Movatterモバイル変換


[0]ホーム

URL:


CN101966430B - Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membrane - Google Patents

Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membrane
Download PDF

Info

Publication number
CN101966430B
CN101966430BCN2010105004335ACN201010500433ACN101966430BCN 101966430 BCN101966430 BCN 101966430BCN 2010105004335 ACN2010105004335 ACN 2010105004335ACN 201010500433 ACN201010500433 ACN 201010500433ACN 101966430 BCN101966430 BCN 101966430B
Authority
CN
China
Prior art keywords
polypropylene
polyethylene glycol
modified polypropylene
melt
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105004335A
Other languages
Chinese (zh)
Other versions
CN101966430A (en
Inventor
黄小军
唐叶红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou City Xinneng Film Material Technology Co Ltd
Original Assignee
Suzhou City Xinneng Film Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou City Xinneng Film Material Technology Co LtdfiledCriticalSuzhou City Xinneng Film Material Technology Co Ltd
Priority to CN2010105004335ApriorityCriticalpatent/CN101966430B/en
Publication of CN101966430ApublicationCriticalpatent/CN101966430A/en
Application grantedgrantedCritical
Publication of CN101966430BpublicationCriticalpatent/CN101966430B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Abstract

The invention discloses a preparation method of a high-efficient hydrophilic modified polypropylene hollow fibrous membrane, comprising the following steps: (1) synthesis of polyethylene glycol grafted modified polypropylene: at high temperature, fusing polypropylene oxide wax, adding polyethylene glycol in a polypropylene oxide wax fusant, simultaneously adding a small amount of acid catalyst, fusing at the high temperature of 120-200 DEG C after introducing nitrogen in, and carrying out condensation reaction; (2) blending melt spinning: blending the polyethylene glycol grafted modified polypropylene with polypropylene, adding the mixture into a high-temperature melt spinning machine, carrying out blending melt stretch spinning at the temperature of 200-220 DEG C, and preparing the polyethylene glycol hydrophilic modified polypropylene hollow fibrous membrane. The invention has simple preparation method, and the prepared polypropylene hollow fibrous membrane has excellent lasting hydrophily, is mainly used for filtering aqueous liquid, can be used for films for sewage treatment and is more possibly used for protein isolation and the like.

Description

Translated fromChinese
一种高效亲水改性聚丙烯中空纤维膜的制备方法A kind of preparation method of highly efficient hydrophilic modified polypropylene hollow fiber membrane

技术领域technical field

本发明涉及对疏水性聚合物分离膜材料进行亲水化及生物相容性改性的方法,具体涉及一种含聚乙二醇改性聚丙烯中空纤维膜的制备方法。The invention relates to a method for hydrophilizing and biocompatibility modification of a hydrophobic polymer separation membrane material, in particular to a preparation method for a polyethylene glycol-containing modified polypropylene hollow fiber membrane.

背景技术Background technique

聚丙烯微孔膜由于其简单的生产工艺、优良的性能,自问世以来即被迅速商品化,并得到了广泛的应用。从聚丙烯微孔膜的孔径大小和耐酸、耐碱性以及低电阻值等方面看,它是一种合适的电池隔板和隔膜材料,被大量用于电池工业;聚丙烯微孔膜的临界表面张力为35达因/厘米,它在一定压力下可以让水透过,而且机械强度高、韧性好,可以作为水处理膜,在制备饮料用水、药剂用水、超纯水以及海水淡化、污水处理等方面得到应用;利用聚丙烯微孔膜优良的透气性,可以用作空气净化器、特殊除尘器等空气净化装置。聚丙烯微孔膜由于无毒、气体透过性好,是一种比较理想的医疗器械用膜,用做如人工肺膜式氧合器等;另外,由于聚丙烯微孔膜优良的机械性能,它还可以作为支撑膜,或代替其他分离膜用于一些分子水平的物质分离和纯化领域。但聚丙烯微孔膜表面亲水性差,易带静电,这些缺点制约了它们的进一步推广应用。对聚丙烯微孔膜进行改性,利用引入基团的功能来改善膜表面性能上的不足,同时又把两者的优点结合起来,增加新的性能,是扩大聚丙烯微孔膜用途的一种简单而又行之有效的方法。Due to its simple production process and excellent performance, polypropylene microporous membrane has been rapidly commercialized and widely used since its inception. From the perspective of pore size, acid resistance, alkali resistance and low resistance value of polypropylene microporous membrane, it is a suitable battery separator and diaphragm material, which is widely used in the battery industry; the criticality of polypropylene microporous membrane The surface tension is 35 dynes/cm, it can allow water to permeate under a certain pressure, and has high mechanical strength and good toughness. Treatment and other aspects have been applied; using the excellent air permeability of polypropylene microporous membrane, it can be used as air purification devices such as air purifiers and special dust collectors. Due to its non-toxicity and good gas permeability, polypropylene microporous membrane is an ideal membrane for medical devices, such as artificial lung membrane oxygenator; in addition, due to the excellent mechanical properties of polypropylene microporous membrane , it can also be used as a support membrane, or replace other separation membranes in the field of material separation and purification at the molecular level. However, the surface of polypropylene microporous membranes has poor hydrophilicity and is easy to be charged with static electricity. These shortcomings restrict their further application. Modifying the polypropylene microporous membrane, using the function of introducing groups to improve the surface performance of the membrane, and at the same time combining the advantages of the two to increase new performance is a way to expand the use of polypropylene microporous membranes. A simple yet effective method.

目前发展了多种不同方法可用于聚丙烯微孔膜的表面改性,主要分为物理方法和化学方法。前者如物理涂覆法,它是最简单的表面改性方法,即用亲水剂(如醇、表面活性剂、聚电解质络合物等)处理微孔膜或把微孔膜直接浸渍在高分子溶液中,然后蒸发溶剂。这种技术虽然简单,但由于只是通过物理吸附作用来固定表面改性剂,导致表面改性剂易流失,亲水性在使用过程中逐渐下降。原位填充聚合法是在聚丙烯微孔膜的微孔内加入单体及其相应引发剂使单体聚合,即可得到改性的功能膜材料以改善膜表面及膜孔内的亲水性,但由于聚合反应在孔内进行,从而极大的影响了膜的分离性能和机械性能。化学改性的方法有很多,包括用电晕、紫外、等离子体等辐照进行简单的处理,可以在短期内提高材料的表面性能,但随着时间的延长又会回复到原来的水平。能长期保持改性性能的方法一般是把功能性大分子通过化学键合固定在材料表面,其中接枝聚合法有一定优点。本申请人申请的申请号为200310108528,采用糖基化合物为改性接枝单体,通过该方法得到聚合物分离膜,亲水性和生物相容性得到改善,并可长期保持。但用作接枝单体的糖基化合物需要由糖基与烯类、酯类等物料化合而成,增加工艺的复杂性,另外,由于采用的改性剂为糖烯单体,其合成困难,价格昂贵,进而极大地增加了亲水改性膜的成本。因此,有必要开发高效、稳定、经济的聚丙烯膜亲水化改性方法。At present, a variety of different methods have been developed for the surface modification of polypropylene microporous membranes, which are mainly divided into physical methods and chemical methods. The former is like the physical coating method, which is the simplest surface modification method, that is, treating the microporous membrane with a hydrophilic agent (such as alcohol, surfactant, polyelectrolyte complex, etc.) molecules in solution, and then evaporate the solvent. Although this technique is simple, because the surface modifier is only fixed by physical adsorption, the surface modifier is easy to lose, and the hydrophilicity gradually decreases during use. The in-situ filling polymerization method is to add monomers and corresponding initiators into the micropores of polypropylene microporous membranes to polymerize the monomers, and then obtain modified functional membrane materials to improve the hydrophilicity of the membrane surface and membrane pores. , but because the polymerization reaction is carried out in the pores, the separation performance and mechanical properties of the membrane are greatly affected. There are many chemical modification methods, including simple treatment with corona, ultraviolet, plasma and other irradiation, which can improve the surface properties of materials in a short period of time, but will return to the original level as time goes by. The method that can maintain the modification performance for a long time is generally to fix the functional macromolecules on the surface of the material through chemical bonding, and the graft polymerization method has certain advantages. The applicant's application number is 200310108528, using glycosyl compounds as modified grafting monomers to obtain polymer separation membranes with improved hydrophilicity and biocompatibility, which can be maintained for a long time. However, the glycosyl compounds used as grafting monomers need to be synthesized from glycosyls, olefins, esters and other materials, which increases the complexity of the process. In addition, because the modifier used is glycosylated monomers, its synthesis is difficult. , which is expensive, which greatly increases the cost of the hydrophilic modified membrane. Therefore, it is necessary to develop an efficient, stable and economical method for the hydrophilic modification of polypropylene membranes.

发明内容Contents of the invention

本发明主要是克服现有技术的缺点,提供对疏水性聚丙烯分离膜进行亲水化及生物相容性改性的方法,本发明工艺简单并使聚丙烯分离膜亲水性好、水通量大、不易带静电、蛋白吸附量少、血液相容性有较大程度提高。本发明的上述目的主要通过以下发明构思得以解决:通过合成聚乙二醇接枝改性聚丙烯,并以其为添加剂与聚丙烯共混再进行熔融纺丝制备具有持久亲水性聚丙烯中空纤维膜。The present invention mainly overcomes the shortcomings of the prior art and provides a method for hydrophilizing and biocompatibility modification of the hydrophobic polypropylene separation membrane. Large amount, not easy to be charged with static electricity, less protein adsorption, and blood compatibility has been greatly improved. The above object of the present invention is mainly solved by the following inventive concept: by synthesizing polyethylene glycol graft-modified polypropylene, and using it as an additive to blend with polypropylene and then melt-spinning to prepare a hollow polypropylene with durable hydrophilicity Fiber membrane.

一种高效亲水改性聚丙烯中空纤维膜的制备方法,包括以下步骤:A method for preparing a high-efficiency hydrophilic modified polypropylene hollow fiber membrane, comprising the following steps:

(1)聚乙二醇接枝改性聚丙烯的合成:在高温条件下将氧化聚丙烯蜡熔融,再向氧化聚丙烯蜡熔体中加入聚乙二醇,同时加入少量酸催化剂,通入氮气后在120~200℃高温条件下熔融,并进行缩合反应,其中聚乙二醇的质量为氧化聚丙烯蜡质量的40~80%,酸催化剂的质量为氧化聚丙烯蜡质量的0.1~1%,反应4~12小时后,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;(1) Synthesis of polyethylene glycol grafted modified polypropylene: melt the oxidized polypropylene wax under high temperature conditions, then add polyethylene glycol to the oxidized polypropylene wax melt, and add a small amount of acid catalyst at the same time, pass through Melt under high temperature conditions of 120-200°C after nitrogen gas, and carry out condensation reaction, wherein the mass of polyethylene glycol is 40-80% of the mass of oxidized polypropylene wax, and the mass of acid catalyst is 0.1-1% of the mass of oxidized polypropylene wax %, after reacting for 4 to 12 hours, pour the reactant into water for precipitation to obtain polyethylene glycol grafted modified polypropylene;

(2)共混熔融纺丝:将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,共混物加入通用高温熔融纺丝机中,在200~220℃条件下进行熔融拉伸纺丝,制得聚乙二醇亲水改性聚丙烯中空纤维膜材料,其中共混物中聚乙二醇接枝改性聚丙烯质量百分比为5~30%,聚丙烯质量百分比为95~70%,以确保熔融纺丝的顺利进行,纺丝溶液满足高于临界浓度且低于极限粘度。(2) Blending melt spinning: Blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, and put the blend into a general high-temperature melt spinning machine at 200-220°C. Melt stretching and spinning to prepare polyethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, wherein the mass percentage of polyethylene glycol graft modified polypropylene in the blend is 5-30%, and the mass percentage of polypropylene is 95% to 70%, in order to ensure the smooth progress of melt spinning, the spinning solution is higher than the critical concentration and lower than the limiting viscosity.

上述的氧化聚丙烯蜡为低密度氧化聚丙烯蜡和高密度氧化聚丙烯蜡中的任一种,其分子量为2000~10000。The above-mentioned oxidized polypropylene wax is any one of low-density oxidized polypropylene wax and high-density oxidized polypropylene wax, and its molecular weight is 2000-10000.

上述的酸催化剂为硝酸、磷酸、苯甲酸和柠檬酸中的任一种。Above-mentioned acid catalyst is any one in nitric acid, phosphoric acid, benzoic acid and citric acid.

上述的聚乙二醇的分子量为400~2000。The molecular weight of the above-mentioned polyethylene glycol is 400-2000.

本发明具有如下优点:The present invention has the following advantages:

本发明采用氧化聚丙烯蜡为原料,通过高温热缩合方法合成制备聚乙二醇接枝改性聚丙烯,合成方法简单,接枝效率高;另外,以聚乙二醇接枝改性聚丙烯为添加剂,与聚丙烯进行共混并进行熔融纺丝制备中空纤维膜,有利于聚乙二醇在聚丙烯分离膜孔表面的富积,并提高其在聚丙烯分离膜分散性和稳定性,所制得的中空纤维膜不仅可以改善聚丙烯分离膜表面亲水性,同时还可以提高分离膜孔表面的亲水性。The present invention uses oxidized polypropylene wax as a raw material, and synthesizes and prepares polyethylene glycol grafted modified polypropylene through a high-temperature thermal condensation method. The synthesis method is simple and the grafting efficiency is high; in addition, the polyethylene glycol grafted modified polypropylene As an additive, it is blended with polypropylene and melt-spun to prepare hollow fiber membranes, which is beneficial to the enrichment of polyethylene glycol on the surface of polypropylene separation membrane pores, and improves its dispersion and stability in polypropylene separation membranes. The prepared hollow fiber membrane can not only improve the hydrophilicity of the surface of the polypropylene separation membrane, but also improve the hydrophilicity of the pore surface of the separation membrane.

本发明的通过共混熔融纺丝亲水改性制备方法简单,纺丝过程中喷丝射流稳定性好,纤维膜形态结构可很容易地通过调节纺丝过程的条件来控制,适于工业化生产。The preparation method of the hydrophilic modification by blending melt spinning of the present invention is simple, the spinning jet has good stability in the spinning process, and the morphology and structure of the fiber film can be easily controlled by adjusting the conditions of the spinning process, which is suitable for industrial production .

具体实施方式Detailed ways

下面通过具体实施例,对本发明的技术方案作进一步的说明。The technical solutions of the present invention will be further described below through specific examples.

实施例1:Example 1:

将1份分子量为2000的低密度氧化聚丙烯蜡在120℃高温条件下进行熔融,向反应器中加入0.4份的分子量为400的聚乙二醇和0.001份的磷酸,保温并通入氮气进行缩合反应,反应4小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为5%,聚丙烯质量百分比为95%;将共混物加入熔融纺丝机在200℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为78°,纯水通量在0.1MPa的测试压力下为560kg/m2h。Melt 1 part of low-density oxidized polypropylene wax with a molecular weight of 2000 at a high temperature of 120°C, add 0.4 parts of polyethylene glycol with a molecular weight of 400 and 0.001 part of phosphoric acid into the reactor, keep it warm and blow in nitrogen for condensation reaction, reacted for 4 hours and cooled naturally, poured the reactants into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blended the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft modified polypropylene mass percentage is 5%, and the polypropylene mass percentage is 95%; the blend is added to a melt spinning machine for melt stretching and spinning at 200 ° C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 78°, and the pure water flux is 560kg/m2 h under the test pressure of 0.1MPa.

实施例2:Example 2:

将1份分子量为4000的低密度氧化聚丙烯蜡在160℃高温条件下进行熔融,向反应器中加入0.6份的分子量为600的聚乙二醇和0.005份的苯甲酸,保温并通入氮气进行缩合反应,反应6小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为10%,聚丙烯质量百分比为90%;将共混物加入熔融纺丝机在210℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为72°,纯水通量在0.1MPa的测试压力下为660kg/m2h。Melt 1 part of low-density oxidized polypropylene wax with a molecular weight of 4000 at a high temperature of 160°C, add 0.6 parts of polyethylene glycol with a molecular weight of 600 and 0.005 parts of benzoic acid into the reactor, keep warm and blow in nitrogen to carry out Condensation reaction, react naturally after 6 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene , wherein the mass percentage of polyethylene glycol grafted modified polypropylene is 10%, and the mass percentage of polypropylene is 90%; the blend is added to a melt spinning machine for melt stretching and spinning at 210 ° C to obtain a blend containing Polyethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 72°, and the pure water flux is 660kg/m2 h under the test pressure of 0.1MPa .

实施例3:Example 3:

将1份分子量为8000低密度氧化聚丙烯蜡在180℃高温条件下进行熔融,向反应器中加入0.8份的分子量为1000的聚乙二醇和0.05份的柠檬酸,保温并通入氮气进行缩合反应,反应8小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为15%,聚丙烯质量百分比为85%;将共混物加入熔融纺丝机在220℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为66°,纯水通量在0.1MPa的测试压力下为880kg/m2h。Melt 1 part of low-density oxidized polypropylene wax with a molecular weight of 8,000 at a high temperature of 180°C, add 0.8 parts of polyethylene glycol with a molecular weight of 1,000 and 0.05 parts of citric acid into the reactor, keep it warm and let nitrogen gas into it for condensation React, react naturally after 8 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft modified polypropylene mass percentage is 15%, and the polypropylene mass percentage is 85%; the blend is added to a melt spinning machine for melt stretching and spinning at 220°C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 66°, and the pure water flux is 880kg/m2 h under the test pressure of 0.1MPa.

实施例5:Example 5:

将1份分子量为10000的低密度氧化聚丙烯蜡在180℃高温条件下进行熔融,再向反应器中加入1份分子量为1600的聚乙二醇和0.001份的硝酸,保温并通入氮气进行缩合反应,反应12小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为20%,聚丙烯质量百分比为80%;将共混物加入熔融纺丝机在200℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为60°,纯水通量在0.1MPa的测试压力下为1380kg/m2h。Melt 1 part of low-density oxidized polypropylene wax with a molecular weight of 10,000 at a high temperature of 180°C, then add 1 part of polyethylene glycol with a molecular weight of 1600 and 0.001 part of nitric acid into the reactor, keep it warm and let nitrogen gas into it for condensation reaction, reacting for 12 hours and then cooling naturally, pouring the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blending the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft-modified polypropylene mass percentage is 20%, and the polypropylene mass percentage is 80%; the blend is added to a melt spinning machine for melt stretching and spinning at 200°C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 60°, and the pure water flux is 1380kg/m2 h under the test pressure of 0.1MPa.

实施例6:Embodiment 6:

将1份分子量为8000的高密度氧化聚丙烯蜡在180℃高温条件下进行熔融,再向反应器中加入1份分子量为1600的聚乙二醇和0.005份的磷酸,保温并通入氮气进行缩合反应,反应8小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为30%,聚丙烯质量百分比为70%;将共混物加入熔融纺丝机在220℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为56°,纯水通量在0.1MPa的测试压力下为1880kg/m2h。Melt 1 part of high-density oxidized polypropylene wax with a molecular weight of 8000 at a high temperature of 180°C, then add 1 part of polyethylene glycol with a molecular weight of 1600 and 0.005 part of phosphoric acid into the reactor, keep it warm and let nitrogen gas into it for condensation React, react naturally after 8 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft modified polypropylene mass percentage is 30%, and the polypropylene mass percentage is 70%; the blend is added to a melt spinning machine for melt stretching and spinning at 220 ° C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 56°, and the pure water flux is 1880kg/m2 h under the test pressure of 0.1MPa.

实施例7:Embodiment 7:

将1份分子量为10000的高密度氧化聚丙烯蜡在180℃高温条件下进行熔融,再向反应器中加入1份分子量为2000的聚乙二醇和0.005份的苯甲酸,保温并通入氮气进行缩合反应,反应12小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为30%,聚丙烯质量百分比为70%;将共混物加入熔融纺丝机在200℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为52°,纯水通量在0.1MPa的测试压力下为2600kg/m2h。Melt 1 part of high-density oxidized polypropylene wax with a molecular weight of 10,000 at a high temperature of 180°C, then add 1 part of polyethylene glycol with a molecular weight of 2000 and 0.005 part of benzoic acid into the reactor, keep warm and blow in nitrogen to carry out Condensation reaction, react naturally after 12 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene , wherein the mass percentage of polyethylene glycol grafted modified polypropylene is 30%, and the mass percentage of polypropylene is 70%; the blend is added to a melt spinning machine for melt stretching and spinning at 200°C to obtain a blend containing Polyethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 52°, and the pure water flux is 2600kg/m2 h under the test pressure of 0.1MPa .

实施例8:Embodiment 8:

将1份分子量为10000的高密度氧化聚丙烯蜡在200℃高温条件下进行熔融,再向反应器中加入0.6份分子量为1200的聚乙二醇和0.01份的柠檬酸,保温并通入氮气进行缩合反应,反应12小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为25%,聚丙烯质量百分比为75%;将共混物加入熔融纺丝机在210℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为60°,纯水通量在0.1MPa的测试压力下为1600kg/m2h。Melt 1 part of high-density oxidized polypropylene wax with a molecular weight of 10,000 at a high temperature of 200°C, then add 0.6 parts of polyethylene glycol with a molecular weight of 1200 and 0.01 part of citric acid into the reactor, keep warm and blow in nitrogen to carry out Condensation reaction, react naturally after 12 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene , wherein the polyethylene glycol graft modified polypropylene mass percentage is 25%, and the polypropylene mass percentage is 75%; the blend is added to a melt spinning machine for melt stretching and spinning at 210 ° C to obtain a Polyethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 60°, and the pure water flux is 1600kg/m2 h under the test pressure of 0.1MPa .

实施例9:Embodiment 9:

将1份分子量为6000的高密度氧化聚丙烯蜡在180℃高温条件下进行熔融,再向反应器中加入0.8份分子量为1200的聚乙二醇和0.008份的磷酸,保温并通入氮气进行缩合反应,反应10小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为15%,聚丙烯质量百分比为85%;将共混物加入熔融纺丝机在200℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为68°,纯水通量在0.1MPa的测试压力下为980kg/m2h。Melt 1 part of high-density oxidized polypropylene wax with a molecular weight of 6000 at a high temperature of 180°C, then add 0.8 parts of polyethylene glycol with a molecular weight of 1200 and 0.008 parts of phosphoric acid into the reactor, keep it warm and let nitrogen gas into it for condensation reaction, after reacting for 10 hours, cool naturally, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft modified polypropylene mass percentage is 15%, and the polypropylene mass percentage is 85%; the blend is added to a melt spinning machine for melt stretching and spinning at 200 ° C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 68°, and the pure water flux is 980kg/m2 h under the test pressure of 0.1MPa.

实施例10:Example 10:

将1份分子量为7000的高密度氧化聚丙烯蜡在160℃高温条件下进行熔融,再向反应器中加入0.7份分子量为1600的聚乙二醇和0.002份的硝酸,保温并通入氮气进行缩合反应,反应9小时后自然冷却,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,其中聚乙二醇接枝改性聚丙烯质量百分比为25%,聚丙烯质量百分比为75%;将共混物加入熔融纺丝机在200℃条件下进行熔融拉伸纺丝,制得含聚乙二醇亲水改性聚丙烯中空纤维膜材料,所制备的改性聚丙烯中空纤维膜表面水接触角为66°,纯水通量在0.1MPa的测试压力下为930kg/m2h。Melt 1 part of high-density oxidized polypropylene wax with a molecular weight of 7000 at a high temperature of 160°C, then add 0.7 parts of polyethylene glycol with a molecular weight of 1600 and 0.002 parts of nitric acid into the reactor, keep it warm and let nitrogen gas into it for condensation React, react naturally after 9 hours, pour the reactant into water for precipitation to obtain polyethylene glycol graft modified polypropylene; blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, The polyethylene glycol graft modified polypropylene mass percentage is 25%, and the polypropylene mass percentage is 75%; the blend is added to a melt spinning machine for melt stretching and spinning at 200 ° C to obtain a poly Ethylene glycol hydrophilic modified polypropylene hollow fiber membrane material, the surface water contact angle of the prepared modified polypropylene hollow fiber membrane is 66°, and the pure water flux is 930kg/m2 h under the test pressure of 0.1MPa.

Claims (4)

Translated fromChinese
1.一种高效亲水改性聚丙烯中空纤维膜的制备方法,包括以下步骤:1. A preparation method for an efficient hydrophilic modified polypropylene hollow fiber membrane, comprising the following steps:(1)聚乙二醇接枝改性聚丙烯的合成:在高温条件下将氧化聚丙烯蜡熔融,再向氧化聚丙烯蜡熔体中加入聚乙二醇,同时加入少量酸催化剂,通入氮气后在120~200℃高温条件下熔融,并进行缩合反应,其中聚乙二醇的质量为氧化聚丙烯蜡质量的40~80%,酸催化剂的质量为氧化聚丙烯蜡质量的0.1~1%,反应4~12小时后,将反应物倒入水中进行沉淀得到聚乙二醇接枝改性聚丙烯;(1) Synthesis of polyethylene glycol grafted modified polypropylene: melt the oxidized polypropylene wax under high temperature conditions, then add polyethylene glycol to the oxidized polypropylene wax melt, and add a small amount of acid catalyst at the same time, pass through Melt under high temperature conditions of 120-200°C after nitrogen gas, and carry out condensation reaction, wherein the mass of polyethylene glycol is 40-80% of the mass of oxidized polypropylene wax, and the mass of acid catalyst is 0.1-1% of the mass of oxidized polypropylene wax %, after reacting for 4 to 12 hours, pour the reactant into water for precipitation to obtain polyethylene glycol grafted modified polypropylene;(2)共混熔融纺丝:将所制备的聚乙二醇接枝改性聚丙烯与聚丙烯进行共混,共混物加入通用高温熔融纺丝机中,在200~220℃条件下进行熔融拉伸纺丝,制得聚乙二醇亲水改性聚丙烯中空纤维膜,其中共混物中聚乙二醇接枝改性聚丙烯质量百分比为5~30%,聚丙烯质量百分比为95~70%,以确保熔融纺丝的顺利进行,纺丝溶液满足高于临界浓度且低于极限粘度。(2) Blending melt spinning: Blend the prepared polyethylene glycol graft modified polypropylene with polypropylene, and put the blend into a general high-temperature melt spinning machine at 200-220°C. Melt stretching and spinning to prepare polyethylene glycol hydrophilic modified polypropylene hollow fiber membrane, wherein the mass percentage of polyethylene glycol graft modified polypropylene in the blend is 5-30%, and the mass percentage of polypropylene is 95-70%, in order to ensure the smooth progress of melt spinning, the spinning solution is higher than the critical concentration and lower than the limiting viscosity.2.根据权利要求1所述的一种高效亲水改性聚丙烯中空纤维膜的制备方法,所述的氧化聚丙烯蜡为低密度氧化聚丙烯蜡和高密度氧化聚丙烯蜡中的任一种,其分子量为2000~10000。2. the preparation method of a kind of efficient hydrophilic modified polypropylene hollow fiber membrane according to claim 1, described oxidized polypropylene wax is any one in low-density oxidized polypropylene wax and high-density oxidized polypropylene wax species, its molecular weight is 2000-10000.3.根据权利要求1所述的一种高效亲水改性聚丙烯中空纤维膜的制备方法,所述的酸催化剂为硝酸、磷酸、苯甲酸和柠檬酸中的任一种。3. the preparation method of a kind of efficient hydrophilic modified polypropylene hollow fiber membrane according to claim 1, described acid catalyst is any one in nitric acid, phosphoric acid, benzoic acid and citric acid.4.根据权利要求1所述的一种高效亲水改性聚丙烯中空纤维膜的制备方法,所述的聚乙二醇的分子量为400~2000。4. A method for preparing a high-efficiency hydrophilic modified polypropylene hollow fiber membrane according to claim 1, wherein the polyethylene glycol has a molecular weight of 400-2000.
CN2010105004335A2010-10-092010-10-09Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membraneExpired - Fee RelatedCN101966430B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN2010105004335ACN101966430B (en)2010-10-092010-10-09Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membrane

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN2010105004335ACN101966430B (en)2010-10-092010-10-09Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membrane

Publications (2)

Publication NumberPublication Date
CN101966430A CN101966430A (en)2011-02-09
CN101966430Btrue CN101966430B (en)2012-11-07

Family

ID=43545687

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN2010105004335AExpired - Fee RelatedCN101966430B (en)2010-10-092010-10-09Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membrane

Country Status (1)

CountryLink
CN (1)CN101966430B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103768958B (en)*2012-10-192015-09-16中国石油化工股份有限公司A kind of hydrophilic polypropylene hollow fiber microporous membrane and preparation method thereof
CN103933880B (en)*2014-03-242016-03-09贵州省材料产业技术研究院The preparation method of high-throughout hydrophilic modification polypropylene hollow fiber membrane
CN108660616B (en)*2018-05-292020-06-26中原工学院Horizontal branch reinforced bionic tree-shaped non-woven composite material and preparation method thereof
CN108677384B (en)*2018-05-292020-06-26中原工学院 Meltblown nonwoven composite material with horizontal branch structure and preparation method thereof
CN108677386B (en)*2018-05-292020-07-17中原工学院Asymmetric transmission non-woven composite material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101036861A (en)*2006-12-292007-09-19浙江大学Hydrophilicity polyethylene hollow fiber micro-hole film and the preparation method
CN101721928A (en)*2010-01-142010-06-09郑州大学High-strength and hydrophilic polysulfone hollow fiber ultrafiltration membrane
CN101829507A (en)*2010-05-142010-09-15苏州市新能膜材料科技有限公司Method for preparing polypropylene separation membrane with durable hydrophilic property

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR100543968B1 (en)*2003-02-282006-01-23주식회사 케이엠에스 Manufacturing method of asymmetric polyethylene hollow fiber membrane with high strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101036861A (en)*2006-12-292007-09-19浙江大学Hydrophilicity polyethylene hollow fiber micro-hole film and the preparation method
CN101721928A (en)*2010-01-142010-06-09郑州大学High-strength and hydrophilic polysulfone hollow fiber ultrafiltration membrane
CN101829507A (en)*2010-05-142010-09-15苏州市新能膜材料科技有限公司Method for preparing polypropylene separation membrane with durable hydrophilic property

Also Published As

Publication numberPublication date
CN101966430A (en)2011-02-09

Similar Documents

PublicationPublication DateTitle
Zhang et al.Challenges and recent advances in MOF–polymer composite membranes for gas separation
CN100544809C (en) A method for hydrophilic modification of polyvinylidene fluoride membrane
CN101530748B (en) Method for Preparing Composite Charged Mosaic Membrane by Interfacial Polymerization
CN103055725B (en)Heparan polyurethane blended modified polyethersulfone hollow fiber membrane and preparation method and application thereof
CN101966430B (en)Preparation method of high-efficient hydrophilic modified polypropylene hollow fibrous membrane
CN105311974B (en)One kind having highly blood coagulation resistant performance hemodialysis membrane and preparation method thereof
WO2007018284A1 (en)Separation membrane for use in treatment of liquid comprising aromatic ether polymer which is hydrophilized with hydrophilizing agent
WO2015041250A1 (en)Gas separation membrane, gas separation module, gas separation device, and gas separation method
CN101190401A (en)Hydrophilic polyvinylidene fluoride hollow fiber microporous membrane and preparation method thereof
JP6343470B2 (en) NF membrane manufacturing method
JP4991686B2 (en) Method for producing composite hollow fiber membrane
DE112015006647T5 (en) Isatin copolymers with intrinsic microporosity
CN107469639A (en)Composite nanometer filtering film and preparation method thereof
CN105381724B (en)A kind of preparation method of high tensile PVDF hollow-fibre membranes
JP2014000568A (en)Internal pressure type hollow fiber type nf membrane and manufacturing method of the same
CN102600739B (en)Hollow fiber separation membrane and preparation method thereof
JP2004290751A (en) Manufacturing method of water vapor permeable membrane
JPH07100201A (en)Membrane for purifying blood
JP2006257397A (en)Aromatic polyamide porous film
JP2015166056A (en) Film-forming solution composition for hollow fiber membrane
CN106310959A (en)Preparation method of hydrophilic polyarylether sulphone film
JP2015131929A (en)Aromatic polysulfone porous material and production method of the same
CN109304101A (en) A kind of zwitterionized high-strength pollution-resistant forward osmosis membrane and preparation method thereof
KR20170100857A (en)Method for preparation of hollow fiber membranes and hollow fiber membranes prepared thereby
CN106693722B (en)A kind of HA-DA/PVDF composite micro porous film with good biocompatibility

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20121107


[8]ページ先頭

©2009-2025 Movatter.jp