




技术领域technical field
本公开总体涉及一种用于控制在地球地层中钻井眼用的钻井系统的方法和系统。更具体地,但不是以限制性的方式,在本发明的一个实施例中,提供一种用于控制钻井眼用的钻井系统与正在被所述钻井系统钻进的井眼的内表面之间的相互作用以对钻井系统进行导向从而将井眼定向钻通地球地层的系统和方法。在本发明的一些方面中,可以控制钻井系统以使得井眼到达靶区目标。The present disclosure generally relates to a method and system for controlling a drilling system for drilling a wellbore in an earth formation. More specifically, but not in a limiting manner, in one embodiment of the present invention there is provided a method for controlling the connection between a drilling system for drilling a wellbore and the inner surface of a wellbore being drilled by said drilling system Systems and methods for steering a drilling system to drill a wellbore directionally through earth formations. In some aspects of the invention, the drilling system may be controlled such that the borehole reaches the target target.
在本发明的另一个实施例中,可以感测关于钻井系统钻井眼时所述钻井系统的功能的数据,并且可以响应于所感测的数据控制用于钻井眼的钻井系统与井眼的内表面之间的相互作用,以用于控制钻井系统的操作。在一些方面中,可以控制钻井系统与内表面之间的相互作用以用于控制钻头与地球地层的相互作用。In another embodiment of the invention, data regarding the function of the drilling system as the drilling system drills the wellbore may be sensed, and the drilling system for drilling the wellbore and the inner surface of the wellbore may be controlled in response to the sensed data. The interaction between them is used to control the operation of the drilling system. In some aspects, the interaction between the drilling system and the interior surface can be controlled for controlling the interaction of the drill bit with the formation of the earth.
背景技术Background technique
在许多行业中,通常期望的是通过地球地层定向钻进一口井眼或者在地下地层中的井中取心,以便井眼和/或取心可以包围和/或通过地层内的沉积物和/或储层,以到达地层和/或类似地层内的预定目标。当在地下地层中钻井或取心时,有时期望能够改变和控制钻进方向,以例如朝向期望的靶心引导井眼,或者一旦已经到达靶心则水平控制在含有油气的区域内的方向。还期望的是当钻直井时可对偏离期望方向的井斜进行校正,或者控制井的方向以避免障碍物。In many industries, it is often desirable to directionally drill a wellbore through earth formations or to coring a well in a subterranean formation so that the borehole and/or coring can surround and/or pass through sediments and/or Reservoirs to reach intended targets within formations and/or similar formations. When drilling or coring a well in a subterranean formation, it is sometimes desirable to be able to change and control the direction of drilling, for example to steer the borehole toward a desired bull's-eye, or horizontally control the direction within a hydrocarbon-bearing zone once the bull's-eye has been reached. It is also desirable to be able to correct for deviations from desired directions when drilling vertical wells, or to control the direction of the well to avoid obstructions.
例如,在油气行业中,可以进行钻井以截取具体位置处具体的地下地层。在一些钻井过程中,为了钻期望的井眼,可以预先设计通过地球地层的钻井轨迹,并且可以控制钻井系统以与轨迹一致。在其它过程中,或者在与前述过程的结合中,在钻井过程期间,可以确定用于井眼的目标并可以监测正在地球地层内钻进井眼的进程,并且可以采用用于确保井眼到达靶区目标的步骤。此外,可以控制钻井系统的操作以提供经济钻井,所述经济钻井可以包括进行钻进以尽快钻通地球地层,进行钻进以减小钻头磨损,进行钻进以获得通过地球地层的最佳钻井和最佳钻头磨损和/或类似结果。For example, in the oil and gas industry, wells may be drilled to intercept specific subterranean formations at specific locations. In some drilling procedures, a drilling trajectory through the formations of the earth may be pre-planned and the drilling system may be controlled to conform to the trajectory in order to drill a desired wellbore. In other processes, or in combination with the preceding processes, during the drilling process, targets for the wellbore can be determined and the progress of the wellbore being drilled within the formations of the earth can be monitored, and methods for ensuring that the wellbore reaches Steps for Target Targets. In addition, the operation of the drilling system can be controlled to provide economical drilling, which can include drilling to drill through the Earth's formations as quickly as possible, drilling to reduce drill bit wear, drilling for optimal drilling through the Earth's formations and best bit wear and/or similar results.
钻井的一个方面被称作“定向钻井”。定向钻井是有意使井眼偏离所述井眼本身所通过的路径。换句话说,定向钻井是对钻柱进行导向,使得所述钻柱沿期望的方向移动。One aspect of drilling is known as "directional drilling." Directional drilling is the intentional deviation of a wellbore from the path traversed by the wellbore itself. In other words, directional drilling is the steering of a drill string so that it moves in a desired direction.
因为定向钻井能够从单个平台钻多口井,因此定向钻井的优势在于海上钻井。定向钻井还能够通过储层进行水平钻井。水平钻井能够使更长的井筒穿过储层,这增加了井的生产率。The advantage of directional drilling lies in offshore drilling because it enables the drilling of multiple wells from a single platform. Directional drilling also enables horizontal drilling through the reservoir. Horizontal drilling enables longer wellbores to penetrate the reservoir, which increases the productivity of the well.
定向钻井系统同样也可以用于垂直钻井操作中。通常,钻头由于被穿过的地层的不可预测的特性或钻头受到的变化力而离开设计好的钻井轨迹。当这种井斜发生时,定向钻井系统可以用于将钻头放回在规定的轨迹上。Directional drilling systems can also be used in vertical drilling operations as well. Often, the drill bit deviates from the planned drilling trajectory due to unpredictable characteristics of the formation being traversed or varying forces to which the drill bit is exposed. When this deviation occurs, the directional drilling system can be used to put the drill bit back on the prescribed trajectory.
用于井眼的定向钻进的监测过程可以包括确定钻头在地球地层内的位置、确定钻头在地球地层中的方位、确定钻井系统的钻压、确定通过地球地层的钻井速度、确定正在被钻进的地球地层的特性、确定包围钻头的地层的特性、期望确定钻头前面的地层的特性、对地球地层进行地震分析、确定邻近钻头的储层等的特性、测量井眼内和/或井眼或类似物周围的地层的压力、温度和/或类似参数。在用于井眼的定向钻进的任一过程中,不管是否在预先设计的轨迹之后、是否监测钻井过程和/或钻井条件和/或类似操作,必需能够对钻井系统进行导向。The monitoring process for directional drilling of a wellbore may include determining the position of the drill bit within the earth formations, determining the orientation of the drill bit in the earth formations, determining the weight-on-bit of the drilling system, determining the rate of drilling through the earth formations, determining the properties of advanced earth formations, determining properties of formations surrounding the drill bit, desiring to characterize formations ahead of the drill bit, performing seismic analysis of earth formations, determining properties of reservoirs adjacent to the drill bit, etc., measuring in-bore and/or borehole Or the pressure, temperature and/or similar parameters of the surrounding formation. During any process for directional drilling of a wellbore, whether following a pre-planned trajectory, monitoring the drilling process and/or drilling conditions, and/or the like, it is necessary to be able to steer the drilling system.
在钻井操作期间作用在钻头上的力包括重力、由钻头产生的扭矩、施加到钻头的端部载荷、和来自钻柱组合的弯矩。这些力与正在被钻进的地层类型和地层相对于井眼的倾角一起可以在钻井过程期间产生复杂的相互作用的力系。The forces acting on the drill bit during drilling operations include gravity, torque generated by the drill bit, end loads applied to the drill bit, and bending moments from the drill string assembly. These forces, together with the type of formation being drilled and the dip of the formation relative to the borehole, can create a complex system of interacting forces during the drilling process.
钻井系统可以包括“旋转钻井”系统,在所述旋转钻井系统中,包括钻头的底部钻具组合连接到可以从钻井平台被驱动/旋转的钻柱。在旋转钻井系统中,可以通过改变诸如钻压、旋转速度等因素提供井眼的定向钻井。Drilling systems may include "rotary drilling" systems in which a bottom hole assembly, including a drill bit, is connected to a drill string that may be driven/rotated from a drilling platform. In rotary drilling systems, directional drilling of boreholes can be provided by changing factors such as weight on bit, rotational speed, etc.
相对于旋转钻井,定向钻井公知的方法包括使用旋转钻井系统(RSS)。在RSS中,钻柱从地面旋转,并且井下装置使钻头沿期望的方向钻进。旋转钻柱大大减少了钻井期间钻柱悬空或卡钻的发生。As opposed to rotary drilling, well known methods of directional drilling include the use of a rotary drilling system (RSS). In RSS, the drill string is rotated from the surface, and downhole equipment causes the bit to drill in the desired direction. Rotating the drill string greatly reduces the occurrence of drill string hang-out or stuck pipe during drilling.
用于将斜井钻进到地球内的旋转导向钻井系统可以大致分类为“面向钻头”系统或“推进钻头”系统。在面向钻头系统中,钻头的旋转轴线沿新井的大致方向偏离底部钻具组合(“BHA”)的局部轴线。根据由上下稳定器接触点和钻头限定的常规三点几何尺寸扩展井。与钻头和下稳定器之间的有限距离相关联的钻头轴线的偏斜角产生要生成的弯曲所需的非共线条件。有许多方法可以实现此,包括在底部钻具组合中靠近下稳定器的点处的固定弯曲或在上稳定器与下稳定器之间分布的钻头驱动轴的挠曲。Rotary steerable drilling systems used to drill deviated wells into the earth can be broadly classified as "face the bit" systems or "push the bit" systems. In bit-oriented systems, the rotational axis of the drill bit is offset from the local axis of the bottom hole assembly ("BHA") in the general direction of the new well. The well is expanded according to a conventional three-point geometry defined by the upper and lower stabilizer contact points and the drill bit. The deflection angle of the bit axis associated with the finite distance between the bit and the lower stabilizer creates the non-collinear condition required for the bend to be generated. There are a number of ways to achieve this, including fixed bending at a point in the bottom hole assembly near the lower stabilizer or flexing of the bit drive shaft distributed between the upper and lower stabilizers.
面向钻头可以包括使用井下马达旋转钻头,且马达和钻头安装在包括具有角度的弯头的钻柱上。在这种系统中,钻头可以通过悬挂型或倾斜机构/接头、弯接头或类似机构连接到马达,其中,钻头可以相对于马达倾斜。当需要改变钻井方向时,可以使钻柱停止旋转,并且钻头可以沿期望的方向位于井下,从而使用井下马达,并且钻头的旋转可以使沿期望的方向的钻进开始。在这种布置中,钻进方向取决于钻柱的角位移。Facing the bit may include using a downhole motor to rotate the bit, with the motor and bit mounted on a drill string including an angled bend. In such a system, the drill bit may be connected to the motor by a hang-type or tilting mechanism/joint, elbow joint, or similar mechanism, wherein the drill bit may be tilted relative to the motor. When a change in drilling direction is desired, the drill string can be stopped from rotating and the drill bit can be positioned downhole in the desired direction so that the downhole motor is used and rotation of the bit can initiate drilling in the desired direction. In this arrangement, the direction of drilling depends on the angular displacement of the drill string.
在钻头的理想形式中,在面向钻头系统中,因为钻头轴线沿弯曲井的方向连续旋转,因此,钻头不需要进行侧向钻切。美国专利申请出版物No.2002/0011359;2001/0052428和美国专利No.6,394,193;6,364,034;6,244,361;6,158,529;6,092,610;和5,113,953中说明了面向钻头型旋转导向系统的示例和所述面向钻头型旋转导向系统是如何操作的,所有这些申请通过引用在此并入。In the ideal form of the drill bit, in a facing bit system, the bit does not need to cut sideways because the bit axis rotates continuously in the direction of the curved well. 2001/0052428 and U.S. Patent Nos. 6,394,193; 6,364,034; 6,244,361; 6,158,529; 6,092,610; How the system operates, all of these applications are hereby incorporated by reference.
推进钻头系统和方法将力施加在井壁上以弯曲钻柱和/或迫使钻头在优选的方向上进行钻进。在推进钻头旋转导向系统中,通过使机构在相对于井扩展的方向被优选定向的方向上施加力或产生位移来实现所需的非共线条件。有许多方法可以实现此,包括基于不旋转(相对于井)位移的方法和沿期望的导向方向将力施加到钻头的偏心致动器。此外,通过在钻头与至少两个其它接触点之间产生非共线性来实现导向。在钻头的理想形式中,钻头需要进行侧向钻切以生成弯曲井。美国专利No.5,265,682;5,553,678;5,803,185;6,089,332;5,695,015;5,685,379;5,706,905;5,553,679;5,673,763;5,520,255;5,603,385;5,582,259;5,778,992;5,971,085中说明了推进钻头型旋转导向系统的示例和所述推进钻头型旋转导向系统是如何操作的,这些申请通过引用在此并入。The advancing bit system and method applies force to the borehole wall to bend the drill string and/or force the bit to drill in a preferred direction. In a push bit rotary steerable system, the desired non-collinear condition is achieved by having the mechanism exert force or generate displacement in a direction that is preferably oriented relative to the direction of well expansion. There are a number of ways to achieve this, including methods based on non-rotating (relative to the well) displacement and eccentric actuators that apply force to the drill bit in the desired steering direction. Furthermore, steering is achieved by creating non-collinearity between the drill bit and at least two other contact points. In the ideal form of a drill bit, the bit needs to cut laterally to create a curved well.美国专利No.5,265,682;5,553,678;5,803,185;6,089,332;5,695,015;5,685,379;5,706,905;5,553,679;5,673,763;5,520,255;5,603,385;5,582,259;5,778,992;5,971,085中说明了推进钻头型旋转导向系统的示例和所述推进钻头型旋转导向How the system operates, these applications are hereby incorporated by reference.
RSS的公知形式设置有在与钻柱旋转相反的方向上旋转的“反向旋转”机构。通常,反向旋转在与钻柱旋转相同的速度下发生,使得反向旋转部分相对于井眼的内部保持相同的角位置。因为反向旋转部分相对于井眼不旋转,因此通常被本领域的技术人员称作为“对地静止”。在此公开中,术语“反向旋转”和“对地静止”之间没有区别。Known forms of RSS are provided with a "counter-rotation" mechanism that rotates in the opposite direction to the rotation of the drill string. Typically, the counter-rotation occurs at the same speed as the drill string rotates so that the counter-rotation section maintains the same angular position relative to the interior of the borehole. Because the counter-rotating section does not rotate relative to the borehole, it is often referred to as "geostationary" by those skilled in the art. In this disclosure, no distinction is made between the terms "counter-rotating" and "geostationary".
推进钻头系统通常在反向旋转稳定器的内部或外部使用。反向旋转稳定器相对于井壁保持固定角度(或对地静止)。当要使井眼偏斜时,致动器从期望的井斜在相反方向上将推力块(pad:或者为伸缩片)压靠在井壁上。产生的结果是钻头在期望的方向上被推动。Push bit systems are typically used inside or outside counter-rotating stabilizers. Counter-rotating stabilizers are held at a fixed angle (or geostationary) relative to the borehole wall. When the borehole is to be deflected, the actuator presses the pads (or telescoping sheets) against the borehole wall in the opposite direction from the desired borehole deflection. The result is that the drill is pushed in the desired direction.
通过用于弯曲底部钻具组合的力可平衡由致动器/推力块生成的力,并且所述力通过致动器/推力块反作用在底部钻具组合的相对侧,并且反作用力作用在钻头的牙轮上,从而对井进行导向。在一些情况下,来自推力块/致动器的力可以足够大以磨蚀应用系统的地层。The force generated by the actuator/thrust mass is balanced by the force for bending the BHA and reacted by the actuator/thrust mass on the opposite side of the BHA and the reaction force acts on the drill bit on the cone of the shaft to guide the well. In some cases, the force from the thrust pad/actuator may be large enough to abrade the formation of the application system.
例如,Schlurnberger Powerdrive系统钻杆使用三个推力块,所述三个推力块绕底部钻具组合的截面布置以从底部钻具组合被同步部署,从而沿一方向推动钻头并且对正在被钻进的井眼进行导向。在所述系统中,推力块在钻头后面1-4ft的范围内紧密安装,并且通过从循环流体所取的泥浆流给所述推力块供电或致动所述推力块。在其它系统中,由钻井系统或楔形物或类似物提供的钻压可以用于将钻井系统定向在井眼中。For example, the Schlurnberger Powerdrive system drill pipe uses three thrust blocks arranged around the cross-section of the BHA to be deployed synchronously from the BHA to push the drill bit in one direction and against the drill bit being drilled. The borehole is steered. In the system, thrust blocks are closely mounted within 1-4 ft behind the drill bit and are powered or actuated by the flow of mud taken from the circulating fluid. In other systems, the weight on bit provided by the drilling system or wedges or the like may be used to orient the drilling system in the borehole.
虽然用于将力施加在井壁上并且使用反作用力沿一方向推动钻头或使钻头移动以沿期望的方向钻井的系统和方法可以与包括旋转钻井系统的钻井系统一起使用,但是所述系统和方法可能具有缺陷。例如,这种系统和方法可能需要将较大的力施加在井壁上以弯曲钻柱或将钻头定向在井眼中;这种力可能大约为5kN或更大,5kN或更大的力可能需要较大/复杂的井下发动机或类似物来生成。另外,许多系统和方法可以重复使用当底部钻具组合旋转时的推力块/致动器向外推入到井壁中的推力以产生推动钻头的反作用力,这可能需要复杂/昂贵/高维护的同步系统、复杂的控制系统和/或类似系统。While the systems and methods for applying a force on the well wall and using the counterforce to propel or move the drill bit in a direction to drill in a desired direction can be used with drilling systems including rotary drilling systems, the systems and Methods can have flaws. For example, such systems and methods may require a large force to be applied to the borehole wall to bend the drill string or orient the drill bit in the borehole; such force may be on the order of 5 kN or greater, and 5 kN or greater force may require Larger/complex downhole motors or similar to generate. Also, many systems and methods can reuse the thrust of the thrust pads/actuators pushing out into the borehole wall as the BHA rotates to create a reaction force that pushes the bit, which can be complex/expensive/high maintenance synchronization systems, complex control systems and/or similar systems.
发明内容Contents of the invention
本公开总体涉及一种用于控制构造成用于通过地下地层钻进井眼或对所述井眼取心的钻井系统的方法和系统。更具体地,但不是以限制性的方式,本发明的实施例用于使用钻井噪音(即,在钻井过程期间钻井系统在井眼内的不稳定运动)和钻井系统与井眼的内表面之间由钻井系统的不稳定运动产生的相互作用以控制钻井系统和/或钻井过程。The present disclosure generally relates to a method and system for controlling a drilling system configured for drilling or coring a wellbore through a subterranean formation. More specifically, but not in a limiting manner, embodiments of the present invention provide for the use of drilling noise (i.e., erratic motion of the drilling system within the borehole during the drilling process) and the relationship between the drilling system and the inner surface of the borehole. The interaction between the drilling system and/or the drilling process by the unstable motion of the drilling system.
因此,本发明的实施例用于控制在钻井过程期间钻井系统与井眼的内表面之间的重复的相互作用,并且使用对钻井系统与内表面之间的重复相互作用的控制以控制钻井系统的操作/功能。在一些实施例中,可以控制钻井系统的一部分或多个部分与井眼的内表面之间的重复相互作用,以用于对钻井系统进行导向,从而定向钻井眼。在其它实施例中,可以控制钻井系统的一部分或多个部分与井眼的内表面之间的重复相互作用,以用于控制钻井系统的操作,例如控制钻头在钻井过程期间的操作。Accordingly, embodiments of the present invention are used to control the repetitive interactions between the drilling system and the inner surface of the borehole during the drilling process, and use the control of the repetitive interactions between the drilling system and the inner surface to control the drilling system operation/function. In some embodiments, the repetitive interaction between a portion or portions of the drilling system and the inner surface of the borehole may be controlled for steering the drilling system to orient the borehole. In other embodiments, the repetitive interaction between a portion or portions of the drilling system and the interior surface of the borehole may be controlled for controlling the operation of the drilling system, eg, controlling the operation of the drill bit during the drilling process.
因此,在本发明的一个实施例中,提供了一种用于对构造成用于在地球地层内钻井眼的钻井系统的方法,所述方法包括以下步骤:Accordingly, in one embodiment of the present invention, there is provided a method for drilling a drilling system configured for drilling a wellbore within an earth formation, the method comprising the steps of:
控制钻井系统的一部分与所述井眼的内表面之间的动态相互作用;以及controlling the dynamic interaction between a portion of the drilling system and the interior surface of the wellbore; and
使用钻井系统的所述一部分与井眼的内表面之间被控制的动态相互作用以控制钻井系统。The controlled dynamic interaction between the portion of the drilling system and the inner surface of the borehole is used to control the drilling system.
在一些方面中,所述控制钻井系统的一部分与所述井眼的内表面之间的动态相互作用的步骤包括:使钻井系统的所述一部分与内表面之间的所述动态相互作用是非均匀的。此外,所述控制钻井系统的一部分与所述井眼的内表面之间的动态相互作用的步骤可以包括:使钻井系统的所述一部分与内表面之间的动态相互作用绕钻井系统的所述一部分沿圆周方向变化。In some aspects, the step of controlling the dynamic interaction between the portion of the drilling system and the inner surface of the wellbore comprises causing the dynamic interaction between the portion of the drilling system and the inner surface to be non-uniform of. Additionally, the step of controlling the dynamic interaction between the portion of the drilling system and the inner surface of the wellbore may include directing the dynamic interaction between the portion of the drilling system and the inner surface around the inner surface of the drilling system. A part varies along the circumferential direction.
在旋转钻井系统中,钻井系统的用于控制动态相互作用的所述一部分可以在钻井系统的操作期间在井眼内保持对地静止。在一些实施例中,可以控制动态相互作用以用于对钻井系统进行导向。在其它实施例中,可以控制动态相互作用以用于控制钻头。In a rotary drilling system, the portion of the drilling system used to control the dynamic interaction may remain geostationary within the borehole during operation of the drilling system. In some embodiments, dynamic interactions may be controlled for steering the drilling system. In other embodiments, dynamic interactions may be controlled for controlling the drill head.
在本发明的一些实施例中,控制钻井系统的至少一部分与所述井眼的内表面之间的动态相互作用可以包括以下步骤:连接接触元件与钻井系统,并且使用接触元件以控制动态相互作用。在旋转钻井系统中,在钻井系统的操作期间可以保持接触元件在井眼内对地静止。In some embodiments of the invention, controlling the dynamic interaction between at least a portion of the drilling system and the inner surface of the wellbore may include the steps of: connecting a contact element to the drilling system, and using the contact element to control the dynamic interaction . In rotary drilling systems, the contact elements may be kept geostationary within the borehole during operation of the drilling system.
在本发明的一些方面中,接触元件构造成与内表面产生非均匀动态相互作用。在这些方面中,接触元件的形状可以是非对称的,可以构造成具有非均匀柔度,可以包括与底部钻具组合偏心连接的圆筒,可以包括具有非均匀重量分布的元件和/或类似元件。In some aspects of the invention, the contact element is configured to create a non-uniform dynamic interaction with the inner surface. In these aspects, the contact elements may be asymmetrical in shape, may be configured to have non-uniform compliance, may include cylinders that are eccentrically coupled to the bottom hole assembly, may include elements that have non-uniform weight distribution, and/or the like .
在一些方面中,接触元件可以包括可伸出元件,所述可伸出元件可以从钻井系统朝向内表面向外延伸和/或从所述钻井系统向外延伸以与所述内表面接触。可伸出元件可以用于将力施加到内表面以控制动态相互作用。施加到内表面的力可以小于1kN。In some aspects, the contact element can comprise an extendable element that can extend outward from the drilling system toward the inner surface and/or outward from the drilling system to contact the inner surface. Extendable elements can be used to apply forces to the interior surfaces to control dynamic interactions. The force applied to the inner surface may be less than 1 kN.
在一些方面中,接触元件可以与钻井系统连接以使得接触元件设置在钻头的钻切轮廓内。在其它方面中,接触元件可以与钻井系统连接以使得接触元件的至少一部分设置在钻头的切割轮廓之外。In some aspects, the contact element can be coupled to the drilling system such that the contact element is disposed within the cutting profile of the drill bit. In other aspects, the contact element can be coupled to the drilling system such that at least a portion of the contact element is disposed outside the cutting profile of the drill bit.
在本发明的一些方面中,驱动器可以用于改变/控制钻井系统在钻井过程期间的动态相互作用。在本发明的一些方面中,处理器可以用于操纵用于控制钻井系统与内表面之间的动态相互作用的系统。操纵用于控制钻井系统与内表面之间的动态相互作用的系统可以包括以下步骤:将所述系统定位在钻井系统上和/或使所述系统在钻井系统上移动。在一些方面中,操纵处理器可以从传感器接收关于钻井过程的数据、钻井系统的操作和/或钻井系统的部件的数据、钻井系统的位置和/或钻井系统的部件的位置的数据、井眼在地球地层内的目标的位置的数据、井眼内的条件的数据、在正在钻井过程中地球地层和/或地球地层的多个部分的特性的数据、钻井系统和/或钻井系统的不同部分的动态运动的特性的数据和/或类似数据。In some aspects of the invention, drivers may be used to alter/control the dynamic interaction of the drilling system during the drilling process. In some aspects of the invention, a processor may be used to operate a system for controlling dynamic interactions between a drilling system and an interior surface. Manipulating a system for controlling dynamic interaction between a drilling system and an interior surface may include the steps of positioning the system on the drilling system and/or moving the system on the drilling system. In some aspects, the maneuvering processor may receive data from sensors regarding the drilling process, the operation of the drilling system and/or data on components of the drilling system, the location of the drilling system and/or data on the location of components of the drilling system, the borehole Data on the location of targets within the earth formations, data on conditions within the borehole, data on properties of the earth formations and/or portions of the earth formations while drilling is in progress, the drilling system and/or different parts of the drilling system data on the characteristics of the dynamic motion and/or similar data.
在本发明的一些方面中,可以通过改变正在被钻井的井眼的内壁的轮廓来提供对钻井系统与正在被钻进的井眼的内表面之间的动态相互作用的控制。在一些方面中,可以控制诸如非对称钻头、副钻头、从钻井系统延伸到内壁的可伸出元件、电脉冲钻头、喷射装置和/或类似装置的装置以使得内壁具有非均匀轮廓,从而用于控制钻井系统与内壁之间的动态相互作用。In some aspects of the invention, control of the dynamic interaction between the drilling system and the inner surface of the wellbore being drilled may be provided by varying the profile of the inner wall of the wellbore being drilled. In some aspects, devices such as asymmetric drill bits, sub-bits, extendable elements extending from the drilling system to the inner wall, electrically pulsed drill bits, injection devices, and/or the like may be controlled to cause the inner wall to have a non-uniform profile, thereby using Used to control the dynamic interaction between the drilling system and the inner wall.
在本发明的实施例中,可以实时控制用于控制钻井系统与正在被钻进的井眼的内表面之间的动态相互作用的系统和方法,以提供对钻井系统的实时控制。可以通过理论、实验、通过对动态相互作用的模拟、从先前钻井过程的经验和/或类似方法确定动态相互作用控制器的结构。在一些方面中,动态相互作用控制器可以包括被定位成使得距离钻头小于10英尺的接触元件,可以包括设置有在钻头的钻进轮廓内的小于几毫米的外表面的接触元件,可以包括设置有在钻头的钻进轮廓外至少部分地延伸毫米数量级的外表面的接触元件。In embodiments of the present invention, systems and methods for controlling the dynamic interaction between a drilling system and the interior surface of a wellbore being drilled may be controlled in real time to provide real time control of the drilling system. The structure of the dynamic interaction controller can be determined theoretically, experimentally, by simulation of the dynamic interaction, experience from previous drilling processes, and/or the like. In some aspects, the dynamic interaction controller can include a contact element positioned so that it is less than 10 feet from the drill bit, can include a contact element that is provided with an outer surface that is less than a few millimeters within the drilling profile of the drill bit, can include a set The contact element has an outer surface extending at least partially outside the drilling contour of the drill bit in the order of millimeters.
附图说明Description of drawings
在附图中,类似的部件和/或特征可以具有相同的附图标记。此外,相同类型的各种部件可以通过在附图标记之后的短划线和在类似部件中进行区别的第二标记来区别。只要在说明书中使用第一附图标记,则不管第二附图标记,说明适用于具有相同的第一附图标记的类似部件中的任一个。In the figures, similar components and/or features may have the same reference label. Furthermore, various components of the same type may be distinguished by a dash following the reference number and a second label that distinguishes among the like components. As long as the first reference numeral is used in the specification, the description is applicable to any one of similar components having the same first reference numeral regardless of the second reference numeral.
以下参照附图根据以下非限制性说明和示例性实施例更好地理解本发明,其中:The invention will be better understood from the following non-limiting description and exemplary embodiments with reference to the accompanying drawings, in which:
图1是用于钻井眼的系统的示意图;Figure 1 is a schematic diagram of a system for drilling a wellbore;
图2A是根据本发明的实施例的、用于对钻井眼用的钻井系统进行导向的系统的示意图;2A is a schematic diagram of a system for steering a drilling system for drilling a wellbore, in accordance with an embodiment of the present invention;
图2B是根据本发明的实施例的、通过在图2A的用于对钻井眼用的钻井系统进行导向的系统中使用的柔性系统截得的横截面图;2B is a cross-sectional view taken through the flexible system used in the system for steering a drilling system for drilling a wellbore of FIG. 2A in accordance with an embodiment of the present invention;
图3A-3C是根据本发明的实施例的、用于对钻井系统进行导向的凸轮控制系统的示意图;3A-3C are schematic diagrams of a cam control system for steering a drilling system, in accordance with an embodiment of the present invention;
图4A-4C是根据本发明的实施例的、用于对被构造成用于钻井眼的钻井系统进行导向的有源量规伸缩片(active gauge pad)的示意图;4A-4C are schematic illustrations of active gauge pads for guiding a drilling system configured to drill a wellbore, in accordance with an embodiment of the present invention;
图5提供了根据本发明的实施例的、用于对定向钻井的钻井系统进行导向的振动施加系统的示意图;5 provides a schematic diagram of a vibration application system for steering a directional drilling drilling system according to an embodiment of the present invention;
图6A和图6B示出了根据本发明的实施例的、用于选择性地表征井眼的内表面以便对钻具组合进行导向从而定向钻井的系统;6A and 6B illustrate a system for selectively characterizing the interior surface of a wellbore for steering a drill tool assembly for directional drilling, in accordance with an embodiment of the present invention;
图7A是根据本发明的实施例的、用于对钻井系统进行导向以定向钻井的方法的示意性流程图;以及7A is a schematic flow diagram of a method for steering a drilling system for directional drilling, according to an embodiment of the present invention; and
图7B是根据本发明的实施例的、用于控制在地球地层中钻井用的钻井系统的方法的示意性流程图。7B is a schematic flow diagram of a method for controlling a drilling system for drilling a well in an earth formation, according to an embodiment of the present invention.
具体实施方式Detailed ways
随后的说明仅提供了示例性实施例,并且目的不是限制本公开的保护范围、适用性或结构。相反,示例性实施例的随后说明将为本领域的技术人员提供用于能够实施一个或多个示例性实施例的说明。在不背离如所附权利要求所述的精神和保护范围的情况下可以对说明书的元件的功能和布置做各种改变。The ensuing description provides exemplary embodiments only, and is not intended to limit the scope, applicability, or structure of the present disclosure. Rather, the ensuing description of the example embodiments will provide those skilled in the art with an enabler for implementing one or more example embodiments. Various changes may be made in the function and arrangement of elements of the description without departing from the spirit and scope of the appended claims.
以下说明中给出了具体细节以提供对实施例的充分理解。然而,要理解的是可以在没有这些具体细节的情况下实施所述实施例。例如,系统、结构和其它部件可以被示出为方框图的形式的部件,从而不会以不必要的细节使实施例不清楚。在其它情况下,可以简单的方式示出公知的过程、技术、和其它方法,以免使实施例不清楚。Specific details are given in the following description to provide a thorough understanding of the embodiments. However, it is understood that the described embodiments may be practiced without these specific details. For example, systems, structures, and other components may be shown in block diagram form in order not to obscure the embodiments in unnecessary detail. In other instances, well-known procedures, techniques, and other methodologies are shown in simplified form so as not to obscure the embodiments.
此外,要注意的是单个实施例可以描述为流程图、流程图解、结构图、或方框图的过程。虽然流程图可以说明作为连续过程的操作,但是可以并行或同时执行多个操作。此外,可以重新布置操作的顺序。此外,在一些实施例中可以不发生任一个或多个操作。当过程的操作完成时结束所述过程,但是可以具有没有包括在附图中的另外的步骤。过程可以与方法、程序等相对应。Furthermore, it is to be noted that individual embodiments may be described as processes in flowcharts, flowchart illustrations, block diagrams, or block diagrams. Although a flowchart may illustrate operations as a sequential process, multiple operations may be performed in parallel or simultaneously. Also, the order of operations can be rearranged. Furthermore, in some embodiments any one or more operations may not occur. A process ends when its operations are complete, but may have additional steps not included in the figure. A process may correspond to a method, a procedure, or the like.
本公开总体涉及一种用于控制在地球地层中钻井用的钻井系统的方法和系统。更具体地,而不是以限制性的方式,本发明的实施例用于使用迄今没有被认识并且没有被研究的钻井过程的噪音(在钻井过程期间钻井系统在井眼内的不稳定/瞬变运动)和钻井系统与井眼之间的由钻井系统的不稳定瞬变运动产生的相互作用,以控制钻井系统和/或钻井过程。The present disclosure generally relates to a method and system for controlling a drilling system for drilling a well in an earth formation. More specifically, and not in a limiting manner, embodiments of the present invention are used to exploit the hitherto unrecognized and unstudied noise of the drilling process (instabilities/transients of the drilling system within the borehole during the drilling process motion) and the interaction between the drilling system and the borehole generated by the unsteady transient motion of the drilling system to control the drilling system and/or the drilling process.
在本发明的一个实施例中,所述系统和方法用于控制钻井用的钻井系统与正在被钻进的井眼的内表面之间的、由于在钻井过程期间钻井系统的不稳定瞬变运动产生的相互作用,以用于对钻井系统进行导向,从而将井眼定向钻通地球地层。在本发明的一些方面中,可以控制钻井系统使得井眼到达靶区目标或钻通所述靶区目标。在本发明的另一个实施例中,可以感测关于钻井系统的功能的数据,并且当正在钻井眼时,可以响应于所感测的数据来控制钻井眼用的钻井系统与井眼的内表面之间的相互作用(即,钻头与地球地层等等之间的相互作用),以控制钻井系统。In one embodiment of the present invention, the system and method are used to control the movement between a drilling system for drilling a well and the inner surface of a wellbore being drilled due to unstable transient motion of the drilling system during the drilling process. The resulting interactions are used to steer the drilling system for directional drilling of the borehole through the Earth's formations. In some aspects of the invention, the drilling system may be controlled such that the borehole reaches or drills through the target object. In another embodiment of the invention, data regarding the function of the drilling system may be sensed, and while the wellbore is being drilled, the relationship between the drilling system for drilling the wellbore and the inner surface of the wellbore may be controlled in response to the sensed data. interaction between the drill bit and the earth formation, etc., to control the drilling system.
图1是用于钻井眼的系统的示意图。如图所示,钻柱10可以包括连接器系统12和底部钻具组合17,并且钻柱10可以设置在井眼27内。底部钻具组合17可以包括钻头20和各种其它部件(未示出),例如,钻头短接、泥浆马达、稳定器、钻铤、重型钻杆、震击装置(“震击器”)、用于各种螺纹形状的变换接头和/或类似部件。底部钻具组合17可以为钻头20提供力以破碎岩石,其中所述力可以由钻压或类似物来提供-并且底部钻具组合17可以构造成可承受高温、高压和/或腐蚀性化学剂的恶劣的机械环境。底部钻具组合17可以包括泥浆马达、定向钻井和测量设备、随钻测量仪、随钻测井仪和/或其它专用装置。Figure 1 is a schematic illustration of a system for drilling a wellbore. As shown, drill string 10 may include connector system 12 and
钻铤可以包括钻柱的可以为钻井提供钻压的部件。因此,钻铤可以包括厚壁重型管状部件,所述厚壁重型管状部件可以具有中空中心以提供钻井液通过钻铤的通道。钻铤的外径可以为圆形以通过正在被钻进的井眼27,并且在一些情况下,所述钻铤的外径可以被加工有螺旋槽(“螺旋钻铤”)。钻铤可以包括一端为公螺纹而另一个端为母螺纹的螺纹连接件,使得多个钻铤可以与其它井下工具一起拧到一起,以形成底部钻具组合17。A drill collar may comprise the part of the drill string that provides weight-on-bit for drilling a well. Accordingly, the drill collar may comprise a thick walled heavy tubular member which may have a hollow center to provide passage of drilling fluid through the drill collar. The outer diameter of the collar may be circular to pass through the wellbore 27 being drilled, and in some cases may be machined with helical grooves ("helical collar"). The drill collar may include a threaded connection with a male thread at one end and a female thread at the other end so that multiple drill collars may be threaded together with other downhole tools to form the
重力作用在大质量钻铤(一个或多个)上以提供大的向下力,钻头20可以需要所述向下力以有效地破碎岩石并且钻通地球地层。为了精确地控制施加到钻头20的力的大小,当钻头20刚刚离开井眼27的底面41时,可以小心地监测测量的地面重量。接下来,可以缓慢并且小心地下放钻柱(和钻头),直到所述钻柱(和钻头)触及底面41。在所述点之后,当钻机继续下放钻柱的顶部时,越来越多的重量施加到钻头20,并且相应地在地面处悬挂时可测量较少的重量。如果地面测量值显示20,000磅[9080kg](20,000磅比钻头41离开底面41时的重量小),则在钻头20上(在垂直井中)应该有20,000磅的力。井下传感器可以用于更加精确地测量钻压,并且将数据发送到地面。Gravity acts on the massive drill collar(s) to provide the high downward force that drill
钻头20可以包括一个或多个牙轮23。在操作中,钻头20可以用于打碎和/或钻切底面41处的岩石,以将井眼27钻通地球地层30。钻头20可以设置在连接器系统12的底部上,并且当钻头20变钝或变得不能进一步通过地球地层30时,可以更换钻头20。可以以不同的方式构造钻头20和牙轮23以提供与地球地层不同的相互作用并且生成不同的钻切方式。
传统的钻头20通过钻比钻头20的最大外径稍大的井而工作,且井眼27的直径/尺寸由钻头20的牙轮的作用范围和牙轮与正在被钻进的岩石的相互作用而产生。这种通过钻头20对井眼27的钻进可通过旋转钻头20的钻切作用和由于大质量钻柱产生的钻压的组合来实现。通常,钻井系统可以包括量规伸缩片(一个或多个),所述量规伸缩片可以向外延伸到井眼27的尺寸。量规伸缩片可以包括设置在底部钻具组合17上的伸缩片或在钻头20的一些牙轮的端部和/或类似地方上的伸缩片。量规伸缩片可以用于将钻头20稳定在井眼27中。A
连接器系统12可以包括管(一个或多个)-诸如钻杆、套管或类似管-挠性管和/或类似管。连接器系统12的管、挠性管或类似管可以用于连接地面设备33与底部钻具组合17和钻头20。管、挠性管或类似管可以用于将钻井液泵送到钻头20,并且提升、下放和/或旋转底部钻具组合17和/或钻头20。Connector system 12 may include tube(s) - such as drill pipe, casing or the like - flexible tube and/or the like. Pipe, coiled pipe, or the like of connector system 12 may be used to connect surface equipment 33 to
在一些系统中,地面设备33可以包括顶部驱动装置、转盘或可以将旋转运动通过管、挠性管或类似管传递给钻头20的类似装置(未示出)。在一些系统中,顶部驱动装置可以由一个或多个马达(电动的、液压的和/或类似马达)组成,所述马达可以通过适当的齿轮连接到称作钻轴的一小段管。钻轴又可以拧到保护接头或钻柱本身。顶部驱动装置可以从大钩悬挂,使得所述顶部驱动装置可自由上下移动井架。管、挠性管或类似管可以连接到顶部驱动装置、转盘或类似装置,以将旋转运动沿着井眼27传递给钻头20。In some systems, surface equipment 33 may include a top drive, rotary table, or similar device (not shown) that may transmit rotational motion to drill
在一些钻井系统中,钻井马达(未示出)可以沿井眼27设置。钻井马达可以包括电动马达、液压型马达和/或类似马达。液压型马达可以由钻井液或泵送到井眼27内的和/或沿着钻柱循环的其它流体驱动。钻井马达可以用于给底面41上的钻头20提供动力/旋转所述钻头。使用钻井马达可以用于在不需要旋转连接器系统12的情况下通过旋转钻头20来钻井眼27,所述连接器系统在钻井过程期间可以保持固定。In some drilling systems, a drilling motor (not shown) may be positioned along the borehole 27 . Drilling motors may include electric motors, hydraulic motors, and/or the like. The hydraulic motors may be driven by drilling fluid or other fluids that are pumped into the wellbore 27 and/or circulated along the drill string. A drilling motor may be used to power/rotate the
钻头20在井眼27内的不管是通过旋转钻杆或钻井马达产生的旋转运动可以用于打碎和/或刮削底面41处的岩石以在地球地层30中钻一段新井眼27。钻井液可以通过连接器系统12或类似系统沿着井眼27被泵送,以将能量提供给钻头20,从而旋转钻头20或类似装置,以用于钻进井眼27、从底面41清除钻屑和/或进行类似动作。Rotary motion of
在一些钻井系统中,可以使用震击钻头以与施工现场气锤几乎相同的方式垂直重击岩石。在其它钻井系统中,井下马达可以用于操作钻头20或相关联的钻头,或者除了由顶部驱动装置、转盘、钻井液和/或类似装置提供的能量之外,井下马达可以将能量提供给钻头20。此外,流体喷射器、电脉冲和/或类似装置还可以用于钻井眼27或与钻头17结合来钻井眼27。In some drilling systems, a hammer bit can be used to pound the rock vertically in much the same way as a construction site jackhammer. In other drilling systems, a downhole motor may be used to operate the
在一些钻井过程中,被公知为弯接头的弯管(未示出)或倾斜/绞链型机构可以设置在钻头20与钻井马达之间。弯接头或类似装置可以位于井眼内以使得钻头接触底面41的表面,使得用于沿具体的方向、角度、轨迹和/或类似参数钻井眼27。在不需要从井眼27移除连接器系统12和/或底部钻具组合17的情况下,可以调节弯接头在井眼中的位置。然而,由于在钻井过程期间井眼中的力可能使弯接头难以操纵和/或难以有效地用于对钻井系统进行导向,因此利用弯接头或类似装置进行定向钻井可能变得复杂。During some drilling procedures, an elbow (not shown), known as an elbow sub, or a tilt/hinge type mechanism may be provided between the
在钻井操作期间,可以作用在钻头20上的力可以包括重力、由钻头20产生的扭矩、施加到钻头20的端部载荷、来自包括连接器系统12的钻井系统的弯矩和/或类似力。这些力与正在被钻进的地层类型和钻头20相对于井眼27的底面41的表面的倾角一起可以产生复杂的作用力与反作用力的相互作用系统。各种系统已经被认为用于通过以下方式进行定向钻井:控制/施加这些较大的力以弯曲/成形/引导/推动钻井系统、和/或使用这些较大的力、和/或从向外推进到地球地层30内生成反作用力,从而对钻井系统在井眼内进行定向和/或相对于井眼27的底部对所述钻井系统进行定向、和/或推动钻头20以对钻井系统进行导向,从而定向钻井眼27。During drilling operations, forces that may act on
然而,使用钻井过程的力(例如,端部载荷)以对钻井系统进行导向的系统可能是复杂的,并且可能不能提供对钻井系统的精确导向。此外,通过在井眼内移动/定向钻井系统和/或推钻头20来对钻井系统进行导向的系统可能需要在井下生成超过1kN的较大的力和/或需要使元件从钻柱延伸超过钻头的钻切范围相当大的距离(即,远远超过钻头的轮廓,其中所述轮廓可以由钻头20的外钻切边缘来限定),以便生成用于移动/定向钻井系统和/或推钻头20的反作用力。当钻井系统旋转时,为了在井眼中推或移动钻井系统,可能还需要同步地由致动器将推力施加在井眼27的壁上。这种动力生成、超过钻头20的钻切轮廓的大延伸和/或推力同步可能需要较大的和/或昂贵的马达和/或对复杂同步系统的操作和控制,并且可能是复杂的和/或增加钻井机器和钻井过程的成本。However, systems that use the forces of the drilling process (eg, end loads) to steer the drilling system can be complex and may not provide precise steering of the drilling system. Additionally, systems that steer the drilling system by moving/orienting the drilling system within the borehole and/or pushing the
当利用传统的钻井系统钻直井时,在没有施加侧向力或类似力的情况下,申请人已经确定钻头20可能基本上在井眼27中“振动”,且所述振动包括钻头20在除了钻井方向之外的方向上的重复移动。术语振动/振荡这里用于说明钻井系统在钻井过程期间的重复运动,所述重复运动可以在井眼内的除了钻井方向之外的方向上,并且实际上可以是随机的。When drilling a vertical well using conventional drilling systems, applicants have determined that the
钻井系统的这些振动/振荡可能受限于冲击和延伸井的表面的牙轮和撞击井眼27的壁的量规伸缩片或类似装置的作用。在试验中,所发现的是包括钻头而没有量规伸缩片的钻井系统产生的井眼的直径明显大于包括钻头和量规伸缩片的等效钻井系统产生的井眼的直径。分析来自这些试验的结果,能确定的是在钻井系统的操作期间,底部钻具组合17在钻井过程期间重复受到包括远离底部钻具组合17和/或钻头20的中心轴线(即,在朝向井眼27的内壁40的径向方向上)的运动。对各种钻井操作的分析得到量规伸缩片限制底部钻具组合17和/或钻头20的这种径向运动,从而产生具有较小钻孔的井眼。传统的钻井系统的量规伸缩片被部署以最小化/消除钻井系统的振动运动,从而提供较小/规则钻孔。These vibrations/oscillations of the drilling system may be limited by the action of roller cones striking and extending the surface of the well and gauge blades or similar devices striking the walls of the borehole 27 . In testing, it was found that the drilling system including the drill bit without the gauge tabs produced a wellbore diameter significantly larger than the diameter of the wellbore produced by the equivalent drilling system including the drill bit and the gauge tabs. Analyzing the results from these tests, it can be determined that during operation of the drilling system, the
从对钻井系统的实验和分析,申请人发现当钻头20钻进到地球地层30内时,牙轮23可能不能与地球地层均匀相互作用,例如,可能由地球地层30产生岩屑,因此,可能在底部钻具组合17和/或钻头20中产生不稳定运动(所述不稳定运动是除了底部钻具组合17和/或钻头20的纵向/向前运动之外的沿一定方向上的运动)。此外,申请人已经分析了钻井系统的操作,并且发现除了在钻井系统的操作期间的不稳定/瞬变运动之外,通过连接器系统12和钻头20将力施加到井眼27的底部处的地球地层30、钻头20的操作/旋转、钻头20与地球地层在井眼27的底部处的相互作用(其中,钻头20可能滑脱、失速、离开钻井轴线和/或产生类似动作)、连接器系统12的旋转运动、顶部驱动装置的操作、旋转台的操作、井下马达的操作、诸如流体喷射器或电脉冲系统的钻井辅助设备的操作、井眼20的钻孔(所述钻孔可以是不规则的)和/或类似动作可以在底部钻具组合17和/或钻头20中产生运动,并且这种运动可以是重复运动、随机运动、瞬变运动,其中,至少所述运动的分量没有沿着底部钻具组合17和/或钻头20的轴线指向,相反在底部钻具组合17和/或钻头20的中心处从纵向轴线径向向外指向。因此,在钻井操作期间,底部钻具组合17的动力可以包括沿钻进方向的纵向运动37以及瞬变径向运动36A和36B,其中,瞬变径向运动36A和36B可以包括底部钻具组合17远离正在被钻进的井眼27的中心轴线39和/或底部钻具组合17和/或钻头20的中心轴线指向的任意运动。From experiments and analysis of the drilling system, the applicant found that when the
总之,已经确定的是底部钻具组合17在钻井过程期间的径向运动实际上可以是随机的、瞬变的。因此,底部钻具组合17在整个钻井过程可能受到重复随机径向/不稳定运动。为了进行这种说明,底部钻具组合17在钻井过程期间在井眼27中的重复径向/不稳定运动可以被称为底部钻具组合17和/或钻柱的动态运动、径向运动、不稳定运动、径向动态运动、径向不稳定运动、动态或不稳定运动、重复径向运动、重复动态运动、重复不稳定运动、振动、振动型运动和/或类似运动。In conclusion, it has been determined that the radial movement of the
底部钻具组合17在井眼27的钻进期间的动态和/或不稳定运动可以产生/导致底部钻具组合17在整个钻井过程中与井眼27的内表面重复接触和/或冲击所述内表面。井眼27的内表面包括井眼27的内壁40和底面41,即,限定井眼27的地球地层30的整个表面。如先前所述,底部钻具组合17的动态和/或不稳定运动实际上可以是随机的,因此,可以在钻井过程期间在底部钻具组合17与内表面之间产生/导致随机周期性/重复接触和/或冲击。Dynamic and/or erratic motion of the
由底部钻具组合17在钻井过程期间的动态和/或不稳定运动产生的钻柱10与内表面之间的间歇/重复接触和/或冲击可能发生在钻柱10和内表面的一个或多个部分/部件。例如,所述部分/部件可以是钻柱10的靠近钻头20的一部分,底部钻具组合17,底部钻具组合17的部件(例如,钻铤、量规伸缩片、稳定器、马达),连接器系统12的一部分和/或类似部分/部件。为了进行说明,钻柱10与内表面之间的由底部钻具组合17的动态和/或不稳定产生/导致的相互作用可以被称为动态相互作用、不稳定相互作用、径向运动相互作用、振动相互作用和/或类似相互作用。Intermittent/repeated contact and/or impacts between the drill string 10 and the inner surface resulting from dynamic and/or erratic motion of the
图2A是根据本发明的实施例的、用于对钻井眼用的钻井系统进行导向的系统的示意图。在图2A中,钻井眼用的钻井系统可以包括底部钻具组合17,所述底部钻具组合又可以包括钻头20。钻井系统可以用于钻进具有内壁53和钻进面54的井眼50。2A is a schematic diagram of a system for steering a drilling system for drilling a wellbore, according to an embodiment of the present invention. In FIG. 2A , a drilling system for drilling a wellbore may include a
在钻井过程期间,钻头20可以接触钻进面54并且打碎/移动钻进表54处的岩石。在本发明的实施例中,钻铤组件55可以通过柔性元件57与底部钻具组合17连接。钻铤组件55可以是管、圆筒、框架或类似组件。钻铤组件55可以具有外表面55A。During the drilling process,
在其中钻铤组件55包括管、圆筒和/或类似组件的方面中,外表面55A可以包括管/圆筒的外表面和/或与管/圆筒的外表面连接的任何伸缩片、突起部和/或类似部件。钻铤组件55的外表面可以具有用于增加钻铤组件55的外表面与内壁53之间的摩擦接触的粗糙部分、涂层、突起部。钻铤组件55可以包括构造成用于接触内壁53的伸缩片。In aspects where the
在一些方面中,钻铤组件55可以包括量规伸缩片系统。在其中钻铤组件55可以包括一系列元件(例如,伸缩片或类似元件)的方面中,外表面55A可以由钻铤组件55的元件(伸缩片)中的每一个的外表面限定。在本发明的实施例中,钻铤组件55可以与底部钻具组合17一起构造而成,以使得在钻井过程期间外表面55A与内壁53和/或钻进面54由于底部钻具组合17的动态运动而接合、接触、相互作用和/或进行类似动作。外表面55A的结构/轮廓/柔度和/或外表面55A相对于钻头20的钻切轮廓的布置可以用于控制外表面55A与内壁53和/或钻进面54之间的动态相互作用。In some aspects,
柔性元件57可以包括提供钻铤组件55相对于钻头20的侧向运动的结构,其中所述侧向运动是至少部分地朝向底部钻具组合17的中心轴线61指向的移动。在一些方面中,钻铤组件55本身可以被构造成在侧向方向上是柔性的,并且在不需要使用柔性元件57的情况下可以连接到底部钻具组合17和/或可以是底部钻具组合17的一部分。
在本发明的一个实施例中,柔性元件57的柔度可以沿圆周方向是非均匀的。在这样一个实施例中,柔性元件57的绕柔性元件57的圆周设置的一个或多个部分在侧向方向上的柔度可以比柔性元件57的其它部分的柔度大。In one embodiment of the invention, the compliance of the
如先前所观察的,在钻井过程期间,底部钻具组合17或底部钻具组合17的一个或多个部分可能受到与内壁53和/或钻进面54的动态相互作用。在本发明的实施例中,钻铤组件55可以构造成使得在钻井过程期间底部钻具组合17的动态运动在钻铤组件55与内壁53和/或钻进面54之间产生动态相互作用。在本发明的不同方面中,钻铤组件55与底部钻具组合17和/或钻头20之间的相对外圆周差可以提供钻铤组件55与内壁53和/或钻进面54之间不同的动态相互作用。对于具体的钻井过程来说,模拟、理论分析、实验和/或类似研究可以用于选择钻铤组件55与底部钻具组合17和/或钻头20之间的相对外圆周差,以产生想要的/期望的动态相互作用。As previously observed, during the drilling process, the
在本发明的其中侧向柔度绕柔性元件57沿圆周方向变化的实施例中,钻铤组件55与内壁53和/或钻进面54之间的动态相互作用绕钻铤组件55沿圆周方向可以是不均匀的。仅以示例的方式,柔性元件57可以包括减小柔度区59B和增加柔度区59A。在一些方面中,与在柔性元件57的具有减小侧向柔度的部分(即,减小柔度区59B)的上方在钻铤组件55与内壁53和/或钻进面54之间的动态相互作用相比较,在柔性元件57的具有增加侧向柔度的部分(即,增加柔度区59A)上方在钻铤组件55与内壁53和/或钻进面54之间动态相互作用可以被减弱。In embodiments of the invention in which the lateral compliance varies circumferentially about
在本发明的一些实施例中,钻铤组件55可以构造成使得钻铤组件55与底部钻具组合连接,以使得钻铤组件55整个设置在钻头20的钻切轮廓21内,且钻切轮廓21包括钻头20的边到边钻切轮廓。在本发明的其它实施例中,钻铤组件55、钻铤组件55的一部分、外表面55A和/或外表面55A的一部分可以延伸超过钻切轮廓21。仅以示例的方式,钻铤组件55可以与底部钻具组合17连接,以使得外表面55A在钻切轮廓21内大约1-几十毫米。在其它方面中,并且再次仅以示例的方式,钻铤组件55可以与底部钻具组合17连接,以使得外表面55A的至少一部分在延伸超过钻切轮廓21达到几十毫米的范围或更大范围内。In some embodiments of the present invention, the
图2B是根据本发明的实施例的、通过在图2A的用于对钻井眼用的钻井系统进行导向的系统中使用的柔性系统截得的横截面图。在图2B中的横截面所示的柔性元件包括增加柔度区59A和减小柔度区59B。在一些方面中,在柔性元件57中可以仅仅具有相对于柔性元件57剩下的区域和/或其它区域增加或减小柔度的单个区域。在其它方面中,柔性元件57可以包括绕柔性元件57产生非均匀柔度的任何结构。2B is a cross-sectional view taken through the flexible system used in the system of FIG. 2A for steering a drilling system for drilling a wellbore in accordance with an embodiment of the present invention. The flexible element shown in cross-section in FIG. 2B includes regions of increased
在图2B中,柔性元件57被示出为实心圆柱形结构,然而,在本发明的不同方面中,柔性元件57可以包括其它类型的结构,例如,绕底部钻具组合17布置并且构造成将钻铤组件55连接到底部钻具组合17的多个柔性元件、能够将钻铤组件55连接到底部钻具组合17并且提供钻铤组件55的侧向运动的支撑元件的组件和/或类似结构。在本发明的其它方面中,钻铤组件55本身可以是具有一体式柔性部的结构,其中一体式柔性部可以被选择为绕钻铤组件55是不均匀的,并且在没有柔性元件57的情况下,钻铤组件55可以与底部钻具组合17连接,或者可以是底部钻具组合17的一部分。在又一方面中,钻铤组件55可以包括诸如伸缩片或类似元件的多个柔性元件,且多个柔性元件与底部钻具组合17连接,并且柔性元件中的至少一个具有不同于其它柔性元件的柔度。In FIG. 2B , the
在本发明的实施例中,增加柔度区59A可以设置在柔性元件57上以与减小柔度区59B沿直径方向相对。在这样一个实施例中,柔性元件57可以防止钻铤组件在减小柔度区59B的位置处向内(如图2A中所示向上)移动,但是可以允许钻铤组件55在增加柔度区59A处向内(如图2A中所示向下)移动。因此,当钻头20在钻井过程期间受到动态运动时,所述钻头20可以与内壁53和/或钻进面54相互作用,并且可以往往沿增加柔度区59A的方向和/或朝向所述增加柔度区(如图2A中所示向上)移动、被定向或优先打碎/移除岩石。在这样一个实施例中,由于柔性元件57具有被选择的非均匀柔度,因此在钻井过程期间,由于17和钻头20的动态运动,柔性元件57可以使钻井系统被导向,并且可以提供对井眼50的定向钻井。在钻井过程期间,钻井系统和井眼27的内表面的非均匀相互作用还可以用于控制钻头20与地球地层的相互作用,并因此还可以用于控制钻头20的功能。In an embodiment of the present invention, a region of increased
在本发明的实施例中,钻铤组件55或柔性元件57的任何非均匀周向柔度可以用于对钻井系统进行导向/控制。可以选择钻铤组件55和/或柔性元件57的不同柔度的大小和/或钻铤组件55和/或柔性元件57的非均匀柔度剖面图以提供对钻头20期望的导向响应和/或控制。对于柔度差和/或周向柔度剖面图来说,可以理论上、通过模拟、由实验推导、由先前的钻井过程和/或类似方法确定钻井系统的导向响应和/或钻头响应。In embodiments of the present invention, any non-uniform circumferential compliance of the
在本发明的构造成用于与不涉及使用旋转钻头的钻井系统一起使用或在钻井系统的外壳(例如,底部钻具组合的外壳)是不旋转的情况下的实施例中,钻铤组件55和/或柔性元件57可以与钻井系统或外壳连接。在这样一个实施例中,钻井系统可以设置在井眼内,且增加柔度区59A在具体的方位处设置到钻头20,以用于沿增加柔度区59A的方向钻井眼50。为了通过钻井系统改变钻进方向,可以改变增加柔度区59A的位置。In embodiments of the invention configured for use with drilling systems that do not involve the use of rotating drill bits or where the casing of the drilling system (e.g., the casing of the bottom hole assembly) is non-rotating, the
在一些实施例中,可以包括马达、液压致动器和/或类似装置的定位装置65可以用于旋转/定位钻铤组件55和/或柔性元件57,以用于通过钻井系统沿期望的方向钻井眼50。定位装置65可以与处理器70通信。处理器70可以控制定位装置65以提供期望的定向钻井。处理器70可以由人工干预确定钻铤组件55和/或柔性元件57在井眼50内的位置,还可以确定井眼的端点目标、期望的钻井轨迹、期望的钻头响应、钻头与地球地层期望的相互作用、地震数据、可以提供关于地球地层的数据的来自传感器(未示出)的输入、井眼50内的条件、钻井数据(例如,钻压、钻井速度和/或类似数据)、钻井系统的振动数据、动态相互作用数据和/或关于钻头在地球地层内的位置/方位的类似数据、关于井眼的轨迹/方向的数据和/或类似数据。In some embodiments,
处理器70可以与显示器(未示出)连接以显示井眼50的方位/方向/位置、钻井系统、钻头20、钻铤组件55、柔性元件57、钻井速度、钻井轨迹和/或类似参数。显示器可以远离钻井位置并且通过例如Internet联接、网络连接、无线电通讯连接和/或类似连接被供给有数据,并且可以用于远距离操作钻井过程。来自处理器70的数据可以存储在存储器和/或通信给与钻井过程相关联的其它处理器和/或系统。
在本发明的另一个实施例中,导向/钻头功能控制系统可以构造成与旋转型钻井系统一起使用,在所述旋转型钻井系统中,钻头20可以在钻井过程期间旋转,因此,钻头20和/或底部钻具组合17可以在井眼50中旋转。在这样一个实施例中,钻铤组件55和/或柔性元件57可以构造成使得钻铤组件55和/或柔性元件57的运动独立或至少部分独立于钻头20和/或底部钻具组合17的旋转运动。因此,在钻井过程期间,钻铤组件55在井眼50内可以保持对地静止。In another embodiment of the present invention, the steering/bit function control system may be configured for use with a rotary type drilling system in which the
在一些方面中,钻铤组件55和/或柔性元件57可以是无源系统,所述无源系统包括绕钻井系统设置的一个或多个圆筒。在一些情况下,一个或多个圆筒可以绕钻井系统的底部钻具组合17设置。一个或多个圆筒可以构造成独立于钻井系统旋转。在这些方面中,一个或多个圆筒可以构造成使得一个或多个圆筒与地层之间的磨擦可以固定,并且一个或多个圆筒与地层之间的磨擦防止一个或多个圆筒相对于旋转钻井系统进行旋转运动。在本发明的一些方面中,当没有钻压并因此没有钻井眼时,一个或多个圆筒可以锁定到底部钻具组合,然后当施加钻压并且开始钻井时,所述一个或多个圆筒被定向并且从底部钻具组合被释放;一个或多个圆筒与内表面之间的磨擦保持一个或多个圆筒的方位。在本发明的一些方面中,一个或多个圆筒可以通过轴承或类似元件与底部钻具组合17连接。In some aspects,
在本发明的一些实施例中,当在非旋转钻井系统中,可以通过定位装置65提供一个或多个圆筒的位置,所述定位装置可以使一个或多个圆筒旋转以改变圆筒在井眼50内的有效面积的位置,从而改变钻井方向和/或钻头20的功能。例如,柔性元件57可以包括圆筒并且可以绕底部钻具组合17旋转,以改变增加柔度区59A和/或减小柔度区59B的位置,从而由于钻铤组件55与内壁53之间的动态相互作用而改变钻井系统的钻井方向。可选地,有源控制器可以用于在钻井过程期间保持钻铤组件55和/或柔性元件57相对于底部钻具组合17的期望的方位/位置。此外,这类装置可以在马达组件中使用以替换弯接头。这带来的益处在于当以旋转方式钻直井时通过管道和完井限制将组件下放到井内。In some embodiments of the present invention, when in a non-rotating drilling system, the position of one or more cylinders may be provided by a
图3A-3C是根据本发明的实施例的、对于对钻井系统进行导向的凸轮控制系统的示意图。图3A显示了根据本发明的实施例的具有凸轮控制系统的定向钻井系统。在图3A中,钻井系统正在将井眼50钻通地球地层。钻井系统包括设置在将要被钻/或正在被钻进的井眼50的端部处的底部钻具组合17。底部钻具组合17包括钻头20,所述钻头接触地球地层并且钻井眼50。3A-3C are schematic diagrams of a cam control system for steering a drilling system, according to an embodiment of the present invention. Figure 3A shows a directional drilling system with a cam control system according to an embodiment of the present invention. In FIG. 3A , the drilling system is drilling a
在本发明的实施例中,量规伸缩片组件73可以通过柔性联接器76与底部钻具组合17连接。量规伸缩片组件73可以包括钻铤、圆筒、钻头20的一个或多个牙轮的非钻切边和/或类似装置。图3B示出了根据本发明的一个方面的量规伸缩片组件73。如图所示,量规伸缩片组件73包括具有多个伸缩片74B的圆筒74A,所述多个伸缩片设置在圆筒74A的表面上。在一些方面中,多个伸缩片74B可以具有柔性特性,而在其它方面中,多个伸缩片74B可以是非柔性的,并且可以包括金属。在本发明的一些实施例中,量规伸缩片组件73本身可以是柔性的,并且在没有柔性联接器76的情况下柔性量规伸缩片组件可以与底部钻具组合17的元件连接。In an embodiment of the invention, the
在本发明的一个实施例中,凸轮79可以与底部钻具组合17连接。凸轮79可以在底部钻具组合17上移动。在本发明的实施例中,凸轮79可以包括偏心/非对称圆筒。凸轮79可以移动以接触量规伸缩片组件73。量规伸缩片组件73可以构造成在钻井眼50的过程期间接触内壁53和/或钻进面54。量规伸缩片组件73可以与底部钻具组合17直接连接、通过联接器76或类似部件连接到底部钻具组合17。联接器76可以包括柔性/弹性型材料,所述柔性/弹性型材料可以允许量规伸缩片组件73相对于底部钻具组合17移动。In one embodiment of the invention, a
凸轮79可以由控制器80致动。控制器80可以包括马达、液压系统和/或类似系统,并且可以用于在钻井过程期间移动凸轮79和/或保持凸轮79在井眼50内对地静止。在一些方面中,凸轮79可以包括具有外表面81和在外表面81内的凹槽82。在这些方面中,在钻井过程期间,控制器80可以用于将凸轮79移动到外表面81可以靠近量规伸缩片组件73或与所述量规伸缩片组件接触的作用位置。在本发明的一些实施例中,可以没有控制器80,并且可以在将底部钻具组合17定位在井眼50内之前,可以例如将凸轮79设置到作用位置。
在本发明的一个实施例中,凸轮79可以用于通过使得量规伸缩片组件73的特性绕量规伸缩片组件73是非均匀的来控制量规伸缩片组件73与内壁53和/或钻进面54之间的动态相互作用。在本发明的又一个实施例中,代替使用凸轮79改变量规伸缩片组件73的特性、位置和/或类似特性,压电致动器、液压致动器和/或其它机械致动器可以用于使得量规伸缩片组件73具有非均匀特性,使得非均匀特性可以用于控制量规伸缩片组件73与内壁53和/或钻进面54之间的动态相互作用。In one embodiment of the invention, the
在作用位置,即,在凸轮79与量规伸缩片组件73接合的位置中,可以通过凸轮79抑制量规伸缩片组件73沿侧向方向(即,朝向底部钻具组合17和/或井眼50的中心轴线)的移动。在作用位置处,凹槽82可以与量规伸缩片组件分开间距83,其中间距83大于在绕系统的其它位置处量规伸缩片组件73与外表面81之间的间距。因此,与量规伸缩片组件73的设置在外表面81上方的其它部分相比,量规伸缩片组件73在凹槽82上方的一部分可以具有更多的自由度/能够侧向移动。因此,在钻井过程期间量规伸缩片组件73与内壁和/或钻进面54之间的相互作用将绕量规伸缩片组件73是不均匀的。In the active position, i.e., in the position where the
在本发明的一些方面中,凸轮79可以用于控制量规伸缩片组件73的偏移,以使量规伸缩片组件73产生偏移从而对钻井系统进行导向,或者减小量规伸缩片组件73中的偏移从而用于钻直井。在用于控制钻头20的操作的实施例中,凸轮79可以用于控制量规伸缩片组件73的偏移,以使量规伸缩片组件73产生偏移从而产生钻头20的某一特性,或减小量规伸缩片组件73中的偏移从而提供钻头20的不同特性。In some aspects of the present invention, the
凸轮79可以包括偏心圆筒。在操作中,凸轮79可以与量规伸缩片组件73接合,并且可以使得量规伸缩片组件73的至少一部分可以相对于钻头20尺寸较大(over gauge)。因此,尺寸较大的量规伸缩片组件73可以与井眼50的内表面以非均匀的方式接触。凸轮79可以具有带有稳定变化的外径以用于在钻井过程期间稳定改变量规伸缩片组件73的至少一部分的尺寸/直径。
在钻井过程期间,底部钻具组合17在井眼50内可以受到动态运动,从而在底部钻具组合17与井眼50的内表面之间产生动态相互作用。在本发明的实施例中,由于与在量规伸缩片组件73相对于凹槽的相对侧的位置处的量规伸缩片组件73的柔度相比,在凹槽82上方的量规伸缩片组件73具有更大的柔度,因此量规伸缩片组件73与内壁53和/或钻进面54之间重复的动态相互作用将使钻井系统沿钻进方向85钻进,其中钻进方向85沿着凹槽82的方向指向。当接合时,凸轮79可以防止量规伸缩片组件73向内(如图所示向上)移动,但是可以允许量规伸缩片组件73在相反的方向上(如图所示向下)移动。因此,钻头20将相对于量规伸缩片组件73向上移动、振动,由此用于通过钻井系统沿向上方向朝向凹槽82钻进,以产生井眼50的向上指向段。During the drilling process, the
在本发明的实施例中,凸轮79可以用于使量规伸缩片组件73的轴线在对地静止的平面内与钻头20的轴线偏移。在一些方面中,当量规伸缩片组件73与钻头20和/或底部钻具组合17一起旋转时,可以通过凸轮79提供量规伸缩片组件73的偏移。In an embodiment of the invention, a
当使用钻井系统钻井眼的弯曲段(例如,具有10度/100英尺井斜的弯曲段)时,井眼的实际侧钻可以较小;例如,在这种弯曲段中,对于向前钻进150mm(6英寸)的井眼来说,井眼的侧钻为0.07mm。在本发明的实施例中,因为用于产生具有每100英尺大约10度井斜的弯曲段的侧钻较小,因此用于在钻井过程期间产生与井眼的内表面的受控制的非均匀动态相互作用的系统可以只须生成井眼的小偏斜。在对本发明的实施例的实验中,使用相对于底部钻具组合和/或钻头的中心轴线具有偏心周向轮廓(包括相对于钻头尺寸较大和/或尺寸较小的偏心轮廓)的钻铤/量规伸缩片组件对动态相互作用的控制产生对井眼的具有这种期望曲率的弯曲段的导向。When a drilling system is used to drill a curved section of a wellbore (e.g., a curved section with a 10-degree/100-ft inclination), the actual sidetracking of the wellbore can be small; For a 150mm (6 inch) wellbore, the sidetracking of the wellbore is 0.07mm. In an embodiment of the present invention, because the sidetracking used to create a curved section with a deviation of about 10 degrees per 100 feet is small, it is used to create a controlled non-uniformity with the inner surface of the wellbore during the drilling process. Dynamically interacting systems may only need to generate small deviations of the borehole. In experiments with embodiments of the present invention, drill collars/collars with eccentric circumferential profiles (including larger and/or smaller sized eccentric profiles relative to the bit size) relative to the central axis of the bottom hole assembly and/or drill bit were used. Control of the dynamic interaction by the gauge blade assembly results in steering the curved section of the wellbore with such a desired curvature.
在本发明的一些方面中,为了最小化动力需求,量规伸缩片组件73可以安装在柔性联接器76上,且量规伸缩片组件73的轴线与钻头20和/或钻切系统的轴线重合,所述钻切系统可以包括钻头20。在本发明的实施例中,可以通过使用凸轮79以限制柔性联接器76的柔度的方向来实现对钻井系统的导向,因此量规伸缩片组件73可以在一个方向上移动,但是在相反方向上却是非常刚性的(对径向运动具有抵抗性)。在一些方面中,为了对钻井系统进行导向以钻直井,所述凸轮79可以被接合以使量规伸缩片组件73系统的移动在所有方向上是刚性的(不会进行径向运动)。In some aspects of the present invention, in order to minimize power requirements, the gauge
在本发明的实施例中,量规伸缩片组件73可以包括单个环形组件,所述环形组件携带量规伸缩片,所述环形组件与钻头20尺寸配合。在一些方面中,尺寸较大或尺寸较小的小范围是可以容许的。在可选的实施例中,量规伸缩片组件73上的伸缩片可以独立地安装在环形组件和/或可以被独立控制。量规伸缩片组件73可以安装在刚性柔性结构上,并且可以相对于钻头20径向移动。凸轮79可以是偏心的,并且可以构造成当对钻井系统进行导向时对地静止,和当钻柱正在起下钻或不期望进行导向时被引入、除去和/或类似动作。通过将凸轮79保持在对地静止的位置,凸轮79的有源部分(例如,凹槽83或类似部分)可以相对于井眼50保持在对地静止位置以用于沿期望的方向(例如,沿对地静止的凹槽83的方向)钻井眼50。在一些方面中,凸轮79可以是对地静止的,并且量规伸缩片或类似部件可以在钻井过程期间自由旋转。In an embodiment of the present invention, the
如先前所述,各种方法可以用于连接量规伸缩片组件73与钻头20和/或底部钻具组合17。在一些方面中,支架可以是径向柔性的,但是还可以能够将扭矩和轴向重量传递给底部钻具组合17。在本发明的一个实施例中,可以是支架或类似部件的柔性联接器76可以包括薄壁圆筒,所述薄壁圆筒具有在圆筒内的槽切口以允许径向灵活度但是保持切向和轴向刚性。其它实施例可以包括用于将重量传递给可以用于传递扭矩的公接头和/或枢转臂的支承面。As previously described, various methods may be used to connect the
使用可以保持凹槽82(或凸轮79的尺寸较大的部分、在尺寸较小的部分,或凸轮79和量规伸缩片组件73或量规伸缩片组件73的径向刚性或径向柔性部分的组合)在井眼50内对地静止的量规伸缩片组件73和/或柔性联接器76的结构,钻井系统可以被控制以定向钻井眼50。在本发明的一些实施例中,处理器75可以用于操纵控制器80以用于在钻井操作期间或在所述钻井操作之间使凸轮79旋转,从而连续控制钻井过程的方向。在一些实施例中,凹槽82可以具有用于改变凹槽82的深度的分级轮廓82A。在这种实施例中,可以改变在量规伸缩片组件73的在凹槽82上方的一部分相对于量规伸缩片组件73的不在凹槽82上方的一部分之间的量规伸缩片组件73的相对柔度。这样,在本发明的一些实施例中,可以以变化的方式控制钻进方向85的锐角(θ)86。Use can hold groove 82 (or
在本发明的一些方面中,多个凹槽可以设置在凸轮79内以用于控制量规伸缩片组件73与内壁53之间的相互作用。多个凹槽可以绕凸轮79的圆周设置在不同的位置处,以提供期望的导向效果。此外,多个凸轮可以与底部钻具组合17上的一个或多个量规伸缩片组件一起使用以在钻井过程期间提供不同的导向效果。In some aspects of the invention, a plurality of grooves may be provided in the
图4A-4C是根据本发明的实施例的、用于控制构造成钻井眼的钻井系统的有源(active)量规伸缩片系统的示意图。在本发明的实施例中,有源量规伸缩片100可以用于控制钻井眼用的钻井系统,所述钻井系统可以包括与底部钻具组合95连接的钻杆90。底部钻具组合95可以包括用于钻井眼的钻头97。有源量规伸缩片100可以包括钻铤、量规伸缩片、底部钻具组合的一部分、管状组件、钻头的一部分和/或可以以非均匀方式与正在被钻进的井眼的内表面相互作用的类似部件。4A-4C are schematic illustrations of an active gauge telescoping system for controlling a drilling system configured to drill a wellbore, according to an embodiment of the present invention. In an embodiment of the present invention, the
有源量规伸缩片100可以包括圆盘、圆筒、多个独立元件-例如,绕底部钻具组合95或钻杆90的圆周设置的一系列伸缩片,所述圆盘、圆筒、多个独立元件可以与钻井系统连接,并且在钻井过程期间与正在被钻进的井眼的内表面相互作用。在一些方面中,为了提供有源量规伸缩片100或类似部件与井眼的内表面之间重复的相互作用,有源量规伸缩片100可以与钻井系统连接以与钻头97的距离小于20英尺。在其它方面中,有源量规伸缩片100可以与钻井系统连接以与钻头97的距离小于10英尺。The active
在本发明的实施例中,有源量规伸缩片100可以在井眼内移动。因此,有源量规伸缩片100可以使用致动器或类似装置在井眼中定位到井眼内的方位,以由于有源量规伸缩片100(当定向在井眼内时)与井眼的内表面的非均匀相互作用而产生对钻井系统期望的控制。使用处理器或类似装置以控制有源量规伸缩片100在井眼内的位置,可以控制/操纵对钻井系统的操作和/或导向,并且这种控制/操纵可以在一些方面中实时发生。In an embodiment of the invention, the
在图4A中,有源量规伸缩片100与底部钻具组合95连接以在靠近钻头97的位置处提供与正在被钻进的井眼的内表面的相互作用。在其中钻杆90、底部钻具组合95和/或类似部件在钻井操作期间旋转的钻井系统中,有源量规伸缩片100可以被构造成在钻井操作期间保持对地静止。致动器、摩擦力和/或类似装置可以用于保持有源量规伸缩片100对地静止。仅以示例的方式,在本发明的一个实施例中,有源量规伸缩片可以在钻头97后面小于10-20英尺的距离处与底部钻具组合95连接。In FIG. 4A , an
图4B示出了图4A中所示的系统的有源量规伸缩片的一个实施例。在图4B中,根据本发明的实施例,有源量规伸缩片100A可以包括非对称元件。通过将非对称有源量规伸缩片与钻柱连接使得量规伸缩片100A的外表面延伸超过钻柱的外表面,非对称有源量规伸缩片的外表面可以与正在被钻进的井眼的内表面相互作用。因为有源量规伸缩片100A具有非对称外表面,因此有源量规伸缩片100A可以由于钻柱在钻井过程期间以非均匀的方式进行动态运动而与井眼的内表面相互作用,所述非均匀方式取决于有源量规伸缩片100A的非对称结构。FIG. 4B illustrates one embodiment of an active gauge retractor of the system shown in FIG. 4A. In FIG. 4B, an active
仅以示例的方式,有源量规伸缩片100A的结构可以是非对称的,并且可以构造成如图4A中所提供的在钻头后面几英寸到10-20英尺的范围内的距离处与底部钻具组合连接。在一些实施例中,有源量规伸缩片100A可以包括均匀圆筒并且可以偏心地布置在底部钻具组合上,以提供由于钻柱的动态运动而与内表面非均匀的相互作用。By way of example only, the
在一些实施例中,有源量规伸缩片100A可以包括对地静止管,并且在一侧可以稍微尺寸较小。在其它实施例中,有源量规伸缩片100A可以在一侧尺寸较小,而在相对侧可以尺寸较大。在一些方面中,有源量规伸缩片100A可以包括多个对地静止管,所述对地静止管在圆周方向上尺寸较小或尺寸较大,并且可以绕钻杆90和/或底部钻具组合95的圆周连接。在本发明的实施例中,有源量规伸缩片100A可以构造成使有源量规伸缩片100A与钻柱连接,使得有源量规伸缩片100A整个设置在钻头的钻切轮廓内;钻切轮廓包括钻头的边对边钻切轮廓。在本发明的其它实施例中,有源量规伸缩片100A的一部分或所有有源量规伸缩片100A可以延伸超过钻头的钻切轮廓。In some embodiments, the active
仅以示例的方式,有源量规伸缩片100A可以与钻柱连接以使得有源量规伸缩片100A的外表面在钻切轮廓内大约1-几十毫米。在其它方面中,并且再次仅以示例的方式,有源量规伸缩片100A可以与钻柱连接以使得有源量规伸缩片100A的外表面的至少一部分在十分之几毫米到几十毫米的范围内延伸超过钻切轮廓。By way of example only, the
在本发明的实施例中,因为有源量规伸缩片100A与底部钻具组合是不同心的,而是不对称的和/或类似结构,因此有源量规伸缩片100A由于钻井系统在井眼内的径向运动可以而在钻井过程期间以非均匀的方式与正在被钻进的井眼的内表面相互作用。在钻井过程期间有源量规伸缩片100A(如图4B中所示)与井眼的内表面之间重复的动态相互作用可以使钻井系统往往沿向下方向103钻进,如图中所示。通过在钻井过程期间保持有源量规伸缩片100A对地静止,有源量规伸缩片100A可以用于对钻井系统进行导向。In an embodiment of the present invention, because the
在本发明的实施例中,通过使有源量规伸缩片100A小于在绕有源量规伸缩片100A的圆周的至少一个周向位置的尺寸,可以在有源量规伸缩片100A与内表面之间产生可以用于对钻头97进行导向的小间隙。因此,在本发明的一些实施例中,可以通过利用底部钻具组合95上的接触面来对钻井系统进行导向,所述接触面可以在被牙轮钻切的轮廓内和/或没有将接触面推到钻切轮廓之外。In an embodiment of the present invention, by making the active gauge
图4C示出了图4A中所示的系统的有源量规伸缩片的又一个实施例。在图4C中,有源量规伸缩片100B可以包括与可延伸元件107连接的钻铤105。钻铤105可以包括圆筒、圆盘、钻铤量规伸缩片、底部钻具组合95的一部分、钻柱的一部分、钻杆的一部分和/或类似部件。Figure 4C illustrates yet another embodiment of the active gauge retractor of the system shown in Figure 4A. In FIG. 4C , the active
在本发明的实施例中,可伸出元件107可以是可以被控制以改变钻铤105的周向轮廓的元件。可伸出元件107可以被控制器110控制/致动。控制器110可以包括马达、液压系统和/或类似装置。在本发明的实施例中,控制器110可以致动可伸出元件107以从底部钻具组合95向外延伸,从而改变由钻井系统在钻井过程期间在井眼内的径向/动态运动而产生的有源量规伸缩片100B与正在被钻进的井眼的内表面之间的动态相互作用。In an embodiment of the invention, the
在本发明的一些实施例中,有源量规伸缩片100B可以构造成使得当延伸时有源量规伸缩片100B整体设置在钻头的钻切轮廓内。在本发明的其它实施例中,一段或整个延伸/部分延伸的有源量规伸缩片100B可以延伸超过钻头的钻切轮廓。仅以示例的方式,有源量规100B可以与钻柱连接以使得延伸位置中的有源量规100B的外表面在钻切轮廓内大约1-10mm。在其它方面中,并且再次仅以示例的方式,有源量规伸缩片100B可以与钻柱连接,以使得有源量规伸缩片100B的外表面的至少一部分当延伸或部分延伸时在十分之几毫米到几十毫米的范围内延伸超过钻切轮廓。In some embodiments of the present invention, the
在本发明的实施例中,可以由可伸出元件107的定位/延伸来控制有源量规伸缩片100B与内表面之间的相互作用,以用于对钻井系统进行导向和由钻井系统对正在被钻进的井眼进行定向钻井。在一些方面中,处理器70可以接收关于期望的钻井方向的数据、关于钻井过程的数据、关于井眼的数据、关于井眼内的条件的数据、地震数据、关于包围井眼的地层的数据和/或类似数据,并且可以操作控制器110以提供可伸出元件107的定位/延伸,从而对钻井系统进行导向。在本发明的实施例中,可伸出元件107可以延伸以调节有源量规伸缩片100与正在被钻进的井眼的内表面之间的动态相互作用。这可能需要可伸出元件107简单的无源延伸,使得有源量规伸缩片100具有绕钻井系统和/或井眼的中心轴线的非均匀形状,而无需必需将推力或力施加在内表面上。In an embodiment of the invention, the interaction between the
然而,在一些方面中,可伸出元件107可以被定位、延伸以将力施加在内表面上。仅以示例的方式,在一些实施例中,可伸出元件107可以将小于1kN的力施加在内表面上,以用于将来自内表面的反作用力施加在钻井系统上并且控制钻井系统与内表面之间的动态相互作用。因为1kN的力可以不需要很大的井下功率消耗/电源,可以减小控制器110和/或类似部件的尺寸和复杂性。操作可伸出元件107以用于施加小于这种力的力是有利的。In some aspects, however, the
在本发明的实施例中,底部钻具组合95、钻头97、有源量规伸缩片100和/或类似部件可以构造成具有不均匀的分布质量。底部钻具组合95、钻头97、有源量规伸缩片100和/或类似部件的质量可以沿圆周方向或以类似方式变化,以使得钻井系统的不稳定运动和/或钻井系统与井眼的内表面之间的相互作用是不均匀的。因此,钻井系统的非均匀重量可以用于对钻井系统进行控制和/或导向。仅以示例的方式,提供钻压的钻铤可以是具有非均匀重量分布的圆筒。在一些方面中,圆柱形钻铤可以旋转以改变非均匀重量/质量分布相对于井眼的轮廓,以提供对钻井系统的期望控制和/或对钻井系统的导向。In embodiments of the present invention,
在本发明的一些实施例中,代替量规伸缩片、钻铤和/或类似部件或与所述量规伸缩片、钻铤和/或类似部件一起,钻柱可以被形成为用于控制与内表面不稳定的相互作用。例如,底部钻具组合95可以被形成为非对称的、具有非对称的柔度和/或类似结构。此外,根据本发明的一些实施例,钻头97可以是非对称的、具有非对称柔度、具有非均匀钻切特性和/或类似特性。此外,钻井系统可以构造成钻井系统在钻井过程期间增加不稳定运动。模拟、实验和/或类似方法可以用于设计具有增加的不稳定运动的钻井系统。钻头97上的牙轮的位置、牙轮操作参数可以用于提供增加的不稳定运动。在本发明的一些实施例中,钻井系统可以装有挠性/柔性联接器、弯接头和/或可以用于增加不稳定相互作用、由不稳定相互作用和/或类似物提高对钻井系统的控制的类似部件(未示出)。In some embodiments of the invention, the drill string may be formed for control and internal surface unstable interactions. For example,
图5提供了根据本发明的实施例的、用于对钻井系统进行导向以定向钻井眼的重复径向运动致动器的示意图。在本发明的实施例中,钻井系统可以包括钻柱140,所述钻柱又可以包括底部钻具组合95,并且钻井系统可以构造成用于将井眼钻通地球地层。Figure 5 provides a schematic illustration of a repetitive radial motion actuator used to steer a drilling system to orient a wellbore in accordance with an embodiment of the present invention. In an embodiment of the invention, a drilling system may include a drill string 140, which in turn may include a
在一些实施例中,径向运动发生器150可以连接到钻柱140。径向运动发生器150可以构造成使底部钻具组合95在井眼中生成径向运动;其中径向运动可以是底部钻具组合95远离井眼的中心轴线朝向井眼的内壁指向的任何运动。径向运动发生器150可以包括机械振动器、声波振动器和/或可以使底部钻具组合95产生重复径向运动(例如,振动)的类似装置。径向运动发生器150可以根据钻柱140和/或底部钻具组合95的物理特性调整以用于增加所产生的径向运动。In some embodiments, radial motion generator 150 may be coupled to drill string 140 . Radial motion generator 150 may be configured to generate radial motion of
在本发明的实施例中,底部钻具组合95与井眼的内表面之间的相互作用可以由径向运动发生器150产生、提高、改变和/或进行类似动作。径向运动发生器150可以用于通过产生、施加、改变底部钻具组合与井眼的内表面之间的相互作用和/或进行类似动作来对钻柱140进行导向。通过对钻柱140进行导向,正在通过钻柱140钻进的井眼可以被定向钻进。处理器155可以用于控制径向运动发生器150以在底部钻具组合95与内表面之间产生相互作用,从而用于沿期望的方向对钻柱140进行导向。In an embodiment of the invention, the interaction between the
在本发明的一些实施例中,径向运动发生器150可以与在钻井系统与正在被钻进的井眼的内表面之间产生不均匀不稳定相互作用的其它方法结合使用,例如本说明书中所述。在这种实施例中,径向运动发生器150可以用于增加或抑制钻柱的不稳定运动,以增加/抑制不稳定相互作用控制器的作用和/或控制不稳定相互作用控制器。这样,不稳定相互作用控制器可以用作不稳定相互作用控制器的控制器/管理器,并且本身可以由处理器控制以用于对钻井系统进行控制/导向和/或增加/抑制不稳定相互作用控制器与井眼的内表面之间的非均匀不稳定运动相互作用。In some embodiments of the present invention, the radial motion generator 150 may be used in conjunction with other methods of creating a non-uniform, unstable interaction between the drilling system and the interior surface of the wellbore being drilled, such as in this specification mentioned. In such an embodiment, the radial motion generator 150 may be used to increase or suppress unstable motion of the drill string to increase/suppress the effect of the unstable interaction controller and/or control the unstable interaction controller. In this way, the unstable interaction controller can be used as a controller/manager for the unstable interaction controller and itself can be controlled by the processor for controlling/steering and/or increasing/suppressing the unstable interaction of the drilling system. The non-uniform unstable motion interaction between the active controller and the inner surface of the borehole.
图6A和图6B显示根据本发明的实施例的、用于选择性地表征井眼的内表面以便对钻具组合进行导向以定向钻井眼的系统。在钻井过程中,钻柱160可以用于将井眼钻通地球地层。钻柱160可以包括底部钻具组合165和联接器170,所述联接器可以连接底部钻具组合165与地面位置或靠近所述地面位置处的设备。底部钻具组合可以包括钻头173,所述钻头可以包括用于刮削/打碎地球地层中的岩石以产生/延伸正在被钻进的井眼的多个齿174。6A and 6B show a system for selectively characterizing the interior surface of a wellbore in order to steer a drill tool assembly to orientate the wellbore, according to an embodiment of the invention. During drilling,
在钻井过程期间,正在被钻进的井眼的内表面的形状可以稍微是规则的,并且可以由钻头173的外径限定。通常,内表面的形状稍微为圆形。地球地层的不同部分的特性可以产生形状不规则的内表面。在图6A中,根据本发明的实施例,成形装置180与内表面相互作用以改变/形成内表面。成形装置180可以包括用于将流体喷射到内表面上的流体喷射系统、构造成用于侧向钻进到内表面内的钻头、用于刮削内表面的刮刀和/或类似装置。During the drilling process, the shape of the inner surface of the borehole being drilled may be somewhat regular and may be defined by the outer diameter of the
在本发明的实施例中,成形装置180可以用于改变内表面的轮廓以用于控制底部钻具组合165与内表面之间的相互作用。在一些方面中,量规伸缩片185可以靠近钻头173与底部钻具组合165连接,并且可以构造成在通过钻井系统钻井眼期间与内表面相互作用。在内表面相对均匀的情况下,量规伸缩片185与内表面之间的由底部钻具组合165在钻井过程期间的径向运动产生的随机相互作用可以平均起来是均匀的,并且可以不影响钻进方向。在本发明的实施例中,成形装置180可以形成内表面的轮廓/形成所述内表面以控制量规伸缩片185与内表面之间的相互作用。在本发明的一些方面中,底部钻具组合165可以不包括量规伸缩片185,并且相互作用可以直接在底部钻具组合165与内表面之间。In an embodiment of the invention, shaping
在本发明的实施例中,通过控制量规伸缩片185与内表面之间的相互作用,可以对钻井系统进行导向。在一些方面中,成形装置180可以在导向过程期间保持对地静止,以用于当钻柱140和/或钻柱140的部件可以在井眼内移动/旋转时在钻井过程期间精确地选择将要通过成形装置180形成的内表面的区域。In an embodiment of the invention, the drilling system can be steered by controlling the interaction between the
成形装置180可以包括安装在钻头的保径齿排与量规伸缩片之间的喷水器。喷水器或类似物可以用于挖掘量规伸缩片前面的地球地层,以在内表面与量规伸缩片之间生成用于根据本发明的实施例对钻井系统进行振动导向的间隙。在其它实施例中,电脉冲系统可以安装在量规伸缩片前面,并且可以用于软化内表面的一部分,以允许量规伸缩片打碎这部分的材料,从而生成用于根据本发明的实施例的对钻井系统进行振动导向的间隙。在其它实施例中,电脉冲系统可以用于直接生成间隙。The forming
在图6B中,钻头173可以构造成钻具有选择性非均匀内表面的井眼。在一些方面中,钻头173的齿190可以构造成被选择性地致动,以提供内表面上的轮廓。在其它方面中,不同的技术可以用于控制钻头173以选择性地形成内表面。可以通过控制选择性地放置在内表面内的沟槽、凹槽或类似部分的内表面的轮廓、形状,可以控制内表面与底部钻具组合165之间的由底部钻具组合165在井眼的钻进期间产生的径向运动而产生的相互作用,并因此还可以控制钻进方向。In Figure 6B,
图7A是根据本发明的实施例的、用于对钻井系统进行导向以定向钻井眼的方法的示意性流程图。在步骤200中,钻井系统可以用于钻通过地球地层的一段井眼。钻井系统可以包括连接到地面设备或类似设备的钻柱。钻柱本身可以包括底部钻具组合,所述底部钻具组合包括用于接触地球地层并且钻通过地球地层的井眼段的钻头。底部钻具组合可以通过钻杆、套管、挠性管或类似管与地面设备连接。钻头可以由顶部驱动装置、转盘、马达、钻井液和/或类似装置供给动力。在钻井过程期间,钻柱可以在井眼中受到随机运动,其中随机运动可以包括使钻柱在钻井过程期间重复接触井眼的内表面的径向振动。钻柱与内表面之间的由径向振动产生的相互作用可以大部分产生于井眼的底部处,在所述底部处,在底部钻具组合与内表面之间可以发生相互作用。7A is a schematic flow diagram of a method for steering a drilling system to orientate a wellbore according to an embodiment of the present invention. In step 200, a drilling system may be used to drill a section of a wellbore through an earth formation. A drilling system may include a drill string connected to surface equipment or similar equipment. The drill string itself may include a bottom hole assembly including a drill bit for contacting and drilling a section of the borehole through the earth's formations. The bottom hole assembly may be connected to surface equipment by drill pipe, casing, coiled tubing or the like. The drill bit may be powered by a top drive, rotary table, motor, drilling fluid, and/or the like. During the drilling process, the drill string may be subjected to random motion in the borehole, where the random motion may include radial vibrations that cause the drill string to repeatedly contact the inner surface of the borehole during the drilling process. Interactions between the drill string and the inner surface resulting from radial vibrations can occur mostly at the bottom of the borehole where interactions between the bottom hole assembly and the inner surface can occur.
在步骤210中,钻柱和内表面之间的振动型相互作用可以被控制。在本发明的一些实施例中,可以在井眼的底部控制动态相互作用。在本发明的一些实施例中,可以在井眼的底部使用一些装置以使得底部钻具组合与内表面之间的振动型相互作用是不均匀的。在这种实施例中,控制钻柱与内表面之间的振动型相互作用的步骤可以包括:在围绕内表面的圆周方向的多个位置处抑制和/或增强底部钻具组合与内表面之间的振动型相互作用。随着井眼被钻进,可以维持或改变围绕内表面的圆周方向的多个位置处对底部钻具组合与内表面之间的振动型相互作用的抑制和/或增强。在一些方面中,多个装置可以用于在底部钻具组合与内表面之间产生非均匀相互作用。In step 210, vibration-type interactions between the drill string and the inner surface may be controlled. In some embodiments of the invention, dynamic interactions may be controlled at the bottom of the wellbore. In some embodiments of the invention, devices may be used at the bottom of the wellbore so that the vibration-type interaction between the bottom hole assembly and the inner surface is non-uniform. In such an embodiment, the step of controlling the vibration-type interaction between the drill string and the inner surface may include dampening and/or enhancing the relationship between the bottom hole assembly and the inner surface at a plurality of locations about the circumference of the inner surface. vibrational interactions between them. As the wellbore is drilled, the suppression and/or enhancement of vibration-type interactions between the bottom hole assembly and the inner surface may be maintained or varied at various locations about the circumference of the inner surface. In some aspects, multiple devices may be used to create a non-uniform interaction between the bottom hole assembly and the inner surface.
在本发明的实施例中,可以在步骤212中使用相互作用元件以用于控制动态相互作用。相互作用元件可以是诸如钻铤、量规伸缩片组件、圆筒或可以与钻柱连接的其它元件的独立元件,并且在一些方面中,底部钻具组合可以是钻柱的一部分,例如,底部钻具组合的一部分或类似物。相互作用元件可以构造成提供相互作用元件与正在被钻进的井眼的内表面之间均匀的相互作用。In an embodiment of the invention, interaction elements may be used in step 212 for controlling dynamic interactions. The interacting elements may be separate elements such as drill collars, gauge slide assemblies, cylinders, or other elements that may be connected to the drill string, and in some aspects the bottom hole assembly may be part of the drill string, e.g., the bottom hole assembly part of a combination or the like. The interaction elements may be configured to provide uniform interaction between the interaction elements and the interior surface of the wellbore being drilled.
通常,正在被钻进的井眼是地球地层内的具有大致圆柱形内表面的井眼。因此,在一些方面中,相互作用元件可以包括具有相对于钻柱和/或井眼的中心为非均匀轮廓的元件。仅以示例的方式,相互作用元件可以包括与底部钻具组合连接的偏心圆筒;其中,当与底部钻具组合连接时,偏心圆筒的中心轴线不与底部钻具组合的中心轴线重合。在另一个示例中,相互作用元件可以包括一系列伸缩片,所述伸缩片绕底部钻具组合设置,并且构造成在钻井过程期间接触井眼的圆柱形内表面,其中,伸缩片中的至少一个构造成与其它伸缩片相比从底部钻具组合向外延伸更少或更多的长度。Typically, the wellbore being drilled is a wellbore within the formations of the earth having a generally cylindrical interior surface. Thus, in some aspects, the interaction elements may include elements having a non-uniform profile relative to the center of the drill string and/or borehole. By way of example only, the interaction element may comprise an eccentric cylinder coupled to the BHA; wherein the central axis of the eccentric cylinder does not coincide with the central axis of the BHA when coupled to the BHA. In another example, the interaction element may comprise a series of telescoping sheets disposed about the bottom hole assembly and configured to contact the cylindrical inner surface of the wellbore during the drilling process, wherein at least one of the telescoping sheets One is configured to extend a lesser or greater length outward from the bottom hole assembly than the other telescoping tabs.
在其它实施例中,相互作用元件可以包括具有非均匀柔度的元件。仅以示例的方式,柔性元件可以包括具有一定柔度的元件,且所述元件的一部分相对于该元件剩余部分的一定柔度具有增加或减小柔度,并且构造成使得增加柔度区或减小柔度区的至少一部分和具有一定柔度的元件的至少一部分每一个都可以由于底部钻具组合的动态运动而在钻井过程期间接触圆柱形内表面。在本发明的一些实施例中,致动器可以用于改变相互作用元件的特征,以从与井眼的内表面以均匀方式相互作用的元件到以非均匀方式与内表面相互作用的元件来致动相互作用元件。In other embodiments, the interaction elements may include elements with non-uniform compliance. By way of example only, a flexible element may comprise an element having a certain degree of compliance, with a portion of said element having increased or decreased compliance relative to a certain degree of compliance of the remainder of the element, and configured such that a region of increased compliance or At least a portion of the zone of reduced compliance and at least a portion of the compliant element may each contact the cylindrical inner surface during the drilling process due to dynamic motion of the bottom hole assembly. In some embodiments of the invention, actuators may be used to change the characteristics of the interacting elements from elements that interact with the inner surface of the wellbore in a uniform manner to elements that interact with the inner surface in a non-uniform manner. The interaction element is actuated.
在本发明的一些实施例中,相互作用元件,无论是具有非均匀剖面、非均匀柔度的元件和/或元件都可以不必构造成将压力施加在内表面或推靠在内表面上,而事实上所述相互作用元件可以是无源的并且由于在钻井过程期间钻柱的动态运动而与内表面相互作用。例如,相互作用元件可以包括从钻柱向外延伸的可伸长元件。在一些方面中,可以通过可伸长元件将力施加到内表面上,但是出于简单和经济原因,力事实上可以仅仅是小的,即,力小于大约1kN。In some embodiments of the invention, the interacting elements, whether of non-uniform cross-section, non-uniform compliance, and/or elements, may not necessarily be configured to exert pressure on or push against the inner surface, but rather In fact said interaction elements may be passive and interact with the inner surface due to the dynamic movement of the drill string during the drilling process. For example, the interaction element may comprise an extendable element extending outwardly from the drill string. In some aspects, a force may be applied to the inner surface by the extendable element, but for reasons of simplicity and economy, the force may in fact be only small, ie, a force of less than about 1 kN.
在本发明的一些实施例中,相互作用元件可以构造成没有延伸超过钻头的牙轮的轮廓和/或被整体设置在所述轮廓内。在其它实施例中,相互作用元件可以至少具有延伸超过钻头的轮廓的一部分。在本发明的一些方面中,相互作用元件可以在钻头的轮廓之外1毫米到几十毫米的范围内延伸,且这种延伸范围用于对钻井系统进行导向/控制。In some embodiments of the invention, the interaction element may be configured without extending beyond the contour of the cone of the drill bit and/or be disposed integrally within said contour. In other embodiments, the interaction element may have at least a portion of the profile extending beyond the drill bit. In some aspects of the invention, the interaction elements may extend from 1 millimeter to tens of millimeters outside the contour of the drill bit, and this extension is used to steer/control the drilling system.
在本发明的其中相互作用元件包括一个或多个可伸出元件的一些方面中,一个或多个可伸出元件可以延伸以延伸不超过牙轮和/或钻头的轮廓和/或整体设置在所述牙轮和/或钻头的轮廓内。在其它方面中,一个或多个可伸出元件可以延伸使得一个或多个可伸出元件的至少一部分延伸超过牙轮和/或钻头的轮廓。在本发明的一些实施例中,可以通过使一个或多个可伸出元件在1-10mm范围内延伸超过牙轮和/或钻头的轮廓来提供对钻井系统的导向。在这种实施例中,与使用反作用力、用力推靠在井壁上用于进行导向的定向钻井系统不同,可以仅使用/需要少量的动力和/或最小的井下设备以致动和/或保持可伸出元件在超过牙轮和/或钻头的轮廓的期望的延伸范围内。In some aspects of the present invention wherein the interaction element comprises one or more extendable elements, the one or more extendable elements may be extended to extend no further than the contour of the roller cone and/or bit and/or are integrally disposed on within the profile of the cone and/or bit. In other aspects, the one or more extendable elements may extend such that at least a portion of the one or more extendable elements extend beyond the contour of the roller cone and/or bit. In some embodiments of the invention, steering of the drilling system may be provided by having one or more extendable elements extend beyond the contour of the roller cone and/or bit in the range of 1-10 mm. In such an embodiment, unlike directional drilling systems that use reactive forces, pushing hard against the borehole wall for steering, only small amounts of power and/or minimal downhole equipment may be used/required to actuate and/or The extendable element is maintained within a desired extension beyond the contour of the roller cone and/or bit.
在使用多个装置的一些方面中,装置的组合可以构造成提供钻柱与沿圆周方向绕钻柱的内表面之间的非均匀的相互作用,并且在这种结构中,可以避免多个装置与钻柱以一个装置对动态相互作用的影响取消另一个装置的影响的方式连接。可以用于控制动态相互作用的装置可以连同其它装置一起包括:量规伸缩片、钻铤、稳定器、和/或以不同心的方式布置在底部钻具组合上的其它装置;量规伸缩片、钻铤、稳定器和/或可以构造成沿圆周方向具有非均匀压缩系数的类似装置;用于改变内表面的轮廓/形状/外形的装置;构造成钻出具有不规则内表面的井眼的钻头;和/或类似装置。In some aspects where multiple devices are used, the combination of devices can be configured to provide non-uniform interaction between the drill string and the inner surface circumferentially around the drill string, and in such configurations, the multiple devices can be avoided Connected to the drill string in such a way that the effect of one device on the dynamic interaction cancels the effect of the other device. Devices that may be used to control the dynamic interaction may include, among other devices: gauge tabs, drill collars, stabilizers, and/or other devices arranged in a non-concentric manner on the BHA; gauge tabs, drill Collars, stabilizers and/or similar devices that may be configured to have a non-uniform compressibility along the circumference; devices for changing the profile/shape/profile of the inner surface; bits configured to drill boreholes with irregular inner surfaces ; and/or similar devices.
在步骤220中,可以通过控制钻柱与井眼的内表面之间的振动型相互作用来对钻井系统进行导向。在本发明的实施例中,用于控制钻柱与井眼的内表面之间的动态相互作用的装置可以选择性地定位在井眼内,以使得动态相互作用对钻井系统进行导向。在其中钻柱的至少一部分在钻井过程期间旋转的钻井系统中,装置在井眼内可以保持对地静止以用于进行导向。在本发明的一些实施例中,在钻一段井眼之前,可以将用于控制钻柱与井眼的内表面之间的动态相互作用的装置选择性地定位在钻柱上,以提供对钻井系统期望的导向。在一些方面中,在钻另一段井眼之前,可以重新定位用于控制钻柱与井眼的内表面之间的动态相互作用的装置。在其中例如凸轮或类似装置的致动器用于改变用于控制钻柱与井眼的内表面之间的动态相互作用的装置的特性的实施例中,在钻井过程期间可以选择性地定位和/或重新定位凸轮,而不是选择性地定位和/或重新定位用于控制动态相互作用的装置。In step 220, the drilling system may be steered by controlling the vibration-type interaction between the drill string and the inner surface of the borehole. In embodiments of the invention, means for controlling the dynamic interaction between the drill string and the inner surface of the wellbore may be selectively positioned within the wellbore such that the dynamic interaction steers the drilling system. In drilling systems in which at least a portion of the drill string is rotated during the drilling process, the device may remain geostationary within the borehole for steering. In some embodiments of the invention, prior to drilling a section of the wellbore, means for controlling the dynamic interaction between the drill string and the interior surface of the wellbore may be selectively positioned on the drill string to provide control over the drilling Orientation to system expectations. In some aspects, the means for controlling the dynamic interaction between the drill string and the inner surface of the wellbore may be repositioned prior to drilling another section of the wellbore. In embodiments where an actuator such as a cam or similar device is used to vary the characteristics of the device for controlling the dynamic interaction between the drill string and the inner surface of the wellbore, it may be selectively positioned and/or Or repositioning the cam, rather than selectively positioning and/or repositioning the means for controlling the dynamic interaction.
在本发明的一些实施例中,控制用于控制钻柱与井眼的内表面之间的动态相互作用的装置在井眼内的位置、在井眼内的方位、在钻柱上的位置和/或方位的装置,和/或用于致动控制钻柱与井眼的内表面之间的动态相互作用的装置的装置(例如,凸轮或类似装置),可以用于移动在钻井过程期间控制钻柱与井眼的内表面之间的动态相互作用的装置。In some embodiments of the invention, controlling the position within the wellbore, the orientation within the wellbore, the position on the drillstring, and A device of/or azimuth, and/or a device (e.g., a cam or similar device) for actuating a device controlling the dynamic interaction between the drill string and the inner surface of the wellbore may be used to move the control during the drilling process. A device for the dynamic interaction between the drill string and the inner surface of the borehole.
在步骤230中,对钻井系统进行导向以沿期望的方向钻井眼。在本发明的实施例中,可以确定用于将被钻的一段井眼期望的方向,并且可以将用于控制动态相互作用的装置定位在井眼内和/或钻柱上以对钻井系统进行导向,从而沿期望的方向钻一段井眼。在一些方面中,处理器可以控制用于控制井眼内和/或钻柱上的动态相互作用的装置的位置、方位和/或类似参数,使得可沿期望的方向钻将被钻的一段井眼。在一些实施例中,可以由处理器处理来自设置在钻柱上的传感器数据、来自设置在井眼内的传感器的数据、地震数据和/或类似数据,以为期望的钻进方向确定用于控制动态相互作用的装置的位置/方位。In step 230, the drilling system is steered to drill the wellbore in a desired direction. In an embodiment of the invention, a desired orientation for a section of the wellbore to be drilled may be determined, and means for controlling dynamic interactions may be positioned within the wellbore and/or on the drill string to control the drilling system. Steering to drill a section of the wellbore in the desired direction. In some aspects, the processor may control the position, orientation, and/or similar parameters of a device for controlling dynamic interactions within the wellbore and/or on the drill string such that the section of the well to be drilled may be drilled in a desired direction Eye. In some embodiments, data from sensors disposed on the drill string, data from sensors disposed within the wellbore, seismic data, and/or the like may be processed by a processor to determine a desired drilling direction for control. Position/orientation of dynamically interacting devices.
图7B是根据本发明的实施例的、用于控制用于在地球地层中钻井眼的钻井系统的方法的示意性流程图。在步骤240中,包括构造成在地球地层内钻井眼的钻柱和钻头的钻井系统可以用于钻一段井眼。在步骤250中,可以感测关于钻柱和/或钻头在钻井过程期间的操作的数据。所述数据可以包括诸如钻压、钻井系统的转速、大钩载荷、扭矩和/或类似参数的参数。另外,可以从井眼、地面设备、包围井眼的地层和/或类似地方采集数据,并且所述数据可以是关于在钻井过程中正在实施或将要实施的干预/钻井过程的输入。例如,可以确定井眼和地层内的压力和/或温度,可以由井眼和/或地层获得地震数据,可以识别钻井液性能和/或类似性能。7B is a schematic flow diagram of a method for controlling a drilling system for drilling a wellbore in an earth formation, according to an embodiment of the present invention. In step 240, a drilling system including a drill string and a drill bit configured to drill a wellbore within an earth formation may be used to drill a section of the wellbore. In step 250, data regarding the operation of the drill string and/or drill bit during the drilling process may be sensed. The data may include parameters such as weight on bit, rotational speed of the drilling system, hook load, torque, and/or the like. Additionally, data may be collected from the wellbore, surface equipment, formations surrounding the wellbore, and/or the like, and may be input regarding interventions/drilling processes being or to be performed while drilling. For example, pressure and/or temperature within the borehole and formation may be determined, seismic data may be obtained from the borehole and/or formation, drilling fluid properties and/or the like may be identified.
在步骤260中,可以处理关于钻井系统的感测数据和/或关于地球地层和/或正在被钻进的井眼内的条件的数据和/或类似数据。事实上处理可以是决定性的/随机的,并且所述处理可以识别钻井系统的当前和/或将来潜在的状态。例如,可以识别条件和/或诸如钻头的无效性能、钻头的停止和/或类似性能的条件和/或潜在的钻井系统条件。In step 260, sensed data relating to the drilling system and/or data relating to earth formations and/or conditions within the wellbore being drilled and/or the like may be processed. The processing can be deterministic/stochastic in fact, and the processing can identify current and/or potential future states of the drilling system. For example, conditions and/or conditions such as ineffective performance of the drill bit, stalling of the drill bit, and/or the like and/or potential drilling system conditions may be identified.
在本发明的一些实施例中,接收感测数据的处理器可以用于操纵对钻井系统与井眼的内表面之间的不稳定运动相互作用的控制。例如,磁力仪、比重计、加速仪、回转仪系统和/或类似装置可以确定钻井系统的振幅、频率、速度、加速度和/或类似参数,以提供对钻井系统的不稳定运动的了解。可以将来自传感器的数据发送到处理器,以便进行处理,并且用于钻井系统的不稳定运动的值可以被显示、在控制钻柱的不稳定相互作用的控制系统中使用、与来自地球地层、井眼和/或类似地方的其它数据一起被处理,以操纵用于控制钻柱和/或类似装置的不稳定相互作用的控制系统。仅以示例的方式,可以通过遥测系统、光纤、有线钻杆、钢丝挠性管、无线通信和/或类似方式来实现感测数据到处理器的通信。In some embodiments of the invention, a processor receiving sensed data may be used to manipulate control of unsteady motion interactions between the drilling system and the inner surface of the borehole. For example, magnetometers, hydrometers, accelerometers, gyro systems, and/or similar devices may determine amplitude, frequency, velocity, acceleration, and/or similar parameters of the drilling system to provide insight into the erratic motion of the drilling system. Data from the sensors can be sent to a processor for processing and values for unsteady motion of the drilling system can be displayed, used in a control system controlling unsteady interactions of the drill string, with data from earth formations, Other data from the borehole and/or the like are processed together to manipulate a control system for controlling unstable interactions of the drill string and/or the like. By way of example only, communication of sensed data to the processor may be accomplished through telemetry systems, fiber optics, wired drill pipe, wire coil tubing, wireless communications, and/or the like.
在步骤270中,可以控制钻柱与正在被钻进的井眼的内表面之间的振动型相互作用。可以通过改变/操纵/更改底部钻具组合的一部分、钻柱的一部分、钻头的牙轮、井眼的内表面的轮廓或类似物的接触特征来提供对钻柱与井眼的内表面之间的相互作用的控制。接触特征可以是与底部钻具组合的一部分的外表面、钻柱的一部分、钻头的牙轮和/或在钻井过程期间可以接触井眼的内表面的类似物相关联的特征。接触特征可以包括外表面的轮廓/形状(即,可以包括绕钻井系统、底部钻具组合、钻头和/或类似部件的中心轴线的外表面的偏心形状,可以包括外表面的尺寸较大和/或尺寸较小的部分),可以包括绕外表面的非均匀柔度和/或类似物。In step 270, vibration-type interactions between the drill string and the inner surface of the borehole being drilled may be controlled. The contact characteristics between the drill string and the inner surface of the borehole may be provided by changing/manipulating/altering the contact characteristics of a portion of the bottom hole assembly, a portion of the drill string, the cone of the drill bit, the profile of the inner surface of the borehole, or the like. control of the interaction. A contact feature may be a feature associated with an exterior surface of a portion of a bottom hole assembly, a portion of a drill string, a cone of a drill bit, and/or the like that may contact an interior surface of a wellbore during the drilling process. The contact feature may include the contour/shape of the outer surface (i.e., may include an eccentric shape of the outer surface about a central axis of the drilling system, bottom hole assembly, drill bit, and/or the like, may include a larger dimension of the outer surface and/or smaller sized portions), may include non-uniform compliance around the outer surface and/or the like.
在步骤280中,钻柱与井眼的内表面之间的被控制的振动型相互作用可以用于控制钻井系统的操作/功能。例如,当可以检测或预测钻井系统的钻头的旋转嗡嗡声时,可以控制钻柱与井眼的内表面之间的振动型相互作用以消除、减小和/或防止旋转嗡嗡声。在本发明的实施例中,可以由处理的数据确定钻井系统的功能,并且可以通过控制钻柱与井眼的内表面之间的相互作用来改变所述钻井系统的功能。这样,本发明的实施例可以提供用于控制钻井系统的操作的新系统和方法。In step 280, the controlled vibration-type interaction between the drill string and the inner surface of the borehole may be used to control the operation/function of the drilling system. For example, when the rotational hum of a drill bit of a drilling system can be detected or predicted, the vibration-type interaction between the drill string and the inner surface of the borehole can be controlled to eliminate, reduce, and/or prevent the rotational hum. In an embodiment of the invention, the function of the drilling system may be determined from the processed data and may be altered by controlling the interaction between the drill string and the inner surface of the borehole. As such, embodiments of the present invention may provide new systems and methods for controlling the operation of drilling systems.
为了清楚和理解,已经详细说明了本发明。然而,要认识的是在所附权利要求的保护范围内可以实施一些改变和修改。此外,在上述说明中,出于说明的目的,以具体的顺序说明了各种方法和/或过程。应该认识的在可选的实施例中,可以以不同于所述顺序的顺序执行所述方法和/或过程。The invention has been described in detail for purposes of clarity and understanding. However, it is realized that changes and modifications may be practiced within the scope of protection of the appended claims. In addition, in the above description, various methods and/or processes are described in a specific order for the purpose of illustration. It should be appreciated that in alternative embodiments, the methods and/or processes may be performed in an order different than that described.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/839,381US8757294B2 (en) | 2007-08-15 | 2007-08-15 | System and method for controlling a drilling system for drilling a borehole in an earth formation |
| US11/839,381 | 2007-08-15 | ||
| US12/116,444 | 2008-05-07 | ||
| US12/116,380 | 2008-05-07 | ||
| US12/116,444US8720604B2 (en) | 2007-08-15 | 2008-05-07 | Method and system for steering a directional drilling system |
| US12/116,390US8763726B2 (en) | 2007-08-15 | 2008-05-07 | Drill bit gauge pad control |
| US12/116,380US8066085B2 (en) | 2007-08-15 | 2008-05-07 | Stochastic bit noise control |
| US12/116,408US8534380B2 (en) | 2007-08-15 | 2008-05-07 | System and method for directional drilling a borehole with a rotary drilling system |
| US12/116,390 | 2008-05-07 | ||
| US12/116,408 | 2008-05-07 | ||
| PCT/GB2008/002706WO2009022115A1 (en) | 2007-08-15 | 2008-08-12 | System and method for controlling a drilling system for drilling a borehole in an earth formation |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410032693.2ADivisionCN103774990A (en) | 2007-08-15 | 2008-08-12 | Method and system for controlling well drilling system for drilling well in earth stratum |
| Publication Number | Publication Date |
|---|---|
| CN101827995Atrue CN101827995A (en) | 2010-09-08 |
| CN101827995B CN101827995B (en) | 2014-02-26 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200880111782.9AExpired - Fee RelatedCN101827995B (en) | 2007-08-15 | 2008-08-12 | Systems and methods for controlling a drilling system for drilling a wellbore in an earth formation |
| CN200880111732APendingCN101827994A (en) | 2007-08-15 | 2008-08-12 | System and method for directionally drilling a borehole with a rotary drilling system |
| CN201410032693.2APendingCN103774990A (en) | 2007-08-15 | 2008-08-12 | Method and system for controlling well drilling system for drilling well in earth stratum |
| CN200880103169APendingCN101778992A (en) | 2007-08-15 | 2008-08-12 | Drill bit gauge pad control |
| CN200880103153.1AExpired - Fee RelatedCN103299020B (en) | 2007-08-15 | 2008-08-12 | For the system and method led to directional drilling system |
| CN200880103209.3AExpired - Fee RelatedCN101784746B (en) | 2007-08-15 | 2008-08-12 | Stochastic bit noise control |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200880111732APendingCN101827994A (en) | 2007-08-15 | 2008-08-12 | System and method for directionally drilling a borehole with a rotary drilling system |
| CN201410032693.2APendingCN103774990A (en) | 2007-08-15 | 2008-08-12 | Method and system for controlling well drilling system for drilling well in earth stratum |
| CN200880103169APendingCN101778992A (en) | 2007-08-15 | 2008-08-12 | Drill bit gauge pad control |
| CN200880103153.1AExpired - Fee RelatedCN103299020B (en) | 2007-08-15 | 2008-08-12 | For the system and method led to directional drilling system |
| CN200880103209.3AExpired - Fee RelatedCN101784746B (en) | 2007-08-15 | 2008-08-12 | Stochastic bit noise control |
| Country | Link |
|---|---|
| EP (4) | EP2188483A1 (en) |
| CN (6) | CN101827995B (en) |
| AU (1) | AU2008288343A1 (en) |
| CA (4) | CA2694858C (en) |
| EA (5) | EA018610B1 (en) |
| MX (4) | MX2010001817A (en) |
| WO (4) | WO2009022115A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107816317A (en)* | 2017-11-22 | 2018-03-20 | 中国矿业大学 | The fast drilling device and method that a kind of high electric field pulse mutually cooperates with power auger |
| CN111379522A (en)* | 2018-12-31 | 2020-07-07 | 中国石油化工股份有限公司 | Steerable downhole drilling tool |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8783382B2 (en)* | 2009-01-15 | 2014-07-22 | Schlumberger Technology Corporation | Directional drilling control devices and methods |
| CA2853973A1 (en) | 2011-11-04 | 2013-05-10 | Schlumberger Canada Limited | Method and system for an automatic milling operation |
| CN102536192B (en)* | 2012-03-15 | 2015-03-25 | 中国海洋石油总公司 | Dynamic control system and control method for downhole directional power drilling tool face |
| CN103675925B (en)* | 2013-12-18 | 2016-11-16 | 贝兹维仪器(苏州)有限公司 | One utilizes high frequency magnetic force instrument LWD resistivity log device and method |
| GB2537259B (en)* | 2013-12-20 | 2020-06-24 | Halliburton Energy Services Inc | Closed-loop drilling parameter control |
| CN106574484B (en)* | 2014-09-18 | 2019-04-19 | 哈里伯顿能源服务公司 | Real-time variable cut depth control for downhole drilling tools |
| CN104499940B (en)* | 2014-11-02 | 2017-04-05 | 中国石油集团钻井工程技术研究院 | A kind of full rotation directional type steering tool and guidance method |
| CN104632184A (en)* | 2014-12-26 | 2015-05-20 | 四川宏华电气有限责任公司 | Drilling machine angle accurate positioning detection and control system |
| CN105332692B (en)* | 2015-10-28 | 2018-10-23 | 西南石油大学 | The novel compositions turbodrill of nearly drill bit insulation measurement |
| RU2612403C1 (en)* | 2016-04-04 | 2017-03-09 | Общество с ограниченной ответственностью Научно-производственное предприятие "БУРИНТЕХ" (ООО НПП "БУРИНТЕХ") | Device for hydromechanical control of directional rotary drilling |
| US10746009B2 (en)* | 2016-06-02 | 2020-08-18 | Baker Hughes, A Ge Company, Llc | Depth-based borehole trajectory control |
| MY192257A (en) | 2016-11-04 | 2022-08-12 | Halliburton Energy Services Inc | Flexible collar for a rotary steerable system |
| RU174947U1 (en)* | 2017-04-19 | 2017-11-13 | Публичное акционерное общество специального машиностроения и металлургии "Мотовилихинские заводы" | Device for directional wellbore drilling |
| US11066923B2 (en)* | 2017-06-26 | 2021-07-20 | Hrl Laboratories, Llc | System and method for generating output of a downhole inertial measurement unit |
| US10738587B2 (en)* | 2018-05-04 | 2020-08-11 | Saudi Arabian Oil Company | Monitoring operating conditions of a rotary steerable system |
| RU2698759C1 (en)* | 2018-06-04 | 2019-08-29 | Общество с ограниченной ответственностью Научно-производственное предприятие "БУРИНТЕХ" (ООО НПП "БУРИНТЕХ") | Drilling string arrangement for construction of horizontal sections of large length |
| US11434696B2 (en)* | 2018-07-02 | 2022-09-06 | Schlumberger Technology Corporation | Directional drilling systems and methods |
| US11939867B2 (en) | 2019-02-15 | 2024-03-26 | Schlumberger Technology Corporation | Downhole directional drilling tool |
| GB2599554B (en)* | 2019-07-30 | 2023-01-18 | Landmark Graphics Corp | Predictive torque and drag estimation for real-time drilling |
| CN110905409B (en)* | 2019-11-28 | 2021-06-15 | 西安石大斯泰瑞油田技术有限公司 | Method for realizing high build-up rate by high drilling speed rotary steering system |
| RU2734915C2 (en)* | 2020-01-17 | 2020-10-26 | Общество с ограниченной ответственностью "Интегра-Технологии" | Method of directed drilling with correction of well trajectory |
| CN111364976B (en)* | 2020-04-02 | 2023-09-19 | 中国铁建重工集团股份有限公司 | Inclined plane drill bit direction recognition device and system of horizontal core drilling machine |
| RU2765025C1 (en)* | 2021-02-01 | 2022-01-24 | Павел Михайлович Ведель | Method for drilling inclined-directional well and device for its implementation |
| CN113216841B (en)* | 2021-05-27 | 2022-06-24 | 河北锐石钻头制造有限公司 | PDC drill bit capable of automatically adjusting |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4319649A (en)* | 1973-06-18 | 1982-03-16 | Jeter John D | Stabilizer |
| WO2006085105A1 (en)* | 2005-02-11 | 2006-08-17 | Meciria Limited | Steerable rotary directional drilling tool for drilling boreholes |
| CN1966935A (en)* | 2005-11-04 | 2007-05-23 | 普拉德研究及开发股份有限公司 | Method and apparatus for locating well casings from an adjacent wellbore |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4739843A (en)* | 1986-05-12 | 1988-04-26 | Sidewinder Tool Joint Venture | Apparatus for lateral drilling in oil and gas wells |
| US5265682A (en)* | 1991-06-25 | 1993-11-30 | Camco Drilling Group Limited | Steerable rotary drilling systems |
| US5553678A (en)* | 1991-08-30 | 1996-09-10 | Camco International Inc. | Modulated bias units for steerable rotary drilling systems |
| US5213168A (en)* | 1991-11-01 | 1993-05-25 | Amoco Corporation | Apparatus for drilling a curved subterranean borehole |
| CN2128666Y (en)* | 1992-07-18 | 1993-03-24 | 石油大学(华东) | Radial level drilling whipstock |
| US5332048A (en)* | 1992-10-23 | 1994-07-26 | Halliburton Company | Method and apparatus for automatic closed loop drilling system |
| GB9411228D0 (en)* | 1994-06-04 | 1994-07-27 | Camco Drilling Group Ltd | A modulated bias unit for rotary drilling |
| US5485889A (en)* | 1994-07-25 | 1996-01-23 | Sidekick Tools Inc. | Steering drill bit while drilling a bore hole |
| CN1145444A (en)* | 1995-09-13 | 1997-03-19 | 霍华山 | Method and system of trajectory prediction and control using PDC bits |
| GB9612524D0 (en)* | 1996-06-14 | 1996-08-14 | Anderson Charles A | Drilling apparatus |
| US6213226B1 (en)* | 1997-12-04 | 2001-04-10 | Halliburton Energy Services, Inc. | Directional drilling assembly and method |
| US6340063B1 (en)* | 1998-01-21 | 2002-01-22 | Halliburton Energy Services, Inc. | Steerable rotary directional drilling method |
| US6092610A (en)* | 1998-02-05 | 2000-07-25 | Schlumberger Technology Corporation | Actively controlled rotary steerable system and method for drilling wells |
| BE1012545A3 (en)* | 1999-03-09 | 2000-12-05 | Security Dbs | Widener borehole. |
| US6308787B1 (en) | 1999-09-24 | 2001-10-30 | Vermeer Manufacturing Company | Real-time control system and method for controlling an underground boring machine |
| CA2359073A1 (en)* | 1999-11-10 | 2001-05-17 | Schlumberger Holdings Limited | Control method for use with a steerable drilling system |
| US6438495B1 (en)* | 2000-05-26 | 2002-08-20 | Schlumberger Technology Corporation | Method for predicting the directional tendency of a drilling assembly in real-time |
| CA2345560C (en)* | 2000-11-03 | 2010-04-06 | Canadian Downhole Drill Systems Inc. | Rotary steerable drilling tool |
| AU2002213719A1 (en)* | 2000-11-03 | 2002-05-15 | Canadian Downhole Drill Systems Inc. | Rotary steerable drilling tool and method for directional drilling |
| DE60104082T2 (en)* | 2001-01-27 | 2005-07-28 | Camco International (Uk) Ltd., Stonehouse | Cutting structure for drill bits |
| US7188685B2 (en)* | 2001-12-19 | 2007-03-13 | Schlumberge Technology Corporation | Hybrid rotary steerable system |
| US6732817B2 (en)* | 2002-02-19 | 2004-05-11 | Smith International, Inc. | Expandable underreamer/stabilizer |
| AU2003251130A1 (en)* | 2003-06-23 | 2005-01-04 | Schlumberger Holdings Limited | Inner and outer motor with eccentric stabilizer |
| US7287604B2 (en)* | 2003-09-15 | 2007-10-30 | Baker Hughes Incorporated | Steerable bit assembly and methods |
| US7306056B2 (en)* | 2003-11-05 | 2007-12-11 | Baker Hughes Incorporated | Directional cased hole side track method applying rotary closed loop system and casing mill |
| GB2408526B (en)* | 2003-11-26 | 2007-10-17 | Schlumberger Holdings | Steerable drilling system |
| BRPI0507122B1 (en)* | 2004-01-28 | 2016-12-27 | Halliburton Energy Services Inc | rotary vector gear |
| GB2425790B (en)* | 2005-05-05 | 2010-09-01 | Schlumberger Holdings | Steerable drilling system |
| US8186458B2 (en)* | 2005-07-06 | 2012-05-29 | Smith International, Inc. | Expandable window milling bit and methods of milling a window in casing |
| GB0515394D0 (en)* | 2005-07-27 | 2005-08-31 | Schlumberger Holdings | Steerable drilling system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4319649A (en)* | 1973-06-18 | 1982-03-16 | Jeter John D | Stabilizer |
| WO2006085105A1 (en)* | 2005-02-11 | 2006-08-17 | Meciria Limited | Steerable rotary directional drilling tool for drilling boreholes |
| CN1966935A (en)* | 2005-11-04 | 2007-05-23 | 普拉德研究及开发股份有限公司 | Method and apparatus for locating well casings from an adjacent wellbore |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107816317A (en)* | 2017-11-22 | 2018-03-20 | 中国矿业大学 | The fast drilling device and method that a kind of high electric field pulse mutually cooperates with power auger |
| CN107816317B (en)* | 2017-11-22 | 2019-02-22 | 中国矿业大学 | A high-voltage electric pulse and mechanical drill synergistic rapid drilling device and method |
| CN111379522A (en)* | 2018-12-31 | 2020-07-07 | 中国石油化工股份有限公司 | Steerable downhole drilling tool |
| Publication | Publication Date | Title |
|---|---|---|
| CN101827995B (en) | Systems and methods for controlling a drilling system for drilling a wellbore in an earth formation | |
| US8899352B2 (en) | System and method for drilling | |
| US8757294B2 (en) | System and method for controlling a drilling system for drilling a borehole in an earth formation | |
| US8534380B2 (en) | System and method for directional drilling a borehole with a rotary drilling system | |
| US8763726B2 (en) | Drill bit gauge pad control | |
| US8307914B2 (en) | Drill bits and methods of drilling curved boreholes | |
| EP2744967B1 (en) | Rotary steerable assembly inhibiting counterclockwisewhirl during directional drilling | |
| EP3565940B1 (en) | Rotary steerable drilling system and method with imbalanced force control | |
| CN102149895A (en) | Steerable piloted drill bit, drill system, and method of drilling curved boreholes | |
| WO2013155059A2 (en) | System and method for forming a lateral wellbore | |
| US8235145B2 (en) | Gauge pads, cutters, rotary components, and methods for directional drilling | |
| US8235146B2 (en) | Actuators, actuatable joints, and methods of directional drilling | |
| CN102308057B (en) | Offset Stochastic control | |
| WO2010092314A1 (en) | Control systems and methods for temporary inhibition of side cutting |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20140226 Termination date:20210812 |