技术领域technical field
本发明涉及对疏水性聚合物分离膜材料进行亲水化及生物相容性改性的方法,具体涉及一种含聚乙二醇改性聚丙烯中空纤维膜的制备方法。The invention relates to a method for hydrophilizing and biocompatibility modification of a hydrophobic polymer separation membrane material, in particular to a preparation method for a polyethylene glycol-containing modified polypropylene hollow fiber membrane.
背景技术Background technique
聚丙烯微孔膜由于其简单的生产工艺、优良的性能,自问世以来即被迅速商品化,并得到了广泛的应用。从聚丙烯微孔膜的孔径大小和耐酸、耐碱性以及低电阻值等方面看,它是一种合适的电池隔板和隔膜材料,被大量用于电池工业;聚丙烯微孔膜的临界表面张力为35达因/厘米,它在一定压力下可以让水透过,而且机械强度高、韧性好,可以作为水处理膜,在制备饮料用水、药剂用水、超纯水以及海水淡化、污水处理等方面得到应用;利用聚丙烯微孔膜优良的透气性,可以用作空气净化器、特殊除尘器等空气净化装置。聚丙烯微孔膜由于无毒、气体透过性好,是一种比较理想的医疗器械用膜,用做如人工肺膜式氧合器等;另外,由于聚丙烯微孔膜优良的机械性能,它还可以作为支撑膜,或代替其他分离膜用于一些分子水平的物质分离和纯化领域。但聚丙烯微孔膜表面亲水性差,易带静电,这些缺点制约了它们的进一步推广应用。对聚丙烯微孔膜进行改性,利用引入基团的功能来改善膜表面性能上的不足,同时又把两者的优点结合起来,增加新的性能,是扩大聚丙烯微孔膜用途的一种简单而又行之有效的方法。Due to its simple production process and excellent performance, polypropylene microporous membrane has been rapidly commercialized and widely used since its inception. From the perspective of pore size, acid resistance, alkali resistance and low resistance value of polypropylene microporous membrane, it is a suitable battery separator and diaphragm material, which is widely used in the battery industry; the criticality of polypropylene microporous membrane The surface tension is 35 dynes/cm, it can allow water to permeate under a certain pressure, and has high mechanical strength and good toughness. Treatment and other aspects have been applied; using the excellent air permeability of polypropylene microporous membrane, it can be used as air purification devices such as air purifiers and special dust collectors. Due to its non-toxicity and good gas permeability, polypropylene microporous membrane is an ideal membrane for medical devices, such as artificial lung membrane oxygenator; in addition, due to the excellent mechanical properties of polypropylene microporous membrane , it can also be used as a support membrane, or replace other separation membranes in the field of material separation and purification at the molecular level. However, the surface of polypropylene microporous membranes has poor hydrophilicity and is easy to be charged with static electricity. These shortcomings restrict their further application. Modifying the polypropylene microporous membrane, using the function of introducing groups to improve the surface performance of the membrane, and at the same time combining the advantages of the two to increase new performance is a way to expand the use of polypropylene microporous membranes. A simple yet effective method.
目前发展了多种不同方法可用于聚丙烯微孔膜的表面改性,主要分为物理方法和化学方法。前者如物理涂覆法,它是最简单的表面改性方法,即用亲水剂(如醇、表面活性剂、聚电解质络合物等)处理微孔膜或把微孔膜直接浸渍在高分子溶液中,然后蒸发溶剂。这种技术虽然简单,但由于只是通过物理吸附作用来固定表面改性剂,导致表面改性剂易流失,亲水性在使用过程中逐渐下降。原位填充聚合法是在聚丙烯微孔膜的微孔内加入单体及其相应引发剂使单体聚合,即可得到改性的功能膜材料以改善膜表面及膜孔内的亲水性,但由于聚合反应在孔内进行,从而极大的影响了膜的分离性能和机械性能。化学改性的方法有很多,包括用电晕、紫外、等离子体等辐照进行简单的处理,可以在短期内提高材料的表面性能,但随着时间的延长又会回复到原来的水平。能长期保持改性性能的方法一般是把功能性大分子通过化学键合固定在材料表面,其中接枝聚合法有一定优点。本申请人申请的申请号为200310108528,采用糖基化合物为改性接枝单体,通过该方法得到聚合物分离膜,亲水性和生物相容性得到改善,并可长期保持。但用作接枝单体的糖基化合物需要由糖基与烯类、酯类等物料化合而成,增加工艺的复杂性,另外,由于采用的改性剂为糖烯单体,其合成困难,价格昂贵,进而极大地增加了亲水改性膜的成本。因此,有必要开发高效、稳定、经济的聚丙烯膜亲水化改性方法。At present, a variety of different methods have been developed for the surface modification of polypropylene microporous membranes, which are mainly divided into physical methods and chemical methods. The former is like the physical coating method, which is the simplest surface modification method, that is, treating the microporous membrane with a hydrophilic agent (such as alcohol, surfactant, polyelectrolyte complex, etc.) molecules in solution, and then evaporate the solvent. Although this technique is simple, because the surface modifier is only fixed by physical adsorption, the surface modifier is easy to lose, and the hydrophilicity gradually decreases during use. The in-situ filling polymerization method is to add monomers and corresponding initiators into the micropores of polypropylene microporous membranes to polymerize the monomers, and then obtain modified functional membrane materials to improve the hydrophilicity of the membrane surface and membrane pores. , but because the polymerization reaction is carried out in the pores, the separation performance and mechanical properties of the membrane are greatly affected. There are many chemical modification methods, including simple treatment with corona, ultraviolet, plasma and other irradiation, which can improve the surface properties of materials in a short period of time, but will return to the original level as time goes by. The method that can maintain the modification performance for a long time is generally to fix the functional macromolecules on the surface of the material through chemical bonding, and the graft polymerization method has certain advantages. The applicant's application number is 200310108528, using glycosyl compounds as modified grafting monomers to obtain polymer separation membranes with improved hydrophilicity and biocompatibility, which can be maintained for a long time. However, the glycosyl compounds used as grafting monomers need to be synthesized from glycosyls, olefins, esters and other materials, which increases the complexity of the process. In addition, because the modifier used is glycosylated monomers, its synthesis is difficult. , which is expensive, which greatly increases the cost of the hydrophilic modified membrane. Therefore, it is necessary to develop an efficient, stable and economical method for the hydrophilic modification of polypropylene membranes.
发明内容Contents of the invention
本发明主要是克服现有技术的缺点,提供对疏水性聚丙烯分离膜进行亲水化及生物相容性改性的方法,本发明工艺简单并使聚丙烯分离膜亲水性好、水通量大、不易带静电、蛋白吸附量少、血液相容性有较大程度提高。本发明的上述目的主要通过以下发明构思得以解决:通过合成聚乙二醇接枝改性聚丙烯,并以其为添加剂与聚丙烯共混再进行熔融纺丝制备具有持久亲水性聚丙烯中空纤维膜。The present invention mainly overcomes the shortcomings of the prior art and provides a method for hydrophilizing and biocompatibility modification of the hydrophobic polypropylene separation membrane. Large amount, not easy to be charged with static electricity, less protein adsorption, and blood compatibility has been greatly improved. The above object of the present invention is mainly solved by the following inventive concept: by synthesizing polyethylene glycol graft-modified polypropylene, and using it as an additive to blend with polypropylene and then melt-spinning to prepare a hollow polypropylene with durable hydrophilicity Fiber membrane.
一种高效亲水改性聚丙烯中空纤维膜的制备方法,包括以下步骤:A method for preparing a high-efficiency hydrophilic modified polypropylene hollow fiber membrane, comprising the following steps:
(1)聚乙二醇接枝改性聚丙烯的合成:在高温条件下将氧化聚丙烯蜡熔融,再向氧化聚丙烯蜡熔体中加入聚乙二醇,同时加入少量酸催化剂,通入氮气后在120~200℃高温条件下熔融,并进行缩合反应,其中聚乙二醇的质量为氧化聚丙烯蜡质量的40~80%,酸催化剂的质量为氧化聚丙烯蜡质量的0.1~1%,反应4~12小时后,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;(1) Synthesis of polyethylene glycol grafted modified polypropylene: melt the oxidized polypropylene wax under high temperature conditions, then add polyethylene glycol to the oxidized polypropylene wax melt, and add a small amount of acid catalyst at the same time, pass through Melt under high temperature conditions of 120-200°C after nitrogen gas, and carry out condensation reaction, wherein the mass of polyethylene glycol is 40-80% of the mass of oxidized polypropylene wax, and the mass of acid catalyst is 0.1-1% of the mass of oxidized polypropylene wax %, after reacting for 4 to 12 hours, pour the reactant into water for precipitation to obtain polyethylene glycol grafted modified polypropylene;
(2)共混熔融纺丝:将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,共混物加入通用高温熔融纺丝机中,在200~220℃条件下进行熔融拉伸纺丝,制得聚乙二醇亲水改性聚丙烯中空纤维膜材料,其中共混物中聚乙二醇接枝改性聚丙烯质量百分比为5~30%,聚丙烯质量百分比为95~70%,以确保熔融纺丝的顺利进行,纺丝溶液满足高于临界浓度且低于极限粘度。(2) Blending melt spinning: Blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, and put the blend into a general high-temperature melt spinning machine at 200-220°C. Melt stretching and spinning to prepare polyethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, wherein the mass percentage of polyethylene glycol graft modified polypropylene in the blend is 5-30%, and the mass percentage of polypropylene is 95% to 70%, in order to ensure the smooth progress of melt spinning, the spinning solution is higher than the critical concentration and lower than the limiting viscosity.
上述的氧化聚丙烯蜡为低密度氧化聚丙烯蜡和高密度氧化聚丙烯蜡中的任一种,其分子量为2000~10000。The above-mentioned oxidized polypropylene wax is any one of low-density oxidized polypropylene wax and high-density oxidized polypropylene wax, and its molecular weight is 2000-10000.
上述的酸催化剂为硝酸、磷酸、苯甲酸和柠檬酸中的任一种。Above-mentioned acid catalyst is any one in nitric acid, phosphoric acid, benzoic acid and citric acid.
上述的聚乙二醇的分子量为400~2000。The molecular weight of the above-mentioned polyethylene glycol is 400-2000.
本发明具有如下优点:The present invention has the following advantages:
本发明采用氧化聚丙烯蜡为原料,通过高温热缩合方法合成制备聚乙二醇接枝改性聚丙烯,合成方法简单,接枝效率高;另外,以聚乙二醇接枝改性聚丙烯为添加剂,与聚丙烯进行共混并进行熔融纺丝制备中空纤维膜,有利于聚乙二醇在聚丙烯分离膜孔表面的富积,并提高其在聚丙烯分离膜分散性和稳定性,所制得的中空纤维膜不仅可以改善聚丙烯分离膜表面亲水性,同时还可以提高分离膜孔表面的亲水性。The present invention uses oxidized polypropylene wax as a raw material, and synthesizes and prepares polyethylene glycol grafted modified polypropylene through a high-temperature thermal condensation method. The synthesis method is simple and the grafting efficiency is high; in addition, the polyethylene glycol grafted modified polypropylene As an additive, it is blended with polypropylene and melt-spun to prepare hollow fiber membranes, which is beneficial to the enrichment of polyethylene glycol on the surface of polypropylene separation membrane pores, and improves its dispersion and stability in polypropylene separation membranes. The prepared hollow fiber membrane can not only improve the hydrophilicity of the surface of the polypropylene separation membrane, but also improve the hydrophilicity of the pore surface of the separation membrane.
本发明的通过共混熔融纺丝亲水改性制备方法简单,纺丝过程中喷丝射流稳定性好,纤维膜形态结构可很容易地通过调节纺丝过程的条件来控制,适于工业化生产。The preparation method of the hydrophilic modification by blending melt spinning of the present invention is simple, the spinning jet has good stability in the spinning process, and the morphology and structure of the fiber film can be easily controlled by adjusting the conditions of the spinning process, which is suitable for industrial production .
具体实施方式Detailed ways
下面通过具体实施例,对本发明的技术方案作进一步的说明。The technical solutions of the present invention will be further described below through specific examples.
实施例1:Example 1:
将1份分子量为2000的低密度氧化聚丙烯蜡在120℃高温条件下进行熔融,向反应器中加入0.4份的分子量为400的聚乙二醇和0.001份的磷酸,保温并通入氮气进行缩合反应,反应4小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为5%,聚丙烯质量百分比为95%;将共混物加入熔融纺丝机在200℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为78°,纯水通量在0.1MPa的测试压力下为560kg/m2h。Melt 1 part of low-density oxidized polypropylene wax with a molecular weight of 2000 at a high temperature of 120°C, add 0.4 parts of polyethylene glycol with a molecular weight of 400 and 0.001 part of phosphoric acid into the reactor, keep it warm and blow in nitrogen for condensation reaction, reacted for 4 hours and cooled naturally, poured the reactants into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blended the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft modified polypropylene mass percentage is 5%, and the polypropylene mass percentage is 95%; the blend is added to a melt spinning machine for melt stretching and spinning at 200 ° C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 78°, and the pure water flux is 560kg/m2 h under the test pressure of 0.1MPa.
实施例2:Example 2:
将1份分子量为4000的低密度氧化聚丙烯蜡在160℃高温条件下进行熔融,向反应器中加入0.6份的分子量为600的聚乙二醇和0.005份的苯甲酸,保温并通入氮气进行缩合反应,反应6小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为10%,聚丙烯质量百分比为90%;将共混物加入熔融纺丝机在210℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为72°,纯水通量在0.1MPa的测试压力下为660kg/m2h。Melt 1 part of low-density oxidized polypropylene wax with a molecular weight of 4000 at a high temperature of 160°C, add 0.6 parts of polyethylene glycol with a molecular weight of 600 and 0.005 parts of benzoic acid into the reactor, keep warm and blow in nitrogen to carry out Condensation reaction, react naturally after 6 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene , wherein the mass percentage of polyethylene glycol grafted modified polypropylene is 10%, and the mass percentage of polypropylene is 90%; the blend is added to a melt spinning machine for melt stretching and spinning at 210 ° C to obtain a blend containing Polyethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 72°, and the pure water flux is 660kg/m2 h under the test pressure of 0.1MPa .
实施例3:Example 3:
将1份分子量为8000低密度氧化聚丙烯蜡在180℃高温条件下进行熔融,向反应器中加入0.8份的分子量为1000的聚乙二醇和0.05份的柠檬酸,保温并通入氮气进行缩合反应,反应8小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为15%,聚丙烯质量百分比为85%;将共混物加入熔融纺丝机在220℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为66°,纯水通量在0.1MPa的测试压力下为880kg/m2h。Melt 1 part of low-density oxidized polypropylene wax with a molecular weight of 8,000 at a high temperature of 180°C, add 0.8 parts of polyethylene glycol with a molecular weight of 1,000 and 0.05 parts of citric acid into the reactor, keep it warm and let nitrogen gas into it for condensation React, react naturally after 8 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft modified polypropylene mass percentage is 15%, and the polypropylene mass percentage is 85%; the blend is added to a melt spinning machine for melt stretching and spinning at 220°C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 66°, and the pure water flux is 880kg/m2 h under the test pressure of 0.1MPa.
实施例5:Example 5:
将1份分子量为10000的低密度氧化聚丙烯蜡在180℃高温条件下进行熔融,再向反应器中加入1份分子量为1600的聚乙二醇和0.001份的硝酸,保温并通入氮气进行缩合反应,反应12小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为20%,聚丙烯质量百分比为80%;将共混物加入熔融纺丝机在200℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为60°,纯水通量在0.1MPa的测试压力下为1380kg/m2h。Melt 1 part of low-density oxidized polypropylene wax with a molecular weight of 10,000 at a high temperature of 180°C, then add 1 part of polyethylene glycol with a molecular weight of 1600 and 0.001 part of nitric acid into the reactor, keep it warm and let nitrogen gas into it for condensation reaction, reacting for 12 hours and then cooling naturally, pouring the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blending the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft-modified polypropylene mass percentage is 20%, and the polypropylene mass percentage is 80%; the blend is added to a melt spinning machine for melt stretching and spinning at 200°C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 60°, and the pure water flux is 1380kg/m2 h under the test pressure of 0.1MPa.
实施例6:Embodiment 6:
将1份分子量为8000的高密度氧化聚丙烯蜡在180℃高温条件下进行熔融,再向反应器中加入1份分子量为1600的聚乙二醇和0.005份的磷酸,保温并通入氮气进行缩合反应,反应8小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为30%,聚丙烯质量百分比为70%;将共混物加入熔融纺丝机在220℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为56°,纯水通量在0.1MPa的测试压力下为1880kg/m2h。Melt 1 part of high-density oxidized polypropylene wax with a molecular weight of 8000 at a high temperature of 180°C, then add 1 part of polyethylene glycol with a molecular weight of 1600 and 0.005 part of phosphoric acid into the reactor, keep it warm and let nitrogen gas into it for condensation React, react naturally after 8 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft modified polypropylene mass percentage is 30%, and the polypropylene mass percentage is 70%; the blend is added to a melt spinning machine for melt stretching and spinning at 220 ° C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 56°, and the pure water flux is 1880kg/m2 h under the test pressure of 0.1MPa.
实施例7:Embodiment 7:
将1份分子量为10000的高密度氧化聚丙烯蜡在180℃高温条件下进行熔融,再向反应器中加入1份分子量为2000的聚乙二醇和0.005份的苯甲酸,保温并通入氮气进行缩合反应,反应12小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为30%,聚丙烯质量百分比为70%;将共混物加入熔融纺丝机在200℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为52°,纯水通量在0.1MPa的测试压力下为2600kg/m2h。Melt 1 part of high-density oxidized polypropylene wax with a molecular weight of 10,000 at a high temperature of 180°C, then add 1 part of polyethylene glycol with a molecular weight of 2000 and 0.005 part of benzoic acid into the reactor, keep warm and blow in nitrogen to carry out Condensation reaction, react naturally after 12 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene , wherein the mass percentage of polyethylene glycol grafted modified polypropylene is 30%, and the mass percentage of polypropylene is 70%; the blend is added to a melt spinning machine for melt stretching and spinning at 200°C to obtain a blend containing Polyethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 52°, and the pure water flux is 2600kg/m2 h under the test pressure of 0.1MPa .
实施例8:Embodiment 8:
将1份分子量为10000的高密度氧化聚丙烯蜡在200℃高温条件下进行熔融,再向反应器中加入0.6份分子量为1200的聚乙二醇和0.01份的柠檬酸,保温并通入氮气进行缩合反应,反应12小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为25%,聚丙烯质量百分比为75%;将共混物加入熔融纺丝机在210℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为60°,纯水通量在0.1MPa的测试压力下为1600kg/m2h。Melt 1 part of high-density oxidized polypropylene wax with a molecular weight of 10,000 at a high temperature of 200°C, then add 0.6 parts of polyethylene glycol with a molecular weight of 1200 and 0.01 part of citric acid into the reactor, keep warm and blow in nitrogen to carry out Condensation reaction, react naturally after 12 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene , wherein the polyethylene glycol graft modified polypropylene mass percentage is 25%, and the polypropylene mass percentage is 75%; the blend is added to a melt spinning machine for melt stretching and spinning at 210 ° C to obtain a Polyethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 60°, and the pure water flux is 1600kg/m2 h under the test pressure of 0.1MPa .
实施例9:Embodiment 9:
将1份分子量为6000的高密度氧化聚丙烯蜡在180℃高温条件下进行熔融,再向反应器中加入0.8份分子量为1200的聚乙二醇和0.008份的磷酸,保温并通入氮气进行缩合反应,反应10小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为15%,聚丙烯质量百分比为85%;将共混物加入熔融纺丝机在200℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为68°,纯水通量在0.1MPa的测试压力下为980kg/m2h。Melt 1 part of high-density oxidized polypropylene wax with a molecular weight of 6000 at a high temperature of 180°C, then add 0.8 parts of polyethylene glycol with a molecular weight of 1200 and 0.008 parts of phosphoric acid into the reactor, keep it warm and let nitrogen gas into it for condensation reaction, after reacting for 10 hours, cool naturally, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft modified polypropylene mass percentage is 15%, and the polypropylene mass percentage is 85%; the blend is added to a melt spinning machine for melt stretching and spinning at 200 ° C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 68°, and the pure water flux is 980kg/m2 h under the test pressure of 0.1MPa.
实施例10:Example 10:
将1份分子量为7000的高密度氧化聚丙烯蜡在160℃高温条件下进行熔融,再向反应器中加入0.7份分子量为1600的聚乙二醇和0.002份的硝酸,保温并通入氮气进行缩合反应,反应9小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为25%,聚丙烯质量百分比为75%;将共混物加入熔融纺丝机在200℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为66°,纯水通量在0.1MPa的测试压力下为930kg/m2h。Melt 1 part of high-density oxidized polypropylene wax with a molecular weight of 7000 at a high temperature of 160°C, then add 0.7 parts of polyethylene glycol with a molecular weight of 1600 and 0.002 parts of nitric acid into the reactor, keep it warm and let nitrogen gas into it for condensation React, react naturally after 9 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft modified polypropylene mass percentage is 25%, and the polypropylene mass percentage is 75%; the blend is added to a melt spinning machine for melt stretching and spinning at 200 ° C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 66°, and the pure water flux is 930kg/m2 h under the test pressure of 0.1MPa.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010105004335ACN101966430B (en) | 2010-10-09 | 2010-10-09 | Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membrane |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010105004335ACN101966430B (en) | 2010-10-09 | 2010-10-09 | Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membrane |
| Publication Number | Publication Date |
|---|---|
| CN101966430A CN101966430A (en) | 2011-02-09 |
| CN101966430Btrue CN101966430B (en) | 2012-11-07 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010105004335AExpired - Fee RelatedCN101966430B (en) | 2010-10-09 | 2010-10-09 | Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membrane |
| Country | Link |
|---|---|
| CN (1) | CN101966430B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103768958B (en)* | 2012-10-19 | 2015-09-16 | 中国石油化工股份有限公司 | A kind of hydrophilic polypropylene hollow fiber microporous membrane and preparation method thereof |
| CN103933880B (en)* | 2014-03-24 | 2016-03-09 | 贵州省材料产业技术研究院 | The preparation method of high-throughout hydrophilic modification polypropylene hollow fiber membrane |
| CN108660616B (en)* | 2018-05-29 | 2020-06-26 | 中原工学院 | Horizontal branch reinforced bionic tree-shaped non-woven composite material and preparation method thereof |
| CN108677384B (en)* | 2018-05-29 | 2020-06-26 | 中原工学院 | Meltblown nonwoven composite material with horizontal branch structure and preparation method thereof |
| CN108677386B (en)* | 2018-05-29 | 2020-07-17 | 中原工学院 | Asymmetric transmission non-woven composite material and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101036861A (en)* | 2006-12-29 | 2007-09-19 | 浙江大学 | Hydrophilicity polyethylene hollow fiber micro-hole film and the preparation method |
| CN101721928A (en)* | 2010-01-14 | 2010-06-09 | 郑州大学 | High-strength and hydrophilic polysulfone hollow fiber ultrafiltration membrane |
| CN101829507A (en)* | 2010-05-14 | 2010-09-15 | 苏州市新能膜材料科技有限公司 | Method for preparing polypropylene separation membrane with durable hydrophilic property |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100543968B1 (en)* | 2003-02-28 | 2006-01-23 | 주식회사 케이엠에스 | Manufacturing method of asymmetric polyethylene hollow fiber membrane with high strength |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101036861A (en)* | 2006-12-29 | 2007-09-19 | 浙江大学 | Hydrophilicity polyethylene hollow fiber micro-hole film and the preparation method |
| CN101721928A (en)* | 2010-01-14 | 2010-06-09 | 郑州大学 | High-strength and hydrophilic polysulfone hollow fiber ultrafiltration membrane |
| CN101829507A (en)* | 2010-05-14 | 2010-09-15 | 苏州市新能膜材料科技有限公司 | Method for preparing polypropylene separation membrane with durable hydrophilic property |
| Publication number | Publication date |
|---|---|
| CN101966430A (en) | 2011-02-09 |
| Publication | Publication Date | Title |
|---|---|---|
| Zhang et al. | Challenges and recent advances in MOF–polymer composite membranes for gas separation | |
| CN100544809C (en) | A method for hydrophilic modification of polyvinylidene fluoride membrane | |
| CN101530748B (en) | Method for Preparing Composite Charged Mosaic Membrane by Interfacial Polymerization | |
| CN103055725B (en) | Heparan polyurethane blended modified polyethersulfone hollow fiber membrane and preparation method and application thereof | |
| CN101966430B (en) | Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membrane | |
| CN105311974B (en) | One kind having highly blood coagulation resistant performance hemodialysis membrane and preparation method thereof | |
| WO2007018284A1 (en) | Separation membrane for use in treatment of liquid comprising aromatic ether polymer which is hydrophilized with hydrophilizing agent | |
| WO2015041250A1 (en) | Gas separation membrane, gas separation module, gas separation device, and gas separation method | |
| CN101190401A (en) | Hydrophilic polyvinylidene fluoride hollow fiber microporous membrane and preparation method thereof | |
| JP6343470B2 (en) | NF membrane manufacturing method | |
| JP4991686B2 (en) | Method for producing composite hollow fiber membrane | |
| DE112015006647T5 (en) | Isatin copolymers with intrinsic microporosity | |
| CN107469639A (en) | Composite nanometer filtering film and preparation method thereof | |
| CN105381724B (en) | A kind of preparation method of high tensile PVDF hollow-fibre membranes | |
| JP2014000568A (en) | Internal pressure type hollow fiber type nf membrane and manufacturing method of the same | |
| CN102600739B (en) | Hollow fiber separation membrane and preparation method thereof | |
| JP2004290751A (en) | Manufacturing method of water vapor permeable membrane | |
| JPH07100201A (en) | Membrane for purifying blood | |
| JP2006257397A (en) | Aromatic polyamide porous film | |
| JP2015166056A (en) | Film-forming solution composition for hollow fiber membrane | |
| CN106310959A (en) | Preparation method of hydrophilic polyarylether sulphone film | |
| JP2015131929A (en) | Aromatic polysulfone porous material and production method of the same | |
| CN109304101A (en) | A kind of zwitterionized high-strength pollution-resistant forward osmosis membrane and preparation method thereof | |
| KR20170100857A (en) | Method for preparation of hollow fiber membranes and hollow fiber membranes prepared thereby | |
| CN106693722B (en) | A kind of HA-DA/PVDF composite micro porous film with good biocompatibility |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20121107 |