




技术领域technical field
本发明涉及图像处理技术领域,尤其涉及一种图像倾斜校正方法及装置。The present invention relates to the technical field of image processing, in particular to an image tilt correction method and device.
背景技术Background technique
目前,随着智能交通系统的发展,图像处理技术被广泛的应用于智能交通系统中。在智能交通系统中,通常采用图像识别技术对车辆的车牌进行图像识别,从而实现自动获得车辆的车牌号。At present, with the development of intelligent transportation systems, image processing technology is widely used in intelligent transportation systems. In the intelligent transportation system, the image recognition technology is usually used to recognize the license plate of the vehicle, so as to realize the automatic acquisition of the license plate number of the vehicle.
由于不同道路环境的影响,行驶在道路上的车辆会出现倾斜的情况。为了准确的获得车辆的车牌信息,现有技术中的车牌图像识别系统,需要对所有检测到的车辆的车牌进行图像校正处理,使车牌的图像能够便于图像识别系统识别出车牌的号码。Due to the influence of different road environments, vehicles driving on the road will appear inclined. In order to accurately obtain the license plate information of the vehicle, the license plate image recognition system in the prior art needs to perform image correction processing on the license plate of all detected vehicles, so that the image of the license plate can facilitate the image recognition system to recognize the number of the license plate.
由上可知,现有技术中的图像校正处理方法对所有检测到的图像均进行校正处理,而对于没有发生倾斜的车辆也进行图像校正处理,大大增加了图像校正处理的负担,影响了对车牌发生倾斜的车辆进行图像校正处理的速度,降低了图像校正处理的校正效率。因此,现有技术中的图像校正方法的处理效率低。It can be seen from the above that the image correction processing method in the prior art performs correction processing on all detected images, and also performs image correction processing on vehicles that do not tilt, which greatly increases the burden of image correction processing and affects the detection of license plates. The speed at which the image correction process is performed by the tilted vehicle reduces the correction efficiency of the image correction process. Therefore, the processing efficiency of the image correction method in the prior art is low.
发明内容Contents of the invention
本发明提供一种图像倾斜校正方法及装置,用以解决现有技术中图像倾斜校正方法效率低的缺陷,实现提高图像倾斜校正方法的校正效率。The present invention provides an image tilt correction method and device, which are used to solve the defect of low efficiency of the image tilt correction method in the prior art, and improve the correction efficiency of the image tilt correction method.
本发明提供一种图像倾斜校正方法,包括:The present invention provides an image tilt correction method, comprising:
对获取的图像进行灰度处理,以获得灰度图像;Perform grayscale processing on the acquired image to obtain a grayscale image;
对所述灰度图像进行投影处理,以判断所述灰度图像是否倾斜;performing projection processing on the grayscale image to determine whether the grayscale image is tilted;
若所述灰度图像倾斜,则对所述灰度图像进行倾斜校正处理。If the grayscale image is tilted, performing tilt correction processing on the grayscale image.
本发明提供一种图像倾斜校正装置,包括:The present invention provides an image tilt correction device, comprising:
灰度处理模块,用于对获取的图像进行灰度处理,以获得灰度图像;A grayscale processing module, configured to perform grayscale processing on the acquired image to obtain a grayscale image;
投影处理模块,用于对所述灰度图像进行投影处理,以判断所述灰度图像是否倾斜;A projection processing module, configured to perform projection processing on the grayscale image to determine whether the grayscale image is tilted;
校正处理模块,用于若所述灰度图像倾斜,则对所述灰度图像进行倾斜校正处理。The correction processing module is configured to perform tilt correction processing on the grayscale image if the grayscale image is skewed.
本发明提供的图像倾斜校正方法及装置,通过对灰度图像进行投影处理,以判断出灰度图像是否倾斜,若灰度图像处于倾斜状态则对该灰度图像进行倾斜校正处理,而对于没有倾斜的灰度图像不进行倾斜校正处理,提高了图像倾斜校正方法的校正效率。The image tilt correction method and device provided by the present invention can judge whether the gray-scale image is tilted by performing projection processing on the gray-scale image, and if the gray-scale image is in a tilted state, perform tilt correction processing on the gray-scale image. The tilted grayscale image is not subjected to tilt correction processing, which improves the correction efficiency of the image tilt correction method.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本发明图像倾斜校正方法实施例的流程图;Fig. 1 is a flow chart of an embodiment of the image tilt correction method of the present invention;
图2为本发明图像倾斜校正方法实施例中步骤102的具体流程图;FIG. 2 is a specific flowchart of
图3为本发明图像倾斜校正方法实施例中步骤103的具体流程图;FIG. 3 is a specific flowchart of
图4为本发明图像倾斜校正装置实施例的结构示意图。FIG. 4 is a schematic structural diagram of an embodiment of an image tilt correction device according to the present invention.
图5为本发明图像倾斜校正装置实施例中投影处理模块的结构示意图;5 is a schematic structural diagram of the projection processing module in the embodiment of the image tilt correction device of the present invention;
图6为本发明图像倾斜校正装置实施例中校正处理模块的结构示意图。FIG. 6 is a schematic structural diagram of a correction processing module in an embodiment of an image tilt correction device according to the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative work fall within the protection scope of the present invention.
图1为本发明图像倾斜校正方法实施例的流程图。如图1所示,本实施例图像倾斜校正方法,包括:FIG. 1 is a flowchart of an embodiment of an image tilt correction method of the present invention. As shown in Figure 1, the image tilt correction method in this embodiment includes:
步骤101、对获取的图像进行灰度处理,以获得灰度图像。
具体而言,本实施例中的步骤101对获取的图像信息进行处理,使处理后的图像变为灰度图像。本实施例以智能交通系统中对车辆车牌进行检测为例进行说明,通过道路上设置的摄像头等图像获取设备,获得道路上行驶的车辆车牌的图像信息,然后,通过步骤101对车牌的图像信息进行灰度处理,以得到车牌图像的灰度图像。Specifically,
步骤102、对灰度图像进行投影处理,以判断灰度图像是否倾斜。Step 102: Perform projection processing on the grayscale image to determine whether the grayscale image is tilted.
具体而言,通过步骤101获得车牌的灰度图像后,通过步骤102对获得的灰度图像进行投影处理,根据投影获得的图像信息该判断灰度图像是否是倾斜状态。Specifically, after the grayscale image of the license plate is obtained through
步骤103、若灰度图像倾斜,则对灰度图像进行倾斜校正处理。
具体而言,当灰度图像通过步骤102投影处理得知该灰度图像为倾斜的图像后,则通过步骤103对该灰度图像进行倾斜校正处理。例如:当通过步骤102得知获得的车牌的灰度图像为倾斜状态后,则可以判断检测到的车辆的车牌为倾斜的车牌,需要对倾斜的车牌进行倾斜校正处理,则通过步骤103对车牌的灰度图像进行校正处理,以获得无倾斜角度的车牌的灰度图像,以便后续程序根据无倾斜角度的灰度图像获得车牌号。Specifically, after the grayscale image is projected in
其中,本实施例图像倾斜校正方法可以应用于智能交通系统的车牌识别系统中,也可以用于其他需要对图像进行倾斜校正处理的场合。Wherein, the image tilt correction method of this embodiment can be applied to the license plate recognition system of the intelligent transportation system, and can also be used in other occasions that require tilt correction processing on the image.
本实施例图像倾斜校正方法,通过对灰度图像进行投影处理,以判断出灰度图像是否倾斜,若灰度图像处于倾斜状态则对该灰度图像进行倾斜校正处理,而对于没有倾斜的灰度图像不进行倾斜校正处理,提高了图像倾斜校 正方法的校正效率。另外,本实施例图像倾斜校正方法仅对处于倾斜状态的图像进行倾斜校正处理,而非倾斜的的图像无需进行倾斜校正处理,从而有效的避免非倾斜的图像出现图像信息损失,有利于提高图像整个处理过程的效率。The method for correcting the image inclination in this embodiment is to judge whether the grayscale image is tilted by performing projection processing on the grayscale image. The high-degree image is not subjected to tilt correction processing, which improves the correction efficiency of the image tilt correction method. In addition, the image inclination correction method in this embodiment only performs inclination correction processing on images in an inclining state, and does not need to perform inclination correction processing on non-inclined images, thereby effectively avoiding image information loss in non-inclined images, and is conducive to improving efficiency of the entire process.
基于上述技术方案,可选的,如图2所示,本实施例中的步骤102具体包括如下步骤:Based on the above technical solution, optionally, as shown in FIG. 2,
步骤1021、对灰度图像进行二值化处理,以得到二值化图像。具体的,步骤1021对步骤101获得的灰度图像进行二值化处理,从而将灰度图像转化为二值化图像。例如:车牌的绘图图像经过二值化处理后,车牌号将变为白色,而背景将变为黑色,从而形成黑白的二值化图像。
步骤1022、对二值化图像进行垂直投影,以获得二值化图像的投影长度。具体的,通过步骤1021将获得灰度图像的二值化图像,步骤1022将对二值化图像进行垂直投影,从而可以获得该二值化图像的投影长度。例如:将车牌的二值化图像进行垂直投影后,会在X轴方向上形成黑白间隔的投影,而投影长度可以是白色投影的总长度、或是白色投影之间的黑色投影的总长度。
步骤1023、将投影长度与预设的投影长度阀值进行比较。具体的,通过步骤1022将二值化图像进行垂直投影后,将获得该二值化图像的白色投影区域的长度以及黑色投影区域的长度。由于二值化图像的投影包括黑白两部分,则投影长度阀值也对应包括有黑色长度阀值和白色长度阀值。其中,黑色长度阀值为处于非倾斜状态的图像进行投影处理后得到的黑色区域的长度值,而白色长度阀值为处于非倾斜状态的图像进行投影处理后得到的白色区域的长度值。对该二值化图像的于白色投影区域的长度可以与投影长度阀值的白色长度阀值进行比较;对于该二值化图像的黑色投影区域的长度可以与投影长度阀值的黑色长度阀值进行比较。
步骤1024、若二值化图像的黑色的投影长度小于投影长度阀值的黑色长度阀值,则确定灰度图像为倾斜状态;或者,若二值化图像的白色的投影长 度大于投影长度阀值的白色长度阀值,则确定灰度图像为倾斜状态。具体的,以车牌的二值化图像垂直投影后得到的投影长度进行说明。车牌的二值化图像中,车牌号的图像为白色,而背景的图像为黑色。由于车牌号之间的间隔固定不变,当车牌倾斜时,车牌号的白色投影长度会增长,而车牌号之间的背景区域的黑色投影长度会缩短,从而当车牌的二值化图像的黑色的投影长度小于投影长度阀值的黑色长度阀值,则确定灰度图像为倾斜状态,从而确定车牌为倾斜的。或者,当当车牌的二值化图像的白色的投影长度大于投影长度阀值的白色长度阀值,则确定灰度图像为倾斜状态,从而确定车牌为倾斜的。
本实施例图像倾斜校正方法,通过对灰度图像进行投影处理得知该灰度图像的投影长度,然后将投影长度与预设的长度阀值进行比较,便可以方便的根据投影长度得知该灰度图像是否为倾斜的,从而更有利于提高本实施例图像倾斜校正方法的校正效率。In the image tilt correction method of this embodiment, the projection length of the grayscale image is obtained by performing projection processing on the grayscale image, and then the projection length is compared with a preset length threshold, and the projection length can be easily obtained. Whether the grayscale image is tilted is more conducive to improving the correction efficiency of the image tilt correction method of this embodiment.
基于上述技术方案,可选的,如图3所述,本实施例中的步骤103具体包括如下步骤:Based on the above technical solution, optionally, as shown in FIG. 3,
步骤1031、获取灰度图像的边缘信息。具体的,通过步骤102得知灰度图像是倾斜的后,需要通过步骤103进行倾斜校正处理。步骤1031将对该灰度图像进行处理,以获取灰度图像的边缘信息。为了更加可靠的获得灰度图像的边缘信息,本实施例中的步骤1031可以通过Canny算子获得灰度图像的边缘信息,由于Canny算子能较大范围提高边缘检测的适用范围,从而更有利于准确可靠的获得灰度图像的边缘信息。
步骤1032、根据边缘信息计算灰度图像的倾斜角。具体的,通过步骤1031获得灰度图像的边缘信息后,通过步骤1032根据边缘信息计算出该灰度图像的倾斜角。为了更加准确有效的提取灰度图像的倾斜角,本实施例中的步骤1032可以通过Hough变换对灰度图像的两侧的边缘信息进行对照处理,以计算出灰度图像的水平倾斜角度。例如:对于倾斜车牌所对应的边缘信息,通 过Hough变换分别对上下两部分车牌的有效边缘信息进行提取,并进行对照处理,可以快速准确的计算出车牌的水平倾角,有效的避免了车牌中部等图像信息干扰线的影响,提高了提取车牌倾角的正确率。
步骤1033、根据倾斜角旋转灰度图像,以输出无倾斜角度的灰度图像。具体的,在通过步骤1032计算出灰度图像对应的倾斜角后,可以通过步骤1033根据倾斜角对灰度图像进行旋转处理,以输出无倾斜角度的灰度图像。为了快速可靠的将灰度图像进行旋转,并减小旋转过程中灰度图像的信息损失,本实施例中的步骤1033可以根据倾斜角,通过双线性插值算法对灰度图像进行旋转校正,通过双线性插值算法对灰度图像旋转后,可以获得无倾斜角度的灰度图像,从而可以方便后续的图像处理过程的进行。Step 1033: Rotate the grayscale image according to the tilt angle to output a grayscale image without tilt angle. Specifically, after the inclination angle corresponding to the grayscale image is calculated in
本实施例图像倾斜校正方法,通过获取灰度图像的边缘信息,并根据边缘信息计算出倾斜角,最后,根据倾斜角旋转灰度图像以获得无倾斜角度的灰度图像,可以快速有效的对需要倾斜校正处理的灰度图像进行处理,更有利于提高本实施例图像倾斜校正方法的校正效率。The image tilt correction method in this embodiment obtains the edge information of the grayscale image, calculates the tilt angle according to the edge information, and finally rotates the grayscale image according to the tilt angle to obtain a grayscale image without tilt angle, which can quickly and effectively correct Processing the grayscale images that require tilt correction processing is more conducive to improving the correction efficiency of the image tilt correction method of this embodiment.
图4为本发明图像倾斜校正装置实施例的结构示意图。如图4所示,本实施例图像倾斜校正装置包括:灰度处理模块1、投影处理模块2和校正处理模块3。FIG. 4 is a schematic structural diagram of an embodiment of an image tilt correction device according to the present invention. As shown in FIG. 4 , the image tilt correction device of this embodiment includes: a gray scale processing module 1 , a projection processing module 2 and a correction processing module 3 .
灰度处理模块1用于对获取的图像进行灰度处理,以获得灰度图像;The grayscale processing module 1 is used to perform grayscale processing on the acquired image to obtain a grayscale image;
投影处理模块2用于对灰度图像进行投影处理,以判断灰度图像是否倾斜;The projection processing module 2 is used to project the grayscale image to determine whether the grayscale image is tilted;
校正处理模块3用于若灰度图像倾斜,则对灰度图像进行倾斜校正处理。The correction processing module 3 is configured to perform tilt correction processing on the grayscale image if the grayscale image is tilted.
具体而言,本实施例中的灰度处理模块1将获取到的图像进行灰度处理;然后,投影处理模块2将对灰度处理模块1处理生成的灰度图像进行投影处理,以判断灰度图像是否倾斜;最后,校正处理模块3将对倾斜的灰度图像进行校正处理,以得到正常状态非倾斜的灰度图像。其中,本实施例图像倾斜校正装置的具体处理过程可以参见本发明图像倾斜校正方法实施例的记 载,在此不再赘述。Specifically, the grayscale processing module 1 in this embodiment performs grayscale processing on the acquired image; then, the projection processing module 2 performs projection processing on the grayscale image generated by the grayscale processing module 1 to determine the grayscale Whether the degree image is tilted; finally, the correction processing module 3 will correct the tilted gray-scale image to obtain a normal non-slanted gray-scale image. Wherein, the specific processing process of the image tilt correction device in this embodiment can refer to the records of the embodiment of the image tilt correction method of the present invention, and will not be repeated here.
本实施例图像倾斜校正装置,通过对灰度图像进行投影处理,以判断出灰度图像是否倾斜,若灰度图像处于倾斜状态则对该灰度图像进行倾斜校正处理,而对于没有倾斜的灰度图像不进行倾斜校正处理,提高了图像倾斜校正方法的校正效率。另外,本实施例图像倾斜校正方法仅对处于倾斜状态的图像进行倾斜校正处理,而非倾斜的的图像无需进行倾斜校正处理,从而有效的避免非倾斜的图像出现图像信息损失,有利于提高图像整个处理过程的效率。The image inclination correction device in this embodiment performs projection processing on the grayscale image to determine whether the grayscale image is inclining. The high-degree image does not undergo tilt correction processing, which improves the correction efficiency of the image tilt correction method. In addition, the image inclination correction method in this embodiment only performs inclination correction processing on images in an inclining state, and does not need to perform inclination correction processing on non-inclined images, thereby effectively avoiding image information loss in non-inclined images, and is conducive to improving efficiency of the entire process.
基于上述技术方案,可选的,如图5所示,本实施例中的投影处理模块2包括:投影子模块21、判断子模块22、第一确定子模块23和第二确定子模块24。Based on the above technical solution, optionally, as shown in FIG. 5 , the projection processing module 2 in this embodiment includes: a
投影子模块21用于对灰度图像进行投影,以获得灰度图像的投影长度;判断子模块22用于判断投影长度是否小于预设的长度阀值;第一确定子模块23用于若投影长度小于长度阀值,则确定灰度图像为倾斜状态;第二确定子模块24用于若投影长度不小于长度阀值,则确定灰度图像为正常状态。The
本实施例图像倾斜校正装置,通过对灰度图像进行投影处理得知该灰度图像的投影长度,然后将投影长度与预设的长度阀值进行比较,便可以方便的根据投影长度得知该灰度图像是否为倾斜的,从而更有利于提高本实施例图像倾斜校正方法的校正效率。The image tilt correction device in this embodiment obtains the projection length of the grayscale image by performing projection processing on the grayscale image, and then compares the projection length with a preset length threshold, and can conveniently know the projection length according to the projection length. Whether the grayscale image is tilted is more conducive to improving the correction efficiency of the image tilt correction method of this embodiment.
基于上述技术方案,可选的,如图6所示,本实施例中的校正处理模块3包括:获取子模块31、计算子模块32和旋转子模块33。Based on the above technical solution, optionally, as shown in FIG. 6 , the correction processing module 3 in this embodiment includes: an
获取子模块31用于若所述灰度图像倾斜,则获取所述灰度图像的边缘信息;计算子模块32用于根据所述边缘信息计算所述灰度图像的倾斜角;旋转子模块33,用于根据所述倾斜角旋转所述灰度图像,以输出无倾斜角度的所述灰度图像。The
其中,为了更加可靠的获得灰度图像的边缘信息,本实施例中的获取子 模块31还用于通过Canny算子获得灰度图像的边缘信息;为了更加准确有效的提取灰度图像的倾斜角,计算子模块32还用于通过Hough变换对灰度图像的两侧的边缘信息进行对照处理,以计算出灰度图像的水平倾斜角度;为了快速可靠的将灰度图像进行旋转,并减小旋转过程中灰度图像的信息损失,旋转子模块33还用于根据倾斜角,通过双线性插值算法对灰度图像进行旋转校正。Wherein, in order to obtain the edge information of the grayscale image more reliably, the
本实施例图像倾斜校正装置,通过获取灰度图像的边缘信息,并根据边缘信息计算出倾斜角,最后,根据倾斜角旋转灰度图像以获得无倾斜角度的灰度图像,可以快速有效的对需要倾斜校正处理的灰度图像进行处理,更有利于提高本实施例图像倾斜校正方法的校正效率。The image tilt correction device in this embodiment obtains the edge information of the grayscale image, calculates the tilt angle according to the edge information, and finally rotates the grayscale image according to the tilt angle to obtain a grayscale image without tilt angle, which can quickly and effectively correct Processing the grayscale images that require tilt correction processing is more conducive to improving the correction efficiency of the image tilt correction method of this embodiment.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still be Modifications are made to the technical solutions described in the foregoing embodiments, or equivalent replacements are made to some of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions of the various embodiments of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201010221775.3ACN101923710A (en) | 2010-06-30 | 2010-06-30 | Image tilt correction method and device |
| PCT/CN2010/080304WO2012000296A1 (en) | 2010-06-30 | 2010-12-27 | Image tilt correction method and apparatus |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201010221775.3ACN101923710A (en) | 2010-06-30 | 2010-06-30 | Image tilt correction method and device |
| Publication Number | Publication Date |
|---|---|
| CN101923710Atrue CN101923710A (en) | 2010-12-22 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201010221775.3APendingCN101923710A (en) | 2010-06-30 | 2010-06-30 | Image tilt correction method and device |
| Country | Link |
|---|---|
| CN (1) | CN101923710A (en) |
| WO (1) | WO2012000296A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012000296A1 (en)* | 2010-06-30 | 2012-01-05 | 青岛海信网络科技股份有限公司 | Image tilt correction method and apparatus |
| CN103279924A (en)* | 2013-05-24 | 2013-09-04 | 中南大学 | Correction method for patent certificate image with any inclination angle |
| CN104243737A (en)* | 2013-06-24 | 2014-12-24 | 富士施乐株式会社 | Multifunction apparatus and reading device |
| CN104573655A (en)* | 2015-01-09 | 2015-04-29 | 安徽清新互联信息科技有限公司 | Blind sidewalk direction detection method based on video |
| CN105335760A (en)* | 2015-11-16 | 2016-02-17 | 南京邮电大学 | Image number character recognition method |
| WO2016197670A3 (en)* | 2015-11-25 | 2017-02-09 | 中兴通讯股份有限公司 | Keystone correction method and projector |
| CN106951896A (en)* | 2017-02-22 | 2017-07-14 | 武汉黄丫智能科技发展有限公司 | A kind of license plate image sloped correcting method |
| CN108052936A (en)* | 2017-11-03 | 2018-05-18 | 中国科学院计算技术研究所 | A kind of braille image wing drop bearing calibration and system |
| CN110849326A (en)* | 2019-12-25 | 2020-02-28 | 深圳供电局有限公司 | A kind of monitoring method and monitoring equipment of electric pole |
| CN112001238A (en)* | 2020-07-14 | 2020-11-27 | 浙江大华技术股份有限公司 | Terminal block wiring state identification method, identification device and storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6493470B1 (en)* | 1995-06-20 | 2002-12-10 | Canon Kabushiki Kaisha | Image processing method and apparatus for detecting the tilt amount of input image data |
| CN101064008A (en)* | 2006-04-29 | 2007-10-31 | 北大方正集团有限公司 | Method for recognizing print form italic character |
| CN101625760A (en)* | 2009-07-28 | 2010-01-13 | 谭洪舟 | Method for correcting certificate image inclination |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4219542B2 (en)* | 2000-09-07 | 2009-02-04 | 富士ゼロックス株式会社 | Image processing apparatus, image processing method, and recording medium storing image processing program |
| CN101118596A (en)* | 2007-09-04 | 2008-02-06 | 西安理工大学 | A license plate tilt correction method based on support vector machine |
| CN101923710A (en)* | 2010-06-30 | 2010-12-22 | 青岛海信网络科技股份有限公司 | Image tilt correction method and device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6493470B1 (en)* | 1995-06-20 | 2002-12-10 | Canon Kabushiki Kaisha | Image processing method and apparatus for detecting the tilt amount of input image data |
| CN101064008A (en)* | 2006-04-29 | 2007-10-31 | 北大方正集团有限公司 | Method for recognizing print form italic character |
| CN101625760A (en)* | 2009-07-28 | 2010-01-13 | 谭洪舟 | Method for correcting certificate image inclination |
| Title |
|---|
| 《济南大学学报(自然科学版)》 20070731 唐好魁等 车牌识别中倾斜度调整算法 246-248 1-10 第21卷, 第3期* |
| 《现代电子技术》 20091231 史燕等 车牌识别中的二值化及快速倾斜校正算法 , 第5期* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012000296A1 (en)* | 2010-06-30 | 2012-01-05 | 青岛海信网络科技股份有限公司 | Image tilt correction method and apparatus |
| CN103279924A (en)* | 2013-05-24 | 2013-09-04 | 中南大学 | Correction method for patent certificate image with any inclination angle |
| CN103279924B (en)* | 2013-05-24 | 2015-11-25 | 中南大学 | A kind of bearing calibration of the patent certificate image to arbitrary inclination |
| CN104243737B (en)* | 2013-06-24 | 2018-09-07 | 富士施乐株式会社 | Multifunctional equipment and reading device |
| CN104243737A (en)* | 2013-06-24 | 2014-12-24 | 富士施乐株式会社 | Multifunction apparatus and reading device |
| CN104573655A (en)* | 2015-01-09 | 2015-04-29 | 安徽清新互联信息科技有限公司 | Blind sidewalk direction detection method based on video |
| CN104573655B (en)* | 2015-01-09 | 2018-03-20 | 安徽清新互联信息科技有限公司 | A kind of sidewalk for visually impaired people direction detection method based on video |
| CN105335760A (en)* | 2015-11-16 | 2016-02-17 | 南京邮电大学 | Image number character recognition method |
| WO2016197670A3 (en)* | 2015-11-25 | 2017-02-09 | 中兴通讯股份有限公司 | Keystone correction method and projector |
| CN106791736A (en)* | 2015-11-25 | 2017-05-31 | 中兴通讯股份有限公司 | A kind of trapezoidal distortion correction method and projector |
| CN106791736B (en)* | 2015-11-25 | 2020-05-15 | 中兴通讯股份有限公司 | Trapezoidal correction method and projector |
| CN106951896A (en)* | 2017-02-22 | 2017-07-14 | 武汉黄丫智能科技发展有限公司 | A kind of license plate image sloped correcting method |
| CN106951896B (en)* | 2017-02-22 | 2020-01-03 | 武汉黄丫智能科技发展有限公司 | License plate image tilt correction method |
| CN108052936A (en)* | 2017-11-03 | 2018-05-18 | 中国科学院计算技术研究所 | A kind of braille image wing drop bearing calibration and system |
| CN110849326A (en)* | 2019-12-25 | 2020-02-28 | 深圳供电局有限公司 | A kind of monitoring method and monitoring equipment of electric pole |
| CN110849326B (en)* | 2019-12-25 | 2022-06-07 | 深圳供电局有限公司 | A kind of monitoring method and monitoring equipment of electric pole |
| CN112001238A (en)* | 2020-07-14 | 2020-11-27 | 浙江大华技术股份有限公司 | Terminal block wiring state identification method, identification device and storage medium |
| Publication number | Publication date |
|---|---|
| WO2012000296A1 (en) | 2012-01-05 |
| Publication | Publication Date | Title |
|---|---|---|
| CN101923710A (en) | Image tilt correction method and device | |
| CN109086714B (en) | Form recognition method, recognition system and computer device | |
| CN108921865B (en) | Anti-interference sub-pixel straight line fitting method | |
| CN105488492B (en) | A color image preprocessing method, road recognition method and related device | |
| WO2018219054A1 (en) | Method, device, and system for license plate recognition | |
| WO2016192494A1 (en) | Image processing method and device | |
| TWI425444B (en) | Method and device for detecting and correcting skewed image data | |
| CN108229475B (en) | Vehicle tracking method, system, computer device and readable storage medium | |
| CN107563330B (en) | A method for correcting horizontally tilted license plates in surveillance video | |
| US9087253B2 (en) | Method and system for determining edge line in QR code binary image | |
| CN105488501A (en) | Method for correcting license plate slant based on rotating projection | |
| CN110533036B (en) | Rapid inclination correction method and system for bill scanned image | |
| US20030026456A1 (en) | White line detection apparatus and white line detection method | |
| CN106887004A (en) | A kind of method for detecting lane lines based on Block- matching | |
| CN110569845A (en) | A test paper image correction method and related device | |
| CN106778766B (en) | A method and system for rotating digital recognition based on positioning point | |
| CN110221312A (en) | A method of quickly detecting ground point cloud based on laser radar | |
| CN107220989A (en) | The elliptic contour detection method research of workpiece | |
| CN114863388A (en) | Method, device, system, equipment, medium and product for determining obstacle orientation | |
| CN115019069B (en) | Template matching method, template matching device and storage medium | |
| CN112634141A (en) | License plate correction method, device, equipment and medium | |
| CN1755707A (en) | An Automatic Correction Method for Tilted Images | |
| CN112861870A (en) | Pointer instrument image correction method, system and storage medium | |
| CN106228531B (en) | Automatic vanishing point calibration method and system based on horizon line search | |
| CN109191516B (en) | Rotation correction method and device of structured light module and readable storage medium |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20101222 |