substrate and a front substrate, which is the first substrate through which incident radiation passes before reaching the photovoltaic material.
在光电池中,当入射辐射的主要到达方向被认为是自顶向下时,该正面基板在朝向光电材料的主表面的下方通常包括与位于下方的光电材料电接触的透明电极涂层。In a photovoltaic cell, when the main direction of arrival of incident radiation is considered to be top-down, the front-side substrate typically comprises a transparent electrode coating beneath the main surface facing the photovoltaic material that is in electrical contact with the underlying photovoltaic material.
这种正面电极涂层因此一般构成光电池的负端。This front electrode coating thus generally forms the negative terminal of the photovoltaic cell.
当然,该光电池在背面基板方向上也包含随后构成光电池正端的电极涂层,但背面基板的电极涂层一般不是透明的。Of course, the photovoltaic cell also includes an electrode coating in the direction of the rear substrate that subsequently constitutes the positive terminal of the photovoltaic cell, but the electrode coating of the rear substrate is generally not transparent.
在本发明范围中,术语“光电池”应被理解为是指通过太阳辐射转换而在其电极之间产生电流的任何部件组装件,无论这种组装件的尺寸如何且无论生成的电流的电压和强度如何,特别是无论这种部件组装件是否具有一个或多个内部电连接(串联和/或并联)。本发明意义中的“光电池”概念因此在本文中等于“光伏模块”或“光伏板”。Within the scope of the present invention, the term "photovoltaic cell" is to be understood as meaning any assembly of components which, by conversion of solar radiation, generates an electric current between its electrodes, regardless of the size of such assembly and regardless of the voltage and voltage of the current generated. How strong, especially whether such an assembly of parts has one or more internal electrical connections (series and/or parallel). The term "photovoltaic cell" in the sense of the present invention is thus equated here with a "photovoltaic module" or "photovoltaic panel".
常用于正面基板的透明电极涂层的材料通常是基于透明导电氧化物(英语为TCO)的材料,例如基于铟锡氧化物(ITO)或基于铝掺杂的氧化锌(ZnO:Al)或硼掺杂的氧化锌(ZnO:B)或基于氟掺杂的氧化锡(SnO2:F)的材料。The materials commonly used for the transparent electrode coating of the front substrate are usually materials based on transparent conductive oxides (TCO in English), for example based on indium tin oxide (ITO) or based on aluminum-doped zinc oxide (ZnO:Al) or boron Doped zinc oxide (ZnO:B) or materials based on fluorine-doped tin oxide (SnO2 :F).
这些材料化学沉积,例如通过化学气相沉积(CVD)、任选等离子体增强的CVD(PECVD),或物理沉积,例如通过阴极溅射,任选磁场增强的溅射(即磁控管溅射)真空沉积。These materials are deposited chemically, for example by chemical vapor deposition (CVD), optionally plasma enhanced CVD (PECVD), or physically deposited, for example by cathode sputtering, optionally magnetic field enhanced sputtering (i.e. magnetron sputtering) vacuum deposition.
但是,为了获得所希望的电导或更恰当地所希望的低电阻,必须以大约500至1000纳米且甚至有时更高的相对大的物理厚度来沉积由TCO基板料制成的电极涂层,当它们沉积为这种厚度的层时,考虑到这些材料的成本,这是昂贵的。However, in order to obtain the desired conductance or more properly the desired low resistance, electrode coatings made of TCO-based materials must be deposited at relatively large physical thicknesses of the order of 500 to 1000 nanometers and sometimes even higher, when When they are deposited as layers of this thickness, this is expensive considering the cost of these materials.
当沉积法需要供热时,这进一步提高制造成本。This further increases manufacturing costs as the deposition process requires heating.
由TCO基材料制成的电极涂层的另一主要缺点在于下述事实:对所选材料而言,其物理厚度始终是最终获得的电导与最终获得的透明度之间的折衷,因为物理厚度越高,电导率越高,但透明度越低,相反,物理厚度越低,透明度越高,但电导率越低。Another major disadvantage of electrode coatings made of TCO-based materials lies in the fact that, for the chosen material, its physical thickness is always a compromise between the final obtained conductance and the final obtained transparency, since the higher the physical thickness Higher, higher conductivity, but lower transparency, conversely, lower physical thickness, higher transparency, but lower conductivity.
因此,使用由TCO基材料制成的电极涂层,不可能独立地优化电极涂层的电导率及其透明度。Therefore, with electrode coatings made of TCO-based materials, it is not possible to independently optimize the conductivity of the electrode coating and its transparency.
现有技术从国际专利申请WO 01/43204已知制造光电池的方法,其中透明电极涂层不是由TCO基材料制成,而是由沉积在正面基板主表面上的薄层叠层构成,这种涂层包含至少一个金属功能层,尤其是基于银的金属功能层,和至少两个减反射涂层,所述减反射涂层各自包含至少一个减反射层,所述功能层设置在这两个减反射涂层之间。PRIOR ART From the international patent application WO 01/43204 is known a method for the manufacture of photovoltaic cells in which the transparent electrode coating is not made of a TCO-based material but consists of a stack of thin layers deposited on the main surface of the front substrate, such a coating The layer comprises at least one metallic functional layer, in particular a metallic functional layer based on silver, and at least two antireflection coatings each comprising at least one antireflection layer, the functional layers being arranged on the two antireflection layers. between reflective coatings.
该方法的值得注意的在于,当考虑其从上方进入电池的入射光方向时,其在金属功能层下方和光电材料上方沉积至少一个由氧化物或氮化物制成的高折射层。This method is notable in that it deposits at least one highly refractive layer made of oxide or nitride below the metallic functional layer and above the photovoltaic material when considering its direction of incident light entering the cell from above.
该文献提供了实施示例,其中包围金属功能层的两个减反射涂层,即在基板方向上的设置在金属功能层下方的减反射涂层和在基板相对侧的设置在金属功能层上方的减反射涂层,各自包含至少一个由高折射材料,在这种情况下为氧化锌(ZnO)或氮化硅(Si3N4)制成的层。This document provides an implementation example in which two anti-reflection coatings surround the metal functional layer, namely an anti-reflection coating arranged below the metal functional layer in the direction of the substrate and an anti-reflection coating arranged above the metal functional layer on the opposite side of the substrate. Antireflective coatings, each comprising at least one layer made of a highly refractive material, in this case zinc oxide (ZnO) or silicon nitride (Si3 N4 ).
但是,这种解决方案可以进一步改进。However, this solution can be further improved.
现有技术也公开了美国专利US6169246,其涉及具有基于镉的吸收性光电材料的光电池,所述电池包含在主表面上具有透明的电极涂层的透明玻璃正面基板,所述电极涂层由透明的导电氧化物TCO组成。The prior art also discloses US patent US6169246, which relates to photovoltaic cells with absorbing photovoltaic materials based on cadmium, said cells comprising a transparent glass front substrate with a transparent electrode coating on the main surface, said electrode coating consisting of transparent The conductive oxide TCO composition.
根据该文献,将由锡酸锌制成的缓冲层插入在TCO电极涂层上面和在光电材料下面,所述缓冲层因此既不形成TCO电极涂层的一部分又不形成光电材料的一部分。According to this document, a buffer layer made of zinc stannate is inserted above the TCO electrode coating and below the photovoltaic material, said buffer layer thus forming neither part of the TCO electrode coating nor the photovoltaic material.
本发明的重要目的是可以使电荷在电极涂层和光电材料(特别地基于镉的材料)之间迁移,即容易地进行控制并且使该电池的效率因此得到改善。An important object of the present invention is to enable charge transfer between electrode coatings and photovoltaic materials, in particular cadmium-based materials, ie to be easily controlled and thus improve the efficiency of the cell.
另一重要的目的还是制备基于薄层的透明电极涂层,其制备简单并且在工业规模上的制备是尽可能便宜的。A further important aim was also to produce transparent electrode coatings based on thin layers which are simple to produce and which are as inexpensive as possible to produce on an industrial scale.
本发明的主题因此,在其最广意义中,是如权利要求1所述的具有吸收性光电材料,特别地基于镉的材料的光电池。这种电池包含正面基板,尤其是透明玻璃基板,其在主表面上包含由包括至少一个金属功能层,尤其是基于银的金属功能层,和至少两个减反射涂层的薄层叠层构成的透明电极涂层,所述减反射涂层各自包含至少一个减反射层,所述功能层设置在这两个减反射涂层之间,特征在于在基板相对侧的设置在金属功能层上方的减反射涂层包含至少两个减反射层,离金属功能层最远的减反射层是比最接近金属功能层的减反射层更电阻性的。The subject of the invention is therefore, in its broadest sense, a photovoltaic cell with an absorbing photovoltaic material, in particular a material based on cadmium, as described in claim 1 . Such a cell comprises a front substrate, in particular a transparent glass substrate, which comprises on the main surface a thin layer stack comprising at least one metallic functional layer, especially based on silver, and at least two antireflection coatings. Transparent electrode coatings, the antireflection coatings each comprising at least one antireflection layer, the functional layer being arranged between the two antireflection coatings, characterized in that the antireflection layer on the opposite side of the substrate is arranged above the metallic functional layer The reflective coating comprises at least two antireflective layers, the antireflective layer furthest from the metallic functional layer being more resistive than the antireflective layer closest to the metallic functional layer.
电阻率ρ对应于该层的方电阻R乘以它的实际厚度的积。The resistivity p corresponds to the product of the square resistance R of the layer multiplied by its actual thickness.
在本发明的优选变型中,离金属功能层最远的减反射层具有的电阻率等于最靠近金属功能层的减反射层的电阻率的至少5倍、甚至至少10倍、甚至至少50倍、甚至至少100倍、甚至至少200倍、或者至少500倍、甚至至少1000倍。In a preferred variant of the invention, the antireflection layer furthest from the metal functional layer has a resistivity equal to at least 5 times, even at least 10 times, even at least 50 times the resistivity of the antireflection layer closest to the metal functional layer, Even at least 100 times, even at least 200 times, or at least 500 times, even at least 1000 times.
离金属功能层最远的减反射层,其是更电阻性的,优选地具有的电阻率ρ为5×10-3Ω.cm-10Ω.cm,或10-2Ω.cm-5Ω.cm或5×10-2Ω.cm-1Ω.cm。The anti-reflection layer furthest from the metal functional layer, which is more resistive, preferably has a resistivity p of 5×10−3 Ω.cm-10Ω.cm, or 10−2 Ω.cm-5Ω.cm Or 5×10-2 Ω.cm-1Ω.cm.
最靠近金属功能层的减反射层,其是更导电性的,优选地具有的电阻率ρ为10-5Ω.cm-5×10-3Ω.cm(不包括后面的端值),或5×10-4Ω.cm-2×10-3Ω.cm,或10-4Ω.cm-10-3Ω.cm。The anti-reflection layer closest to the metal functional layer, which is more conductive, preferably has a resistivity ρ of 10−5 Ω.cm to 5×10−3 Ω.cm (the latter end values not included), or 5×10-4 Ω.cm-2×10-3 Ω.cm, or 10-4 Ω.cm-10-3 Ω.cm.
而且,离金属功能层最远的减反射层具有的光学厚度优选地占该离基板最远的减反射涂层的总光学厚度的2-50%,并且特别地具有的光学厚度占离该离基板最远的减反射涂层的总光学厚度的2-25%,甚至5-20%。Moreover, the anti-reflection layer farthest from the metal functional layer preferably has an optical thickness of 2-50% of the total optical thickness of the anti-reflection coating farthest from the substrate, and in particular has an optical thickness of 2-25%, or even 5-20% of the total optical thickness of the anti-reflection coating furthest from the substrate.
这种离该金属功能层最远的减反射层优选具有2-100nm,优选地5-50nm,甚至10-30nm的实际厚度。This antireflection layer furthest from the metallic functional layer preferably has an actual thickness of 2-100 nm, preferably 5-50 nm, or even 10-30 nm.
减反射层优选地基于:The antireflection layer is preferably based on:
-任选地掺杂的氧化锌ZnO,如,例如ZnO Al,ZnO:B,或ZnO:Ga;- optionally doped zinc oxide ZnO, such as, for example ZnO Al, ZnO:B, or ZnO:Ga;
-任选地掺杂的氧化锡SnO2,如,例如SnO2:F;- optionally doped tin oxide SnO2 , such as, for example, SnO2 :F;
-任选地掺杂的二氧化钛TiO2,如,例如TiO2:Nb;- optionally doped titanium dioxide TiO2 , such as, for example TiO2 :Nb;
-任选地掺杂的氧化镓Ga2O3;- optionally doped gallium oxide Ga2 O3 ;
-任选地掺杂的氧化铟In2O3;- optionally doped indium oxide In2 O3 ;
-任选地掺杂的氧化硅SiO2;- optionally doped silicon oxide SiO2 ;
-或者基于混合氧化铟锡ITO,- or based on mixed indium tin oxide ITO,
-混合氧化镓锌GZO,- mixed gallium zinc oxide GZO,
-混合氧化锌铟IZO,- mixed zinc indium oxide IZO,
-混合氧化锡锌Zn2SnO4,或- mixed tin zinc oxide Zn2 SnO4 , or
-混合氧化锌铟镓IGZO,- mixed zinc indium gallium oxide IGZO,
这种氧化物任选地是非化学计量的。Such oxides are optionally non-stoichiometric.
最靠近金属功能层的减反射层优选地通常基于透明的导电氧化物(TCO),其获自在下列名单中的元素的至少一种:Al,Ga,Sn,Zn,Sb,In,Cd,Ti,Zr,Ta,W和Mo,特别地获自用这些元素中的至少一种其它元素掺杂的这些元素中的一种的氧化物,这种氧化物任选地为亚化学计量的氧。The anti-reflection layer closest to the metal functional layer is preferably usually based on a transparent conducting oxide (TCO) obtained from at least one of the elements in the following list: Al, Ga, Sn, Zn, Sb, In, Cd, Ti , Zr, Ta, W and Mo, obtained in particular from an oxide of one of these elements doped with at least one other of these elements, this oxide optionally being substoichiometric oxygen.
术语“掺杂”在这里理解为表示在该层中存在至少一种其它金属元素,金属(或者氧元素)的原子比例为0.5-10%。The term "doped" is understood here to mean that at least one other metal element is present in the layer, the atomic proportion of metal (or oxygen element) being 0.5-10%.
混合氧化物在这里是金属元素的氧化物,其每种金属元素以高于10%的金属的原子比例(排除氧元素)存在。Mixed oxides here are oxides of metal elements, each of which is present in an atomic proportion (excluding oxygen) of more than 10% of the metal.
在一种特定的实施变型中,最靠近金属功能层的减反射层和离金属功能层最远的减反射层基于相同的氧化物,特别地基于:In a specific embodiment variant, the antireflection layer closest to the metallic functional layer and the antireflective layer furthest away from the metallic functional layer are based on the same oxide, in particular on:
-氧化锌ZnO;- zinc oxide ZnO;
-氧化锡SnO2;- tin oxide SnO2 ;
-二氧化钛TiO2;- titanium dioxide TiO2 ;
-氧化镓Ga2O3;- gallium oxide Ga2 O3 ;
-氧化铟In2O3;- indium oxide In2 O3 ;
-二氧化硅SiO2;或者- silicon dioxide SiO2 ; or
-基于混合氧化铟锡ITO,- based on mixed indium tin oxide ITO,
-混合氧化镓锌GZO,- mixed gallium zinc oxide GZO,
-混合氧化锌铟IZO,- mixed zinc indium oxide IZO,
-混合氧化锡锌Zn2SnO4,或者- mixed tin zinc oxide Zn2 SnO4 , or
-混合氧化铟镓锌IGZO,- mixed indium gallium zinc oxide IGZO,
这种氧化物任选地是非化学计量的。Such oxides are optionally non-stoichiometric.
最靠近金属功能层的减反射层,其是较小电阻性的,优选地构成设置在金属功能层上面的上减反射涂层(在该基板相对侧)的第一层。The anti-reflection layer closest to the metal functional layer, which is less resistive, preferably constitutes the first layer of the upper anti-reflection coating (on the opposite side of the substrate) arranged above the metal functional layer.
离金属功能层最远的减反射层,其是更电阻性的,优选地构成设置在金属功能层上面的上减反射涂层(在该基板相对侧)的最后层。这种离金属功能层最远的减反射层因此优选地构成电极涂层的最后的层并且它因此直接地与光电材料接触。The antireflection layer furthest from the metallic functional layer, which is more resistive, preferably constitutes the last layer of the upper antireflective coating (on the opposite side of the substrate) arranged above the metallic functional layer. This antireflection layer, which is furthest from the metallic functional layer, therefore preferably forms the last layer of the electrode coating and is therefore in direct contact with the photovoltaic material.
在一方面根据本发明的电极涂层(其,特别地在它的光学定义中,包括更电阻性的最后的层)和另一方面光电材料(特别地基于镉的材料)之间的界面优选地是尽可能光滑的。The interface between the electrode coating according to the invention on the one hand (which, in particular in its optical definition, comprises the more resistive last layer) and the optoelectronic material (in particular cadmium-based materials) on the other hand is preferably The ground is as smooth as possible.
离金属功能层最远的减反射层因此优选地具有5-250埃,特别地15-100埃,或者10-50埃的表面粗糙度。The antireflection layer furthest from the metallic functional layer therefore preferably has a surface roughness of 5-250 angstroms, in particular 15-100 angstroms, or 10-50 angstroms.
观察到通常的光电的材料吸收彼此不同,本发明人已设法定义用于限定前面说明类型的薄层叠层(用于形成用于太阳能电池的正面电极涂层)所需要的重要光学特征。Observing that in general photovoltaic materials absorb differently from each other, the inventors have sought to define the important optical features required to define thin layer stacks of the type described above for forming front electrode coatings for solar cells.
在基板相对侧的设置在金属功能层上方的减反射涂层优选地具有的光学厚度约等于该光电材料的最大吸收波长λm的二分之一。The anti-reflection coating disposed above the metallic functional layer on the opposite side of the substrate preferably has an optical thickness approximately equal to half the maximum absorption wavelength λm of the optoelectronic material.
在基板方向上的设置在金属功能层下方的减反射涂层优选地具有的光学厚度约等于该光电材料的最大吸收波长λm的八分之一。The antireflection coating arranged below the metallic functional layer in the direction of the substrate preferably has an optical thickness approximately equal to one-eighth of the maximum absorption wavelength λm of the optoelectronic material.
在一个优选变型中,该光电材料的最大吸收波长λm然而用太阳光谱加权。在此变型中,在基板相对侧的设置在金属功能层上方的减反射涂层具有的光学厚度约等于该光电材料的吸收光谱乘以太阳光谱的乘积的最大波长λM的二分之一。In a preferred variant, the maximum absorption wavelength λm of the optoelectronic material is however weighted by the solar spectrum. In this variant, the antireflection coating disposed above the metallic functional layer on the opposite side of the substrate has an optical thickness approximately equal to one-half the maximum wavelengthλM of the product of the absorption spectrum of the optoelectronic material times the solar spectrum.
还在此变型中,在基板方向上的设置在金属功能层下方的减反射涂层具有的光学厚度约等于该光电材料的吸收光谱乘以太阳光谱的乘积的最大波长λM的1/8。Also in this variant, the antireflective coating arranged below the metallic functional layer in the direction of the substrate has an optical thickness approximately equal to 1/8 of the maximum wavelengthλM of the product of the absorption spectrum of the optoelectronic material times the solar spectrum.
优选地,设置在金属功能层上方的所述减反射涂层的光学厚度为该光电材料的最大吸收波长λm的0.45至0.55倍,包括这些端点值,优选地,设置在金属功能层上方的所述减反射涂层的光学厚度为该光电材料的吸收光谱乘以太阳光谱的乘积的最大波长λM的0.45至0.55倍,包括这些端点值。Preferably, the optical thickness of the anti-reflection coating disposed above the metal functional layer is 0.45 to 0.55 times the maximum absorption wavelength λm of the optoelectronic material, including these endpoint values, preferably, the optical thickness of the anti-reflection coating disposed above the metal functional layer The optical thickness of the antireflection coating is from 0.45 to 0.55 times the maximum wavelengthλM of the product of the absorption spectrum of the optoelectronic material times the solar spectrum, inclusive.
优选地,设置在金属功能层下方的减反射涂层的光学厚度为该光电材料的最大吸收波长λm的0.075至0.175倍,包括这些端点值,优选地,设置在金属功能层下方的所述减反射涂层的光学厚度为该光电材料的吸收光谱乘以太阳光谱的乘积的最大波长λM的0.075至0.175倍,包括这些端点值。Preferably, the optical thickness of the anti-reflection coating disposed under the metal functional layer is 0.075 to 0.175 times the maximum absorption wavelength λm of the optoelectronic material, including these endpoint values, preferably, the said antireflection coating disposed below the metal functional layer The optical thickness of the antireflective coating is from 0.075 to 0.175 times the maximum wavelengthλM of the product of the absorption spectrum of the optoelectronic material times the solar spectrum, inclusive.
因此,根据本发明,作为该光电材料的最大吸收波长λm的函数,或优选作为该光电材料的吸收光谱乘以太阳光谱的乘积的最大波长λM的函数来定义最佳光程,以获得光电池的最好的效率。Thus, according to the invention, the optimal optical path is defined as a function of the maximum absorption wavelengthλ of the photovoltaic material, or preferably as a function of the maximum wavelengthλ of the product of the absorption spectrum of the photovoltaic material times the solar spectrum, to obtain The best efficiency of photovoltaic cells.
本文提到的太阳光谱是由ASTM标准规定的AM 1.5太阳光谱。The solar spectrum referred to in this article is the AM 1.5 solar spectrum specified by the ASTM standard.
对于本发明,术语“涂层”应被理解为是指在该涂层中可以有多个不同材料的层。For the purposes of the present invention, the term "coating" is understood to mean that there may be a plurality of layers of different materials in the coating.
对于本发明,“减反射层”应被理解为:从其性质的角度看,该材料是非金属的,即不是金属。在本发明范围中,这一术语应不理解为引入对该材料的电阻率的限制,其可以是导体材料(通常ρ<10-3Ω.cm)或绝缘体材料(通常ρ>109Ω.cm)或半导体材料(通常在上面两个值之间)。For the purposes of the present invention, "anti-reflection layer" is understood to mean that the material is, from the point of view of its properties, non-metallic, ie not a metal. Within the scope of the present invention, this term should not be understood as introducing a restriction on the resistivity of the material, which may be a conductor material (typically ρ<10−3 Ω.cm) or an insulator material (typically ρ>109 Ω.cm). cm) or semiconductor material (usually between the above two values).
完全令人惊讶地和与其它任何特征无关地,包含具有单功能层的薄层叠层的电极涂层的光程能够获得改进的光电池效率,以及改进对电池运行过程中产生的应力的耐受性,其中该叠层具有设置在金属功能层上方的减反射涂层,该减反射涂层的光学厚度等于设置在金属功能层下方的减反射涂层的光学厚度的大约四倍。Completely surprising and independently of any other features, the optical path of an electrode coating comprising a thin layer stack with a single functional layer enables improved photovoltaic cell efficiency, as well as improved resistance to stresses generated during cell operation , wherein the stack has an anti-reflection coating disposed above the metal functional layer, the anti-reflection coating having an optical thickness equal to about four times the optical thickness of the anti-reflection coating disposed below the metal functional layer.
围绕金属功能层的涂层的目的是使这种金属功能层“减反射”。因此它们被称作“减反射涂层”。The purpose of the coating around the metallic functional layer is to make such metallic functional layer "anti-reflective". They are therefore called "anti-reflection coatings".
实际上,尽管该功能层可独自获得对于该电极涂层的所希望的电导率,但即使在小的物理厚度(大约10纳米)时,所述层将强烈阻碍光和电磁辐射的通过。In fact, even at small physical thicknesses (approximately 10 nanometers), said functional layers strongly impede the passage of light and electromagnetic radiation, although the functional layer alone can achieve the desired electrical conductivity for the electrode coating.
在不存在这种减反射系统的情况下,光透射这时将是非常低的,光反射太强(在可见光和近红外线中,因为其涉及制造光电池)。In the absence of such an anti-reflection system, the light transmission would then be very low and the light reflection would be too strong (in the visible and near infrared as it relates to the manufacture of photovoltaic cells).
术语“光程”在本文中具有特定含义并用于表示由此制成的干涉滤波器的(或每个)金属功能层的下邻和上邻的各种减反射涂层的不同光学厚度的总和。要提醒的是,涂层的光学厚度在涂层中只有单层时等于该层的物理厚度乘以其材料的指数的乘积,或在存在多层时等于各层的物理厚度乘以各层的材料的指数的乘积的总和。The term "optical path" has a specific meaning herein and is used to denote the sum of the different optical thicknesses of the various anti-reflection coatings next to and above the (or each) metallic functional layer of the resulting interference filter . As a reminder, the optical thickness of a coating is equal to the product of the physical thickness of that layer multiplied by the exponent of its material when there is only a single layer in the coating, or the physical thickness of each layer multiplied by the The sum of the products of the exponents of the material.
根据本发明的光程在绝对意义上是金属功能层的物理厚度的函数,但实际上,在能够获得所希望的电导率的金属功能层的物理厚度范围内,其可谓不变。因此,当所述一个或多个功能层基于银、并具有(总共具有)5至20纳米的物理厚度(包括这些端点值)时,本发明的解决方案合适。The optical path length according to the invention is a function of the physical thickness of the metal functional layer in an absolute sense, but in practice it can be said to be constant within the range of the physical thickness of the metal functional layer in which the desired electrical conductivity can be obtained. The solution of the invention is therefore suitable when the one or more functional layers are based on silver and have (in total) a physical thickness of 5 to 20 nanometers inclusive.
本发明的薄层叠层的类型在建筑或汽车窗玻璃领域中是已知的用于制造“低发射率(bas-émissif)”和/或“日光控制”类型的具有提高的隔热性的窗玻璃。Thin film laminates of the type according to the invention are known in the field of architectural or automotive glazing for the manufacture of windows with increased thermal insulation of the "low emissivity" and/or "solar control" type Glass.
本发明人因此注意到,用于低发射率窗玻璃的那些类型的某些叠层特别适合用于制造光电池用的电极涂层,特别是被称作“可淬火的”叠层或“待淬火的”叠层的叠层,即在希望使该载带叠层的基板经受淬火处理,特别地经受热淬火处理时所用的那些。The inventors have thus noticed that certain stacks of those types used in low-emissivity glazing are particularly suitable for use in the manufacture of electrode coatings for photovoltaic cells, in particular so-called "quenchable" stacks or "to-be-quenchable" stacks. "stacks of" stacks, ie those used when it is desired to subject the substrate of the tape carrier stack to a quenching treatment, in particular to a thermal quenching treatment.
因此,本发明的还一主题是用于建筑窗玻璃的薄层叠层,特别根据本发明的这类的叠层,其是“可淬火的”或“待淬火”的,尤其根据本发明的低发射率叠层,其特别是“可淬火的”或“待淬火”的低发射率叠层用于制造光电池正面基板的用途。A further subject of the present invention is therefore a thin-film laminate for architectural glazing, in particular a laminate of this type according to the invention, which is "hardenable" or "to be hardened", especially according to the invention with low The use of emissivity stacks, in particular "quenchable" or "to-be-quenchable" low-emissivity stacks, for the production of front substrates for photovoltaic cells.
术语“可淬火的”叠层或基板在本发明意义中应被理解为是指在热处理过程中保持基本光学性质和热性质(以与发射率直接相关联的方电阻表示)。The term "quenchable" stack or substrate is understood in the sense of the present invention to mean that the essential optical and thermal properties (expressed in square resistance directly linked to emissivity) are maintained during heat treatment.
因此,可以例如在建筑物的同一正面上将包含都用相同叠层覆盖的淬火基板和未淬火基板的窗玻璃板彼此靠近进行设置,而不可能通过反射颜色和/或光反射/透射的简单目测来彼此区分。Thus, it is possible, for example, to arrange glazing panels comprising tempered and untempered substrates both covered with the same laminate close to each other on the same facade of a building, without the possibility of simply reflecting color and/or light reflection/transmission. Visual inspection to distinguish from each other.
例如,在热处理之前和之后具有下列变化的叠层或覆盖有叠层的基板被视为可淬火的,因为这些变化不可被肉眼察觉:For example, laminates or substrates covered with laminates that have the following changes before and after heat treatment are considered hardenable because these changes are not perceptible to the naked eye:
-小于3%或甚至小于2%的低光透射变化ΔTL(可见光);和/或- a low light transmission change ΔTL (visible light) of less than 3% or even less than 2%; and/or
-小于3%或甚至小于2%的低光反射变化ΔRL(可见光);和/或- a change in low light reflectance ΔRL (visible light) of less than 3% or even less than 2%; and/or
-小于3或甚至小于2的低颜色变化(在Lab系统中)- Low color change of less than 3 or even less than 2 (in Lab system)
“待淬火的”叠层或基板在本发明意义中应被理解为是指经覆盖的基板的光学性质和热性质在热处理后是可接受的,而它们在之前是不可接受的,或无论如何不是都可接受的。"To-be-quenched" stack or substrate is understood in the sense of the present invention to mean that the optical and thermal properties of the covered substrate are acceptable after heat treatment, whereas they were unacceptable before, or in any case Not all are acceptable.
例如,在热处理后具有下列特性而在热处理之前不满足这些特性中的至少一个的叠层或覆盖有叠层的基板在本发明内被视为“待淬火的”:For example, a stack or a substrate covered with a stack that has the following properties after heat treatment but does not satisfy at least one of these properties before heat treatment is considered "to be quenched" within the present invention:
-至少65%或甚至70%或甚至至少75%的高的光透射TL(在可见光中);和/或- a high light transmissionTL (in visible light) of at least 65%, or even 70%, or even at least 75%; and/or
-小于或等于10%或小于或等于8%或甚至小于或等于5%的低的光吸收(在可见光中,通过1-TL-RL确定);和/或- low light absorption (in visible light, determined by 1-TL-RL ) of less than or equal to 10% or less than or equal to 8% or even less than or equal to 5%; and/or
-与常用的导电氧化物至少一样好的方电阻(résistance par carré)R□,特别是小于或等于20Ω/□,甚至小于或等于15Ω/□,甚至等于或小于或等于10Ω/□。- A square resistance (résistance par carré) R□ at least as good as that of commonly used conductive oxides, especially less than or equal to 20 Ω/□, even less than or equal to 15 Ω/□, even less than or equal to 10 Ω/□.
因此,该电极涂层必须是透明的。其因此在沉积在基板上后,在300至1200纳米波长范围内,必须具有65%或甚至75%,更优选85%,更尤其至少90%的的最小平均光透射。Therefore, the electrode coating must be transparent. It must therefore, after deposition on the substrate, have a minimum average light transmission of 65% or even 75%, more preferably 85%, more especially at least 90%, in the wavelength range from 300 to 1200 nm.
如果该正面基板在沉积薄层后和在其装配到光电池中之前经受热处理,尤其是淬火热处理,覆盖有充当电极涂层的叠层的基板完全可能在这种热处理之前具有较低透明度。例如,其在这种热处理之前可具有小于65%或甚至小于50%的在可见光中的光透射。If the front-side substrate is subjected to a heat treatment, in particular a quenching heat treatment, after deposition of the thin layers and before its assembly into a photovoltaic cell, it is entirely possible that the substrate covered with the stack serving as electrode coating has a lower transparency before such heat treatment. For example, it may have a light transmission in the visible light of less than 65%, or even less than 50%, prior to such heat treatment.
重要一点是,该电极涂层在热处理之前是透明的,并在热处理后,在300至1200纳米之间范围(在可见光中)内,具有如至少65%,甚至75%,更优选85%,或更尤其至少90%的的平均光透射。It is important that the electrode coating is transparent before heat treatment and after heat treatment has, for example, at least 65%, even 75%, more preferably 85%, in the range between 300 and 1200 nm (in visible light), Or more particularly an average light transmission of at least 90%.
此外,在本发明范围中,该叠层并非绝对地具有尽可能最好的光透射,但在本发明的光电池的背景中具有尽可能最好的光透射。Furthermore, within the scope of the invention, the laminate does not absolutely have the best possible light transmission, but in the context of the photovoltaic cell according to the invention has the best possible light transmission.
设置在金属功能层下方的减反射涂层也可以具有对扩散,特别是对来自基板的钠的扩散的化学阻隔功能,因此保护电极涂层,更特别金属功能层,尤其是在任选的热处理,尤其淬火热处理过程中。The anti-reflection coating arranged below the metallic functional layer may also have a chemical barrier function against diffusion, in particular of sodium from the substrate, thus protecting the electrode coating, more particularly the metallic functional layer, especially after the optional heat treatment , especially during quenching heat treatment.
在另一具体实施方案中,该基板在电极涂层下方包括具有与该基板低折光指数接近的低折光指数的底部减反射层(couche antireflet debase),所述底部减反射层优选基于氧化硅或基于氧化铝或基于两者的混合物。In another particular embodiment, the substrate comprises, beneath the electrode coating, a couche antireflet debase having a low refractive index close to the low refractive index of the substrate, said bottom antireflective layer being preferably based on silicon oxide or Based on alumina or a mixture of both.
此外,这种介电层可以构成扩散化学阻隔层,特别是来自基板的钠的扩散阻隔层,因此保护电极涂层,更特别金属功能层,尤其是在任选的热处理,尤其淬火热处理过程中,或者用于光电材料的处理。Furthermore, such a dielectric layer can constitute a diffusion chemical barrier, in particular of sodium from the substrate, thus protecting the electrode coating, more particularly the metallic functional layer, especially during optional heat treatment, especially quenching heat treatment , or for the processing of optoelectronic materials.
在本发明背景中,介电层是不参与电荷位移(电流)的层或其参与电荷位移的作用与该电极涂层的其它层相比可被视为0的层。In the context of the present invention, a dielectric layer is a layer that does not participate in charge displacement (current flow) or whose contribution to charge displacement can be considered zero compared to the other layers of the electrode coating.
此外,这种底部减反射层优选具有10至300纳米或35至200纳米,再更优选50至120纳米的物理厚度。Furthermore, such a bottom antireflection layer preferably has a physical thickness of 10 to 300 nm or 35 to 200 nm, still more preferably 50 to 120 nm.
这种金属功能层可以基于银、铜或金,并可以任选被这些元素中的至少另一种掺杂。Such metallic functional layers can be based on silver, copper or gold and can optionally be doped with at least one other of these elements.
术语“基于”以通常方式被理解为是指主要含有该材料,即按摩尔质量计含有至少50%这种材料的层。术语“基于”因此覆盖掺杂。The term "based on" is understood in the usual way to mean a layer which mainly contains this material, ie contains at least 50% by molar mass of this material. The term "based on" thus covers doping.
金属功能层优选以结晶形式沉积在薄介电层上,该薄介电层也优选是结晶的(因此被称作“润湿层”,因为其促进沉积在其上的金属层的合适的结晶取向)。The metallic functional layer is preferably deposited in crystalline form on a thin dielectric layer, which is also preferably crystalline (hence the name "wetting layer", since it promotes proper crystallization of the metal layer deposited thereon) orientation).
制造该电极涂层的薄层叠层优选是单功能层涂层,即具有单个功能层。然而,其可以是功能多层,尤其功能双层。The thin-layer stack from which the electrode coating is produced is preferably a monofunctional layer coating, ie has a single functional layer. However, it may be a functional multilayer, especially a functional bilayer.
该功能层因此优选沉积在基于氧化物,尤其基于氧化锌并任选掺杂的,任选被铝掺杂的润湿层上方,或甚至直接沉积在其上。The functional layer is thus preferably deposited over the oxide-based, especially zinc oxide-based and optionally doped, optionally doped with aluminium, wetting layer, or even directly thereon.
该润湿层的物理(或实际)厚度优选为2至30纳米,更优选3至20纳米。The physical (or actual) thickness of the wetting layer is preferably from 2 to 30 nm, more preferably from 3 to 20 nm.
这种润湿层是介电的,并且是优选具有如0.5Ω.cm<ρ<200Ω.cm或如50Ω.cm<ρ<200Ω.cm的电阻率ρ(是指该层的方电阻R□乘以其厚度的乘积)的材料。This wetting layer is dielectric and preferably has a resistivity p (referring to the square resistance R of the layer) such as 0.5Ω. times its thickness) material.
该叠层通常通过使用真空的技术,如阴极溅射(任选磁场增强的)进行一系列预形成的沉积来获得。也可以提供一个或甚至两个极薄的被称作“阻隔涂层”的涂层,其不构成减反射涂层的一部分,直接设置在每个金属功能层(尤其是银基)的下方、上方或每个面上,该在基板方向上与该功能层下邻的涂层在沉积后进行的可能的热处理过程中充当粘结、成核和/或保护涂层,和在该功能层上邻的涂层充当保护或“牺牲”涂层以防止该金属功能层由于设置在其上的层的氧侵袭和/或迁移而受损害,尤其是在任选的热处理过程中,甚至如果设置在其上的层通过在氧存在下的阴极溅射进行沉积,由于氧迁移产生的损害。The stack is usually obtained by a series of preformed depositions using vacuum techniques such as cathode sputtering (optionally magnetic field enhanced). It is also possible to provide one or even two very thin coatings called "barrier coatings", which do not form part of the anti-reflection coating and are placed directly under each metallic functional layer (especially silver-based), On or on each side, the coating adjacent to the functional layer in the direction of the substrate acts as a bonding, nucleating and/or protective coating during a possible heat treatment after deposition, and on the functional layer The adjacent coating acts as a protective or "sacrificial" coating to prevent the metallic functional layer from being damaged by oxygen attack and/or migration of the layer disposed thereon, especially during optional heat treatment, even if disposed at The layers thereon are deposited by cathodic sputtering in the presence of oxygen, damage due to oxygen migration.
在本发明意义中,当明确指出层或涂层(包含一层或多层)直接沉积在另一沉积层的下方或上方时,在这两个沉积层之间不能有另一层插入。In the sense of the present invention, when it is expressly stated that a layer or coating (comprising one or more layers) is deposited directly below or above another deposited layer, no further layer may be interposed between these two deposited layers.
优选地,至少一个阻隔涂层基于Ni或Ti或基于Ni基合金,尤其基于NiCr的合金。Preferably, at least one barrier coating is based on Ni or Ti or on a Ni-based alloy, especially on a NiCr-based alloy.
优选地,在基板方向上在金属功能层下方的涂层包含基于混合氧化物,特别地基于混合氧化锌锡或混合氧化铟锡(ITO)的层。Preferably, the coating below the metallic functional layer in the direction of the substrate comprises a layer based on mixed oxides, in particular based on mixed zinc tin oxide or mixed indium tin oxide (ITO).
此外,在基板方向上在金属功能层下方的涂层和/或在金属功能层上方的涂层可以包含具有高折光指数的层,尤其是高于或等于2的折光指数,例如基于任选地例如用铝或锆掺杂的氮化硅的层。Furthermore, the coating below the metallic functional layer in the direction of the substrate and/or the coating above the metallic functional layer can contain layers with a high refractive index, in particular a refractive index higher than or equal to 2, for example based on the optional For example a layer of silicon nitride doped with aluminum or zirconium.
此外,在基板方向上在金属功能层下方的涂层和/或在金属功能层上方的涂层可以包含具有极高折光指数的层,尤其是等于或高于2.35的折光指数,例如基于氧化钛的层。Furthermore, the coating below the metallic functional layer in the direction of the substrate and/or the coating above the metallic functional layer can contain layers with a very high refractive index, in particular a refractive index equal to or higher than 2.35, for example based on titanium oxide layer.
该基板可以在正面基板相对侧在电极涂层上方包括基于光电材料,尤其基于镉的光电材料的涂层。The substrate may comprise, on the side opposite the front substrate, a coating based on optoelectronic material, especially cadmium-based optoelectronic material, above the electrode coating.
本发明的正面基板的优选结构因此具有下述类型:基板/(任选的底部减反射层)/电极涂层/光电材料,或下述类型:基板/(任选的底部减反射层)/电极涂层/光电材料/电极涂层。A preferred structure of the front substrate of the invention is therefore of the type: substrate/(optional bottom anti-reflection layer)/electrode coating/photoelectric material, or of the type: substrate/(optional bottom anti-reflection layer)/ Electrode coating/photoelectric material/electrode coating.
在一个特定变型中,该电极涂层由建筑窗玻璃用的叠层,尤其地“可淬火的”或“待淬火的”建筑窗玻璃用的叠层,和特别地低发射率叠层,尤其是“可淬火的”或“待淬火的”低发射率叠层构成,这种薄层叠层具有本发明的特征。In a particular variant, the electrode coating consists of laminates for architectural glazing, especially laminates for "temperable" or "to-be-tempered" architectural glazing, and especially low-emissivity laminates, especially Constructed of "quenchable" or "to-be-quenched" low emissivity stacks, such thin layer stacks are characteristic of the present invention.
本发明还涉及本发明的光电池用的基板,尤其是具有本发明的特征的覆盖有薄层叠层的建筑窗玻璃用的基板,尤其是具有本发明的特征的建筑窗玻璃用的“可淬火的”或“待淬火的”建筑窗玻璃用的基板,特别是低发射率基板,尤其是具有本发明的特征的“可淬火的”或“待淬火的”低发射率基板。The invention also relates to a substrate for a photovoltaic cell according to the invention, in particular a substrate for architectural glazing covered with a laminate of thin layers having the features of the invention, especially a "temperable" for architectural glazing having the features of the invention " or "to-be-tempered" substrates for architectural glazing, especially low-emissivity substrates, especially "temperable" or "to-be-tempered" low-emissivity substrates having the features of the present invention.
该电极涂层的所有层都优选通过真空沉积技术进行沉积,但无论如何不排除该叠层的第一层或前几层可通过其它技术进行沉积,例如通过热解型热分解技术或通过CVD,任选在真空下,并任选通过等离子体增强。All layers of the electrode coating are preferably deposited by vacuum deposition techniques, but in any case it is not excluded that the first or first layers of the stack may be deposited by other techniques, for example by pyrolytic-type thermal decomposition techniques or by CVD , optionally under vacuum, and optionally enhanced by plasma.
有利地,具有薄层叠层的本发明的电极涂层的机械抗性也远高于TCO电极涂层。因此,可提高光电池的寿命。Advantageously, the mechanical resistance of the electrode coatings of the invention with thin layer stacks is also much higher than that of TCO electrode coatings. Therefore, the lifetime of the photovoltaic cell can be improved.
还有利地,由于它的小的物理厚度(与由基于TCO材料制成的电极相比较),根据本发明的具有一个或多个金属功能层的电极更容易蚀刻,特别地通过激光蚀刻:需要更低的能量和较短的时间以获得通常在该电极的整个厚度上进行的纵向分离(被称为“模块化”步骤);而且,在相同的蚀刻宽度,这种蚀刻步骤导致比对于由基于TCO的材料制成的电极更少的材料除去,并且因此降低了由被除去的材料污染电池的风险。Also advantageously, due to its small physical thickness (compared to electrodes made of TCO-based materials), electrodes according to the invention with one or more metallic functional layers are easier to etch, in particular by laser etching: Lower energy and shorter time to obtain the longitudinal separation (known as "modular" step) usually over the entire thickness of the electrode; moreover, at the same etching width, this etching step results Electrodes made of TCO-based materials require less material removal, and thus reduce the risk of contaminating the cell with removed material.
还有利地,根据本发明的电极涂层完全可以用作背面的电极涂层,特别地当希望至少一小部分入射光线完全穿过光电池时。Also advantageously, the electrode coating according to the invention can be used at all as an electrode coating on the rear side, in particular when it is desired that at least a fraction of the incident light rays completely pass through the photovoltaic cell.
通过借助附图进行说明的下列非限制性实施例突出本发明的细节和有利特征,其中:Details and advantageous features of the invention are highlighted by the following non-limiting examples, illustrated with the aid of figures, in which:
-图1显示现有技术的光电池正面基板,覆盖有由透明导电氧化物制成的电极涂层并具有底部减反射层;- Figure 1 shows a prior art photovoltaic cell front substrate covered with an electrode coating made of transparent conductive oxide and having a bottom anti-reflection layer;
-图2显示本发明的光电池的正面基板,覆盖有由单功能层薄层叠层构成的电极涂层并具有底部减反射层;- Figure 2 shows the front substrate of a photovoltaic cell according to the invention, covered with an electrode coating consisting of a thin layer stack of single functional layers and having a bottom anti-reflection layer;
-图3显示三种光电材料的量子效率曲线;- Figure 3 shows the quantum efficiency curves of the three optoelectronic materials;
-图4显示与这三种光电材料的吸收光谱乘以太阳光谱的乘积对应的实际效率曲线;- Figure 4 shows the actual efficiency curves corresponding to the product of the absorption spectrum times the solar spectrum for these three optoelectronic materials;
-图5显示光电池的耐久性试验的原理;和- Fig. 5 shows the principle of the durability test of the photovoltaic cell; and
-图6显示光电池的横截面图。- Figure 6 shows a cross-sectional view of a photovoltaic cell.
在图1、2、5和6中,为使它们更容易查看,不同涂层、层和材料的厚度之间的比例不是严格遵守的。In Figures 1, 2, 5 and 6, the ratios between the thicknesses of the different coatings, layers and materials are not strictly observed in order to make them easier to see.
图1显示具有吸收性光电材料200的现有技术的光电池正面基板10′,所述基板10′在主表面上包含由TCO导电层66构成的透明电极涂层100′。FIG. 1 shows a prior art photovoltaic
将正面基板10′置于光电池中以使所述正面基板10′是入射辐射R在到达光电材料200之前穿过的第一基板。The
基板10′还包括,在电极涂层100′下方,即直接在基板10′上,具有接近于该基板的折光指数的低折光指数n22的底部减反射层22。The substrate 10' also comprises, below the electrode coating 100', ie directly on the substrate 10', a
基板10′进一步可以包括,在电极涂层100′上和光电材料200下,缓冲层(未显示)。The substrate 10' may further include, on the electrode coating 100' and below the
图2显示本发明的光电池正面基板10。FIG. 2 shows a photovoltaic
正面基板10也在主表面上包含透明电极涂层100,但在此,这种电极涂层100由包含至少一个基于银的金属功能层40和至少两个减反射涂层20,60的薄层叠层构成,所述涂层各自包含至少一个薄减反射层24,26;66,68所述功能层40设置在这两个减反射涂层(其一在基板方向上位于该功能层下方的被称为下邻减反射涂层20,和另一在基板相对方向上的位于该功能层上方的被称为上邻减反射涂层60)之间。The
构成图2的透明电极涂层100的薄层叠层是低发射率基板的叠层结构类型的叠层结构,任选是可淬火的或待淬火的,具有单功能层,如商业上可用于建筑物的建筑窗玻璃领域中的那样。The thin layer stack that makes up the
基于所示具有单功能层的叠层结构制造两个实施例,编号为1和2:Two examples, numbered 1 and 2, were fabricated based on the illustrated stack structure with a single functional layer:
-对于图1的实施例1;和- for example 1 of Figure 1; and
-对于图2的实施例2,除了该叠层不含阻隔上涂层(revêtement desur-blocage)。- For example 2 of Figure 2, except that the laminate does not contain a barrier overcoat (revêtement de sur-blocage).
此外,在下列所有实施例中,所述层沉积在由厚度4毫米的明亮钠钙玻璃制成的基板10′、10上。Furthermore, in all the following examples, the layers are deposited on
下面给出的指数在550nm波长时进行测量。The indices given below are measured at a wavelength of 550 nm.
实施例1的电极涂层100′基于导电的铝掺杂的氧化锌。The electrode coating 100' of Example 1 is based on conductive aluminum-doped zinc oxide.
构成实施例2的电极涂层100的叠层由薄层叠层构成,该薄层叠层以以下顺序包含:The stack constituting the
-减反射层24,其是基于氧化钛的介电层,指数n=2.4;-
-减反射层26,其是基于氧化物的润湿层,尤其基于氧化锌,任选地掺杂的,介电的,指数n=2;-
-任选地,下邻阻隔涂层(未标示),例如基于Ti或基于NiCr合金,可直接设置在功能层40下方但在此处没有提供;如果没有润湿层26,该涂层通常是需要的,但不是必不可少的;- Optionally, an underlying barrier coating (not indicated), e.g. based on Ti or on a NiCr alloy, may be provided directly below the
-银制单功能层40因此在此处直接设置在润湿涂层26上;- the single
-基于Ti或基于NiCr合金的上邻阻隔涂层50可直接设置在功能层40上,但在这些实施例中没有提供;- an upper
-具有指数n=2的基于掺杂铝的氧化锌的导电减反射层66,且其电阻率为0.35×10-3Ω.cm-2.5×10-3Ω.cm,特别地几乎大约10-3Ω.cm,这种层在这里在氩气氛下从陶瓷靶(由约2%铝、49%锌和49%氧组成)被直接沉积在功能层40上;然后- an electrically conductive anti-reflection layer 66 based on aluminum-doped zinc oxide with an index n=2 and a resistivity of 0.35×10−3 Ω.cm to 2.5×10−3 Ω.cm, in particular almost approximately 10− 3 Ω.cm, this layer is here deposited directly on the
-电介质终止层68,其是减反射的并且基于指数n=2.1的氧化锌锡SnxZnyOz,具有大约1Ω.cm的电阻率,这种层在这里在由25%氧(O2)和75%氩气组成的气氛下从金属靶(由约50%锡和50%锌组成)进行沉积。-
应当注意的是,基于混合氧化锌锡的层在它们的整个厚度之上可以具有可变的Sn∶Zn比率或者可变的掺杂剂百分比,这取决于用于沉积这些层的靶,特别地当多个不同组成的靶用来沉积层时尤其如此。It should be noted that mixed zinc tin oxide based layers may have variable Sn:Zn ratios or variable dopant percentages over their entire thickness, depending on the target used to deposit these layers, in particular This is especially true when multiple targets of different compositions are used to deposit the layers.
在该实施例中,光电材料200基于碲化镉。In this embodiment, the
这种材料的量子效率QE与微晶硅(其晶体尺寸约100nm)和无定形(即未结晶的)硅的量子效率、其它在本发明的范围内也合适的光电材料一起在图3中进行举例说明。The quantum efficiency QE of this material is plotted in Figure 3 together with the quantum efficiency of microcrystalline silicon (whose crystal size is about 100 nm) and amorphous (i.e. not crystallized) silicon, other optoelectronic materials that are also suitable within the scope of the present invention for example.
在此提醒的是,量子效率QE如已知地表达具有沿横坐标的波长的入射光子被转化成电子-空穴对的概率(0至1)。It is reminded here that the quantum efficiency QE expresses, as known, the probability (0 to 1) that an incident photon with a wavelength along the abscissa is converted into an electron-hole pair.
在图3中可以看出,最大吸收波长λm,即量子效率最大(即处于其最高值)时的波长:As can be seen in Figure 3, the wavelength of maximum absorption, λm , is the wavelength at which the quantum efficiency is maximum (ie at its highest value):
-非晶硅a-Si,即λma-Si为520纳米;- Amorphous silicon a-Si, i.e. λma -Si is 520 nm;
-微晶硅μc-Si,即λmμc-Si为720纳米;且- microcrystalline silicon μc-Si, i.e. λm μc-Si is 720 nm; and
-碲化镉CdTe,即λm CdTe为600纳米。- Cadmium Telluride CdTe, ieλm CdTe 600 nm.
在该叠层的光程的一次近似下,这种最大吸收波长λm是足够的。Under a first approximation of the optical path of the stack, this maximum absorption wavelength λm is sufficient.
在基板方向上的设置在金属功能层40下方的减反射涂层20那么具有大约等于该光电材料的最大吸收波长λm的1/8的光学厚度,在基板相对侧的设置在金属功能层40上方的减反射涂层60那么具有大约等于该光电材料的最大吸收波长λm的1/2的光学厚度。The
下表1概括了对于各涂层20、60,根据这三种材料的以纳米计的光学厚度的优选范围。Table 1 below summarizes, for each
表1Table 1
但是,已经发现,可以通过考虑量子效率(以通过将这种概率用地表的太阳光波长分布进行卷积(convoluant)来获得改进的实际收率)来改进该叠层的光学定义。在此,我们使用归一化太阳光谱AM1.5。However, it has been found that the optical definition of the stack can be improved by taking into account the quantum efficiency to obtain improved practical yields by convoluanting this probability with the solar wavelength distribution at the Earth's surface. Here we use the normalized solar spectrum AM1.5.
在这种情况下,在基板方向上的设置在金属功能层40下方的减反射涂层20的光学厚度大约等于该光电材料的吸收光谱乘以太阳光谱的乘积的最大波长λM的1/8,和在基板相对侧的设置在金属功能层40上方的减反射涂层60的光学厚度大约等于该光电材料的吸收光谱乘以太阳光谱的乘积的最大波长λM的1/2。In this case, the optical thickness of the
如图4中可以看出,该光电材料的吸收光谱乘以太阳光谱的乘积的最大波长λM,即效率最大(即最高值)时的波长:As can be seen in Figure 4, the maximum wavelength λM of the product of the absorption spectrum of the photoelectric material multiplied by the solar spectrum, that is, the wavelength at which the efficiency is maximum (i.e. the highest value):
-非晶硅a-Si,即λM a-Si为530纳米;- Amorphous silicon a-Si, i.e. λM a-Si of 530 nm;
-微晶硅μc-Si,即λM μc-Si为670纳米;且- microcrystalline silicon μc-Si, i.e. λM μc-Si is 670 nm; and
-碲化镉CdTe,即λM CdTe为610nm。- Cadmium Telluride CdTe, ie λM CdTe is 610 nm.
下表2概括了各涂层20,60根据这三种材料的以纳米计的光学厚度的优选范围。Table 2 below summarizes the preferred range of optical thickness in nanometers for each
表2Table 2
在所有实施例中,直接在基板上沉积了基于氧化硅的底部减反射层22。由于其折光指数n15低且接近基板的折光指数,在本发明的叠层的光程的定义中不考虑其光学厚度。In all examples, a silicon oxide-based
这些层的沉积条件是本领域技术人员已知的,因为它涉及获得与用于低发射率或日光控制应用的那些层相似的叠层。The deposition conditions of these layers are known to those skilled in the art as it relates to obtaining a stack similar to those used for low emissivity or solar control applications.
在这方面,本领域技术人员可以参考专利申请EP 718 250、EP 847965、EP 1 366 001、EP 1 412 300或EP 722 913。In this respect, the person skilled in the art may refer to patent applications EP 718 250, EP 847965, EP 1 366 001, EP 1 412 300 or EP 722 913.
下表3概括了实施例1和2中的每个的各层的材料和以纳米测得的物理厚度,表4列出这些实施例的主要特性。Table 3 below summarizes the materials and physical thicknesses measured in nanometers for each of the layers of each of Examples 1 and 2, and Table 4 lists the main characteristics of these examples.
通过所谓的“TSQE”方法计算性能特征P,在该方法中使用在整个所考虑的辐射范围内的光谱积分与电池的量子效率QE的乘积。The performance characteristic P is calculated by the so-called "TSQE" method, in which the product of the spectral integral over the entire considered radiation range and the quantum efficiency QE of the cell is used.
光反射特征RL在光源D65下进行测量。The light reflection characteristicRL is measured under light source D65.
对所有实施例1和2施以根据图5所示进行的测量电极涂层对电池运行过程中(尤其是在静电场存在下)产生的应力的耐受性的试验。All examples 1 and 2 were subjected to the test of measuring the resistance of the electrode coating to the stress generated during the operation of the battery (especially in the presence of an electrostatic field) as shown in FIG. 5 .
用于这种试验,基板片10、10’(例如5厘米×5厘米,并分别覆盖有电极涂层100,100′,但没有光电材料200)被沉积在置于大约200℃热源6上的金属板5上。For this test,
该试验涉及对覆盖有电极涂层100、100′的基板10、10’施加电场20分钟,其通过在所述涂层表面上制造电触点102并将该触点102和金属板5连接到输送大约200V直流电的电源7的端子上进行。The test involves applying an electric field for 20 minutes to a
在该试验结束时,一旦将样品冷却,在试样的整个表面上测量残留涂层比例。At the end of the test, once the sample has cooled, the residual coating fraction is measured over the entire surface of the sample.
耐受性试验后留下的涂层的这种比例被表示为PRT。This proportion of the coating remaining after the resistance test is denoted PRT.
而且,与前述测试无关地,实施例2经受热处理(TT),该热处理包括在约620℃的温度下退火6分钟,然后在环境空气(20℃)中急速冷却,模拟淬火操作。在这种热处理之后测量的数据示于表4的最后栏中。施加的热处理因此是比由电极涂层经受的通常热处理(在用于沉积基于镉的光电涂层的方法的范围内)更有应力的(sollicitant)。Also, independently of the preceding tests, Example 2 was subjected to a thermal treatment (TT) comprising annealing at a temperature of about 620° C. for 6 minutes, followed by rapid cooling in ambient air (20° C.), simulating a quenching operation. The data measured after this heat treatment are shown in the last column of Table 4. The heat treatment applied is thus more sollicitant than the usual heat treatment (within the scope of the method for depositing cadmium-based photovoltaic coatings) subjected to by electrode coatings.
表3table 3
表4Table 4
在实施例2中,在金属功能层上面的涂层60的光学厚度是291nm(=135×2+10×2.1),和在该金属功能层之下的涂层20的光学厚度是78.8nm(=27×2.4+7×2)。In Example 2, the optical thickness of the
此实施例表明,可以获得由薄层叠层构成并覆盖有碲化镉的电极涂层,其与覆盖有相同材料的TCO电极涂层(实施例1)相比具有更好的方电阻R□(-2.6欧姆/□)和更好性能P(+0.2%)。根据表1和表2,实施例2的涂层20和60的光学厚度在对于由CdTe制成的光电材料200所推荐的范围内。This example shows that it is possible to obtain an electrode coating consisting of a stack of thin layers and covered with cadmium telluride, which has a better square resistanceR ( -2.6 ohms/□) and better performance P (+0.2%). According to Table 1 and Table 2, the optical thicknesses of the
使用基于镉的光电材料,特别地CdTe与CdS的合金的光电材料需要该电极涂层经受住热处理,因为这种光电材料的处理需要在300℃-700℃温度的步骤,其通常在受控的非氧化气氛中进行。Photoelectric materials using cadmium-based optoelectronic materials, especially alloys of CdTe and CdS, require that the electrode coating withstand heat treatment, because the processing of such optoelectronic materials requires steps at temperatures of 300°C-700°C, which are usually controlled under controlled conditions. in a non-oxidizing atmosphere.
令人惊讶地,发现该步骤与如本领域的技术人员已知的用于交通工具或者建筑物的玻璃基板的淬火步骤十分相似,即使通常该淬火气氛不受控。Surprisingly, this step was found to be very similar to the step of quenching glass substrates for vehicles or buildings as known to the person skilled in the art, even though usually the quenching atmosphere is not controlled.
因此,当该光电材料基于镉时,特别地有利地选择已知用于车辆或者建筑物应用的薄层叠层,其是抗淬火热处理的,被称为“可淬火的”叠层或者“待淬火的”叠层。Therefore, when the optoelectronic material is based on cadmium, it is particularly advantageous to choose thin-layer stacks known for vehicle or building applications which are heat-treated against quenching, known as "quenchable" stacks or "to-be-quenched" stacks. The" stack.
因此,对于实施例2发现在施加的热处理期间的数据变化是轻微的。所选择的叠层因此可以被认为是″可淬火的″。Therefore, the data variation during the applied heat treatment was found to be slight for Example 2. The chosen stack can thus be considered "quenchable".
而且,有利地注意到,形成在本发明的范围内的电极涂层的薄层叠层(没有光电材料)在热处理之前和之后都具有比没有光电材料的TCO电极涂层更低的光反射。Furthermore, it is advantageous to note that thin layer stacks (without optoelectronic material) forming electrode coatings within the scope of the invention have a lower light reflection than TCO electrode coatings without optoelectronic material both before and after heat treatment.
图6显示横截面视图的带有本发明的正面基板10(入射辐射R穿透该正面基板)以及带有背面基板20的光电池1。FIG. 6 shows a photovoltaic cell 1 with a
例如由非晶硅或结晶或微晶硅或碲化镉或二硒化铜铟(CuInSe2或CIS)或铜铟镓硒制成的光电材料200设置在这两个基板之间。其由n-掺杂的半导体材料层220和p-掺杂的半导体材料层240构成,产生电流。分别插入一方面正面基板10和n-掺杂的半导体材料层220之间以及另一方面p-掺杂的半导体材料240和背面基板20之间的电极涂层100,300完成了该电结构。An
电极涂层300可以基于银或铝,或其也可以由包含至少一个金属功能层并符合本发明的薄层叠层构成。The
上文已经举例描述了本发明。当然,本领域技术人员能够在不由此脱离如权利要求书确定的专利范围的情况下制造本发明的各种变型。The present invention has been described above by way of example. Of course, a person skilled in the art will be able to produce various modifications of the invention without thereby departing from the patentable scope as defined by the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0851003AFR2919114B1 (en) | 2007-07-16 | 2008-02-18 | PHOTOVOLTAIC CELL AND PHOTOVOLTAIC CELL SUBSTRATE |
| FR0851003 | 2008-02-18 | ||
| PCT/FR2009/050252WO2009103929A2 (en) | 2008-02-18 | 2009-02-17 | Photovoltaic cell and substrate for photovoltaic cell |
| Publication Number | Publication Date |
|---|---|
| CN102007562Atrue CN102007562A (en) | 2011-04-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2009801136218APendingCN102007562A (en) | 2008-02-18 | 2009-02-17 | Photovoltaic cell and substrate for photovoltaic cell |
| Country | Link |
|---|---|
| EP (1) | EP2255372A2 (en) |
| JP (1) | JP2011512665A (en) |
| KR (1) | KR20100119871A (en) |
| CN (1) | CN102007562A (en) |
| BR (1) | BRPI0907513A2 (en) |
| MX (1) | MX2010008809A (en) |
| WO (1) | WO2009103929A2 (en) |
| ZA (1) | ZA201005723B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102997156A (en)* | 2012-12-10 | 2013-03-27 | 河南少林汽车股份有限公司 | Heat radiation type LED (Light-Emitting Diode) headlamp of heat pipe for automobile |
| CN104379806A (en)* | 2012-03-16 | 2015-02-25 | 皮尔金顿集团有限公司 | Chemical vapor deposition process for depositing zinc oxide coatings, method for forming a conductive glass article and the coated glass articles produced thereby |
| CN108987491A (en)* | 2013-03-12 | 2018-12-11 | Vitro可变资本股份有限公司 | Photovoltaic cell with anti-reflection coating |
| CN112599614A (en)* | 2020-12-25 | 2021-04-02 | 中建材蚌埠玻璃工业设计研究院有限公司 | CdTe thin-film solar cell with adjustable reflection spectrum |
| CN112635585A (en)* | 2020-12-25 | 2021-04-09 | 中建材蚌埠玻璃工业设计研究院有限公司 | Colorful CIGS thin-film solar cell and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102009044052A1 (en)* | 2009-09-18 | 2011-03-24 | Schott Solar Ag | Crystalline solar cell, process for producing the same and process for producing a solar cell module |
| GB201011729D0 (en) | 2010-07-13 | 2010-08-25 | Pilkington Group Ltd | Transparent front electrode for a photovoltaic device |
| US8808882B2 (en)* | 2010-09-17 | 2014-08-19 | Guardian Industries Corp. | Coated article having boron doped zinc oxide based seed layer with enhanced durability under functional layer and method of making the same |
| US8815420B2 (en)* | 2010-09-17 | 2014-08-26 | Guardian Industries Corp. | Coated article having zinc oxide seed layer with reduced stress under functional layer and method of making the same |
| FR2973946B1 (en)* | 2011-04-08 | 2013-03-22 | Saint Gobain | ELECTRONIC LAYER DEVICE |
| DE102011080009A1 (en)* | 2011-07-28 | 2013-01-31 | Robert Bosch Gmbh | Thin film solar cell |
| KR101814814B1 (en)* | 2011-09-16 | 2018-01-04 | 엘지이노텍 주식회사 | Solar cell and method of fabricating the same |
| FR2984609A1 (en)* | 2011-12-20 | 2013-06-21 | Saint Gobain | Conducting substrate/photoactive dye laser assembly for photovoltaic cell, has conducting layer including substrate, and coating electrode including homogeneous silver layer, where source of contact of substrate has specific roughness |
| PL2803246T3 (en)* | 2012-01-10 | 2017-09-29 | Saint-Gobain Glass France | Transparent pane with electrically heatable coating |
| KR101449097B1 (en)* | 2012-04-05 | 2014-10-10 | 엘지이노텍 주식회사 | Solar cell |
| CN102751336A (en)* | 2012-06-29 | 2012-10-24 | 苏州嘉言能源设备有限公司 | TiO2-X antireflective film used for groove-type solar thermal collector |
| FR3110160B1 (en)* | 2020-05-12 | 2023-10-27 | Saint Gobain | Low emissive material comprising a thick layer based on silicon oxide |
| JP7742500B2 (en)* | 2023-04-10 | 2025-09-19 | 横店集団東磁股▲ふん▼有限公司 | Solar cell and its manufacturing method, electrical device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4528418A (en)* | 1984-02-24 | 1985-07-09 | Energy Conversion Devices, Inc. | Photoresponsive semiconductor device having a double layer anti-reflective coating |
| US5510271A (en)* | 1994-09-09 | 1996-04-23 | Georgia Tech Research Corporation | Processes for producing low cost, high efficiency silicon solar cells |
| US5907766A (en)* | 1996-10-21 | 1999-05-25 | Electric Power Research Institute, Inc. | Method of making a solar cell having improved anti-reflection passivation layer |
| DE19958878B4 (en)* | 1999-12-07 | 2012-01-19 | Saint-Gobain Glass Deutschland Gmbh | Thin film solar cell |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104379806A (en)* | 2012-03-16 | 2015-02-25 | 皮尔金顿集团有限公司 | Chemical vapor deposition process for depositing zinc oxide coatings, method for forming a conductive glass article and the coated glass articles produced thereby |
| CN104379806B (en)* | 2012-03-16 | 2017-06-09 | 皮尔金顿集团有限公司 | Chemical vapor deposition method for depositing zinc oxide coatings, the method for forming conductive glass articles and the coated glass article being thus made |
| CN102997156A (en)* | 2012-12-10 | 2013-03-27 | 河南少林汽车股份有限公司 | Heat radiation type LED (Light-Emitting Diode) headlamp of heat pipe for automobile |
| CN108987491A (en)* | 2013-03-12 | 2018-12-11 | Vitro可变资本股份有限公司 | Photovoltaic cell with anti-reflection coating |
| CN112599614A (en)* | 2020-12-25 | 2021-04-02 | 中建材蚌埠玻璃工业设计研究院有限公司 | CdTe thin-film solar cell with adjustable reflection spectrum |
| CN112635585A (en)* | 2020-12-25 | 2021-04-09 | 中建材蚌埠玻璃工业设计研究院有限公司 | Colorful CIGS thin-film solar cell and preparation method thereof |
| Publication number | Publication date |
|---|---|
| KR20100119871A (en) | 2010-11-11 |
| BRPI0907513A2 (en) | 2015-07-21 |
| JP2011512665A (en) | 2011-04-21 |
| EP2255372A2 (en) | 2010-12-01 |
| ZA201005723B (en) | 2011-04-28 |
| WO2009103929A2 (en) | 2009-08-27 |
| WO2009103929A3 (en) | 2009-12-23 |
| MX2010008809A (en) | 2010-11-10 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102007562A (en) | Photovoltaic cell and substrate for photovoltaic cell | |
| CN101809754A (en) | Photovoltaic cell front face substrate and use of a substrate for a photovoltaic cell front face | |
| JP5330400B2 (en) | Glass substrate coated with a layer having improved resistivity | |
| EP2100335B1 (en) | Zinc oxide based front electrode doped with yttrium for use in photovoltaic device or the like | |
| US20090293945A1 (en) | Photovoltaic cell and photovoltaic cell substrate | |
| US20080308145A1 (en) | Front electrode including transparent conductive coating on etched glass substrate for use in photovoltaic device and method of making same | |
| EP2276069A2 (en) | Front electrode including transparent conductive coating on textured glass substrate for use in photovoltaic device and method of making same | |
| JP2012511247A (en) | Use of photovoltaic panel surface side substrate, photovoltaic panel and photovoltaic panel surface side substrate | |
| US20110088774A1 (en) | Photovoltaic cell and photovoltaic cell substrate | |
| CN102781867A (en) | Photovoltaic cell | |
| WO2011090468A2 (en) | Highly-conductive and textured front transparent electrode for a-si thin-film solar cells, and/or method of making the same | |
| US20090308444A1 (en) | Photovoltaic cell and photovoltaic cell substrate | |
| CN102386262A (en) | Cell including cadmium-based photovoltaic material |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20110406 |