

技术领域technical field
本发明涉及有机-无机杂化膜的制备,特别是利用两性氧化物纳米粒子制备高负载纳米粒子杂化有机薄膜和制备无机杂化有机渗透汽化膜,属于膜技术领域。The invention relates to the preparation of organic-inorganic hybrid membranes, in particular to the preparation of high-load nanoparticle hybrid organic thin films and inorganic hybrid organic pervaporation membranes by using amphoteric oxide nanoparticles, and belongs to the technical field of membranes.
背景技术Background technique
随着膜技术的快速发展,膜材料的研究受到广泛重视。有机无机杂化膜既具有无机膜的稳定性,又具有有机官能团所赋予的表面特性,是一类应用非常广阔的膜材料。目前,一般采用的有机无机杂化膜制备方法有溶胶凝胶法、共混法、热致相分离法等,但大多用于多孔膜的制备,对于致密的有机-无机杂化渗透汽化膜的制备则处于刚刚起步阶段,因此,发展有机无机杂化新技术具有重要的科学价值。With the rapid development of membrane technology, the research of membrane materials has been widely valued. Organic-inorganic hybrid membranes not only have the stability of inorganic membranes, but also have the surface characteristics endowed by organic functional groups, and are a kind of membrane materials with very wide applications. At present, the commonly used organic-inorganic hybrid membrane preparation methods include sol-gel method, blending method, thermally induced phase separation method, etc., but most of them are used for the preparation of porous membranes. For the dense organic-inorganic hybrid pervaporation membrane Preparation is still in its infancy, therefore, the development of new organic-inorganic hybrid technology has important scientific value.
聚电解质,又称聚离子,是指在主链或侧链中带有许多可电离的离子性基团的高分子。本课题组前期曾提出一种将无机纳米粒子杂化有机膜的自组装方法(中国发明专利申请号:200910236781.3),但该专利中提及的方法仅涉及在聚阴离子单层中杂化纳米粒子,纳米粒子在聚离子复合物中的负载量有限。Polyelectrolyte, also known as polyion, refers to a polymer with many ionizable ionic groups in the main chain or side chain. Our research group previously proposed a self-assembly method for hybridizing inorganic nanoparticles to organic membranes (Chinese invention patent application number: 200910236781.3), but the method mentioned in this patent only involves hybridizing nanoparticles in a polyanion monolayer , the loading of nanoparticles in polyion complexes is limited.
两性氧化物,是指既可以作为酸也可作为碱的氧化物。即在酸性环境下,它们荷正电;在碱性环境下,它们则荷负电。利用两性氧化物纳米粒子这一特性提出在酸性或碱性条件下的两性氧化物与带相反电荷的聚离子发生反应,形成荷正电荷或负电荷的纳米粒子包络体,目前,这种利用纳米粒子包络体间静电吸附制备纳米粒子杂化膜的自组装方法,还未见相关报道。Amphoteric oxides are oxides that can act as both acids and bases. That is, in an acidic environment, they are positively charged; in an alkaline environment, they are negatively charged. Using the characteristic of amphoteric oxide nanoparticles, it is proposed that under acidic or alkaline conditions, amphoteric oxides react with oppositely charged polyions to form positively or negatively charged nanoparticle inclusions. At present, this use The self-assembly method of nanoparticle hybrid film prepared by electrostatic adsorption between nanoparticle inclusion bodies has not been reported yet.
发明内容Contents of the invention
本发明提供一种高负载无机纳米粒子杂化有机膜的自组装方法,特别是两性氧化物纳米粒子杂化有机薄膜和两性氧化物纳米粒子杂化有机渗透汽化膜的制备。The invention provides a self-assembly method of a high-load inorganic nanoparticle hybrid organic film, especially the preparation of an amphoteric oxide nanoparticle hybrid organic film and an amphoteric oxide nanoparticle hybrid organic pervaporation film.
本专利利用两性氧化物纳米粒子的特性提出在酸性或碱性条件下的两性氧化物与带相反电荷的聚离子发生反应,形成荷正电荷或负电荷的纳米粒子包络体,进一步再通过纳米粒子包络体之间正负电荷的静电吸附作用,构筑在聚阳离子和聚阴离子双层均杂化有纳米粒子的聚电解质复合物膜,从而提高无机纳米粒子在聚电解质复合物中的杂化量,形成一种高负载无机纳米粒子杂化有机膜。This patent uses the characteristics of amphoteric oxide nanoparticles to propose that under acidic or alkaline conditions, amphoteric oxides react with oppositely charged polyions to form positively or negatively charged nanoparticle inclusions, and then pass through nano The electrostatic adsorption of positive and negative charges between the particle inclusions constructs a polyelectrolyte composite film in which nanoparticles are hybridized in both polycation and polyanion double layers, thereby improving the hybridization of inorganic nanoparticles in the polyelectrolyte composite. amount, forming a highly loaded inorganic nanoparticle hybrid organic film.
该方法包括以下步骤:The method includes the following steps:
(1)将聚阳离子溶解在溶剂中,配制成制膜液,静置脱泡;在聚阳离子溶液中加入两性氧化物纳米粒子,调节pH值至碱性,使两性氧化物纳米粒子荷负电,并使加入的两性氧化物纳米粒子的负电荷总数低于聚阳离子正电荷总数,从而形成聚阳离子纳米粒子包络体溶液;将聚阴离子溶解在溶剂中,配制成制膜液,静置脱泡;在聚阴离子溶液中加入两性氧化物纳米粒子,调节pH值至酸性,使两性氧化物纳米粒子荷正电,并使加入的两性氧化物纳米粒子的正电荷总数低于聚阴离子负电荷总数,从而形成聚阴离子纳米粒子包络体溶液;例如在实施例1中,加入的纳米ZrO2粒子所带正电荷总数为聚阴离子聚丙烯酸正电荷总数的二分之一;(1) dissolving the polycation in a solvent, preparing a film-making solution, and standing for defoaming; adding amphoteric oxide nanoparticles to the polycation solution, adjusting the pH value to alkaline, and making the amphoteric oxide nanoparticles negatively charged, And make the total number of negative charges of the added amphoteric oxide nanoparticles lower than the total number of positive charges of the polycation, thereby forming a polycation nanoparticle inclusion body solution; dissolving the polyanion in a solvent, preparing a film-making solution, and standing for defoaming Adding amphoteric oxide nanoparticles to the polyanion solution, adjusting the pH value to acidity, making the amphoteric oxide nanoparticles positively charged, and making the total number of positive charges of the added amphoteric oxide nanoparticles lower than the total number of negative charges of the polyanion, Thereby forming polyanion nano particle inclusion body solution; For example in embodiment 1, the nanoZrO added The total number of positive charges carried by the particles is 1/2 of the total number of positive charges of polyanion polyacrylic acid;
(2)分别将步骤(1)中加入了两性氧化物纳米粒子的聚离子溶液超声30~120分钟,使纳米粒子均匀分散后,离心1~60分钟,离心后将上清液换成与上清液中溶剂相同的等体积的溶剂;(2) Sonicate the polyion solution added with amphoteric oxide nanoparticles in step (1) for 30 to 120 minutes to uniformly disperse the nanoparticles, centrifuge for 1 to 60 minutes, and replace the supernatant with the An equal volume of solvent that is the same as the solvent in the clear solution;
(3)重复(2)步骤1~10次,制得聚离子纳米粒子包络体溶液;(3) repeating step (2) 1 to 10 times to obtain a polyion nanoparticle inclusion body solution;
在上述溶液配制步骤后,进一步按照下列步骤在基片上继续组装:After the above solution preparation steps, further follow the steps below to continue the assembly on the substrate:
(4)使基片荷正电或负电,并将基片浸泡在步骤(3)中聚阴离子纳米粒子包络体溶液或聚阳离子纳米粒子包络体溶液中10~60分钟,使聚阴离子纳米粒子包络体或聚阳离子纳米粒子包络体吸附在基片表面,形成薄膜层;按照现有技术使基片荷正电或负电即可。(4) Charge the substrate positively or negatively, and soak the substrate in the polyanion nanoparticle inclusion solution or the polycation nanoparticle inclusion solution in step (3) for 10 to 60 minutes to make the polyanion nanoparticle The particle inclusion body or the polycation nanoparticle inclusion body is adsorbed on the surface of the substrate to form a film layer; according to the prior art, the substrate can be positively or negatively charged.
(5)将基片浸泡在去离子水中,漂洗膜面并吹干;(5) Soak the substrate in deionized water, rinse the film surface and blow dry;
(6)将基片浸泡在步骤(3)中聚阳离子纳米粒子包络体溶液或聚阴离子纳米粒子包络体溶液10~60分钟,使聚阴离子纳米粒子包络体与聚阳离子纳米子粒子包络体发生反应;(6) Soak the substrate in the polycation nanoparticle inclusion body solution or the polyanion nanoparticle inclusion body solution in step (3) for 10 to 60 minutes, so that the polyanion nanoparticle inclusion body and the polycation nanoparticle inclusion body Complex reaction;
(7)将膜浸泡在去离子水中,漂洗膜面并烘干;(7) Soak the membrane in deionized water, rinse the membrane surface and dry;
(8)重复(4)~(7)步骤1-100次,形成无机纳米粒子杂化有机薄膜。(8) Repeat steps (4) to (7) 1-100 times to form an inorganic nanoparticle hybrid organic film.
利用两性氧化物纳米粒子制备无机杂化有机渗透汽化膜的方法在上述(1)-(3)步骤溶液配制后,进一步按照下列步骤在基膜上继续组装:The method for preparing an inorganic hybrid organic pervaporation membrane using amphoteric oxide nanoparticles is further assembled on the base membrane according to the following steps after the above-mentioned (1)-(3) step solution is prepared:
(4)使基膜荷正电或负电,并在0.01~3.0Mpa压力或-0.02~-0.09MPa的负压作用下,将步骤(3)聚阴离子纳米粒子包络体溶液或聚阳离子纳米粒子包络体溶液在基膜表面动态过滤10~60分钟,使聚阴离子纳米粒子包络体或聚阳离子纳米粒子包络体在膜表面或孔内被截留,形成分离层;按照现有技术使基膜荷正电或负电即可。(4) The basement membrane is positively or negatively charged, and under the action of a pressure of 0.01 to 3.0Mpa or a negative pressure of -0.02 to -0.09MPa, the polyanionic nanoparticle inclusion body solution or polycationic nanoparticle The inclusion body solution is dynamically filtered on the surface of the basement membrane for 10 to 60 minutes, so that the polyanion nanoparticle inclusion body or polycation nanoparticle inclusion body is trapped on the membrane surface or in the pores to form a separation layer; according to the existing technology, the basement The membrane can be positively or negatively charged.
(5)将膜浸泡在去离子水中,漂洗膜面并烘干;(5) soak the membrane in deionized water, rinse the membrane surface and dry;
(6)在0.01~3.0Mpa压力或-0.02~-0.09MPa的负压作用下,将步骤(3)聚阳离子纳米粒子包络体溶液或聚阴离子纳米粒子包络体溶液在基膜表面动态过滤10~60分钟,聚阴离子纳米粒子包络体与聚阳离子纳米粒子包络体发生反应;(6) Under the action of a pressure of 0.01 to 3.0Mpa or a negative pressure of -0.02 to -0.09MPa, dynamically filter the polycation nanoparticle inclusion body solution or polyanion nanoparticle inclusion body solution on the surface of the basement membrane in step (3) 10 to 60 minutes, the polyanion nanoparticle inclusion body reacts with the polycation nanoparticle inclusion body;
(7)将膜浸泡在去离子水中,漂洗膜面并烘干;(7) Soak the membrane in deionized water, rinse the membrane surface and dry;
(8)重复(4)~(7)步骤1-10次,形成无机纳米粒子杂化有机渗透汽化膜。(8) Steps (4) to (7) are repeated 1-10 times to form an inorganic nanoparticle hybrid organic pervaporation membrane.
在本发明的方法中,所述的两性氧化物纳米粒子为二氧化锆、三氧化二铝、二氧化锰、氧化锌、三氧化二铬或氧化铍,粒径为1~100纳米。In the method of the present invention, the amphoteric oxide nanoparticles are zirconium dioxide, aluminum oxide, manganese dioxide, zinc oxide, chromium oxide or beryllium oxide, with a particle size of 1-100 nanometers.
在本发明的方法中,所述的溶剂可以是水、甲醇、乙醇、丙醇或丁醇。In the method of the present invention, the solvent may be water, methanol, ethanol, propanol or butanol.
在本发明的方法中,所述的基片为刚性基底,可以是石英玻璃、单晶硅、氟化钙;所述的基膜,是指溶液在压力驱动力下,透过一种半透膜的分离现象,可以为微滤膜、超滤膜或纳滤膜,所述的基膜材料为有机聚合物,可以为聚丙烯腈、聚砜、聚醚砜、聚偏氟乙烯、聚碳酸酯、聚乙烯、聚四氟乙烯或壳聚糖等。基膜的组件形式为管式膜、中空纤维膜、平板膜或卷式膜。所述的基膜的膜孔径为1纳米到100微米之间。所述聚阳离子材料为聚二烯丙基二甲基氯化铵、聚乙烯亚胺、聚烯丙基胺盐酸盐、聚4-乙烯基吡啶、甲壳素,聚阴离子材料为聚苯乙烯磺酸钠、聚丙烯酸、聚磺化乙烯。In the method of the present invention, the substrate is a rigid substrate, which can be quartz glass, single crystal silicon, or calcium fluoride; The separation phenomenon of the membrane can be a microfiltration membrane, an ultrafiltration membrane or a nanofiltration membrane, and the base membrane material is an organic polymer, which can be polyacrylonitrile, polysulfone, polyethersulfone, polyvinylidene fluoride, polycarbonate ester, polyethylene, polytetrafluoroethylene or chitosan, etc. The module form of the base membrane is tubular membrane, hollow fiber membrane, flat membrane or roll membrane. The membrane pore diameter of the base membrane is between 1 nanometer and 100 micrometers. The polycation material is polydiallyl dimethyl ammonium chloride, polyethylene imine, polyallylamine hydrochloride, poly 4-vinylpyridine, chitin, and the polyanion material is polystyrene sulfonate Sodium Acrylic Acid, Polyacrylic Acid, Polyethylene Sulfonated.
本方法是基于自组装技术的有机无机杂化膜的制备工艺,先将两性氧化物纳米粒子直接加入荷电的聚电解质溶液中,利用调节pH、多次超声和离心操作制得聚合物纳米粒子包络体,再通过层层静电吸附组装在基片或基膜上。This method is a preparation process of organic-inorganic hybrid membrane based on self-assembly technology. First, the amphoteric oxide nanoparticles are directly added to the charged polyelectrolyte solution, and the polymer nanoparticles are prepared by adjusting pH, multiple ultrasonic and centrifugation operations. The inclusion body is then assembled on the substrate or base film by layer-by-layer electrostatic adsorption.
本发明技术方案的原理是:将两性氧化物纳米粒子加入荷电的聚电解质溶液中;调节pH值使两性氧化物荷电从而与聚电解质反应;超声使两性氧化物纳米粒子分散,聚电解质包络于纳米粒子表面;离心将上清液换成等量溶剂,从而分离出游离于纳米粒子表面的聚电解质;多次超声离心即制得聚离子纳米粒子包络体溶液。将基片或基膜在聚离子纳米粒子包络体溶液中浸泡或者动态过滤,聚电解质纳米粒子构筑物(聚阴子纳米粒子包络体和聚阳离子纳米粒子包络体反应产物)复合在膜表面,形成选择性分离层。由于此法配制聚离子纳米粒子包络体溶液时采用多次超声与离心,且纳米粒子包络体间由于存在静电斥力作用,从而可使使纳米粒子包络体较均匀、稳定分散于溶液中,且本申请首次提出调节溶液pH值使两性氧化物在酸性和碱性条件下分别荷正电和负电,进一步与聚阴离子和聚阳离子反应,形成纳米粒子包络体结构,通过层层吸附组装成膜,从而实现在聚阳离子和聚阴离子层中均杂化纳米粒子,提高纳米粒子在双层中的负载量,且可有效克服所制得膜的有机无机层易剥离的缺陷。The principle of the technical solution of the present invention is: adding the amphoteric oxide nanoparticles into the charged polyelectrolyte solution; adjusting the pH value to charge the amphoteric oxide to react with the polyelectrolyte; complex on the surface of nanoparticles; centrifuge to replace the supernatant with an equal amount of solvent, thereby separating the polyelectrolyte free on the surface of nanoparticles; multiple times of ultrasonic centrifugation to obtain a polyion nanoparticle inclusion body solution. Soak the substrate or base film in the polyionic nanoparticle inclusion solution or filter dynamically, and the polyelectrolyte nanoparticle structure (reaction product of polyanion nanoparticle inclusion body and polycation nanoparticle inclusion body) is compounded on the membrane surface , forming a selective separation layer. Because this method uses multiple ultrasonic waves and centrifugation to prepare the polyion nanoparticle inclusion body solution, and the electrostatic repulsion exists between the nanoparticle inclusion bodies, so that the nanoparticle inclusion body can be more uniformly and stably dispersed in the solution. , and the present application proposes to adjust the pH value of the solution for the first time so that the amphoteric oxide is positively and negatively charged under acidic and alkaline conditions, and further reacts with polyanions and polycations to form nanoparticle inclusion structures, which are assembled by layer-by-layer adsorption Forming a film, so as to realize the uniform hybridization of nanoparticles in the polycation and polyanion layers, increase the loading capacity of nanoparticles in the double layer, and effectively overcome the defect that the organic and inorganic layers of the prepared film are easy to peel off.
附图说明Description of drawings
图1、实施例1的膜表面进行扫描电镜分析The film surface of Fig. 1, embodiment 1 carries out scanning electron microscope analysis
图2、实施例2的膜表面进行扫描电镜分析。Fig. 2, the film surface of embodiment 2 carry out scanning electron microscope analysis.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作详细的说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
采用基片为石英玻璃,所用聚阳离子材料为聚二烯丙基二甲基氯化铵(PDDA,分子量为100000~200000),聚阴离子为聚苯乙烯磺酸钠(PSS,分子量为70000),纳米氧化锆粒子(ZrO2,100nm以内,5wt%),聚二烯丙基二甲基氯化铵和聚苯乙烯磺酸钠的溶剂均为水。The substrate is quartz glass, the polycation material used is polydiallyldimethylammonium chloride (PDDA, the molecular weight is 100000-200000), the polyanion is polystyrene sulfonate sodium (PSS, the molecular weight is 70000), The solvents of nano zirconia particles (ZrO2 , within 100nm, 5wt%), polydiallyl dimethyl ammonium chloride and polystyrene sodium sulfonate are all water.
组装条件及方法:Assembly conditions and methods:
(1)用去离子水将聚二烯丙基二甲基氯化铵配成0.94wt%的溶液500ml,静置脱泡,加入纳米氧化锆粒子8ml,调节pH值为12;用去离子水将聚苯乙烯磺酸钠配成1.2wt%的溶液500ml,静置脱泡,加入纳米氧化锆粒子8ml;(1) polydiallyl dimethyl ammonium chloride is made into 0.94wt% solution 500ml with deionized water, leaves standstill for defoaming, adds nanometer zirconia particle 8ml, adjusts pH to be 12; Use deionized water Sodium polystyrene sulfonate was made into 500ml of a 1.2wt% solution, allowed to stand for defoaming, and 8ml of nano-sized zirconia particles were added;
(2)将聚二烯丙基二甲基氯化铵溶液超声120分钟,使纳米粒子均匀分散后,离心10分钟,离心后将上清液换成等体积去离子水;重复3次,制得聚二烯丙基二甲基氯化铵纳米粒子包络体溶液;将聚苯乙烯磺酸钠溶液超声120分钟,使纳米粒子均匀分散后,离心10分钟,离心后将上清液换成等体积去离子水;重复3次,制得聚苯乙烯磺酸钠纳米粒子包络体溶液;(2) Ultrasound the polydiallyldimethylammonium chloride solution for 120 minutes to uniformly disperse the nanoparticles, centrifuge for 10 minutes, and replace the supernatant with an equal volume of deionized water after centrifugation; repeat 3 times to prepare To obtain polydiallyldimethylammonium chloride nanoparticle inclusion body solution; ultrasonically disperse the sodium polystyrene sulfonate solution for 120 minutes to uniformly disperse the nanoparticles, centrifuge for 10 minutes, and replace the supernatant with Equal volume of deionized water; repeat 3 times to prepare sodium polystyrene sulfonate nanoparticle inclusion body solution;
(3)将基片浸泡在浓硫酸与双氧水的混合溶液中,于70℃加热3小时,使基片荷负电;(3) Soak the substrate in a mixed solution of concentrated sulfuric acid and hydrogen peroxide, and heat at 70°C for 3 hours to negatively charge the substrate;
(4)将基片浸泡在去离子水中,漂洗膜面并吹干;(4) Soak the substrate in deionized water, rinse the film surface and blow dry;
(5)将基片浸泡在聚二烯丙基二甲基氯化铵纳米粒子包络体溶液30min,使基片表面形成薄膜层;(5) Soak the substrate in the polydiallyldimethylammonium chloride nanoparticle inclusion solution for 30 minutes to form a film layer on the surface of the substrate;
(6)将基片浸泡在去离子水中,漂洗膜面并烘干;(6) soak the substrate in deionized water, rinse the membrane surface and dry;
(7)将基片浸泡在聚苯乙烯磺酸钠纳米粒子包络体溶液30min,使之与聚二烯丙基二甲基氯化铵纳米粒子包络体反应;(7) Soak the substrate in the polystyrene sulfonate sodium nanoparticle inclusion body solution for 30 minutes to react with the polydiallyldimethylammonium chloride nanoparticle inclusion body;
(8)将基片浸泡在去离子水中,漂洗膜面并烘干;(8) soak the substrate in deionized water, rinse the film surface and dry;
(9)重复(5)-(6)步骤10次,重复(7)-(8)步骤9次,即可形成复合层数为10.5层的无机纳米粒子杂化有机薄膜。(9) Repeat steps (5)-(6) 10 times and repeat steps (7)-(8) 9 times to form an inorganic nanoparticle hybrid organic film with a composite layer number of 10.5 layers.
将上述组装的无机纳米粒子杂化有机薄膜利用台阶仪测厚度,测得平均每层厚度为41The inorganic nanoparticle hybrid organic thin film of above-mentioned assembly is measured thickness by step meter, and the average thickness of each layer is measured to be 41
杂化前后扫描电镜(如图1,放大倍数100,000倍)表明,由于聚合物大分子与氧化锆微粒表面存在强的相互作用,纳米粒子均匀分布或嵌入膜表面,从而改变了膜的厚度,提高了纳米粒子的负载量,制得了结构致密的无机纳米粒子杂化有机薄膜。Scanning electron microscopy before and after hybridization (as shown in Figure 1, magnification 100,000 times) shows that due to the strong interaction between polymer macromolecules and the surface of zirconia particles, nanoparticles are evenly distributed or embedded in the film surface, thereby changing the thickness of the film and improving The loading amount of nanoparticles was improved, and a dense inorganic nanoparticle hybrid organic film was prepared.
具体实施例2Specific embodiment 2
采用基片为石英玻璃,所用聚阳离子材料为聚乙烯亚胺(PEI,分子量为6万),聚阴离子为聚丙烯酸(PAA,分子量为400万),纳米氧化锆粒子(ZrO2,100nm以内,5wt%),聚乙烯亚胺和聚丙烯酸的溶剂均为水。The substrate is quartz glass, the polycation material used is polyethyleneimine (PEI, the molecular weight is 60,000), the polyanion is polyacrylic acid (PAA, the molecular weight is 4 million), and nano-zirconia particles (ZrO2 , within 100nm, 5wt%), the solvents of polyethyleneimine and polyacrylic acid are water.
组装条件及方法:Assembly conditions and methods:
(1)用去离子水将聚乙烯亚胺配成0.5wt%的溶液500ml,静置脱泡,加入纳米氧化锆粒子溶液1ml;用去离子水将聚丙烯酸配成0.05wt%的溶液500ml,静置脱泡,加入纳米氧化锆粒子溶液1ml;(1) polyethylenimine is made into 0.5wt% solution 500ml with deionized water, leaves standstill to defoam, adds nano zirconia particle solution 1ml; Polyacrylic acid is made into 0.05wt% solution 500ml with deionized water, Let it stand for defoaming, and add 1ml of nano-zirconia particle solution;
(2)将聚乙烯亚胺溶液超声120分钟,使纳米粒子均匀分散后,离心10分钟,离心后将上清液换成等体积去离子水;重复3次,制得聚乙烯亚胺纳米粒子包络体溶液;将聚丙烯酸溶液超声120分钟,使纳米粒子均匀分散后,离心10分钟,离心后将上清液换成等体积去离子水;重复3次,制得聚丙烯酸纳米粒子包络体溶液;(2) Ultrasound the polyethyleneimine solution for 120 minutes to uniformly disperse the nanoparticles, centrifuge for 10 minutes, and replace the supernatant with an equal volume of deionized water after centrifugation; repeat 3 times to obtain polyethyleneimine nanoparticles Encapsulation body solution: Sonicate the polyacrylic acid solution for 120 minutes to uniformly disperse the nanoparticles, centrifuge for 10 minutes, and replace the supernatant with an equal volume of deionized water after centrifugation; repeat 3 times to obtain the polyacrylic acid nanoparticle envelope body solution;
(3)将基片浸泡在浓硫酸与双氧水的混合溶液中,于70℃加热3小时,使基片荷负电;(3) Soak the substrate in a mixed solution of concentrated sulfuric acid and hydrogen peroxide, and heat at 70°C for 3 hours to negatively charge the substrate;
(4)将基片浸泡在去离子水中,漂洗膜面并吹干;(4) Soak the substrate in deionized water, rinse the film surface and blow dry;
(5)将基片浸泡在聚乙烯亚胺纳米粒子包络体溶液溶液30min,使基片表面形成薄膜层;(5) Soak the substrate in the polyethyleneimine nanoparticle inclusion solution solution for 30 minutes to form a film layer on the surface of the substrate;
(6)将基片浸泡在去离子水中,漂洗膜面并烘干;(6) soak the substrate in deionized water, rinse the membrane surface and dry;
(7)将基片浸泡在聚丙烯酸纳米粒子包络体溶液30min,使之与聚乙烯亚胺纳米粒子包络体反应;(7) Soak the substrate in the polyacrylic acid nanoparticle inclusion body solution for 30 minutes to make it react with the polyethyleneimine nanoparticle inclusion body;
(8)将基片浸泡在去离子水中,漂洗膜面并烘干;(8) soak the substrate in deionized water, rinse the film surface and dry;
(9)重复(5)-(6)步骤5次,重复(7)-(8)步骤4次,即可形成复合层数为5.5层的无机纳米粒子杂化有机薄膜。(9) Repeat steps (5)-(6) 5 times and steps (7)-(8) 4 times to form an inorganic nanoparticle hybrid organic film with a composite layer number of 5.5 layers.
杂化前后扫描电镜(如图2,放大倍数为10,000倍)表明,由于聚合物大分子与氧化锆微粒表面存在强的相互作用,纳米粒子均匀分布或嵌入膜表面,提高了纳米粒子的负载量,从而制得了结构致密的无机纳米粒子杂化有机薄膜。Scanning electron microscopy before and after hybridization (as shown in Figure 2, magnification of 10,000 times) shows that due to the strong interaction between the polymer macromolecules and the surface of the zirconia particles, the nanoparticles are evenly distributed or embedded in the membrane surface, which increases the loading capacity of the nanoparticles , thus preparing a dense inorganic nanoparticle hybrid organic thin film.
具体实施例3Specific embodiment 3
采用基膜为聚丙烯腈(PAN)材料,平板式超滤膜,截留分子量,膜面积为28cm2,所用聚阳离子材料为聚二烯丙基二甲基氯化铵(PDDA,分子量为100000~200000),聚阴离子为聚苯乙烯磺酸钠(PSS,分子量为70000),纳米氧化锆粒子(ZrO2,100nm以内,5wt%),聚二烯丙基二甲基氯化铵和聚苯乙烯磺酸钠的溶剂均为水。The base membrane is polyacrylonitrile (PAN) material, flat ultrafiltration membrane, molecular weight cut-off, membrane area is 28cm2 , the polycation material used is polydiallyl dimethyl ammonium chloride (PDDA, molecular weight is 100000~ 200000), the polyanion is polystyrene sulfonate sodium (PSS, molecular weight is 70000), nano zirconia particles (ZrO2 , within 100nm, 5wt%), polydiallyl dimethyl ammonium chloride and polystyrene The solvent of sodium sulfonate is water.
组装条件及方法:Assembly conditions and methods:
(1)用去离子水将聚二烯丙基二甲基氯化铵配成0.94wt%的溶液500ml,静置脱泡,加入纳米氧化锆粒子8ml,调节pH值为12;用去离子水将聚苯乙烯磺酸钠配成1.2wt%的溶液500ml,静置脱泡,加入纳米氧化锆粒子8ml;(1) polydiallyl dimethyl ammonium chloride is made into 0.94wt% solution 500ml with deionized water, leaves standstill for defoaming, adds nanometer zirconia particle 8ml, adjusts pH to be 12; Use deionized water Sodium polystyrene sulfonate was made into 500ml of a 1.2wt% solution, allowed to stand for defoaming, and 8ml of nano-sized zirconia particles were added;
(2)将聚二烯丙基二甲基氯化铵溶液超声120分钟,使纳米粒子均匀分散后,离心10分钟,离心后将上清液换成等体积去离子水;重复3次,制得聚二烯丙基二甲基氯化铵纳米粒子包络体溶液;将聚苯乙烯磺酸钠溶液超声120分钟,使纳米粒子均匀分散后,离心10分钟,离心后将上清液换成等体积去离子水;重复3次,制得聚苯乙烯磺酸钠纳米粒子溶液;(2) Ultrasound the polydiallyldimethylammonium chloride solution for 120 minutes to uniformly disperse the nanoparticles, centrifuge for 10 minutes, and replace the supernatant with an equal volume of deionized water after centrifugation; repeat 3 times to prepare To obtain polydiallyldimethylammonium chloride nanoparticle inclusion body solution; ultrasonically disperse the sodium polystyrene sulfonate solution for 120 minutes to uniformly disperse the nanoparticles, centrifuge for 10 minutes, and replace the supernatant with Equal volume of deionized water; repeat 3 times to prepare sodium polystyrene sulfonate nanoparticle solution;
(3)为使聚丙烯腈支撑膜表面荷电,采用常规的水解改性技术,首先在温度为65℃时,将聚丙烯膜超滤膜浸入2N NaOH溶液中30min,将其改性为平板式聚阴离子基膜;(3) In order to charge the surface of the polyacrylonitrile support membrane, conventional hydrolysis modification technology is adopted. Firstly, when the temperature is 65°C, the polypropylene membrane ultrafiltration membrane is immersed in 2N NaOH solution for 30min to modify it into a flat plate Formula polyanion base membrane;
(4)将膜浸泡在去离子水中,漂洗膜面并烘干;(4) Soak the membrane in deionized water, rinse the membrane surface and dry;
(5)在0.1Mpa压力下,在聚丙烯腈超滤膜上过滤0.94wt%聚二烯丙基二甲基氯化铵纳米粒子包络体溶液30min,使膜表面形成分离层;(5) Under the pressure of 0.1Mpa, filter 0.94wt% polydiallyldimethylammonium chloride nanoparticle inclusion body solution on the polyacrylonitrile ultrafiltration membrane for 30min to form a separation layer on the surface of the membrane;
(6)将膜浸泡在去离子水中,漂洗膜面并烘干;(6) Soak the membrane in deionized water, rinse the membrane surface and dry;
(7)在0.1Mpa压力下,过滤1.2wt%聚苯乙烯磺酸钠纳米粒子包络体溶液30min,使之与聚二烯丙基二甲基氯化铵纳米粒子包络体反应;(7) Under the pressure of 0.1Mpa, filter the 1.2wt% sodium polystyrene sulfonate nanoparticle inclusion body solution for 30min to react with the polydiallyldimethylammonium chloride nanoparticle inclusion body;
(8)将膜浸泡在去离子水中,漂洗膜面并烘干;(8) Soak the membrane in deionized water, rinse the membrane surface and dry;
(9)重复(5)-(6)步骤1次,即可形成复合层数为1.5层的平板式无机纳米粒子杂化有机渗透汽化膜;(9) Repeat steps (5)-(6) once to form a planar inorganic nanoparticle hybrid organic pervaporation membrane with a composite layer of 1.5 layers;
将上述组装的无机纳米粒子杂化有机渗透汽化膜在渗透汽化膜池中进行渗透汽化性能测试,测试条件为:原液组成95wt%乙醇/水体系,实验温度50℃,膜下游压力100Pa。The inorganic nanoparticle hybrid organic pervaporation membrane assembled above was tested for pervaporation performance in a pervaporation membrane cell. The test conditions were as follows: stock solution composition 95wt% ethanol/water system, test temperature 50°C, membrane downstream pressure 100Pa.
测得渗透汽化膜性能为:渗透通量648g·m-2·h-1透过液中乙醇含量4.3wt%,分离因子350。The measured performance of the pervaporation membrane is: the permeation flux is 648g·m-2 ·h-1 and the ethanol content in the permeate is 4.3wt%, and the separation factor is 350.
具体实施例4Specific embodiment 4
采用干/湿相转换法纺制单内皮层中空纤维支撑膜,聚丙烯膜(PAN)材料,内径1.1mm,截留分子量60000,所用聚阳离子材料为聚二烯丙基二甲基氯化铵(PDDA,分子量为100000~200000),聚阴离子为聚苯乙烯磺酸钠(PSS,分子量为70000),纳米氧化锆粒子(ZrO2,100nm以内,5wt%),聚二烯丙基二甲基氯化铵和聚苯乙烯磺酸钠的溶剂均为水。Adopt the dry/wet phase conversion method to spin the single endothelial hollow fiber support membrane, polypropylene membrane (PAN) material, internal diameter 1.1mm, molecular weight cut-off 60000, used polycation material is polydiallyl dimethyl ammonium chloride ( PDDA, the molecular weight is 100000~200000), the polyanion is polystyrene sulfonate sodium (PSS, the molecular weight is 70000), nano zirconia particles (ZrO2 , within 100nm, 5wt%), polydiallyl dimethyl chloride The solvent of ammonium chloride and sodium polystyrene sulfonate is water.
组装条件及方法:Assembly conditions and methods:
(1)用去离子水将聚二烯丙基二甲基氯化铵配成0.94wt%的溶液500ml,静置脱泡,加入纳米氧化锆粒子8ml,调节pH值为12;用去离子水将聚苯乙烯磺酸钠配成1.2wt%的溶液500ml,静置脱泡,加入纳米氧化锆粒子8ml;(1) polydiallyl dimethyl ammonium chloride is made into 0.94wt% solution 500ml with deionized water, leaves standstill for defoaming, adds nanometer zirconia particle 8ml, adjusts pH to be 12; Use deionized water Sodium polystyrene sulfonate was made into 500ml of a 1.2wt% solution, allowed to stand for defoaming, and 8ml of nano-sized zirconia particles were added;
(2)将聚二烯丙基二甲基氯化铵溶液超声120分钟,使纳米粒子均匀分散后,离心10分钟,离心后将上清液换成等体积去离子水;重复3次,制得聚二烯丙基二甲基氯化铵纳米粒子包络体溶液;将聚苯乙烯磺酸钠溶液超声120分钟,使纳米粒子均匀分散后,离心10分钟,离心后将上清液换成等体积去离子水;重复3次,制得聚苯乙烯磺酸钠纳米粒子包络体溶液;(2) Ultrasound the polydiallyldimethylammonium chloride solution for 120 minutes to uniformly disperse the nanoparticles, centrifuge for 10 minutes, and replace the supernatant with an equal volume of deionized water after centrifugation; repeat 3 times to prepare To obtain polydiallyldimethylammonium chloride nanoparticle inclusion body solution; ultrasonically disperse the sodium polystyrene sulfonate solution for 120 minutes to uniformly disperse the nanoparticles, centrifuge for 10 minutes, and replace the supernatant with Equal volume of deionized water; repeat 3 times to prepare sodium polystyrene sulfonate nanoparticle inclusion body solution;
(3)为使聚丙烯腈支撑膜表面荷电,采用常规的水解改性技术,首先在温度为65℃时,将聚丙烯膜超滤膜浸入2N NaOH溶液中15min,将其改性为中空纤维聚阴离子基膜;(3) In order to charge the surface of the polyacrylonitrile support membrane, conventional hydrolysis modification technology is adopted. Firstly, when the temperature is 65°C, the polypropylene membrane ultrafiltration membrane is immersed in 2N NaOH solution for 15 minutes to modify it into a hollow membrane. Fibrous polyanion base membrane;
(4)将膜浸泡在去离子水中,漂洗膜面并烘干;(4) Soak the membrane in deionized water, rinse the membrane surface and dry;
(5)将中空纤维基膜放入有机玻璃管中,两端用环氧树脂封端,制成中空纤维组件。(5) Put the hollow fiber base membrane into a plexiglass tube, and seal both ends with epoxy resin to make a hollow fiber module.
(6)利用循环泵将聚二烯丙基二甲基氯化铵纳米粒子包络体溶液泵入中空纤维基膜内腔,在纤维外侧施加-0.08MPa的负压,进行抽吸30min,使聚二烯丙基二甲基氯化铵纳米粒子包络体在纤维内表面被截留和吸附,形成分离层;(6) Use a circulating pump to pump the polydiallyldimethylammonium chloride nanoparticle inclusion body solution into the inner cavity of the hollow fiber basement membrane, apply a negative pressure of -0.08MPa on the outside of the fiber, and carry out suction for 30min, so that Polydiallyldimethylammonium chloride nanoparticle inclusions are trapped and adsorbed on the inner surface of the fiber to form a separation layer;
(7)将膜浸泡在去离子水中,漂洗膜面并烘干;(7) Soak the membrane in deionized water, rinse the membrane surface and dry;
(8)利用循环泵将聚苯乙烯磺酸钠纳米粒子包络体溶液泵入中空纤维基膜内腔,在纤维外侧施加-0.08MPa的负压,进行抽吸30min,使之与聚二烯丙基二甲基氯化铵纳米粒子包络体反应;(8) Use a circulating pump to pump the polystyrene sulfonate sodium nanoparticle inclusion body solution into the inner cavity of the hollow fiber base membrane, apply a negative pressure of -0.08MPa on the outside of the fiber, and carry out suction for 30 minutes to make it mix with the polydiene Propyldimethylammonium chloride nanoparticle inclusion reaction;
(9)将膜浸泡在去离子水中,漂洗膜面并烘干;(9) Soak the membrane in deionized water, rinse the membrane surface and dry;
(10)重复(6)-(7)步骤1次,即可形成复合层数为1.5层的中空纤维式无机纳米粒子杂化有机渗透汽化膜。(10) Steps (6)-(7) are repeated once to form a hollow fiber inorganic nanoparticle hybrid organic pervaporation membrane with a composite layer number of 1.5.
通过拉伸实验来测定膜的力学性能。将制得得中空纤维膜丝(外径1.50mm,膜厚度0.135mm,测试速度10mm/min),采用拉伸强度测定仪在室温下测得拉伸强度3.56Mpa。The mechanical properties of the films were determined by tensile tests. The prepared hollow fiber membrane (1.50mm outer diameter, 0.135mm membrane thickness, 10mm/min test speed) was used to measure the tensile strength of 3.56Mpa at room temperature with a tensile strength tester.
将上述组装的无机纳米粒子杂化有机渗透汽化膜在渗透汽化膜池中进行渗透汽化性能测试,测试条件为:原液组成95wt%乙醇/水体系,实验温度50℃,膜下游压力100Pa。The inorganic nanoparticle hybrid organic pervaporation membrane assembled above was tested for pervaporation performance in a pervaporation membrane cell. The test conditions were as follows: stock solution composition 95wt% ethanol/water system, test temperature 50°C, membrane downstream pressure 100Pa.
测得渗透汽化膜性能为:渗透通23g·m-2·h-1,透过液中乙醇含量0.09wt%,分离因子2389.8。The measured performance of the pervaporation membrane is: the permeation flux is 23g·m-2·h-1, the ethanol content in the permeate is 0.09wt%, and the separation factor is 2389.8.
具体实施例5Specific embodiment 5
采用干/湿相转换法纺制单内皮层中空纤维支撑膜,聚丙烯膜(PAN)材料,内径1.1mm,截留分子量60000,所用聚阳离子材料为聚乙烯亚胺(PEI,分子量为60000),聚阴离子为聚丙烯酸(PAA,分子量为100000),纳米氧化锆粒子(ZrO2,100nm以内,5wt%)聚乙烯亚胺和聚丙烯酸的溶剂均为水。Adopt the dry/wet phase conversion method to spin single-endothelial hollow fiber support membrane, polypropylene membrane (PAN) material, internal diameter 1.1mm, molecular weight cut off 60000, used polycationic material is polyethylene imine (PEI, molecular weight is 60000), The polyanion is polyacrylic acid( PAA, the molecular weight is 100000), and the solvent of polyethyleneimine and polyacrylic acid is water.
组装条件及方法:Assembly conditions and methods:
(1)用去离子水将聚乙烯亚胺配成0.5wt%的溶液500ml,静置脱泡,加入纳米氧化锆粒子溶液1ml;用去离子水将聚丙烯酸配成0.05wt%的溶液500ml,静置脱泡,加入纳米氧化锆粒子溶液1ml;(1) polyethylenimine is made into 0.5wt% solution 500ml with deionized water, leaves standstill to defoam, adds nano zirconia particle solution 1ml; Polyacrylic acid is made into 0.05wt% solution 500ml with deionized water, Let it stand for defoaming, and add 1ml of nano-zirconia particle solution;
(2)将聚乙烯亚胺溶液超声120分钟,使纳米粒子均匀分散后,离心10分钟,离心后将上清液换成等体积去离子水;重复3次,制得聚乙烯亚胺纳米粒子包络体溶液;将聚丙烯酸溶液超声120分钟,使纳米粒子均匀分散后,离心10分钟,离心后将上清液换成等体积去离子水;重复3次,制得聚丙烯酸纳米粒子包络体溶液;(2) Ultrasound the polyethyleneimine solution for 120 minutes to uniformly disperse the nanoparticles, centrifuge for 10 minutes, and replace the supernatant with an equal volume of deionized water after centrifugation; repeat 3 times to obtain polyethyleneimine nanoparticles Encapsulation body solution: Sonicate the polyacrylic acid solution for 120 minutes to uniformly disperse the nanoparticles, centrifuge for 10 minutes, and replace the supernatant with an equal volume of deionized water after centrifugation; repeat 3 times to obtain the polyacrylic acid nanoparticle envelope body solution;
(3)为使聚丙烯腈支撑膜表面荷电,采用常规的水解改性技术,首先在温度为65℃时,将聚丙烯膜超滤膜浸入2N NaOH溶液中15min,将其改性为中空纤维聚阴离子基膜;(3) In order to charge the surface of the polyacrylonitrile support membrane, conventional hydrolysis modification technology is adopted. Firstly, when the temperature is 65°C, the polypropylene membrane ultrafiltration membrane is immersed in 2N NaOH solution for 15 minutes to modify it into a hollow membrane. Fibrous polyanion base membrane;
(4)将膜浸泡在去离子水中,漂洗膜面并烘干;(4) Soak the membrane in deionized water, rinse the membrane surface and dry;
(5)将中空纤维基膜放入有机玻璃管中,两端用环氧树脂封端,制成中空纤维组件。(5) Put the hollow fiber base membrane into a plexiglass tube, and seal both ends with epoxy resin to make a hollow fiber module.
(6)利用循环泵将聚乙烯亚胺纳米粒子包络体溶液泵入中空纤维基膜内腔,在纤维外侧施加-0.08MPa的负压,进行抽吸30min,使聚乙烯亚胺纳米粒子包络体在纤维内表面被截留和吸附,形成分离层;(6) Use a circulating pump to pump the polyethyleneimine nanoparticle inclusion body solution into the inner cavity of the hollow fiber basement membrane, apply a negative pressure of -0.08MPa on the outside of the fiber, and carry out suction for 30min to make the polyethyleneimine nanoparticle inclusion body solution The complex is trapped and adsorbed on the inner surface of the fiber to form a separation layer;
(7)将膜浸泡在去离子水中,漂洗膜面并烘干;(7) Soak the membrane in deionized water, rinse the membrane surface and dry;
(8)利用循环泵将聚丙烯酸纳米粒子包络体溶液泵入中空纤维基膜内腔,在纤维外侧施加-0.08MPa的负压,进行抽吸30min,使之与聚乙烯亚胺纳米粒子包络体反应;(8) Use a circulation pump to pump the polyacrylic acid nanoparticle inclusion body solution into the inner cavity of the hollow fiber basement membrane, apply a negative pressure of -0.08MPa on the outside of the fiber, and carry out suction for 30 minutes to make it mix with the polyethyleneimine nanoparticle inclusion body. complex reaction;
(9)将膜浸泡在去离子水中,漂洗膜面并烘干;(9) Soak the membrane in deionized water, rinse the membrane surface and dry;
(10)重复(6)-(7)步骤1次,即可形成复合层数为1.5层的中空纤维式无机纳米粒子杂化有机渗透汽化膜。(10) Steps (6)-(7) are repeated once to form a hollow fiber inorganic nanoparticle hybrid organic pervaporation membrane with a composite layer number of 1.5.
通过拉伸实验来测定膜的力学性能。将制得得中空纤维膜丝(外径1.50mm,膜厚度0.135mm,测试速度10mm/min),采用拉伸强度测定仪在室温下测得拉伸强度3.14Mpa。The mechanical properties of the films were determined by tensile tests. The prepared hollow fiber membrane (1.50mm outer diameter, 0.135mm membrane thickness, 10mm/min testing speed) was used to measure the tensile strength of 3.14Mpa at room temperature by using a tensile strength tester.
将上述组装的无机纳米粒子杂化有机渗透汽化膜在渗透汽化膜池中进行渗透汽化性能测试,测试条件为:原液组成95wt%乙醇/水体系,实验温度50℃,膜下游压力100Pa。The inorganic nanoparticle hybrid organic pervaporation membrane assembled above was tested for pervaporation performance in a pervaporation membrane cell. The test conditions were as follows: stock solution composition 95wt% ethanol/water system, test temperature 50°C, membrane downstream pressure 100Pa.
测得渗透汽化膜性能为:渗透通量24.7g·m-2·h-1,透过液中乙醇含量0.6wt%,分离因子2700。The measured performance of the pervaporation membrane is: the permeation flux is 24.7g·m-2 ·h-1 , the ethanol content in the permeate is 0.6wt%, and the separation factor is 2700.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010102378350ACN101905122B (en) | 2010-07-23 | 2010-07-23 | A Self-Assembly Method of Highly Loaded Inorganic Nanoparticle Hybrid Organic Membrane |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010102378350ACN101905122B (en) | 2010-07-23 | 2010-07-23 | A Self-Assembly Method of Highly Loaded Inorganic Nanoparticle Hybrid Organic Membrane |
| Publication Number | Publication Date |
|---|---|
| CN101905122A CN101905122A (en) | 2010-12-08 |
| CN101905122Btrue CN101905122B (en) | 2012-05-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010102378350AExpired - Fee RelatedCN101905122B (en) | 2010-07-23 | 2010-07-23 | A Self-Assembly Method of Highly Loaded Inorganic Nanoparticle Hybrid Organic Membrane |
| Country | Link |
|---|---|
| CN (1) | CN101905122B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102671551B (en)* | 2011-03-18 | 2014-03-05 | 中国科学院大连化学物理研究所 | Conductive microfiltration membrane and preparation method thereof |
| CN102284253A (en)* | 2011-06-13 | 2011-12-21 | 北京工业大学 | Method for assembling organic/inorganic hollow fiber composite membrane |
| CN102580550B (en)* | 2012-03-05 | 2014-04-09 | 中国海洋大学 | Method for producing polyelectrolyte self-assembly composite nanofiltration membrane |
| CN102814165B (en)* | 2012-09-10 | 2014-09-17 | 南昌航空大学 | Method for improving chitosan acidoresistance |
| CN103741477B (en)* | 2014-01-03 | 2016-01-06 | 天津工业大学 | A kind of sulfonic group modified polytetrafluoroethylene fibre self-assembly preparation method thereof |
| CN103816814B (en)* | 2014-03-06 | 2016-01-20 | 北京工业大学 | A kind of porous granule MCM-41-ZIF-8/PDMS pervaporation hybrid membrane, preparation and application |
| CN104014251B (en)* | 2014-06-05 | 2016-09-14 | 北京工业大学 | A kind of preparation method based on inorganic supporting body assembled inorganic particle hydridization polyelectrolyte NF membrane |
| CN105479876A (en)* | 2014-09-27 | 2016-04-13 | 中国石油化工集团公司 | Nano-bionic laminar film and preparation method therefor |
| CN105887478B (en)* | 2015-01-16 | 2020-05-15 | 中国人民解放军军事医学科学院毒物药物研究所 | A kind of multifunctional skin protective material and its preparation method and use |
| CN104785124B (en)* | 2015-03-30 | 2017-11-17 | 北京工业大学 | A kind of charged TiO2/ polyelectrolyte composite nanometer filtering film and preparation method and application |
| CN105597557B (en)* | 2015-09-28 | 2017-11-17 | 河北工业大学 | A kind of preparation method being used for from the composite membrane of extracting lithium from salt lake brine |
| CN105642017B (en)* | 2015-12-31 | 2018-06-19 | 天津清科环保科技有限公司 | A kind of polytetrafluoroethylene (PTFE) self-assembled coating filtrate and preparation method thereof |
| CN107081424B (en)* | 2017-05-02 | 2018-12-28 | 常州大学 | A kind of thick titanium or thick titanium alloy powder injection moulding PP Pipe Compound and preparation method thereof |
| CN107880335A (en)* | 2017-11-24 | 2018-04-06 | 苏州大学 | Inorganic/organic hybrid films and preparation method thereof |
| US11717793B2 (en) | 2018-03-07 | 2023-08-08 | King's Flair Development Ltd. | Functional fibrous membrane, method for manufacturing the same, filter comprising the same |
| CN111530286B (en)* | 2020-04-28 | 2022-02-11 | 南京工业大学 | A kind of hollow fiber nanofiltration membrane and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101085840A (en)* | 2007-06-11 | 2007-12-12 | 同济大学 | Method for preparing polyelectrolyte/CdTe nano composite thin film |
| JP2008027586A (en)* | 2006-07-18 | 2008-02-07 | Hitachi Ltd | POLYMER ELECTROLYTE COMPOSITION AND USE THEREOF |
| JP2008140608A (en)* | 2006-11-30 | 2008-06-19 | Jsr Corp | Membrane-electrode assembly |
| CN101224393A (en)* | 2007-10-19 | 2008-07-23 | 浙江大学 | Preparation method of electric field-driven polyelectrolyte layer-by-layer self-assembled pervaporation membrane |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008027586A (en)* | 2006-07-18 | 2008-02-07 | Hitachi Ltd | POLYMER ELECTROLYTE COMPOSITION AND USE THEREOF |
| JP2008140608A (en)* | 2006-11-30 | 2008-06-19 | Jsr Corp | Membrane-electrode assembly |
| CN101085840A (en)* | 2007-06-11 | 2007-12-12 | 同济大学 | Method for preparing polyelectrolyte/CdTe nano composite thin film |
| CN101224393A (en)* | 2007-10-19 | 2008-07-23 | 浙江大学 | Preparation method of electric field-driven polyelectrolyte layer-by-layer self-assembled pervaporation membrane |
| Publication number | Publication date |
|---|---|
| CN101905122A (en) | 2010-12-08 |
| Publication | Publication Date | Title |
|---|---|---|
| CN101905122B (en) | A Self-Assembly Method of Highly Loaded Inorganic Nanoparticle Hybrid Organic Membrane | |
| Amiri et al. | Fabrication and characterization of a novel polyvinyl alcohol-graphene oxide-sodium alginate nanocomposite hydrogel blended PES nanofiltration membrane for improved water purification | |
| CN101700473A (en) | A Self-Assembly Method of Inorganic Nanoparticle Hybrid Organic Film | |
| CN103706264B (en) | LBL self-assembly graphene oxide NF membrane and preparation method thereof | |
| KR101423757B1 (en) | Manufacturing method of nanofiber-graphene membrane for water-treatment and nanofiber-graphene membrane for water-treatment thereof | |
| CN103977718B (en) | Positive osmosis composite membrane of a kind of high water flux and preparation method thereof | |
| CN103272491B (en) | Preparation method for in situ self-assembled organic/inorganic hybrid membrane based on coordination | |
| CN100411720C (en) | An assembly method for polyelectrolyte composite pervaporation membrane | |
| CN102580566B (en) | Method for in situ generating inorganic nano particles-polyelectrolyte hybrid membrane | |
| CN104383816A (en) | Polymer film with improved antifouling property and preparation method thereof | |
| CN103816818B (en) | A kind of superhydrophilic gradient hole hollow fiber membrane and its preparation method | |
| CN102626593B (en) | Formula of acid and alkali-resistant and anti-pollution ultrafiltration membrane and preparation method thereof | |
| CN102553462A (en) | Carbon nano tube/polyaniline/polysulfone composite ultra-filtration membrane and preparing method thereof | |
| CN104629151B (en) | Porous vinyl resin film with controllable structure and preparation method thereof | |
| CN106621831B (en) | A method of it is quickly nanofiltration membrane by micro-filtration or ultrafiltration membrane converted in-situ | |
| CN102389722A (en) | Method for preparing nano composite ultrafiltration membrane by using polyaniline nano material | |
| Green et al. | Functional membranes via nanoparticle self-assembly | |
| CN102284253A (en) | Method for assembling organic/inorganic hollow fiber composite membrane | |
| Zhao et al. | Polyelectrolyte complex nanofiltration membranes: performance modulation via casting solution pH | |
| CN102626595A (en) | Formula for industrial high-strength anti-pollution ultrafiltration flat plate membrane and preparation method thereof | |
| CN108993165B (en) | A kind of layered inorganic material organic solvent nanofiltration composite membrane and preparation method thereof | |
| Wang et al. | Design of a novel poly (aryl ether nitrile)-based composite ultrafiltration membrane with improved permeability and antifouling performance using zwitterionic modified nano-silica | |
| Yang et al. | Anti-fouling characteristic of carbon nanotubes hollow fiber membranes by filtering natural organic pollutants | |
| CN104248915B (en) | Preparation method of enhanced flat composite microporous membrane for improving hydrophilicity | |
| CN110280148B (en) | Preparation method of polyvinylidene fluoride ultrafiltration membrane modified by hydrophilic graphene |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20120530 Termination date:20140723 | |
| EXPY | Termination of patent right or utility model |