Movatterモバイル変換


[0]ホーム

URL:


CN101809155A - Transgenic plants with increased stress tolerance and yield - Google Patents

Transgenic plants with increased stress tolerance and yield
Download PDF

Info

Publication number
CN101809155A
CN101809155ACN200880101619.4ACN200880101619ACN101809155ACN 101809155 ACN101809155 ACN 101809155ACN 200880101619 ACN200880101619 ACN 200880101619ACN 101809155 ACN101809155 ACN 101809155A
Authority
CN
China
Prior art keywords
ser
ala
gly
glu
pro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200880101619.4A
Other languages
Chinese (zh)
Inventor
A·舍利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Plant Science Co GmbH
BASF Plant Science GmbH
Original Assignee
BASF Plant Science Co GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Plant Science Co GmbHfiledCriticalBASF Plant Science Co GmbH
Publication of CN101809155ApublicationCriticalpatent/CN101809155A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

Polynucleotides are disclosed which are capable of enhancing a growth, yield under water-limited conditions, and/or increased tolerance to an environmental stress of a plant transformed to contain such polynucleotides. Also provided are methods of using such polynucleotides and transgenic plants and agricultural products, including seeds, containing such polynucleotides as transgenes.

Description

Have the stress tolerance of increase and the transgenic plant of output
The application's requirement is filed in the benefit of priority of the U.S. Provisional Patent Application sequence number 60/953562 on August 2nd, 2007, and the content of this application is incorporated this paper by reference into.
Invention field
Generally speaking, the present invention relates to the encode transgenic plant of nucleotide sequence of following polypeptide of overexpression, described polypeptide can be given the stress tolerance of increase and increase thus under normal or abiotic stress condition plant-growth and crop yield.In addition, the present invention relates to the nucleotide sequence of the novel following polypeptide of separated coding, described polypeptide is given to plant: under the abiotic stress condition; the tolerance that increases; and/or, under the normal or abiotic stress condition, the plant-growth of increase and/or the output of increase.
Background of invention
Abiotic environment is coerced, and for example arid, salinity, hot and cold are the major limitation sexual factors of plant-growth and crop yield.Crop yield is defined as the bushel quantity of the relevant agricultural prods (for example grain (grain), forage (forage) or seed) of every acre of results in this article.These crop loss and crop yield losses of coercing the various crop (for example soybean, rice, Semen Maydis, cotton and wheat) that causes are remarkable economical and political factor, and they cause the food shortage in a lot of non-developed countries.
The water utilizability is abiotic coerces and to the importance of the influence of plant-growth.Continue to be exposed to the great change that drought condition causes plant metabolism, this finally causes necrocytosis and causes production loss thus.Because the water that the high content of salt in some soil causes cell to take in is less, high salt concentration produces plant and is similar to the influence of arid to plant.In addition, under the refrigerated temperature, owing to form ice in the plant, vegetable cell is lost water.Therefore, arid, heat, salinity and cold coerce the crop damage that causes main all since dehydration cause.
Because plant is the general environment that the feedwater utilizability reduces, the exsiccant protective mechanism that most of plants have all been evolved out and caused at abiotic stress of exposing during its life cycle.But,, can have a significant impact growth, growth, plant size and the output of most of crop plants if the seriousness of drying conditions is too high and the time length is oversize.Therefore, developing the plant that effectively makes water is possible can worldwide significantly improve human lives's strategy.
Traditional plant breeding strategy is relatively slow, and needs the basic strain and the hybridization of other germplasm of abiotic stress tolerance, to develop new abiotic stress resistance strain.The uncompatibility of hybridizing between the plant species that limited germplasm origin and family far away are relevant for this type of basic strain has been represented the prominent question that runs in the traditional breeding method.Also success far away of breeding at tolerance.
A lot of Agricultural biotechnologies companies have attempted to identify the gene that can give the tolerance that abiotic stress is replied, make great efforts the genetically modified abiotic stress tolerance crop plants of exploitation.Though it is analyzed to relate to some genes of stress response in the plant or water use efficiency,, still quite incomplete to the analysis and the clone of the plant gene of giving stress tolerance and/or water use efficiency, also only be the fragment formula.Up to now, the success that obtains on exploitation transgenosis abiotic stress tolerance crop plants is limited, does not also have this type of plant to become commercialized.
In order to develop the crop plants of transgenosis abiotic stress tolerance, must in research of the greenhouse of model plant system, crop plants and field test, check a plurality of parameters.For example, water use efficiency (WUE) is usually the parameter relevant with drought tolerance.Plant also is used to measure tolerance or the resistance of plant to abiotic stress to the research of replying of dry, osmotic shock and extreme temperature.When at genetically modified existence the influence of the stress tolerance of plant being tested, it is greenhouse or the plant-growth room environmental Inherent advantage than the field that soil property, temperature, water and plant recovery of nutrient and light intensity are carried out standardized ability.
WUE is defined and measures by number of ways.A kind of means are to calculate the ratio of the weight of the water that consumes during whole strain plant dry weight and the plant life.Another variation is when measuring biomass accumulation and water utilization, adopts the short timed interval.Also means are used the limitation measurement partly from plant, for example, only measure the growth and the water utilization of over-ground part.WUE also is defined as the partial C O from leaf or leaf2The ratio of picked-up and water vapour loss, this measures (for example several seconds/several minutes) usually on very short time durations.The ratio of fixed 13C/12C also is used to assessment and utilizes C in the plant tissue of measuring with isotope ratio mass spectrometer3WUE in the photosynthetic plant.
The efficient of the relative raising with water consumption of increase indication growth of WUE changes but this information can not show a kind of change or both in these two kinds of processes when adopting separately.When selecting to be used to improve the proterties of crop,, the WUE increase (growth does not change) that the water utilization minimizing causes has special benefit because will importing in the higher Irrigation farming system of expense at water.Increase the WUE increase (and not having corresponding water utilization to increase in a leap) that drives mainly due to growth and will can be used for all agrosystems.In the not limited a lot of agrosystems of water supply, the increase of growth is even it also can increase output along with the increase cost (that is, WUE does not have change) of water utilization.Therefore, need the novel method of increase WUE and biomass accumulation to improve agricultural productive force.
Follow measurement, also measure the parameter of indication transgenosis the potential impact of crop yield to the parameter relevant with abiotic stress tolerance.For leaf class crop, for example, clover, silage corn and hay, phytomass is relevant with ultimate production.But for cereal grain crops, come estimated output with other parameter, for example plant size (measuring by total plant dry weight), over-ground part dry weight, over-ground part fresh weight, leaf area, caulome are long-pending, plant height, lotus throne diameter, leaf length, root length, root amount, tillering quantity and number of sheets amount.Usually, the plant size of early development stage will be relevant with the plant size of growing late period.Usually, have plant can be smaller greatly the more light of plant absorbing and the carbonic acid gas of big leaf area, therefore during identical, may obtain more weight.Except possible microenvironment continue or hereditary advantage, plant must just obtain bigger size at first.There are the intensive inherited genetic factors in plant size and growth velocity, and therefore for a series of several genes types, the plant size under a kind of envrionment conditions may be relevant with the size under the another kind of condition.By this way, be similar to the various and dynamic environment that field crops ran in different positions and time with standard environment.
The ratio of harvest index---seed production and over-ground part dry weight, all relatively stable under a lot of envrionment conditionss, so may strong correlation between plant size and the grain output.Plant size and grain output inner link, plant stem-leaf flows or the photosynthesis productivity of storage because the major part in the grain biomass all depends on.Therefore, be exposed to the plant that may show the output of increase when the field is tested by selecting plant size (or even growing commitment) to filter out.As for abiotic stress tolerance, in growth room or the greenhouse under the standard conditions measurement of the plant size during to early development be the standard practices of measuring the possible output advantage that genetically modified existence gives.
Therefore, people need identify at stress tolerant plants and/or make other gene of expressing in the effective plant in the water, and they can give the water use efficiency of stress tolerance and/or increase to host plant and other plant species.New stress tolerant plants that produces and/or the plant with water use efficiency of increase will have lot of advantages, and for example, the scope that can plant crop plants increases, and for example realizes by the water demand that reduces plant species.What other advantage of wanting comprised increase responds to the lodging of wind, rain, insect or disease, crooked resistance to branch or stem.
Summary of the invention
The present invention is open: with some polynucleotide conversion plant, when described polynucleotide are present in the plant as transgenosis, cause plant-growth and to the enhancing of replying of environment-stress, thereby increased the output of the agricultural prods of plant.Can mediate these type of enhanced polynucleotide separates from colea (Brassica napus), rice (Oryza sativa), soybean (Glycine max), wheat (Triticum aestivum), barley (Hordeum vulgare), corn (Zea mays) and flax (Linum usitatissimum), and be listed in the table 1, its sequence is shown in the sequence table shown in the table 1.
Table 1
Gene IOrganismPolynucleotide SEQ ID NOAmino acid SEQ ID NO
??BN51364980Colea??1??2
??OS34096188Rice (O.sativa)??3??4
??OS32583643Rice??5??6
??GM53626178Soybean (G.max)??7??8
??TA56540264Wheat (T.aestiyum)??9??10
??BN45206322Colea??11??12
??GM48923793Soybean??13??14
??TA55969932Wheat??15??16
??BN47310186Colea??17??18
Gene IOrganismPolynucleotide SEQ ID NOAmino acid SEQ ID NO
??BN51359456Colea??19??20
??HV62552639Barley (H.vulgare)??21??22
??ZM61995511Corn (Z.mays)??23??24
??LU61567101Flax (L.usitatissimum)??25??26
??LU61893412Flax??27??28
??OS39781852Rice??29??30
Gene IOrganismPolynucleotide SEQ ID NOAmino acid SEQ ID NO
??OS34701560Rice??31??32
??OS36821256Rice??33??34
??GM51659494Soybean??35??36
??GM49780101Soybean??37??38
??GM59637305Soybean??39??40
??TA55974113Wheat??41??42
In one embodiment, the invention provides through comprising the expression cassette transgenic plant transformed of separated following polynucleotide, described polynucleotide encoding methionine sulfoxide reductase family protein, it is selected from SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8 and SEQ ID NO:10, the SelR protein zone of perhaps encoding.
In another embodiment, the invention provides through comprising the expression cassette transgenic plant transformed of separated following polynucleotide, described polynucleotide encoding homeodomain-leucine zipper protein matter, it has sequence shown in SEQ ID NO:12, SEQ ID NO:14 or the SEQ ID NO:16.
In another embodiment, the invention provides through comprising the expression cassette transgenic plant transformed of separated following polynucleotide, described polynucleotide encoding contains the zinc finger protein matter in A20 zone and AN1 zone, be selected from SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42 and SHQ ID NO:44, the zinc finger protein matter structural domain of perhaps encode AN1-sample and A20-sample.
In another embodiment, the present invention relates to the seed that the transfer-gen plant among the present invention produces, wherein seed is comprise above-mentioned polynucleotide genetically modified purebred.Plant from seed of the present invention is compared with the various plant of wild-type, under normal or the condition of coercing, the tolerance of environment-stress pressure is increased, and/or plant strain growth increases, and/or output increases.
On the other hand, the present invention relates to by the part of transfer-gen plant of the present invention, its plant or its seed production or by its product of making, such as food, feed, food tonic, feed tonic, makeup or medicine.
The polypeptide of being identified in isolating polynucleotide of being identified in the table 1 below the present invention also provides and the table 1.The present invention also specifically implements with the recombinant vectors that comprises isolating polynucleotide of the present invention.
In another embodiment, the present invention relates to the method for making above-mentioned transfer-gen plant, wherein this method comprises with the expression vector transformed plant cell that contains the isolating polynucleotide of the present invention, produces the transfer-gen plant of expressing this polynucleotide encoded polypeptides from this plant cell.Compare with the multiple plant of wild-type, the expression of this polypeptide in plant makes plant normal and/or have under the condition of coercing, and increased tolerance and/or plant strain growth and/or output to environment-stress pressure.
In another embodiment, the invention provides the increase plant to the tolerance of environment-stress and/or the method for growth and/or output.Described method comprises the steps: with the expression cassette transformed plant cells that comprises separated polynucleotide of the present invention, and from vegetable cell generation transgenic plant, wherein said transgenic plant comprise described polynucleotide.
Summary of drawings
The comparison of Fig. 1: BN51364980, OS34096188, OS32583643, GM53626178, TA56540264 and known methionine sulfoxide reductase family protein.
The comparison of Fig. 2: BN45206322, GM48923793 and TA55969932 and known homeodomain-leucine zipper protein matter.
Fig. 3: BN47310186, BN51359456, HV62552639, ZM61995511, LU61567101, LU61893412, OS39781852, OS34701560, OS36821256, GM51659494, GM49780101, GM59637305 and TA55974113 and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain.
Preferred implementation describes in detail
In this application, many pieces of open source literatures have been mentioned.Those reference of mentioning in all these open source literatures and these open source literatures all by reference integral body incorporate the application into, more completely to explain the state in field of the present invention.Term used herein only is in order to describe the purpose of specific implementations, but not is intended to be limited.When using in this article, that " one/kind " (" a " or " an ") can represent is one or more/kind, this depends on its employed context.Therefore, for example, mentioning " cell " can represent to use at least one cell.
In one embodiment, the invention provides the separated polynucleotide of evaluation in the overexpression table 1 or the transgenic plant of its homologue.Transgenic plant of the present invention show than the wild-type kind of the plant tolerance to the increase of environment-stress.Randomly, than the wild-type kind of plant, under normal or stress conditions, the overexpression of this type of separated nucleic acid in plant can cause the increase of plant-growth or the output of relevant agricultural prods to increase.Wish to be bound by any theory, transfer-gen plant of the present invention is to the increase of the tolerance of environment-stress, and the increase of growth and/or the increase of output are believed what the increase by plant water service efficiency (water use efficiency) caused.
As definition herein, " transgenic plant " are such plants, have used recombinant DNA technology that it is transformed, make it contain separated, the original nucleic acid that is not present in the plant.When using in this article, term " plant " comprises whole strain plant, vegetable cell and plant part.Plant part includes but not limited to, stem, root, ovule, stamen, leaf, embryo, meristematic tissue zone, callus, gametophyte, sporophyte, pollen, sporule etc.Transgenic plant of the present invention can be male sterile or male fertile, and can comprise not being to comprise the genetically modified transgenosis through the separation polynucleotide as herein described.
When using in this article, term " kind " refers to share in the species plant group of constant characteristic, and described feature is separated they and canonical form and other possibility kind in these species.Though have at least a distinctive proterties, kind also makes a variation by between intravarietal each individuality some and characterizes, and this mainly separates based on Mendelian character between the offspring of later generation.If for certain specific trait, isozygoty in the heredity---to such degree: the kind of pure breeding is by self-pollination, do not observe freely the separating of proterties of significant quantity in the offspring, and kind just is considered to " pure breeding " of specific trait.In the present invention, proterties is that transgene expression from one or more separated polynucleotide of introduced plant kind produces.As also employed in this article, term " wild-type kind " refers to that plant is at comparing purpose to its one group of plant being analyzed so in contrast, wherein, wild-type product kind of plant is identical with transgenic plant (through separated polynucleotide plant transformed according to the present invention), but wild-type product kind of plant does not transform through separated polynucleotide of the present invention.
As definition herein, term " nucleic acid " and " polynucleotide " but mutual alternative, their expression straight chains or branched, strand or double-stranded RNA or DNA or its crossbred.This term also comprises the RNA/DNA crossbred." separated " nucleic acid molecule is such: its basically with described nucleic acid natural origin in other nucleic acid molecule sequence of other polypeptide (that is, encode) of existing separately.For example, the nucleic acid through the clone is considered to separated.If nucleic acid is changed by artificial interference, perhaps being placed in not is on the locus or position in its natural site, if perhaps it is introduced into cell by conversion, it is separated that nucleic acid just is considered to.In addition, separated nucleic acid molecule, for example the cDNA molecule can not contain its natural some relevant other cell materials when producing by recombinant technology, when by chemosynthesis, does not contain precursor or other chemical.Though be positioned at genes encoding zone 3 ' and 5 ' terminal non-translated sequence its optional comprising, it has preferably removed the sequence of the natural flank of coding region in its naturally occurring replicon.
When using in this article, term " environment-stress " refers to the suboptimum condition relevant with salinity, arid, nitrogen, temperature, metal, chemical, pathogenicity bo or oxidative stress or its any combination.Term " water use efficiency " and " WUE " refer to the amount of the amount of the organic matter that plant produces divided by the organic employed water of plant production, that is, the dry weight of plant is with respect to the water utilization of plant.When using in this article, term " dry weight " refers to all substances outside the water in the plant, and it comprises, for example, and carbohydrate, albumen, oil and mineral matter nutritional thing.
Any plant species can be transformed, to produce according to transgenic plant of the present invention.Transgenic plant of the present invention can be dicotyledons or monocotyledons.For example, and and without limitation, transgenic plant of the present invention can come from any in the following dicotyledons section: pulse family (Leguminosae) comprises plants such as pea, clover and soybean; Umbelliferae (Umbelliferae) comprises plants such as Radix Dauci Sativae and celery; Solanaceae (Solanaceae) comprises plants such as tomato, potato, eggplant, tobacco and pepper; Cruciferae (Cruciferae), particularly Btassica (Brassica), it comprises plants such as rape (oilseed rape), beet, wild cabbage, Cauliflower and cabbage; And Arabidopis thaliana (A.thaliana); Composite family (Compositae), it comprises plants such as lettuce; Malvaceae (Malvaceae), it comprises cotton; Pulse family (Fabaceae), it comprises plants such as peanut, or the like.Transgenic plant of the present invention can come from monocotyledons, for example, and wheat, barley, Chinese sorghum, grain, rye, triticale, corn, rice, oat and sugarcane.Transgenic plant of the present invention also comprise tree, and for example apple, Li, Wen outer coffin, Lee, cherry, peach, nectarine, apricot, papaya, mango and other woody species comprise coniferals and the tree of the class of falling leaves, for example willow, pine, Chinese larch, cdear, Oak Tree etc.Especially preferred is Arabidopis thaliana, tobacco (Nicotiana tabacum), rape, soybean, Semen Maydis, wheat, flax, potato and Flower of Aztec Marigold.
As shown in table 1, one embodiment of the present invention are through comprising the expression cassette transgenic plant transformed of separated following polynucleotide, described polynucleotide encoding methionine sulphoxide reductase enzyme family protein.The methionine sulphoxide (MetSO) that methionine sulphoxide reductase enzyme (MSR) catalysis Trx matter relies on is reduced to correct methionine residue.Methionine(Met) is easy to be subjected to oxidative damage, and the methionine(Met) oxidation causes the modification on numerous protein activity and the conformation.
Two kinds of MSR are arranged, A type and Type B; But these two types all uncorrelated on sequence and structure.MSRB enzyme selectivity ground catalytic reduction methionine sulphoxide R enantiomorph.MSRB type protein contains four conserved cysteine residue in two CxxC motifs, wherein x can be any amino acid.These CxxC motifs might be fixing relevant with zinc.
Described the example from several plant species, wherein the condition of environment-stress has caused the level of the active chalcogen (ROS) of increase, and consequent oxidative damage has caused the modification of MSR genetic expression.MSR itself is the good candidate of direct antioxidant, because oxidation of methionine residue round-robin and reduction can be served as the effective way of eliminating active chalcogen in the cell.In eukaryote, old and feeble and multiple disease all is that the protein structure that caused by the methionine(Met) oxidation and the destruction of function are caused.The proteinic substrate of MSR much still is the number of the unknown.Up to now, first certified plant MSR substrate is little plastid (plastidic) heat shock protein Hsp21.Hsp21 comprises conservative N end regions, and it highly is rich in methionine residue.This methionine(Met) zone must keep the reduction form, to keep the chaperone-like activity of Hsp21.
Transfer-gen plant in this embodiment may comprise the polynucleotide of any coding methionine sulphoxide reductase enzyme family protein.Transfer-gen plant in this embodiment preferably includes the polynucleotide of coding SelR structural domain, and the sequence that this structural domain contains comprises the amino acid 77 to 199 among the SEQ ID NO:2; Amino acid 79 to 200 among the SEQ ID NO:4; Amino acid 91 to 213 among the SEQ ID NO:6; Amino acid 79 to 200 among the SEQ ID NO:8; Amino acid 80 to 201 among the SEQ ID NO:10.Transfer-gen plant in this embodiment more preferably comprises the polynucleotide of coding methionine sulphoxide reductase enzyme family protein, and the sequence of described methionine sulphoxide reductase enzyme family protein comprises the amino acid/11 to 205 among the SEQ ID NO:2; Amino acid/11 to 204 among the SEQ ID NO:4; Amino acid/11 to 214 among the SEQ ID NO:6; Amino acid/11 to 202 among the SEQ ID NO:8; Amino acid/11 to 206 among the SEQ ID NO:10.
In another embodiment, the invention provides the transfer-gen plant of the expression cassette conversion of using the isolating polynucleotide that contains coding homeodomain-leucine zipper protein matter.Homeodomain-leucine zipper (HDZip) protein belongs to transcription factor family, and it interacts by leucine zipper motif as dimer, and by its homeodomain in sequence-specific mode in conjunction with DNA.Based on sequence, the HDZip family protein is divided into four classes.It is believed that I class HDZip protein regulates the reaction of plant to ABA, and may have the relevant control effect of signal conduction with ABA.The proteinic member of I class HDZip can be at external formation heterodimer, and therefore, this class can constitute the protein interaction network, and its mediation is gathered to regulate similar target gene the reaction and/or the integrated signal of environmental stimulus.
Transfer-gen plant in this embodiment may comprise the polynucleotide of any coding homeodomain-leucine zipper protein matter.Transfer-gen plant in this embodiment preferably includes the polynucleotide of coding homeodomain, and the sequence of described homeodomain comprises the amino acid 62 to 116 among the SEQ ID NO:12; Amino acid 83 to 147 among the SEQ ID NO:14;Amino acid 76 to 130 among the SEQ ID NO:16; The perhaps polymerized nucleoside acid encoding homeodomain relevant with leucine zipper motif, its sequence comprises the amino acid/11 17 to 161 among the SEQID NO:12; Amino acid/11 38 to 182 among the SEQ ID NO:14; Amino acid/11 31 to 175 among the SEQ ID NO:16.Transfer-gen plant in this embodiment more preferably comprises the polynucleotide of coding homeodomain-leucine zipper protein, and the sequence of described homeodomain-leucine zipper protein comprises the amino acid/11 to 310 among the SEQ ID NO:12; Amino acid/11 to 331 among the SEQ ID NO:14; Amino acid/11 to 340 among the SEQ ID NO:16.
In another embodiment, the invention provides the transfer-gen plant that expression cassette transforms, the contained isolating polymerized nucleoside acid encoding of this expression cassette contains the zinc finger protein matter of A20 and AN1 structural domain.The zinc finger protein matter that contains A20 and AN1 structural domain is present in all eukaryotes.These proteinic characteristics are to exist to contain A20 Zinc finger domain and the AN1 Zinc finger domain that a plurality ofhalfcystine 2/halfcystines 2 refer to motif.The AN1 structural domain is normally in the protein that comprises the A20 Zinc finger domain.The function of these protein in animal system characterized well, but the function of these protein in plant known little about it.
Rice OsiSAP1 protein is the plant protein of first certified A20 of having and AN1 Zinc finger domain.It is relevant with multiple coercive that this protein is found.This OsiSAP1 gene is induced when response environment is coerced such as cold, salinity, arid, water logging, injured and heavy metal.The also known lineal homology that comes from beans is handled and is tackled by inducer (eliciter) and can be induced when injured.When crossing expression in tobacco, OsiSAP1 produces abiotic stress tolerance.Therefore OsiSAP1 does not have typical nuclear localization signal, is considered to the function by Zinc finger domain being exercised protein interactions.
Transfer-gen plant in this embodiment comprises the polynucleotide that any coding includes the zinc finger protein matter of A20 territory and AN1 structural domain.Transfer-gen plant in this embodiment preferably includes polynucleotide, and the A20 sample zinc of its coding refers to that the sequence that is had comprises the amino acid/11 5 to 39 among the SEQ ID NO:18; Amino acid/11 3 to 37 among the SEQ ID NO:20; Amino acid/11 5 to 39 among the SEQ ID NO:22; Amino acid/11 4 to 38 among the SEQ ID NO:24; Amino acid/11 4 to 38 among the SEQ ID NO:26; Amino acid 40 to 64 among the SEQ ID NO:28; Amino acid/11 5 to 39 among the SEQ ID NO:30; Amino acid/11 9 to 43 among the SEQ ID NO:32; Amino acid/11 3 to 37 among the SEQ ID NO:34; Amino acid/11 9 to 43 among the SEQ ID NO:36; Amino acid/11 8 to 42 among the SEQ ID NO:38; Amino acid/11 5 to 39 among the SEQ ID NO:40; Amino acid/11 5 to 39 among the SEQ ID NO:42; Amino acid/11 9 to 43 among the SEQ ID NO:44, and this polymerized nucleoside acid encoding AN1 sample Zinc finger domain, its sequence comprises the amino acid/11 18 to 158 among the SEQ ID NO:18; Amino acid/11 28 to 168 among the SEQ IDNO:20; Amino acid 95 to 135 among the SEQ ID NO:22; Amino acid/11 12 to 152 among the SEQID NO:24; Amino acid/11 15 to 155 among the SEQ ID NO:26; Amino acid/11 79 to 219 among the SEQ ID NO:28; Amino acid/11 10 to 150 among the SEQ ID NO:30; Amino acid/11 05 to 145 among the SEQ ID NO:32; Amino acid/11 05 to 145 among the SEQ ID NO:34; Amino acid/11 11 to 151 among the SEQ ID NO:36; Amino acid/11 02 to 142 among the SEQ ID NO:38; Amino acid/11 13 to 153 among the SEQ ID NO:40; Amino acid/11 15 to 155 among the SEQ ID NO:42; Amino acid/11 06 to 146 among the SEQ ID NO:44.Transfer-gen plant in this embodiment more preferably comprises polynucleotide, and the sequence of the zinc finger protein matter that contains A20 and AN1 structural domain of its coding comprises the amino acid/11 to 177 among the SEQ ID NO:18; Amino acid/11 to 187 among the SEQ IDNO:20; Amino acid/11 to 154 among the SEQ ID NO:22; Amino acid/11 to 171 among the SEQ ID NO:24; Amino acid/11 to 174 among the SEQ ID NO:26; Amino acid/11 to 239 among the SEQ ID NO:28; Amino acid/11 to 169 among the SEQ ID NO:30; Amino acid/11 to 164 among the SEQ ID NO:32; Amino acid/11 to 164 among the SEQ ID NO:34; Amino acid/11 to 170 among the SEQ ID NO:36; Amino acid/11 to 161 among the SEQ ID NO:38; Amino acid/11 to 172 among the SEQ ID NO:40; Amino acid/11 to 174 among the SEQ ID NO:42; Amino acid/11 to 165 among the SEQ ID NO:44.
The present invention also provides the seed by the transgenic plant generation of the listed polynucleotide of expression table 1; wherein; described seed contains described polynucleotide; and wherein; described plant is than the wild-type kind of plant, growth that increases under normal or stress conditions and/or output and/or be pure breeding aspect the tolerance of the increase of environment-stress.The present invention also provide by or the product produced from the transgenic plant of expressing described polynucleotide, its plant part or its seed.Can use several different methods well known in the art to obtain product.When using in this article, word " product " includes but not limited to food, feed, food fill-in, feed supplement, makeup or medicine.Food is considered to the composition that is used for nutrition or is used to supplement the nutrients.Animal-feed and animal-feed fill-in are considered to food especially.The present invention also provides the agricultural prods by any production in transgenic plant, plant part and the plant seed.Agricultural prods includes but not limited to: plant milk extract, albumen, amino acid, carbohydrate, fat, oil, polymkeric substance, VITAMIN etc.
A kind of preferred embodiment in, separated polynucleotide of the present invention comprise following polynucleotide, it has the sequence that is selected from the polynucleotide sequence that table 1 lists.These polynucleotide can comprise sequence and the 5 ' non-translated sequence and the 3 ' non-translated sequence of coding region.
Polynucleotide of the present invention can use the Protocols in Molecular Biology of standard to separate with the sequence information that provides here.The synthetic oligonucleotide primer that is used for PCR amplification can design based on the nucleotide sequence shown in the table 1.Nucleic acid molecule of the present invention can be with cDNA or alternatively, is template and suitable oligonucleotide primer with genomic dna, by the amplification of Standard PC R amplification technique.Kuo Zeng nucleic acid molecule can be cloned in the appropriate carriers like this, characterizes with dna sequence analysis.In addition, can for example, use automatic dna synthesizer with the synthetic technology preparation of standard with the corresponding oligonucleotide of nucleotide sequence of listing in the table 1.
" homologue " is defined as having respectively two nucleic acid or the polypeptide of similar or essentially identical Nucleotide or aminoacid sequence in this article.Homologue comprises allelic variant, analogue and directly to homologue, they such as hereinafter definition.When using in this article, term " analogue " refers to have same or similar function but two nucleic acid of evolving respectively in incoherent biology.When using in this article, but term " directly to homologue " refers to from different plant species by species formation from two next nucleic acid of common ancestral gene evolution.The term homologue also comprises because genetic codon degeneracy and nucleic acid molecule different with one of nucleotide sequence shown in the table 1 but the same polypeptide of encoding.When using in this article, " naturally occurring " nucleic acid molecule refers to have the RNA or the dna molecular (natural polypeptides of promptly encoding) of the nucleotide sequence that occurring in nature exists.
For (for example measuring two aminoacid sequences, one of peptide sequence of table 1 and homologue thereof) per-cent sequence identity, with regard to optimum comparison purpose, (for example with sequence alignment, can in the sequence of a polypeptide, introduce breach, to align) with other polypeptide or nucleic acid optimum.Amino-acid residue on the more corresponding then amino acid position.When the position in the sequence by another sequence in same amino-acid residue on the corresponding position when occupying, molecule is exactly identical in this position.Can between two nucleotide sequences, carry out the comparison of same-type.
Preferably, the separated amino acid homology thing of polypeptide of the present invention, analogue and straight to the about at least 50-60% of the whole piece aminoacid sequence shown in homologue and the table 1, preferably about at least 60-70%, more preferably about at least 70-75%, 75-80%, 80-85%, 85-90% or 90-95%, most preferably about at least 96%, 97%, 98%, 99% is identical or more identical.Another preferred embodiment in, separated nucleic acid homologue of the present invention comprises following nucleotide sequence, nucleotide sequence shown in described nucleotide sequence and the table 1 is 40-60% at least approximately, preferably about at least 60-70%, more preferably about at least 70-75%, 75-80%, 80-85%, 85-90% or 90-95%, further preferably about at least 95%, 96%, 97%, 98%, 99% is identical or more identical.
(Carlsbad CA92008) measures per-cent sequence identity between two nucleic acid or the peptide sequence for Invitrogen, 1600 FaradayAve. can for example to use Vector NTI 9.0 (PC) software package.When using Vector NTI, for measuring the per-cent identity of two nucleic acid, the open point penalty of spendable breach is 15, and it is 6.66 that breach extends point penalty.For measuring the per-cent identity of two polypeptide, the open point penalty of spendable breach is 10, and it is 0.1 that breach extends point penalty.All other VectorNTI parameters all can be provided with according to default setting.With regard to the right purpose of the multiple ratio of using Vector NTI (Clustal W algorithm), the open point penalty of breach is 10, and it is 0.05 that breach extends point penalty, uses blosum 62 matrixes.Alternatively, (Myers and Miller (1989) CABIOS 4,11-17), all parameters are set to default setting can to use Align 2.0.Should be appreciated that when comparison dna sequence and RNA sequence, thymidylic acid is equal to uridylate with regard to the purpose of measuring sequence identity.
Homologue, analogue and straight nucleic acid molecule to homologue corresponding to the listed polypeptide of table 1 can separate with the identity of described polypeptide based on it, wherein use the polynucleotide of each polypeptide of coding or based on its primer as hybridization probe, carry out under tight hybridization conditions according to the standard hybridization technique.About the blot hybridization of DNA to DNA, term " stringent condition " refers to hybridize in 60 ℃ in the salmon sperm dna of 10xDenhart ' s solution, 6X SSC, 0.5%SDS and 100 μ g/ml sex change herein.At 62 ℃, 3X SSC/0.1% SDS follows among 1X SSC/0.1%SDS and the last 0.1X SSC/0.1%SDS trace is washed 30 minutes (at every turn) in regular turn.In addition, when using in this article, a kind of preferred embodiment in, term " stringent condition " refers to hybridize in 65 ℃ in 6X SSC solution.In another embodiment, " height stringent condition " refers to spend the night in 65 ℃ of hybridization in the salmon sperm DNA of 10XDenhart ' s solution, 6X SSC, 0.5%SDS and 100 μ g/ml sex change.At 65 ℃, 3X SSC/0.1%SDS follows among 1X SSC/0.1%SDS and the last 0.1X SSC/0.1%SDS trace is washed 30 minutes (at every turn) in regular turn.The method of nucleic acid hybridization is at document Meinkoth and Wahl, and 1984, description is arranged among the Anal.Biochem.138:267-284; Be that well known in the art (see that such as, Current Protocols in MolecularBiology,Chapter 2, Ausubel etc. compile Greene Publishing and Wiley-Interscience, New York, 1995; And Tijssen, 1993, LaboratoryTechniques in Biochemistry and Molecular Biology:Hybridizationwith Nucleic Acid Probes, part i, the 2nd chapter, Elsevier, New York, 1993).Preferably, the of the present invention separated nucleic acid molecule of the nucleotide sequence hybridization of listing with table 1 under tight or height stringent condition is corresponding to naturally occurring nucleic acid molecule.
There is several different methods to can be used for producing the library of possible homologue from degenerate oligonucleotide sequence.Can in automatic dna synthesizer, carry out the chemosynthesis of degeneracy gene order, then the synthetic gene be connected into suitable expression vector.Use the degeneracy genome to allow in a kind of mixture, to provide all sequences of the group of the possible sequence that coding wants.The method that is used for synthetic degenerate oligonucleotide be known in the art (see, for example, Narang, 1983, Tetrahedron 39:3; Itakura etc., 1984, Annu.Rev.Biochem.53:323; Itakura etc., 1984, Science 198:1056; Ike etc., 1983, Nucleic Acid Res.11:477).
In addition, can make nucleic acid through optimizing.Preferably, the following polypeptide of nucleic acid encoding through optimizing, described polypeptide have the function similar to the listed those polypeptides of table 1 and/or when its can be under normal and/or water confined condition during overexpression in plant coordinate plant growth and/or output and/or to the tolerance of environment-stress, and more preferably, under normal and/or water confined condition, increase plant-growth and/or output and/or to the tolerance of environment-stress.When using in this article, " through what optimize " refers to through genetic modification to increase it at the given plant or the nucleic acid of the expression in the animal.For the nucleic acid through being optimized at plant is provided, the dna sequence dna of gene can be modified to: the codon that 1) comprises the plant gene preference of highly expressing; 2) comprise the A+T content in the basic nucleotide base composition of finding in the plant; 3) form the plant homing sequence; 4) cause RNA instability, inappropriate polyadenylation, degraded and terminated sequence with elimination, perhaps eliminate the sequence that forms secondary structure hair fastener or RNA splice site; Or 5) eliminate the antisense open reading-frame (ORF).Can select distribution frequency by utilizing the codon in general plant or the specified plant, realize the increase expression of nucleic acid in plant.Being used to optimize the method that the plant amplifying nucleic acid expresses can be in EPA 0359472, EPA 0385962, PCT application No.WO 91/16432, U.S. Patent No. 5,380,831, U.S. Patent No. 5,436,391, people such as Perlack, 1991, people such as Proc.Natl.Acad.Sci.USA 88:3324-3328 and Murray, 1989, find among the NucleicAcids Res.17:477-498.
Can be optimized separated polynucleotide of the present invention, make its codon select distribution frequency and the plant gene deviation of highly expressing preferably to be no more than 25%, more preferably no more than about 10%.In addition, consider the per-cent G+C content (monocotyledons seems that at this position preference G+C, dicotyledons is not then) of degeneracy the 3rd base.Will recognize that also XCG (wherein X is A, T, C or G) Nucleotide is least preferred codon in dicotyledons, and the XTA codon should be avoided all in unifacial leaf and dicotyledons.Nucleic acid through optimizing of the present invention preferably also has with selected host plant very avoids index near CG and TA doublet.More preferably, these indexes and host's deviation is no more than about 10-15%.
The present invention also provides separated recombinant expression vector; it comprises polynucleotide mentioned above; wherein; the expression of described carrier in host cell causes: than the wild-type kind of host cell; plant increases growth and/or output under normal or water confined condition, and/or increases the tolerance to environment-stress.Recombinant expression vector of the present invention comprises to be suitable for the nucleic acid of the present invention that the form of express nucleic acid exists in host cell, this means, recombinant expression vector comprises one or more regulating and controlling sequence, it is based on waits to be used that the host cell that is used to express selects, and it links to each other effectively with nucleotide sequence to be expressed.When using about recombinant expression vector in this article, " link to each other effectively " and be intended to represent that interested nucleotide sequence (for example links to each other in the mode that allows nucleotide sequence to express with regulating and controlling sequence, when carrier is introduced in the host cell, in bacterium or plant host cell).Term " regulating and controlling sequence " is intended to comprise promotor, enhanser and other expression controlling elements (for example poly-adenosine signal).This type of regulating and controlling sequence is well known in the art.Regulating and controlling sequence comprise instruct nucleotides sequence be listed in constitutive expression in polytype host cell those and only under some host cell or some condition, instruct those that nucleotide sequence expresses.It will be appreciated by those skilled in the art that the design to expression vector can be depending on following factor, for example, treat the selection of transformed host cells, the polypeptide expression level of wanting etc.Expression vector of the present invention can be introduced host cell, to produce the polypeptide of nucleic acid encoding as herein described thus.
Gene expression in plants should link to each other effectively with suitable promotor, and described promotor is given in time, the genetic expression of cell-specific or tissue specificity mode.The promotor that can be used for expression cassette of the present invention comprises can start any promotor of transcribing in vegetable cell.This type of promotor includes but not limited to: those that can obtain from plant, plant virus and bacterium (containing the gene of expressing plant, for example Agrobacterium (Agrobacterium) and rhizobium (Rhizobium))
Promotor can be composing type, induction type, the etap is preferential, cell type is preferential, tissue is preferential or organ is preferential.Constitutive promoter all has activity under most of conditions.The example of constitutive promoter comprises CaMV 19S and 35S promoter (Odell etc., 1985, Nature313:810-812), sX CaMV 35S promoter (Kay etc., 1987, Science236:1299-1302), the Sep1 promotor, rice actin promoter (McElroy etc., 1990, Plant Cell 2:163-171), Arabidopis thaliana actin promoter, ubiquitin (ubiquitan) promotor (Christensen etc., 1989, Plant Molec.Biol.18:675-689), pEmu (Last etc., 1991, Theor.Appl.Genet.81:581-588), radix scrophulariae mosaic virus 35 S promoter, Smas promotor (Velten etc., 1984, EMBO J 3:2723-2730), super promotor (U.S. Patent No. 5,955,646), the GRP1-8 promotor, cinnamyl-alcohol dehydrogenase promotor (U.S. Patent No. 5,683,439), promotor from the T-DNA of Agrobacterium, for example, mannopine synthase, nopaline synthase and octopine synthase, diphosphoribulose carboxylase small subunit (ssu-RUBISCO) promotor etc.
Inducible promoter prefers under some envrionment conditions has activity, for example, exist or when not having nutrition or meta-bolites, heat or cold, illumination, pathogenic agent attack, anaerobic condition etc.For example, the hsp80 promotor from Btassica (Brassica) is a heat-inducible; The PPDK promotor is by photoinduction; Can pass through the infection induced of pathogenic agent from tobacco, Arabidopis thaliana and zeistic PR-1 promotor; The Adh1 promotor is by anoxic and cold stress-inducing.Also can assist gene expression in plants (summary referring to Gatz, 1997, Annu.Rev.Plant Physiol.Plant Mol.Biol.48:89-108) by inducible promoter.If want genetic expression to take place in the temporal mode, but the promotor of chemical induction is especially suitable.The example of this type of promotor is salicylic acid inducible promotor (PCT applies for No.WO 95/19443), tsiklomitsin inducible promoter (people such as Gatz, 1992, Plant J.2:397-404) and alcohol induced type promotor (PCT applies for No.WO 93/21334).
Of the present invention a kind of preferred embodiment in, inducible promoter is a stress induced promoter.With regard to purpose of the present invention, stress induced promoter prefers to one or more following coercing has activity down: the suboptimum condition relevant with salinity, arid, nitrogen, temperature, metal, chemical, pathogenic agent and oxidative stress.Stress induced promoter includes but not limited to Cor78 (people such as Chak, 2000, Planta 210:875-883; People such as Hovath, 1993, Plant Physiol.103:1047-1053), Cor15a (people such as Artus, 1996, PNAS 93 (23): 13404-09), Rci2A (people such as Medina, 2001, Plant Physiol.125:1655-66; People such as Nylander, 2001, Plant Mol.Biol.45:341-52; Navarre and Goffeau, 2000, EMBOJ.19:2515-24; People such as Capel, 1997, Plant Physiol.115:569-76), Rd22 (people such as Xiong, 2001, Plant Cell 13:2063-83; People such as Abe, 1997, Plant Cell9:1859-68; People such as Iwasaki, 1995, Mol.Gen.Genet.247:391-8), cDet6 (Lang and Palve, 1992, Plant Mol.Biol.20:951-62), ADH1 (people such as Hoeren, 1998, Genetics 149:479-90), KAT1 (people such as Nakamura, 1995, PlantPhysiol.109:371-4), KST1 (Muller-
Figure GPA00001013557200181
Deng the people, 1995, EMBO14:2409-16), Rha1 (people such as Terryn, 1993, Plant Cell 5:1761-9; People such as Terryn, 1992, FEBS Lett.299 (3): 287-90), ARSK1 (people such as Atkinson, 1997, GenBank accession number L22302 and PCT application No.WO 97/20057), PtxA (people such as Plesch, GenBank accession number X67427), SbHRGP3 (people such as Ahn, 1996, Plant Cell8:1477-90), GH3 (people such as Liu, 1994, Plant Cell 6:645-57), pathogen-inducible PRP1 gene promoter (people such as Ward, 1993, Plant.Mol.Biol.22:361-366), thermal induction type hsp80-promotor (U.S. Patent No. 5187267) from tomato, cold induction type α-Dian Fenmei promotor (PCT applies for No.WO 96/12814) or wound-induced type pinII promotor (European patent No.375091) from potato.About other example of promotor of arid, cold-peace salt induction type, RD29A promotor for example, referring to people such as Yamaguchi-Shinozalei, 1993, Mol.Gen.Genet.236:331-340.
Preferential promotor preference of etap was expressed in some etap.Tissue and the preferential promotor of organ comprise those that preference is expressed in some tissue or organ (for example leaf, root, seed or xylem).Tissue example preferential and the organ preferential promoters includes but not limited to: fruit is preferential, ovule is preferential, male tissue is preferential, seed is preferential, integument is preferential, stem tuber is preferential, handle (stalk) preferentially, pericarp is preferential, leaf is preferential, column cap is preferential, pollen is preferential, flower pesticide is preferential, petal is preferential, sepal is preferential, bennet is preferential, silique is preferential, stem is preferential, the preferential promotor of root etc.The preferential promotor preference of seed is expressed in seed development and/or duration of germination.For example, the preferential promotor of seed can be that embryo is preferential, endosperm is preferential and plant skin preferential (see people such as Thompson, 1989, BioEssays10:108).The example of the preferential promotor of seed includes but not limited to cellulose synthase (celA), Ciml, γ-zein, sphaeroprotein-1, corn 19kD zein (cZ19B1) etc.
Preferential or the organ preferential promoters of other suitable tissue comprises the napin gene promoter (U.S. Patent No. 5 from rape (rapeseed), 608,152), USP promotor (people such as Baeumlein from broad bean (Vicia faba), 1991, Mol.Gen.Genet.225 (3): 459-67), oleosin promotor (PCT applies for No.WO98/45461) from Arabidopsis (Arabidopsis), phaseolin promoter (U.S. Patent No. 5 from Kidney bean (Phaseolus vulgaris), 504,200), Bce4 promotor (PCT applies for No.WO91/13980) or legumin B4 promotor (LeB4 from Btassica; People such as Baeumlein, 1992, PlantJournal, 2 (2): 233-9) and the promotor of in monocotyledons (for example corn, barley, wheat, rye, rice etc.), giving seed-specific expression.Noticeable suitable promotor is (from the hordein gene of barley from those promotors of describing among the Ipt2 of barley or Ipt1 gene promoter (PCR application No.WO 95/15389 and PCT application No.WO 95/23230) or the PCT application No.WO 99/16890, the paddy protein gene, rice paddy rice plain gene, the paddy alcohol soluble protein gene, the gliadine gene of wheat, the wheat gluten gene, the avenin gene, the promotor of the secalin gene of Chinese sorghum kasirin gene and rye).
Other promotor that can be used for expression cassette of the present invention includes but not limited to the conjugated protein promotor of main chloroplast(id) a/b, the histone promotor, the Ap3 promotor, β-conglycin promotor, oil card Nola rape protein promoter, the soybean agglutinin promotor, corn 15kD zein promotor, 22kD zein promotor, 27kD zein promotor, g-zein promotor, waxy, shrunken 1, shrunken 2 and bronze promotor and Zm13 promotor (U.S. Patent No. 5,086,169), corn polygalacturonase promotor (PG) (United States Patent(USP) Nos. 5,412,085 and 5,545,546) and SGB6 promotor (U.S. Patent No. 5,470,359) and synthetic or other natural promoter.
Other maneuvering ability that the control heterologous gene is expressed in plant can obtain by using DNA binding domains and response element (that is the DNA binding domains of originating from non-plant) from the allos source.The example of this type of allogeneic dna sequence DNA binding domains is LexA DNA binding domains (Brent and Ptashne, 1985, Cell 43:729-736).
Of the present invention a kind of preferred embodiment in, the polynucleotide that table 1 is listed are expressed in the vegetable cell from higher plant (for example spermatophyte, for example crop plants).Polynucleotide can comprise transfection, conversion or transduction, electroporation, partickle bombardment, agroinfection etc. by any means " introducing " vegetable cell.Be used to transform or the appropriate method of transfection of plant cells is disclosed, for example, use United States Patent(USP) Nos. 4,945,050,5,036,006,5,100,792,5,302,523,5,464,765,5,120,657,6,084, the partickle bombardment shown in 154 grades.More preferably, can use Agrobacterium-mediated Transformation to make transgenic corn seed of the present invention, as United States Patent(USP) Nos. 5,591,616,5,731,179,5,981,840,5,990,387,6,162,965,6,420,630, U.S. Patent Publication No. 2002/0104132 etc. are described.Can use for example European patent No.EP0424047, U.S. patent No.5,322,783, European patent No.EP 0,397 687, U.S. Patent No. 5,376,543 or U.S. Patent No. 5,169,770 described technology carry out the conversion to soybean.The special example that wheat transforms can be applied for finding among the No.WO 93/07256 in PCT.Can use United States Patent(USP) Nos. 5,004,863,5,159,135,5,846, disclosed method is come converting cotton in 797 grades.Can use United States Patent(USP) Nos. 4,666,844,5,350,688,6,153,813,6,333,449,6,288,312,6,365,807,6,329, disclosed method transforms rice in 571 grades.Other methods for plant transformation is disclosed in, for example, United States Patent(USP) Nos. 5,932,782,6,153,811,6,140,553,5,969,213,6,020, in 539 grades.Being suitable for that transgenosis is inserted any methods for plant transformation of specified plant all can be used according to the invention.
According to the present invention, if the polynucleotide of introducing are incorporated non-chromosome self-replicating into or are integrated in the plant chromosome, then it can be stablized and remains in the vegetable cell.Perhaps, but the polynucleotide of introducing can be present on the outer non-replicating vector of karyomit(e) and instantaneous conversion or have instantaneous activity.
Another aspect of the present invention relates to separated polypeptide, and it has the sequence that is selected from the peptide sequence that table 1 lists." separated " or " purified " polypeptide does not contain (when producing by recombinant DNA technology) some cell materials or (during chemosynthesis) chemical precursor or other chemical.This saying comprises such polypeptide prepared product " not contain cell material substantially ", wherein, some cellular components in its cell of polypeptide and natural or recombinant production is separated.In one embodiment, this saying comprises such polypeptide prepared product of the present invention " not contain cell material substantially ": it has and is less than about 30% (with dry weight) contaminative polypeptide, contaminative polypeptide more preferably less than about 20%, further, most preferably be less than about 5% contaminative polypeptide more preferably less than about 10% contaminative polypeptide.
Mensuration to enzymic activity and kinetic parameter is very ripe in the art.The active experiment that is used to measure any given enzyme through transforming must be customized at the given activity of wild-type enzyme, and this is in those skilled in the art's limit of power.Summary about enzyme is general, and describing in detail about structure, kinetics, principle, method, application and the example of measuring a lot of enzymic activitys has a lot, and they are well known to a person skilled in the art.
The invention still further relates to the method for producing the transgenic plant comprise at least a polynucleotide that table 1 lists; wherein; the expression of described polynucleotide in plant causes: than the wild-type kind of plant; plant grows under normal or water confined condition and/or output increases; and/or the tolerance of environment-stress increased; described method comprises the steps: that (a) introduces the expression vector that comprises the listed at least a polynucleotide of table 1 in vegetable cell; and the transgenic plant that (b) produce the described polynucleotide of expression from vegetable cell; wherein; the expression of polynucleotide in transgenic plant causes: than the wild-type kind of plant; plant grows under normal or water confined condition and/or output increases, and/or the tolerance of environment-stress is increased.Plant can be, but is not limited to, and protoplastis, gamete are produced cell and be regenerated as the cell of whole strain plant.When using in this article, " transgenosis " refers to contain any plant, vegetable cell, callus, plant tissue or the plant part of at least a recombination of polynucleotide that table 1 lists.In a lot of situations, recombination of polynucleotide is stabilized and is integrated into karyomit(e) or stable extra-chromosomal element, makes it pass to the follow-up generation.
The present invention also provides under normal or water confined condition to be increased plant-growth and/or output and/or increases the method for plant to the tolerance of environment-stress, and described method comprises the steps: the expression of at least a polynucleotide that in plant increase table 1 is listed.Can increase proteic expression by any method known to those skilled in the art.
Can analyze growth characteristics and/or the metabolism of plant then by under normal and/or more inappropriate condition, cultivating modified plant, assess the influence of genetic modification plant-growth and/or output and/or stress tolerance.This type of analytical technology is well known to a person skilled in the art, it comprises that dry weight, weight in wet base, polypeptide are synthetic, carbohydrate is synthetic, lipid is synthetic, evapotranspiration speed, general plant and/or crop yield, bloom, breed, set seeds (seed setting), root growth, respiratory rate, photosynthetic rate, metabolism composition etc., wherein uses biological technical field method known to the skilled to carry out.
Further set forth the present invention by following embodiment, described embodiment should be interpreted as by any way that scope of the present invention is applied restriction.
Embodiment 1
Full Length cDNA Cloning
The full length DNA sequence (SEQ ID NO:43) of small liwan moss (Physcomitrella patens) EST65 methionine sulphoxide reductase enzyme family protein is e in the e value-10Level on canola oil dish (canola), soybean, paddy rice, corn, Semen Lini, Sunflower Receptacle, barley and wheat cDNA patent database comparison (Altschul etc., 1997, Nucleic Acids Res.25:3389-3402).Analyze all contigs for the full length sequence of supposition and hit, and the longest clone of the total length contig of representative supposition is checked order fully.The homologue in a canola oil dish source, the homologue in two paddy rice sources, the homologue and a wheat source place homologue in a soybean source are identified.These sequences are with the amino acid identity of nearest known common sequence and the degree of similarity are listed in table 2 to 6 (Align 2.0) separately.
Table 2
The comparison of BN51364980 (SEQ ID NO:2) and known methionine sulphoxide reductase enzyme
The public database accession numberSpeciesSequence homology (%)
??NP_564640Arabidopis thaliana??82.00%
??AAM65202Arabidopis thaliana??66.70%
??BAD35399Rice??56.10%
??NP_001057620Rice??55.80%
??ZP_01592095Mud bacterium (Geobacter lovleyi SZ)??42.40%
Table 3
The comparison of OS34096188 (SEQ ID NO:4) and known methionine sulphoxide reductase enzyme
The public database accession numberSpeciesSequence homology (%)
??ABE84787Puncture vine clover (Medicago truncatula)??72.60%
??NP_567639Arabidopis thaliana??61.90%
The public database accession numberSpeciesSequence homology (%)
??AAM62876Arabidopis thaliana??61.00%
??NP_567271Arabidopis thaliana??58.70%
??EAY98001Rice??57.80%
Table 4
The comparison of OS32583643 (SEQ ID NO:6) and known methionine sulphoxide reductase enzyme
The public database accession numberSpeciesSequence homology (%)
??NP_001057620Rice??99.10%
??BAD35399Rice??74.80%
??NP_564640Arabidopis thaliana??59.60%
??AAM65202Arabidopis thaliana??53.70%
??YP_846684??Syntrophobacter?fumaroxidans?MPOB??44.20%
Table 5
The comparison of GM53626178 (SEQ ID NO:8) and known methionine sulphoxide reductase enzyme
The public database accession numberSpeciesSequence homology (%)
??ABE84787The puncture vine clover??72.80%
??NP_567639Arabidopis thaliana??60.90%
??AAM62876Arabidopis thaliana??60.90%
??EAY98001Rice??59.10%
??AAO72582Rice??57.60%
Table 6
The comparison of TA56540264 (SEQ ID NO:10) and known methionine sulphoxide reductase enzyme
The public database accession numberSpeciesSequence homology (%)
??EAY98001Rice??72.90%
??NP_001055501Rice??69.50%
??ABE84787The puncture vine clover??65.50%
??NP_567639Arabidopis thaliana??60.60%
??AAM62876Arabidopis thaliana??59.60%
The full length DNA sequence (SEQ IDNO:44) of small liwan moss EST12 homeodomain leucine zipper protein matter is e in the e value-10Level on canola oil dish, soybean, paddy rice, corn, Semen Lini, Sunflower Receptacle, barley and wheat cDNA patent database comparison (Altschul etc., 1997, NucleicAcids Res.25:3389-3402).Analyze all contigs for the full length sequence of supposition and hit, and the longest clone of the total length contig of representative supposition is checked order fully.The homologue in a canola oil dish source, the homologue in the homologue in a soybean source and a wheat source is identified.These sequences are with the amino acid identity of nearest known common sequence and the degree of similarity are listed in table 7 to 9 (Align 2.0) separately.
Table 7
The comparison of BN45206322 (SEQ ID NO:12) and known homeodomain leucine zipper protein matter
The public database accession numberSpeciesSequence homology (%)
??AAR04932Colea??95.20%
??AAF73482Turnip (Brassica rapa)??91.30%
??AAD41726Arabidopis thaliana??81.20%
??NP_195716Arabidopis thaliana??69.90%
??AAK96762Arabidopis thaliana??69.60%
Table 8
The comparison of GM48923793 (SEQ ID NO:14) and known homeodomain leucine zipper protein matter
The public database accession numberSpeciesSequence homology (%)
??AAX98670Soybean??56.00%
??AAK84886Kidney bean (Phaseolus vulgaris)??51.60%
The public database accession numberSpeciesSequence homology (%)
??CAA64417Tomato (Solanum lycopersicum)??47.40%
??BAA05624Radix Dauci Sativae (Daucus carota)??46.70%
??AAF01765Soybean??44.00%
Table 9
The comparison of TA55969932 (SEQ ID NO:16) and known homeodomain leucine zipper protein matter
The public database accession numberSpeciesSequence homology (%)
??NP_001048008Rice??74.00%
??EAY87390Rice??73.80%
??NP_001061807Rice??49.90%
??AAD37698Rice??49.60%
??AAS83417Rice??46.30%
The full length DNA sequence (SEQ ID NO:45) that small liwan moss EST307 contains the zinc finger protein matter of A20 and AN1 structural domain is e in the e value-10Level on canola oil dish, soybean, paddy rice, corn, Semen Lini, Sunflower Receptacle, barley and wheat cDNA patent database comparison (Altschul etc., 1997, Nucleic Acids Res.25:3389-3402).Analyze all contigs for the full length sequence of supposition and hit, and the longest clone of the total length contig of representative supposition is checked order fully.The homologue in two canola oil dish sources, the homologue in a barley source, the homologue in two corn sources, the homologue in two Semen Lini sources, the homologue in three soybean sources, the homologue in the homologue in three paddy rice sources and a wheat source is identified.These sequences are with the amino acid identity of nearest known common sequence and the degree of similarity are listed in table 10 to 22 (Align 2.0) separately.
Table 10
BN47310186 (SEQ ID NO:18) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??NP_564585Arabidopis thaliana??88.70%
??AAN71995Arabidopis thaliana??88.10%
??ABL67658Buddha's hand (Citrus cv.Shiranuhi)??59.40%
The public database accession numberSpeciesSequence homology (%)
??AAQ84334Rice??56.00%
??AAD38146Apricot (Prunus armeniaca)??55.20%
Table 11
BN51359456 (SEQ ID NO:20) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??NP_190848Arabidopis thaliana??71.60%
??AAK68811Arabidopis thaliana??71.10%
??NP_565844Arabidopis thaliana??66.00%
??ABE93196The puncture vine clover??51.10%
??AAN71995Arabidopis thaliana??47.10%
Table 12
HV62552639 (SEQ ID NO:22) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??NP_001055132Rice??70.10%
??AAR96005Fruitlet musa acuminata (Musa acuminata)??51.80%
??AAA33773Kidney bean??42.60%
??EAZ09556Rice??40.80%
??EAZ45178Rice??39.40%
Table 13
ZM61995511 (SEQ ID NO:24) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??AAQ84334Rice??79.50%
The public database accession numberSpeciesSequence homology (%)
??AAX14637Corn??77.00%
??EAZ01657Rice??71.70%
??ABL67658Buddha's hand??69.50%
??NP_001046186Rice??65.90%
Table 14
LU61567101 (SEQ ID NO:26) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??CAE73100Nematode (Caenorhabditis briggsae)??29.30%
??NP_190848Arabidopis thaliana??29.20%
??XP_001357850Fruit bat (Drosophila pseudoobscura)??29.20%
??EAY92150Rice??29.10%
??ABL97956Turnip??28.90%
Table 15
LU61893412 (SEQ ID NO:28) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??ABL67658Buddha's hand??67.40%
??AAD38146Apricot??64.60%
??AAQ84334Rice??61.70%
??ABN08135The puncture vine clover??61.50%
??AAN71995Arabidopis thaliana??61.00%
Table 16
OS39781852 (SEQ ID NO:30) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??EAZ45178Rice??99.40%
??EAZ09556Rice??99.40%
??NP_001063521Rice??65.90%
??ABI23728Chrysanthemum (Chrysanthemum x morifolium) on the desk??58.80%
??AAA33773Kidney bean??47.30%
Table 17
OS34701560 (SEQ ID NO:32) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??NP_565844Arabidopis thaliana??58.80%
??ABE93196The puncture vine clover??56.40%
??NP_190848Arabidopis thaliana??55.60%
??AAK68811Arabidopis thaliana??55.60%
??ABL67658Buddha's hand??48.30%
Table 18
OS36821256 (SEQ ID NO:34) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??EAZ45178Rice??63.00%
??EAZ09556Rice??63.00%
??ABI23728Chrysanthemum on the desk??51.10%
??AAA33773Kidney bean??43.40%
??AAX14637Corn??43.30%
Table 19
GM51659494 (SEQ ID NO:36) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??AAA33773Kidney bean??58.00%
??EAZ09556Rice??54.20%
??EAZ45178Rice??54.20%
??NP_566429Arabidopis thaliana??51.50%
??ABI23728Chrysanthemum on the desk??44.40%
Table 20
GM49780101 (SEQ ID NO:38) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??ABN08135The puncture vine clover??76.70%
??ABL67658Buddha's hand??66.30%
??AAD38146Apricot??64.60%
??AAQ84334Rice??64.40%
??AAX14637Corn??61.90%
Table 21
GM59637305 (SEQ ID NO:40) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??AAD38146Apricot??69.30%
??ABL67658Buddha's hand??68.60%
??AAQ84334Rice??65.90%
??AAX14637Corn??64.00%
??NP_564585Arabidopis thaliana??63.70%
Table 22
TA55974113 (SEQ ID NO:42) and the known comparison that contains the zinc finger protein matter of A20 and AN1 structural domain
The public database accession numberSpeciesSequence homology (%)
??EAZ09556Rice??73.20%
??EAZ45178Rice??72.60%
??ABI23728Chrysanthemum on the desk??54.20%
??NP_001063521Rice??49.00%
??AAA33773Kidney bean??46.10%
Embodiment 2
The Arabidopis thaliana plant of water stress-tolerance
Polynucleotide in the table 1 is connected in the binary vector that contains selected marker.The recombinant vectors of Xing Chenging is included in the gene of the corresponding sense orientation under the promotor control of composition like this.This recombinant vectors is transformed in the agrobacterium tumefaciens system according to the condition of standard.Environmental Col-0 of Arabidopis thaliana or C24 are according to standard conditions plantation and conversion.The screening of T1 and T2 plant have that marker gene optionally gives to the resistance of reagent optionally.The T3 seed is used in the experiment of greenhouse or growth room.
Before plantation approximately 3-5 days, with seed refrigeration in order to layering.With the seed plantation, apply fertilizer then, and keep humidity with transparent cupola.For the mensuration of " biomass ", plant is planted in the greenhouse at 22 ℃, and the photoperiod is 8 hours dark of illumination in 16 hours, and a week waters twice.For the mensuration of " periodically arid ", it is that 22 ℃ of relative humidity are that the photoperiod is set at 8 hours dark of illumination in 16 hours, waters at after planting 0 day, 18 days and 25 days in 55% the growth room that plant is planted in temperature.
At the 19th and 22 day, the plant area of every strain plant, the leaf area, biomass, color distribution, colour intensity and growth velocity can be measured with commercially available imaging system.The calculating of biomass is the total area of the plant leaf of last Measuring Time point.The calculating of growth velocity is again divided by the area of the plant leaf of the time point of first measurement behind the area of plant leaf of the area of plant leaf of the time point of last measurement time point that deducts first measurement.The calculating of health index is the total area of the area of deep green leaf divided by the plant leaf.Table 23 has presented to cross has expressed SEQ ID NO:5, biomass, growth velocity and the health index of the independent transformation event of the transfer-gen plant of 7 and 13 polynucleotide (strain system).Calculate the variation per-cent of a system, check the value (p value) of calculating significance with t with respect to the contrast of blended wild-type.If this per-cent change greater than 0 and the p value less than 0.1, this is to be considered to male, if the p value is greater than 0.1, how many variations of IOP irrespective of percentage is, then be considered to not have significance (NS), if per-cent change less than 0 and p value less than 0.1, then be considered to feminine gender.
Table 23
Figure GPA00001013557200321
Embodiment 3: the Arabidopsis plant of nitrogen stress tolerance
But the polynucleotide of table 1 are connected the binary vector that into contains selective marker.The recombinant vectors that obtains contain the justice that is under the constitutive promoter to corresponding gene.According to standard conditions recombinant vectors is transformed into agrobacterium tumefaciens bacterial strain.Cultivate and environmental Col-0 of arabidopsis thaliana transformation or C24 according to standard conditions.But, screen T1 and T2 plant at the resistance that selectable marker gene is given to selective agent.
Use the substrate (substrate) do not contain the machine component, with plant-growth on platform (flat).Every platform water is got wet, will the seedling culture transferring of resistance be arranged to substrate to selective agent then.Be set to that 22 ℃, relative humidity are 55%, periodicity of illumination is set to culturing plants in hour dark growth room, 16 hours illumination/8.In supplying water, added controlled low or high nitrogen nutrition solution at the 12nd, 15,22 and 29 day.Gave the water supply of nonnutritive solution at the 18th, 25 and 32 day.Use commercial obtainable imaging system,, gather the image that pallet (tray) is gone up all plants at the 26th, 30 and 33 day.At each imaging time point, metering needle comprises plant area, leaf area, biomass, color distribution, colour intensity and growth velocity to biomass and the plant phenotype of every strain plant.
Embodiment 4
The canola oil dish plant of resistance of reverse
With 4 day age canola oil dish seedling the cotyledon petiole as explant, be used for tissue culture, and transform according to EP1566443.Commercial cultivar Westar (Agriculture Canada) is the standard variety that is used to transform, but also can use other kind.The agrobacterium tumefaciens GV3101:pMP90RK that contains binary vector is used to the canola oil dish and transforms.The standard binary vector that is used to transform is pSUN (WO02/00900), but also described be used for Plant Transformation a lot of different binary vector systems (for example, An, G. is at Agrobacterium Protocols, Methods inMolecularBiology volume 44, the 47-62 page or leaf, Gartland KMA and MR Davey write, Humana Press, Totowa, New Jersey).The plant promotor that the plant expression casette that uses comprises a selected marker and the cDNA of the polynucleotide of regulating and control to encode transcribes.Can use the multiple choices marker gene, comprise United States Patent(USP) Nos. 5,767,366 and 6,225, the acetohydroxy acid synthase of 105 disclosed sudden changes (AHAS) gene.With suitable promoter regulation character gene, so that composing type, growth, tissue or the environment conditioning to genetic transcription to be provided.
With canola oil colza surface sterilization 2 minutes in 70% ethanol, in 55 ℃ of warm tap water, hatched 15 minutes, in 1.5% clorox, hatched 10 minutes then, then with the distilled water rinsing of sterilization three times.Then seed being placed does not have on the MS of the hormone substratum, and this substratum contains Gamborg B5 VITAMIN, 3% sucrose and 0.8%Oxoidagar.Shine (<50 μ Mol/m at 24 ℃ of low lights2S, illumination in 16 hours) order seed germination 4 days.Downcut the cotyledon petiole explant that is connected with cotyledon from external seedling, immerse bacterial suspension by cut ends and come to inoculate with Agrobacterium with petiole explant.Then at 24 ℃, under the illumination in 16 hours, explant was cultivated 3 days comprising on the MS substratum of VITAMIN, contain BAP, 3% sucrose, 0.5g/l MES (pH5.2), 0.5mg/l GA3, the 0.8%Oxoidagar of 3.75mg/l in the substratum.After cultivating altogether 3 days with Agrobacterium, petiole explant is forwarded on the regeneration culture medium that contains 3.75mg/l BAP, 0.5mg/l GA3,0.5g/l MES (pH 5.2), 300mg/l Ticarcillin/Clavulanate Acid and selective agent, regenerate up to branch.The branch in case explant germinates, just it is transferred to branch and prolong substratum (A6, the MS substratum that contains complete intensity, it comprises VITAMIN, 2% sucrose, 0.5% Oxoidagar, 100mg/l inositol, 40mg/l adenine sulfate, 0.5g/l MES (pH 5.8), 0.0025mg/l BAP, 0.1mg/l IBA, 300mg/l Ticarcillin/Clavulanate Acid and selective agent) on.
Use the TaqMan probe,, analyze from just for the sample of the external and greenhouse materials of transgenic plant (T0) by qPCR, with existing of checking T-DNA, and the quantity of measuring the T-DNA integration.
By self-pollination from just producing seed for transgenic plant.With s-generation plant culturing under greenhouse experiment, and self-pollination.Use the TaqMan probe to analyze plant,, and measure the quantity that T-DNA integrates with existing of checking T-DNA by qPCR.Relatively the isozygoty stress tolerance of transgenic plant, heterozygosis transgenic plant and unisexuality (azygous) (inefficacy transgenosis) plant for example, inembodiment 2 and 3 described similar checks, is also studied among both relatively their output in greenhouse and field.
Embodiment 5: screening stress tolerance rice plant
Use known method to produce the transgenosis rice plant of the polynucleotide that comprise table 1.Produce about 15 to 20 independent transformants (T0).To just transfer to the greenhouse from tissue culture room, be used for cultivating and results T1 seed for transformant.At genetically modified existence/do not exist 5 incidents to be retained with 3: 1 isolating T1 offsprings.For in these incidents each, by the visual indicia screening, the 10 strain T1 seedling of selecting to contain 10 strain T1 seedling of transgenosis (heterozygosis and homozygote) and lacking transgenosis (inefficacy zygote (nullizygotes)).Forward the T1 plant of selecting to greenhouse.Every strain plant obtains unique bar code label, so that phenotypic data and corresponding plant are clearly connected.Be provided with down at following environment, on the soil of T1 plant culturing in 10cm diameter basin of selecting: photoperiod=11.5 hour, day light intensity=30,000lux or higher, daytime temperature=28 ℃ or higher, nocturnal temperature=22 ℃, relative humidity=60-70%.Transgenic plant and corresponding inefficacy zygote are planted side by side with random site.From sowing stage, till the stage of maturity, make plant for several times by the digital imagery case.Each time point is gathered the image (2048x1536 pixel, 1,600 ten thousand looks) of every strain plant with at least 6 different angles.
In experiment for the second time, verify the data that obtain in the experiment of carrying out with the T1 plant first time with the T2 plant.Selected being used for of strain with correct expression pattern further analyzed.Express by monitoring mark, screening is from the seed of sun plant among the T1 (heterozygote and homozygote) batch.For each incident of selecting, keep the seed batch of heterozygote again, be used for the T2 assessment.In every batch of seed batch, in the greenhouse, cultivate the positive of same quantity and heliophobous plant to be used for assessment.
At growth and/or the output and/or the stress tolerance of its improvement, the screening transgenic plant for example, are usedembodiment 2 and 3 similar tests of describing, and for output, greenhouse and field are studied among both and all carried out.
Embodiment 6: the soybean plants of stress tolerance
Use the method for describing among the total common unsettled international application no WO 2005/121345, the polynucleotide of table 1 are transformed into soybean, the content of the document is incorporated this paper by reference into.
At its growth that improves under the water confined condition and/or arid, salt and/or cold tolerance, the screening transgenic plant for example, are usedembodiment 2 and 3 similar tests of describing, and screen at output in greenhouse and field research then.
Embodiment 7: the wheat plant of stress tolerance
Use people such as Ishida, 1996, the described method of Nature Biotech.14745-50 changes the polynucleotide of table 1 over to wheat.Jejune embryo and the agrobacterium tumefaciens that carries " super double base " carrier are cultivated altogether, transgenic plant are taken place to reclaim by organ.This flow process provides 2.5% to 20% transformation efficiency.Screen transgenic plant at its growth that improves and/or output and/or stress tolerance then under the water confined condition, for example, useembodiment 2 and 3 similar tests of describing, for output, greenhouse and field are studied among both and are all carried out.
Embodiment 8: the maize plant of stress tolerance
Use Agrobacterium that the polynucleotide of table 1 are transformed the into immature embryos of corn.Behind imbibition (imbibition), embryo is forwarded to the substratum that does not have selective agent.After 7 to 10 days, embryo is forwarded on the substratum that contains selective agent, cultivated for 4 weeks (2 weeks shifted once), to obtain callus cell through transforming.By being forwarded to, resistant calli starts plant regeneration on the substratum that is supplemented with selective agent and two to three weeks of cultivation under 25-27 ℃ of illumination.Then the regenerated branch is forwarded on the box of taking root with the substratum that contains selective agent.The plantlet that will have a root forwards in the potting mixtures in the medium and small basin in greenhouse, after shaking down with its culture transferring in bigger basin, and in the greenhouse, keep, up to maturation.
To the every strain in these plants all unique label, sampling and analyzed at the transgenosis copy number.Mark transgenic positive and heliophobous plant,, be used for together culture transferring to big basin with the pairing of identical size.This provides the also competitive environment of unification for transgenic positive and heliophobous plant.Big basin is watered, reach certain water-retaining quantity among field of soil per-cent, this depends on the seriousness that the water of needs is coerced.Keep soil water level by watering every other day.Measure plant-growth and physiological character at growing period, for example height, diameter stem, leaf roll song, plant wilt, leaf extend speed, leaf water state, chlorophyll content and photosynthetic rate.After vegetative period, the over-ground part of results plant claims fresh weight and dry weight to every strain plant.Then the drought tolerance phenotype between transgenic positive and the heliophobous plant is compared.
Basin is added a cover, and described lid allows that seedling is long to get up but make the minimization of loss of water.Regularly every basin is weighed, added water to keep initial water-content.At the experiment end, measure fresh weight and the dry weight of every strain plant, calculate the water of every strain plant consumption, calculate the WUE of every strain plant.Measure plant-growth and physiological character at experimental session, for example, WUE, highly, diameter stem, leaf roll song, plant wilt, leaf extend speed, leaf water state, chlorophyll content and photosynthetic rate.Then the WUE phenotype between transgenic positive and the heliophobous plant is compared.
These basins are remained in the zone that unified envrionment conditions is arranged in the greenhouse, and optimum the cultivation.To the every strain in these plants all unique label, sampling and analyzed at the transgenosis copy number.Make plant grow under these conditions, reach predetermined growth phase up to them.Stop feedwater then.Along with the increase of coercive intensity, measure plant-growth and physiological character, for example, highly, diameter stem, leaf roll song, plant wilt, leaf extend speed, leaf water state, chlorophyll content and photosynthetic rate.Then the dry tolerogenic phenotype between transgenic positive and the heliophobous plant is compared.
Plantation is at the isolating transgenic corn seed of transformation event, to test in the check of cyclicity arid in little basin.These basins are remained in the zone that unified envrionment conditions is arranged in the greenhouse, and optimum the cultivation.To the every strain in these plants all unique label, sampling and analyzed at the transgenosis copy number.Make plant grow under these conditions, reach predetermined growth phase up to them.With the regular time interval, plant is repeated to water to saturated then.Repeat this water/arid circulation at experimental session.During growth phase, measure plant-growth and physiological character, for example, highly, diameter stem, leaf roll song, leaf extend speed, leaf water state, chlorophyll content and photosynthetic rate.At the experiment end, results plant, the fresh weight and the dry weight of title over-ground part.Then the cyclicity drought tolerance phenotype between transgenic positive and the heliophobous plant is compared.
For testing the drought tolerance of isolating transgenic corns under no rain condition, use the managed drought stress of single position or a plurality of positions.Irrigate by drip cloth (dip tape) and top and to control crop water utilizability, this carries out in following position, this position has in average 5 months season less than the precipitation of 10cm and the minimum temperature above 5 ℃, or such position, its quilt with expectation automatically " anti-canopy (rain out shelter) " stop should the season rainfall, anti-canopy is recalled unwanted the time so that open field condition to be provided.Follow the standard agricultural practice in the zone, carry out soil preparation, plantation, fertilising and insect control.Insert the existence of incident and isolating seed at every fritter upper seeding wheel at single transgenosis.On the leaf sample, use the check of Taqman transgenosis copy number, so that transgenosis and inefficacy segregant control plant are distinguished.Also at a series of phenotypes relevant, the plant of gene type is by this way scored with drought tolerance, growth and output.These phenotypes comprise the spike number of the Number of kernels of the grain weight of plant height, every plant, every plant, every plant, on the ground dry weight, leaf be to conductivity, the leaf CO of water vapor2The optical absorbance of the chlorophyll fluorescence parameters that the chlorophyll content, photosynthesis of picked-up, leaf is relevant, water use efficiency, the flow of water of leaf, the relative water-content of leaf, stem liquid flowing rate, stem hydraulic conductivity, leaf temp, foliage reflectance, leaf, leaf area, extend speed, leaf angle, leaf roll song and survive to the required fate of blooming, interval of blooming-reel off raw silk from cocoons, grain milk time length, osmotic potential, osmoregulation, root size, leaf.The standard scheme all be to use manufacturer to provide is provided for all, is used for that the field obtainable equipment of physiological commerce carries out.Each plant is used as the repeating unit of every kind of incident.
For testing the drought tolerance that no rain condition is descended non-separation transgenic corns, use the managed drought stress of single position or a plurality of positions.Irrigate by drip cloth and top and to control crop water availability, this carries out in following position, this position has in average 5 months season less than the quantity of precipitation of 10cm and the minimum temperature above 5 ℃, or such position, its quilt with expectation automatically " anti-canopy " stop should season quantity of precipitation, anti-canopy is recalled unwanted the time so that open field condition to be provided.Follow the standard agricultural practice in the zone, carry out soil preparation, plantation, fertilising and insect control.The design experiment scheme, it is paired in abutting connection with splat to make that the splat contain non-separation transgenic event and inefficacy segregant contrast.The inefficacy segregant is because Mendelian separates the offspring's (perhaps coming from offspring's strain) who does not contain genetically modified transgenic plant.Around test, be distributed with and additionally repeat paired splat at particular event.In paired splat, a series of phenotypes relevant with drought tolerance, growth and output are scored, and on the level of splat, it is assessed.When measuring technology only can be applied to bion, in splat, select plant at random at every turn.These phenotypes comprise the spike number of the Number of kernels of the grain weight of plant height, every plant, every plant, every plant, on the ground dry weight, leaf be to conductivity, the leaf CO of water vapor2The optical absorbance of the chlorophyll fluorescence parameters that the chlorophyll content, photosynthesis of picked-up, leaf is relevant, water use efficiency, the flow of water of leaf, the relative water-content of leaf, stem liquid flowing rate, stem hydraulic conductivity, leaf temp, foliage reflectance, leaf, leaf area, extend speed, leaf angle, leaf roll song and survive to the required fate of blooming, interval of blooming-reel off raw silk from cocoons, grain milk time length, osmotic potential, osmoregulation, root size, leaf.The standard scheme all be to use manufacturer to provide is provided for all, is used for that the field obtainable equipment of physiological commerce carries out.Each splat is used as the repeating unit of every kind of incident.
For transgenic corns being carried out the multi-position test, select 5 to 20 positions that comprise main corn planting district at drought tolerance and output.With its extensive distribution, so that the crop water availability (based on medial temperature, humidity, quantity of precipitation and soil type) of a series of expectations to be provided.Not to the in addition outer change of standard agricultural practice of crop water availability.The design experiment scheme, it is paired in abutting connection with splat to make that the splat contain non-separation transgenic event and inefficacy segregant contrast.In paired splat, a series of phenotypes relevant with drought tolerance, growth and output are scored, and on the level of splat, it is assessed.When measuring technology only can be applied to bion, in splat, select plant at random at every turn.These phenotypes comprise the spike number of the Number of kernels of the grain weight of plant height, every plant, every plant, every plant, on the ground dry weight, leaf be to conductivity, the leaf CO of water vapor2The optical absorbance of the chlorophyll fluorescence parameters that the chlorophyll content, photosynthesis of picked-up, leaf is relevant, water use efficiency, the flow of water of leaf, the relative water-content of leaf, stem liquid flowing rate, stem hydraulic conductivity, leaf temp, foliage reflectance, leaf, leaf area, extend speed, leaf angle, leaf roll song and survive to the required fate of blooming, interval of blooming-reel off raw silk from cocoons, grain milk time length, osmotic potential, osmoregulation, root size, leaf.The standard scheme all be to use manufacturer to provide is provided for all, is used for that the field obtainable equipment of physiological commerce carries out.Each splat is used as the repeating unit of every kind of incident.
Appendix
Come from the cDNA sequence (SEQ ID NO:1) of the BN51364980 of canola oil dish:
atggcttcttctagttgtttcaccattcagtcacgtttcgtctcagcgagaacaaagctcgattcaatctccaaaccgagtctctccggattcgcttgtcgttctcttacaaaacccagaaacttgaatctctctgttcttcttcggtgttccatgggttcctttaactcttctcagaaatcagacaacgtccaagaagctgcaaagagtgactttgcttcaataagtgaaggtgagtggaagaaacggctaacaccagaacagtattacatcaccagacagaagggaacagagagagctttcactggtgagtattggaatacaaagaccccaggagtatacaaatgtatctgttgcgacacgccactgtttgactcatcaacaaagcttgatagtggaaccgggtggccatcgtattaccaacctattggaaacaatgtgaagtcaaagctggacctctctatcatcttcatgcctagacaagaagttatctgtgctgtttgtaacgcccatcttggtcatgtcttcgatgacggtccacgaccaaccggaaaacgatattgcctcaacagtgctgctctgaaacttgagtcattggag?agaacaagagaatga
BN51364980 cDNA is translated as following amino acid sequences (SEQ ID NO:2):
massscftiqsrfvsartkldsiskpslsgfacrsltkprnlnlsvllrcsmgsfnssqksdnvqeaaksdfasisegewkkrltpeqyyitrqkgteraftgeywntktpgvykciccdtplfdsstkldsgtgwpsyyqpignnvkskldlsiifmprqevicavcnahlghvfddgprptgkryclnsaalkleslertre
Come from the cDNA sequence (SEQ ID NO:3) of the OS34096188 of paddy rice:
atgggcttcaatattctgagaaccacttccatctccactcctatctcttcctccaaatccaaacccattttctcaactcttcttcgttcttctccttccaccattttccccccaaagtccgttactcccaccactcttttcgtttctgccacccccttcttcactctccatcccaagcttggttttcgtggtgggattgtggccatggccgcacctggctctctccgcaaatccgaggaagagtggcgcgcaattctctcccctgaacagtttcggatcctcaggcaaaagggcaccgagttccctggaacaggagagtatgacaagttctatgaagagggagtttacaactgtgctggttgtgggactccactctacaggtccataacaaaattcaattctggttgtggctggccagccttctatgaggggattcccggagccataaatcgcaatccggatcctgatgggatgaggacagaaataacgtgtgctgcttgtgggggacatctaggtcacgtctttaaaggagaaggatttccaacacccactaacgaacgccattgtgtcaatagcatttcgctgaaatttgcgccagccaattcttattcttaa
OS34096188 cDNA translates into following amino acid sequences (SEQ ID NO:4):
mgfnilrttsistpissskskpifstllrsspstifppksvtpttlfvsatpfftlhpklgfrggivamaapgslrkseeewrailspeqfrilrqkgtefpgtgeydkfyeegvyncagcgtplyrsitkfnsgcgwpafyegipgainrnpdpdgmrteitcaacgghlghvfkgegfptptnerhcvnsislkfapansys
Come from the OS32583643 cDNA sequence (SEQ ID NO:5) of paddy rice:
atggccatgcggcaatacgcggctgctaccgctgcctcctccagtttcagagcacgtccacgggcgcgcccctcctgcctcccagccgccgccctgcccttggcgccttgctgtggtgtggcgtggagccgtgctagctacaggcgagcctccgttcgtgccatgggtgccgcttcatcgtcttcgtcgtcgtcgtcgtcgtctccgtcgccgcagggtcaagcccaagcccaagcccaaggtaaaccgaactacagtacatctctgactgatgaggagtggaggaagcgcctgacaaaagatcagtattacattactcggcagaagggcacagaaagagcatttactggggaatactggaacaccaaaaccccgggcatctaccattgtgtctgctgtgacacccctctttttgagtcatcgaccaaatttgatagtggtactgggtggccgtcatattatcaacccattggagataatgtaaagtgcaagcttgatatgtccatcatattcatgcctcggactgaggtgctgtgtgctgtctgtgacgctcatctggggcacgtgtttgatgatgggccacgaccaacagggaaaagatactgtatcaatagcgcatctctcaagctgaagaagacccagtag
OS32583643 cDNA translates into following amino acid sequences (SEQ ID NO:6):
mamrqyaaataasssfrarprarpsclpaaalplapccgvawsrasyrrasvramgaasssssssssspspqgqaqaqaqgkpnystsltdeewrkrltkdqyyitrqkgteraftgeywntktpgiyhcvccdtplfesstkfdsgtgwpsyyqpigdnvkckldmsiifmprtevlcavcdahlghvfddgprptgkrycinsaslklkktq
Come from the GM53626178 cDNA sequence (SEQ ID NO:7) of soybean:
atgggattgagtattctgagaagcacttccatttccactcctatctcttcctccaaatccaaacccattttctcaactcttgttcgttcatctttcgcctccatttcccccacaaagtgtgttactcccaccactcttttcgtttctgccacccccttcttcaccgcctcacccaagcgcggctttcgtggtgggattgtggccatggccgccgctggctcgctccgcaaatcagaggaagagtggcgcgcagttctctcccctgaacagtttcgtattctcaggcaaaagggcaccgagttccctggaacaggagagtatgacaagttctttgatgagggagtttacaactgtgctggttgtgggacacctctctacaggtccttaacaaaattcaattctggttgtggctggccagccttctatgaggggattcctggagccataaatcgcaatccggaccctgatgggatgaggacagaaataacgtgtgctgcttgtgggggacatctaggtcacgtctttaaaggagaaggatttccaacgcccactaacgaacgccattgtgtcaatagcatttcactgaaatttgcgccagccaattcttaa
GM53626178 cDNA translates into following amino acid sequences (SEQ ID NO:8)
mglsilrstsistpissskskpifstlvrssfasisptkcvtpttlfvsatpfftaspkrgfrggivamaaagslrkseeewravlspeqfrilrqkgtefpgtgeydkffdegvyncagcgtplyrsltkfnsgcgwpafyegipgainrnpdpdgmrteitcaacgghlghvfkgegfptptnerhcvnsislkfapans
Come from the TA56540264 cDNA sequence (SEQ ID NO:9) of wheat:
atggcgtcgccccacgcccacccggccacgcggcccctctcatcgctcccgtccctcctcctcgcccgctcctcctccgccgccaccgccgccgcgtcgtccgcccgccccgcctccctctccctctcgtgctcgcggtcgcgggcgcgggcctactgcccagccggacgacggttgccgggcgccgtggtggctatgtcgtcggcggcgcccacgccggggcccgtgcagaagtcggaggaggagtgggaggccgtcctcacgccggagcagttccgcatcctccgccgcaagggcaccgagtatcctggaacaggtgaatatgacaagttcttcagtgagggtatttacggatgtgctggctgtggaacccccttgtacaaatcatctacgaagttcaactcagggtgtggttggccagcattctatgaaggatttcctggagccataaaacggacggcggatcctgatgggaggcgaattgagatcacatgtgctgcttgtgaaggacatctggggcatgtgttcaaaggggaggggttcaacacgccgactgatgagcgacactgcgtcaacagtatctcactcaagttcgttccggcctctgaagaggctagttga
TA56540264 cDNA translates into following amino acid sequences (SEQ ID NO:10):
masphahpatrplsslpslllarsssaataaassarpaslslscsrsraraycpagrrlpgavvamssaaptpgpvqkseeeweavltpeqfrilrrkgteypgtgeydkffsegiygcagcgtplyksstkfnsgcgwpafyegfpgaikrtadpdgrrieitcaaceghlghvfkgegfntptderhcvnsislkfvpaseeas
Come from the BN45206322 cDNA sequence (SEQ ID NO:11) of canola oil dish:
atgatgaagagattaagcagttcagattcagtgggtggtctcatctctttatgtcccactacttccacagatcagccgaatccaagaagatgcgggagagaatttcagtcgatgctcgaaggttacgaggaggaagaagaagaagccataaccgaggaaagaggacaaaccggtttagccgagaagaagagacggttaaacattaaccaagttaaagccttggagaaaaatttcgagttagagaacaagcttgagcctgagaggaaagtgaagttagctcaagaacttggtctccaacctcgtcaagtagctgtttggtttcagaaccgccgtgcgcggtggaagacaaaacagcttgagaaagattacggtgttctcaaaacgcaatacgattctctccgccataactttgattccctccgccgtgaaaatgaatctcttcttcaagagatcggtaaactaaaagctaagcttaacggagaagaagaaggagatgatgttgatgaagaagagaacaacttggcgacgatggagagtgatgtttccgtcaaggaagaagaagtttcgttgccggagcagatcacagagccgccgtcttctcctccgcagcttctagagcattccgacagtttcaattaccggagtttcaccgacctccgcgaccttcttccgttaaaggccgcggcttcctccgtcgccgccgctggatcgtcggacagtagcgattcgagcgccgtgttgaacgaggaaagtagctctaacgttacggcggctccggcgacggttcccggcggcagtttcttgcagtttgtgaaaatggagcagacggaggatcacgacgactttctgagtggagaagaagcgtgcgggtttttctccgatgaacagccaccgtctctgcactggtattccaccgttgatcagtggaactga
BN45206322 cDNA translates into following amino acid sequences (SEQ ID NO:12):
mmkrlsssdsvgglislcpttstdqpnprrcgrefqsmlegyeeeeeeaiteergqtglaekkrrlninqvkaleknfelenkleperkvklaqelglqprqvavwfqnrrarwktkqlekdygvlktqydslrhnfdslrrenesllqeigklkaklngeeegddvdeeennlatmesdvsvkeeevslpeqiteppssppqllehsdsfnyrsftdlrdllplkaaassvaaagssdssdssavlneesssnvtaapatvpggsflqfvkmeqtedhddflsgeeacgffsdeqppslhwystvdqwn
Come from the GM48923793 cDNA sequence (SEQ ID NO:13) of soybean:
atggcgggtagtggaagtgccttttccaacatcactagctttcttcgcacccaacaaccctcttctcaacctctcgattcttctctcttcctctctgcaccttcctctgctcctttcctcggttcgagatccatgatgagttttgatggagaaggagggaaggggtgtaacggctccttcttccgcgcgtttgacatggacgacaatggggatgagtgcatggacgagtactttcatcaacccgagaagaagcgacgtctctctgcgagccaggttcagtttctagagaagagcttcgaggaggagaacaagcttgaacccgagagaaagaccaaactagccaaagaccttggtttgcagccacggcaagttgctatttggttccagaaccgtagagctcggtggaagaacaaacagctggagaaggattacgagactctgcatgcaagttttgagagtctcaagtccaactatgactgtcttctcaaggagaaagacaagttaaaagctgaggtggcgagcctcactgagaaggtgcttgcaagagggaaacaagaggggcacatgaagcaggctgaaagtgaaagtgaagaaacaaaaggattattgcatttgcaggaacaggaaccaccccagaggcttttactgcaatcagtttcggagggagaaggatccaaagtctcttctgtcgttgggggttgtaaacaggaagatatcagttcagcaaggagtgacattttggattcagatagtccacattacaccgatggagttcactctgcgctgctagagcatggtgattcttcttatgtgtttgagcctgatcaatcagatatgtcacaagatgaagaagataacctcagcaagagtctctacccttcgtacctctttcccaaacttgaagaagatgtggattactccgacccacctgaaagttcttgtaattttggatttcctgaggaagatcatgtcctttggacctgggcttactactaa
GM48923793 cDNA translates into following amino acid sequences (SEQ ID NO:14):
magsgsafsnitsflrtqqpssqpldsslflsapssapflgsrsmmsfdgeggkgcngsffrafdmddngdecmdeyfhqpekkrrlsasqvqfleksfeeenkleperktklakdlglqprqvaiwfqnrrarwknkqlekdyetlhasfeslksnydcllkekdklkaevasltekvlargkqeghmkqaeseseetkgllhlqeqeppqrlllqsvsegegskvssvvggckqedissarsdildsdsphytdgvhsallehgdssyvfepdqsdmsqdeednlskslypsylfpkleedvdysdppesscnfgfpeedhvlwtwayy
Come from the TA55969932 cDNA sequence (SEQ ID NO:15) of wheat:
atggagcccggccggctcatcttcaacacgtcgggctccggcaacggacagatgctcttcatggactgcggcgcgggcggcatcgccggcgcggccggcatgttccatcgaggggtgagaccggtcctcggcggcatggaagaagggcgcggcgtgaagcggcccttcttcacctcgccggatgacatgctggaggaggagtactacgacgagcagctcccggagaagaagcggcgcctcacgccggagcaggtccacctgctggagaggagcttcgaggaggagaacaagctggagccggagaggaagacggagctggcccgcaagctcgggctgcagccacggcaggtggccgtctggttccagaaccgccgcgcccggtggaagacaaagacgctggagcgcgacttcgaccgcctcaaggcgtccttcgacgccctccgcgccgaccacgacgcgctcctccaggacaaccaccggctccggtcacaggtggtaacgttgaccgagaagatgcaagataaggaggcgccggaaggcagcttcggtgcagccgccgacgcctcggagccggagcaggcggcggcggaggcgaaggcttccttggccgacgccgaggagcaggccgcggcagcggaggcgttcgaggtggtgcagcagcagctgcacgtgaaggacgaggagaggctgagcccggggagcggcgggagcgcggtgctggacgcgagggacgcgctgctcgggagcggatgcggcctcgccggcgtggtggacagcagcgtggactcgtactgcttcccggggggcgccggcggcgacgagtaccacgagtgcgtggtgggccccgtggcgggcggcatccagtcggaggaggacgacggcgcgggcagcgacgagggctgcagctactaccccgacgacgccgccgtcttcttcgccgccgcgcaagggcacggccaccatcgcacggacgacgacgatcagcaggacgacggccagatcagctactggatgtggaactag
TA55969932 cDNA translates into following amino acid sequences (SEQ ID NO:16):
mepgrlifntsgsgngqmlfmdcgaggiagaagmfhrgvrpvlggmeegrgvkrpfftspddmleeeyydeqlpekkrrltpeqvhllersfeeenkleperktelarklglqprqvavwfqnrrarwktktlerdfdrlkasfdalradhdallqdnhrlrsqvvtltekmqdkeapegsfgaaadasepeqaaaeakasladaeeqaaaaeafevvqqqlhvkdeerlspgsggsavldardallgsgcglagvvdssvdsycfpggaggdeyhecvvgpvaggiqseeddgagsdegcsyypddaavffaaaqghghhrtddddqqddgqisywmwn
Come from the BN47310186 cDNA sequence (SEQ ID NO:17) of canola oil dish:
atggaccacgacaaaacaggatgccaaagcccacctgaaggtcccaagctatgcatcaacaactgcggtttcttcggaagcgctgccacaatgaacatgtgttccaagtgtcacaaggctatcctgtttcaacaggaacagggggctaggtttgcatctgcagtgtctggtggtacatcatcatccagcaacatcttaaaggaaacctttgctgctaccgcgctggttgatgctgaaaccaaatccgttgagccggtggctgtctctgtacagccatcttctgtccaagttgccgcagaggtagtagctccagaagccgctgcagcaaaactaaaggaaggaccaagccgatgtgctacttgcaataaacgggttggtctgactggattcaaatgtcgctgtggtgacctcttctgcgggacgcaccgttatgcagacatacacaactgctccttcaattaccatgccgctgcgcaagaagctatagctaaagcaaacccggttgtgaaggcagagaagcttgacaaaatctga
BN47310186 cDNA translates into following amino acid sequences (SEQ ID NO:18):
mdhdktgcqsppegpklcinncgffgsaatmnmcskchkailfqqeqgarfasavsggtssssnilketfaatalvdaetksvepvavsvqpssvqvaaevvapeaaaaklkegpsrcatcnkrvgltgfkcrcgdlfcgthryadihncsfnyhaaaqeaiakanpvvkaekldki
Come from the BN51359456 cDNA sequence (SEQ ID NO:19) of canola oil dish
atggcggaagagcatcgatgccagacgccggaaggccaccgtctctgtgctaacaactgcggcttcctcggcagctccgccaccatgaatctatgctccaactgctacggcgatctctgccttaagcaacagcaagcttccatgaaatccaccgtcgaatcctctctctccgccgtatctcctccgtcgtcagagatcggctctatgcaatccaccgttgaatcctctctctccgacgtatctcctccatcaccggagaccatttccatctcctctccaatgatccagcctctcgttcgaaacccatcagctgaattggaggtaacggcgacgaagacggtgactccgccgccggagcagcagcagaaacggccgaatcggtgcacgacgtgtaggaaacgggtcgggttgaccgggttcaagtgccggtgcgggacgactttttgcggggctcacaggtacccggaggtccatggatgcaccttcgatttcaaatcggccggtcgcgaagagatcgccaaggcgaacccactcgtcaaagcggcgaagcttcagaagatttga
BN51359456 cDNA translates into following amino acid sequences (SEQ ID NO:20):
maeehrcqtpeghrlcanncgflgssatmnlcsncygdlclkqqqasmkstvesslsavsppsseigsmqstvesslsdvsppspetisisspmiqplvrnpsaelevtatktvtpppeqqqkrpnrcttcrkrvgltgfkcrcgttfcgahrypevhgctfdfksagreeiakanplvkaaklqki
Come from the HV62552639 cDNA sequence (SEQ ID NO:21) of barley:
atggcccaggagagttgtgatctcaacaaggacgaggccgagatcctgaagccatcctcctccacaccttcgcctccttcgccagccacaccaccaccaccaaccgctcaaataccagaaccacaacctccacactcaccaccacaaccaccggcagctcaattcttgtccaggccctgcgaggttgttcccatagagacttccaaaaagaggaaacatgctgatgcggtgtcaatggccattgtggttgagccattgtcgtctgtgctgttcgttaaccgttgcaacgtgtgccgcaagagagttggtttgaccgggttccgttgccggtgtgagaagctcttttgtccgcgccaccggcattcagaaagccacgactgctcatttgattataaaactgtgggtcgggaggagattgcccgggcaaaccctctgatcagggctgccaagatcattaggatatga
HV62552639 cDNA translates into following amino acid sequences (SEQ ID NO:22):
maqescdlnkdeaeilkpssstpsppspatpppptaqipepqpphsppqppaaqflsrpcevvpietskkrkhadavsmaivveplssvlfvnrcnvcrkrvgltgfrcrceklfcprhrhseshdcsfdyktvgreeiaranpliraakiiri
Come from the ZM61995511 cDNA sequence (SEQ ID NO:23) of corn:
atggaacacaaggaggcgggctgccagcagccggagggcccaatcctatgcatcaataactgcggcttcttcggcagtgctgcgacgatgaacatgtgctccaagtgccacaaggagatgataacgaagcaggagcaggcccagctggctgcctcccccatcgatagcattgtcaatggcggtgacggcgggaaaggacctgtaattgctgcatctgtaaatgtggcagttcctcaagttgagcagaagactattgttgtgcagcccatgcttgtagctgaaaccagcgaggctgctgctgtaatccccaaggccaaggaaggcccagaccggtgcgcggcctgcaggaagcgtgttgggctgacgggatttagctgccgatgcgggaacatgtactgttcggtgcaccgctactccgacaaacatgactgtcagttcgactatcggactgcagcaagggacgcgat?tgccaaggccaatcctgtggtgagggcggagaagctcgacaagatctga
ZM61995511 cDNA translates into following amino acid sequences (SEQ ID NO:24):
mehkeagcqqpcgpilcinncgffgsaatmnmcskchkemi?tkqeqaqlaaspidsivnggdggkgpviaasvnvavpqveqktivvqpmlvaetseaaavipkakegpdrcaacrkrvgltgfscrcgnmycsvhrysdkhdcqfdyrtaardaiakanpvvraekldki
Come from the LU61567101 cDNA sequence (SEQ ID NO:25) of Semen Lini:
atggctccttcaccttgcgtccacggctgcacggccaattgcccccgctgccactcttacggacaccccatcttcgggaactcagatctcgccgctggcggcagcgatacgtccacgtcggtgtttggaaaagtaggatccgtcgtgattcagtcgcctgcgaagaatcacgcgttcggccaagcttgtggcccggtttttccctcgagctcctcccctttccgccgcatcaagttcggccccaaagatggcgaggggaaaggaccgctgaagccgatcgagaagcagccgtcgaagaagcgtccgttctgcttctctcccgacgagacgattgacgcgacggttcctccgtccaccaaaccgttcggttcgttccgttccgtctgtgtcacggacgccgacgaggccaggttgaaggcgaaccgcgagttcttcgctccggtatcccgcaaacgtggcttcgatccgactgacatgaccttcggtaacgccgccgccgctgcggctaatgcgagggaggaagcgaagaagtggtgcggcagttgcaagaagcgcgtggggctgttagggttcaagtgcaggtgtacgaagttcttctgtgggaagcatcggtatcctgaggagcatggttgtacgttcgatcatgtggcgttcgggaggcggattatcgagaaacagaatcctgttctcgagaccgacaagctggtggacagaatctga
LU61567101 cDNA translates into following amino acid sequences (SEQ ID NO:26):
mapspcvhgctancprchsyghpifgnsdlaaggsdtstsvfgkvgsvviqspaknhafgqacgpvfpsssspfrrikfgpkdgegkgplkpiekqpskkrpfcfspdetidatvppstkpfgsfrsvcvtdadearlkanreffapvsrkrgfdptdmtfgnaaaaaanareeakkwcgsckkrvgllgfkcrctkffcgkhrypeehgctfdhvafgrriiekqnpvletdklvdri
Come from the LU61893412 cDNA sequence (SEQ ID NO:27) of Semen Lini:
atggaccatgacgaggcaggctgccaggctccttccgatcatcctattctgtgcgttaacaattgcggcttcttcggaagtgctgccaccatgaacatgtgctcaaagtgccacaaggatacgatgctaaaccaagagcaatccaagcttgctgcttcatcggcagcaagtatcctcaacggatcgtcgatgagcctcggaagggaactcgttattgctgctaagaccaattcggtagaacccaagaccatctccgtccaaccatcttctgcttcaagtgctgaagagagtatcgaaatgaagctgccaaaagaagggcccagtaggtgcaacacttgcaacaaacgtgtcggtttgaccggattcaaatgtcggtgcgagaacatgttctgcgcaaaccatcgctactcggacaagcacaattgcccctttgattaccgcactgctggccgtgaagctatctcaaaggccaatcctttggtgaaggcggagaagctcgacaaaatctga
LU61893412 cDNA translates into following amino acid sequences (SEQ ID NO:28)
mdhdeagcqapsdhpilcvnncgffgsaatmnmcskchkdtmlnqeqsklaassaasilngssmslgrelviaaktnsvepktisvqpssassaeesiemklpkegpsrcntcnkrvgltgfkcrcenmfcanhrysdkhncpfdyrtagreaiskanplvkaekldki
Come from the OS39781852 cDNA sequence (SEQ ID NO:29) of paddy rice:
atggcgcagcgcgacaagaaggatcaggagccgacggagctcagggcgccggagatcacgctgtgcgccaacagctgcggattcccgggcaacccggccacgcagaacctctgccagaactgcttcttggcggccacggcgtccacctcgtcgccgtcttctttgtcgtcaccggtgctcgacaagcagccgccgaggccggcggcgccgctggttgagcctcaggctcctctcccaccgcctgtggaggagatggcctccgcgctcgcgacggcgccggcgccggtcgccaagacgtcggcggtgaaccggtgctccaggtgccggaagcgtgtcggcctcaccgggttccggtgccggtgcggccacctgttctgcggcgagcaccggtactccgaccgccacggctgcagctacgactacaagtcggcggcgagggacgccatcgccagggacaacccggtggtgcgcgcggccaagatcgttaggttctga
OS39781852 cDNA translates into following amino acid sequences (SEQ ID NO:30):
maqrdkkdqeptelrapeitlcanscgfpgnpatqnlcqncflaatastsspsslsspvldkqpprpaaplvepqaplpppveemasalatapapvaktsavnrcsrcrkrvgltgfrcrcghlfcgehrysdrhgcsydyksaardaiardnpvvraakivrf
Come from the OS34701560 cDNA sequence (SEQ ID NO:31) of paddy rice:
atggccgaagaacaccgatgccaagctcccgaaggtcacagactctgctccaacaactgcggtttctttggtagccccgccaccatgaatctctgttccaaatgctacagagacatccgtttgaaggaagaagaacaagccaaaaccaaatccacaatcgaaaccgctctttcaggatcttcctccgccaccgtcaccgcaaccgccgtcgttgcctcctccgtggaatccccttcggcgccggttgaatccctccctcaaccaccggtgctgatttcgccggatatagccgcaccggttcaggcgaaccggtgcggcgcgtgtaggaagcgcgtggggttgacagggttcaagtgcaggtgcggaacaacgttttgtgggagccacaggtaccccgagaaacacgcgtgtggcttcgatttcaaggcggtggggagagaggagatagcacgggcgaatcccgtgatcaaaggcgagaagctacggaggatttaa
OS34701560 cDNA translates into following amino acid sequences (SEQ ID NO:32):
maeehrcqapeghrlcsnncgffgspatmnlcskcyrdirlkeeeqaktkstietalsgsssatvtatavvassvespsapveslpqppvlispdiaapvqanrcgacrkrvgltgfkcrcgttfcgshrypekhacgfdfkavgreeiaranpvikgeklrri
Come from the OS36821256 cDNA sequence (SEQ ID NO:33) of paddy rice:
atggcgcagagggagaagaaggtggaggagccgacggagctgagggcgccggagatgacgctctgcgccaacagctgcgggttcccgggcaacccggcgaccaacaacctctgccagaactgcttcttggctgcctcggcgtcttcttcttcttcttccgccgctgcctcgccgtcgacgacgtcgttgccggtgtttccggtggtggagaagccgaggcaggccgtacagtcgtcggcggcggcggcggtggcgctggtggttgagcggccgacggcggggccggtggagtcgtcgtcgaaggcgtcgaggtcgtcgtcggtcaaccgatgccacagctgccggaggcgggtgggcctgaccgggttccggtgccgctgcggcgagctctactgcggcgcgcaccggtactccgaccgccacgactgcagcttcgactacaagtcggcggcgagggacgccatcgccagggagaaccccgtcgtccgcgccgccaagatcgttaggttctaa
OS36821256 cDNA translates into following amino acid sequences (SEQ ID NO:34):
maqrekkveeptelrapemtlcanscgfpgnpatnnlcqncflaasassssssaaaspsttslpvfpvvekprqavqssaaaavalvverptagpvessskasrsssvnrchscrrrvgltgfrcrcgelycgahrysdrhdcsfdyksaardaiarenpvvraakivrf
Come from the GM51659494 cDNA sequence (SEQ ID NO:35) of soybean:
atggctcagaaaaccgagaaagaagaaaccgacttcaaagttccggaaacgattacgctttgcgtcaacaactgcggcgtcaccggaaaccctgccacgaataacatgtgccagaagtgcttcactgcctctaccgccaccacttccggcgccggaggtgccggaatagcttctccggcgaccagatccggcgtctccgcgcgtcctcagaagagatcttttcctgaagagccctcgccggtggcggatcctccttcttcggaccagacgacgccgtcggaggcgaagcgcgtggtcaaccgctgctccggatgccggcggaaggtcggactcaccggattccggtgccggtgcggcgagctcttctgcgccgagcaccggtactccgaccgccacgactgcagctatgactacaaagccgccggaagagaagccatcgcgagggagaatccggtgatcagagctgcgaagatcgtcaaagtctga
GM51659494 cDNA translates into following amino acid sequences (SEQ ID NO:36):
maqktekeetdfkvpetitlcvnncgvtgnpatnnmcqkcftastattsgaggagiaspatrsgvsarpqkrsfpeepspvadppssdqttpseakrvvnrcsgcrrkvgl?tgfrcrcgelfcaehrysdrhdcsydykaagreaiarenpviraakivkv
Come from the GM49780101 cDNA sequence (SEQ ID NO:37) of soybean:
atggagcctcatgatgagactggatgccaggctcctgaacgccccattctttgcattaataattgtggcttctttggaagagcagctaccatgaacatgtgttccaagtgttacaaggacatgctgttgaagcaggagcaggacaaatttgcagcatcatccgttgaaaacattgtgaatggcagttccaatggcaatggaaagcaggctgtggctactggtgctgttgctgtacaagttgaagctgtggaggtcaagattgtctgtgctcagagttctgtggattcgtcctccggtgatagtttggagatgaaagccaagactggtcccagtagatgtgctacatgccggaaacgtgttggtttaactggtttcagctgcaaatgtggcaacctcttctgtgcaatgcatcgctattctgataaacatgattgcccttttgattataggactgttggtcaggatgccatagctaaagccaaccccataattaaggcagataagctcgacaaaatctag
GM49780101 cDNA translates into following amino acid sequences (SEQ ID NO:38)
mephdetgcqaperpilcinncgffgraatmnmcskcykdmllkqeqdkfaassvenivngssngngkqavatgavavqveavevkivcaqssvdsssgdslemkaktgpsrcatcrkrvgltgfsckcgnlfcamhrysdkhdcpfdyrtvgqdaiakanpiikadkldki
Come from the GM59637305 cDNA sequence (SEQ ID NO:39) of soybean:
atggaccatgacaagactgggtgccaagctcctcctgaaggtcctatattgtgcatcaacaactgtgggttttttggaagtgcagctaccatgaacatgtgttctaaatgccacaaagacatattgctgaaacaggagcaggccaagcttgcagcatcatccattgggaatattatgaatgggtcatcaagcagcactgaaaaggaacctgttgttgctgctgctgctaatattgatatcccagttattccagtagagcctaaaactgtctctgtgcaacctttatttggttcaggtccagaggggagtgttgaggcaaagccgaaggatggaccaaaacgttgcagcagctgcaacaagcgagttggtttgacagggtttaattgtcgatgtggtgacctttttttgtgctgtacatcgctactcgacaagcataattgcccatttgattaccgcactgccgctcaagatgctatagctaaagcaaacccagttgtcaaggctgaaaagcttgataagatctaa
GM59637305 cDNA translates into following amino acid sequences (SEQ ID NO:40):
mdhdktgcqappegpilcinncgffgsaatmnmcskchkdillkqeqaklaassignimngsssstekepvvaaaanidipvipvepktvsvqplfgsgpegsveakpkdgpkrcsscnkrvgltgfncrcgdlflcctslldkhncpfdyrtaaqdaiakanpvvkaekldki
Come from the TA55974113 cDNA sequence (SEQ ID NO:41) of wheat:
atggcgcagcgggatcacaagcaggaggagcccacggagctgcgggcgccggagatcacgctctgcgccaacagctgcggcttcccgggcaacccggccacgcagaacctctgccagaactgcttcttggccggcccggcgtccacgtcgccgtcttcctcctcctcctcctcctcttctctgccgggcgtgtccgcgccgacccccgtcatcgacaggccgaggccggcgccgttggaggcggagctggcacgccccgccgtcgaccttgctccggcgacggaggcgaagccggcgaggacgtcggtgaaccggtgctccagctgccggaagcgcgtggggctgacggggttccggtgccggtgcggcgacatgttctgcggcgagcaccggtactcggaccggcacgggtgcagctacgactacaaggccgccgccagggacgccatcgccagggacaaccccgtcgtgcgcgccgccaagatcgtcaggttctga
TA55974113 cDNA translates into following amino acid sequences (SEQ ID NO:42)
maqrdhkqeeptelrapeitlcanscgfpgnpatqnlcqncflagpastspssssssssslpgvsaptpvidrprpapleaelarpavdlapateakpartsvnrcsscrkrvgltgfrcrcgdmfcgehrysdrhgcsydykaaardaiardnpvvraakivrf
EST65 aminoacid sequence (SEQ ID NO:43)
mvaesvlvcrssvvgaglqsfvgegakresagpgrsvflgaqvqkmgagmsarsdvrpaavpkasgdvseqtdyktfsdeewkkrlsqqqfyvarkkgterpftgeywntktagtylcvccktplfssktkfdsgtgwpsyydtigdnvkshmdwsipfmprtevvcavcdahlghvfddgprptgkrycinsaaidlkaekqeern
EST12 aminoacid sequence (SEQ ID NO:44)
mvvpslpafggqnamlrrnidnntdtlisllqgscsprvsmqqvprsseslenmmgacgqklpyfssfdgpsveeqedvdegidefahhvekkrrlsleqvrslernfevenkleperkmqlakelglrprqvavwfqnrrarwktkqlehdyetlkkaydrlkadfeavtldtnalkaevsrlkgisnddvkpaefvqgkcdttshpaspaqsersdivssrnrttptihvdpvapeeagahltmssdsnssevmdadsprtshtsasrstlstsvvqpdeglgvaqyphfspenfvgpnmpeicadqslasqvkleeihsfnpdqtflllpnwwdwa
EST307 aminoacid sequence (SEQ ID NO:45)
matervsqettsqapegpvmcknlcgffgsqatmglcskcyretvmqakmtalaeqatqaaqatsataaavqppapvhetkltcevertmivphqsssyqqdlvtpaaaapqavkssiaapsrpepnrcgscrkrvgltgfkcrcgnlycalhrysdkhtctydykaagqeaiakanplvvaekvvkf
Sequence table
<110〉BASF. Plant Science GmbH
 
<120〉have the stress tolerance of increase and the transgenic plant of output
 
<130>PF57972
 
<160>45
 
<170>PatentIn?version?3.4
 
<210>1
<211>615
<212>DNA
<213〉colea
 
<220>
<221>CDS
<222>(1)..(615)
<223〉methionine sulfoxide reductase family protein (BN51364980)
 
<400>1
atg?gct?tct?tct?agt?tgt?ttc?acc?att?cag?tca?cgt?ttc?gtc?tca?gcg?????48
Met?Ala?Ser?Ser?Ser?Cys?Phe?Thr?Ile?Gln?Ser?Arg?Phe?Val?Ser?Ala
1???????????????5???????????????????10??????????????????15
aga?aca?aag?ctc?gat?tca?atc?tcc?aaa?ccg?agt?ctc?tcc?gga?ttc?gct?????96
Arg?Thr?Lys?Leu?Asp?Ser?Ile?Ser?Lys?Pro?Ser?Leu?Ser?Gly?Phe?Ala
20??????????????????25??????????????????30
tgt?cgt?tct?ctt?aca?aaa?ccc?aga?aac?ttg?aat?ctc?tct?gtt?ctt?ctt????144
Cys?Arg?Ser?Leu?Thr?Lys?Pro?Arg?Asn?Leu?Asn?Leu?Ser?Val?Leu?Leu
35??????????????????40??????????????????45
cgg?tgt?tcc?atg?ggt?tcc?ttt?aac?tct?tct?cag?aaa?tca?gac?aac?gtc????192
Arg?Cys?Ser?Met?G1y?Ser?Phe?Asn?Ser?Ser?Gln?Lys?Ser?Asp?Ash?Val
50??????????????????55??????????????????60
caa?gaa?gct?gca?aag?agt?gac?ttt?gct?tca?ata?agt?gaa?ggt?gag?tgg????240
Gln?Glu?Ala?Ala?Lys?Ser?Asp?Phe?Ala?Ser?Ile?Ser?Glu?Gly?Glu?Trp
65??????????????????70??????????????????75??????????????????80
aag?aaa?cgg?cta?aca?cca?gaa?cag?tat?tac?atc?acc?aga?cag?aag?gga????288
Lys?Lys?Arg?Leu?Thr?Pro?Glu?Gln?Tyr?Tyr?Ile?Thr?Arg?Gln?Lys?Gly
85??????????????????90??????????????????95
aca?gag?aga?gct?ttc?act?ggt?gag?tat?tgg?aat?aca?aag?acc?cca?gga????336
Thr?Glu?Arg?Ala?Phe?Thr?Gly?Glu?Tyr?Trp?Asn?Thr?Lys?Thr?Pro?Gly
100?????????????????105?????????????????110
gta?tac?aaa?tgt?atc?tgt?tgc?gac?acg?cca?ctg?ttt?gac?tca?tca?aca????384
Val?Tyr?Lys?Cys?Ile?Cys?Cys?Asp?Thr?Pro?Leu?Phe?Asp?Ser?Ser?Thr
115?????????????????120?????????????????125
aag?ctt?gat?agt?gga?acc?ggg?tgg?cca?tcg?tat?tac?caa?cct?att?gga????432
Lys?Leu?Asp?Ser?Gly?Thr?Gly?Trp?Pro?Ser?Tyr?Tyr?Gln?Pro?Ile?Gly
130?????????????????135?????????????????140
aac?aat?gtg?aag?tca?aag?ctg?gac?ctc?tct?atc?atc?ttc?atg?cct?aga????480
Asn?Asn?Val?Lys?Ser?Lys?Leu?Asp?Leu?Ser?Ile?Ile?Phe?Met?Pro?Arg
145?????????????????150?????????????????155?????????????????160
caa?gaa?gtt?atc?tgt?gct?gtt?tgt?aac?gcc?cat?ctt?ggt?cat?gtc?ttc????528
Gln?Glu?Val?Ile?Cys?Ala?Val?Cys?Asn?Ala?His?Leu?Gly?His?Val?Phe
165?????????????????170?????????????????175
gat?gac?ggt?cca?cga?cca?acc?gga?aaa?cga?tat?tgc?ctc?aac?agt?gct????576
Asp?Asp?Gly?Pro?Arg?Pro?Thr?Gly?Lys?Arg?Tyr?Cys?Leu?Asn?Ser?Ala
180?????????????????185?????????????????190
gct?ctg?aaa?ctt?gag?tca?ttg?gag?aga?aca?aga?gaa?tga????????????????615
Ala?Leu?Lys?Leu?Glu?Ser?Leu?Glu?Arg?Thr?Arg?Glu
195?????????????????200
 
<210>2
<211>204
<212>PRT
<213〉colea
 
<400>2
 
Met?Ala?Ser?Ser?Ser?Cys?Phe?Thr?Ile?Gln?Ser?Arg?Phe?Val?Ser?Ala
1???????????????5???????????????????10??????????????????15
Arg?Thr?Lys?Leu?Asp?Ser?Ile?Ser?Lys?Pro?Ser?Leu?Ser?Gly?Phe?Ala
20??????????????????25??????????????????30
Cys?Arg?Ser?Leu?Thr?Lys?Pro?Arg?Asn?Leu?Asn?Leu?Ser?Val?Leu?Leu
35??????????????????40??????????????????45
Arg?Cys?Ser?Met?Gly?Ser?Phe?Asn?Ser?Ser?Gln?Lys?Ser?Asp?Asn?Val
50??????????????????55??????????????????60
Gln?Glu?Ala?Ala?Lys?Ser?Asp?Phe?Ala?Ser?Ile?Ser?Glu?Gly?Glu?Trp
65??????????????????70??????????????????75??????????????????80
Lys?Lys?Arg?Leu?Thr?Pro?Glu?Gln?Tyr?Tyr?Ile?Thr?Arg?Gln?Lys?Gly
85??????????????????90??????????????????95
Thr?Glu?Arg?Ala?Phe?Thr?Gly?Glu?Tyr?Trp?Asn?Thr?Lys?Thr?Pro?Gly
100?????????????????105?????????????????110
Val?Tyr?Lys?Cys?Ile?Cys?Cys?Asp?Thr?Pro?Leu?Phe?Asp?Ser?Ser?Thr
115?????????????????120?????????????????125
Lys?Leu?Asp?Ser?Gly?Thr?Gly?Trp?Pro?Ser?Tyr?Tyr?Gln?Pro?Ile?Gly
130?????????????????135?????????????????140
Asn?Asn?Val?Lys?Ser?Lys?Leu?Asp?Leu?Ser?Ile?Ile?Phe?Met?Pro?Arg
145?????????????????150?????????????????155?????????????????160
Gln?Glu?Val?Ile?Cys?Ala?Val?Cys?Asn?Ala?His?Leu?Gly?His?Val?Phe
165?????????????????170?????????????????175
Asp?Asp?Gly?Pro?Arg?Pro?Thr?Gly?Lys?Arg?Tyr?Cys?Leu?Asn?Ser?Ala
180?????????????????185?????????????????190
Ala?Leu?Lys?Leu?Glu?Ser?Leu?Glu?Arg?Thr?Arg?Glu
195?????????????????200
 
<210>3
<211>615
<212>DNA
<213〉rice
 
<220>
<221>CDS
<222>(1)..(615)
<223〉methionine sulfoxide reductase family protein (OS34096188)
<400>3
atg?ggc?ttc?aat?att?ctg?aga?acc?act?tcc?atc?tcc?act?cct?atc?tct?????48
Met?Gly?Phe?Asn?Ile?Leu?Arg?Thr?Thr?Ser?Ile?Ser?Thr?Pro?Ile?Ser
1???????????????5???????????????????10??????????????????15
tcc?tcc?aaa?tcc?aaa?ccc?att?ttc?tca?act?ctt?ctt?cgt?tct?tct?cct?????96
Ser?Ser?Lys?Ser?Lys?Pro?Ile?Phe?Ser?Thr?Leu?Leu?Arg?Ser?Ser?Pro
20??????????????????25??????????????????30
tcc?acc?att?ttc?ccc?cca?aag?tcc?gtt?act?ccc?acc?act?ctt?ttc?gtt????144
Ser?Thr?Ile?Phe?Pro?Pro?Lys?Ser?Val?Thr?Pro?Thr?Thr?Leu?Phe?Val
35??????????????????40??????????????????45
tct?gcc?acc?ccc?ttc?ttc?act?ctc?cat?ccc?aag?ctt?ggt?ttt?cgt?ggt????192
Ser?Ala?Thr?Pro?Phe?Phe?Thr?Leu?His?Pro?Lys?Leu?Gly?Phe?Arg?Gly
50??????????????????55??????????????????60
ggg?att?gtg?gcc?atg?gcc?gca?cct?ggc?tct?ctc?cgc?aaa?tcc?gag?gaa????240
Gly?Ile?Val?Ala?Met?Ala?Ala?Pro?Gly?Ser?Leu?Arg?Lys?Ser?Glu?Glu
65??????????????????70??????????????????75??????????????????80
gag?tgg?cgc?gca?att?ctc?tcc?cct?gaa?cag?ttt?cgg?atc?ctc?agg?caa????288
Glu?Trp?Arg?Ala?Ile?Leu?Ser?Pro?Glu?Gln?Phe?Arg?Ile?Leu?Arg?Gln
85??????????????????90??????????????????95
aag?ggc?acc?gag?ttc?cct?gga?aca?gga?gag?tat?gac?aag?ttc?tat?gaa????336
Lys?Gly?Thr?Glu?Phe?Pro?Gly?Thr?Gly?Glu?Tyr?Asp?Lys?Phe?Tyr?Glu
100?????????????????105?????????????????110
gag?gga?gtt?tac?aac?tgt?gct?ggt?tgt?ggg?act?cca?ctc?tac?agg?tcc????384
Glu?Gly?Val?Tyr?Asn?Cys?Ala?Gly?Cys?Gly?Thr?Pro?Leu?Tyr?Arg?Ser
115?????????????????120?????????????????125
ata?aca?aaa?ttc?aat?tct?ggt?tgt?ggc?tgg?cca?gcc?ttc?tat?gag?ggg????432
Ile?Thr?Lys?Phe?Asn?Ser?Gly?Cys?Gly?Trp?Pro?Ala?Phe?Tyr?Glu?Gly
130?????????????????135?????????????????140
att?ccc?gga?gcc?ata?aat?cgc?aat?ccg?gat?cct?gat?ggg?atg?agg?aca????480
Ile?Pro?Gly?Ala?Ile?Asn?Arg?Asn?Pro?Asp?Pro?Asp?Gly?Met?Arg?Thr
145?????????????????150?????????????????155?????????????????160
gaa?ata?acg?tgt?gct?gct?tgt?ggg?gga?cat?cta?ggt?cac?gtc?ttt?aaa????528
Glu?Ile?Thr?Cys?Ala?Ala?Cys?Gly?Gly?His?Leu?Gly?His?Val?Phe?Lys
165?????????????????170?????????????????175
gga?gaa?gga?ttt?cca?aca?ccc?act?aac?gaa?cgc?cat?tgt?gtc?aat?agc????576
Gly?Glu?Gly?Phe?Pro?Thr?Pro?Thr?Asn?Glu?Arg?His?Cys?Val?Asn?Ser
180?????????????????185?????????????????190
att?tcg?ctg?aaa?ttt?gcg?cca?gcc?aat?tct?tat?tct?taa????????????????615
Ile?Ser?Leu?Lys?Phe?Ala?Pro?Ala?Asn?Ser?Tyr?Ser
195?????????????????200
 
<210>4
<211>204
<212>PRT
<213〉rice
 
<400>4
 
Met?Gly?Phe?Asn?Ile?Leu?Arg?Thr?Thr?Ser?Ile?Ser?Thr?Pro?Ile?Ser
1???????????????5???????????????????10??????????????????15
Ser?Ser?Lys?Ser?Lys?Pro?Ile?Phe?Ser?Thr?Leu?Leu?Arg?Ser?Ser?Pro
20??????????????????25??????????????????30
Ser?Thr?Ile?Phe?Pro?Pro?Lys?Ser?Val?Thr?Pro?Thr?Thr?Leu?Phe?Val
35??????????????????40??????????????????45
Ser?Ala?Thr?Pro?Phe?Phe?Thr?Leu?His?Pro?Lys?Leu?Gly?Phe?Arg?Gly
50??????????????????55??????????????????60
Gly?Ile?Val?Ala?Met?Ala?Ala?Pro?Gly?Ser?Leu?Arg?Lys?Ser?Glu?Glu
65??????????????????70??????????????????75??????????????????80
Glu?Trp?Arg?Ala?Ile?Leu?Ser?Pro?Glu?Gln?Phe?Arg?Ile?Leu?Arg?Gln
85??????????????????90??????????????????95
Lys?Gly?Thr?Glu?Phe?Pro?Gly?Thr?Gly?Glu?Tyr?Asp?Lys?Phe?Tyr?Glu
100?????????????????105?????????????????110
Glu?Gly?Val?Tyr?Asn?Cys?Ala?Gly?Cys?Gly?Thr?Pro?Leu?Tyr?Arg?Ser
115?????????????????120?????????????????125
Ile?Thr?Lys?Phe?Asn?Ser?Gly?Cys?Gly?Trp?Pro?Ala?Phe?Tyr?Glu?Gly
130?????????????????135?????????????????140
Ile?Pro?Gly?Ala?Ile?Asn?Arg?Asn?Pro?Asp?Pro?Asp?Gly?Met?Arg?Thr
145?????????????????150?????????????????155?????????????????160
Glu?Ile?Thr?Cys?Ala?Ala?Cys?Gly?Gly?His?Leu?Gly?His?Val?Phe?Lys
165?????????????????170?????????????????175
Gly?Glu?Gly?Phe?Pro?Thr?Pro?Thr?Asn?Glu?Arg?His?Cys?Val?Asn?Ser
180?????????????????185?????????????????190
Ile?Ser?Leu?Lys?Phe?Ala?Pro?Ala?Asn?Ser?Tyr?Ser
195?????????????????200
 
<210>5
<211>645
<212>DNA
<213〉rice
 
<220>
<221>CDS
<222>(1)..(645)
<223〉methionine sulfoxide reductase family protein (OS32583643)
 
<400>5
atg?gcc?atg?cgg?caa?tac?gcg?gct?gct?acc?gct?gcc?tcc?tcc?agt?ttc?????48
Met?Ala?Met?Arg?Gln?Tyr?Ala?Ala?Ala?Thr?Ala?Ala?Ser?Ser?Ser?Phe
1???????????????5???????????????????10??????????????????15
aga?gca?cgt?cca?cgg?gcg?cgc?ccc?tcc?tgc?crc?cca?gcc?gcc?gcc?ctg?????96
Arg?Ala?Arg?Pro?Arg?Ala?Arg?Pro?Ser?Cys?Leu?Pro?Ala?Ala?Ala?Leu
20??????????????????25??????????????????30
ccc?ttg?gcg?cct?tgc?tgt?ggt?gtg?gcg?tgg?agc?cgt?gct?agc?tac?agg????144
Pro?Leu?Ala?Pro?Cys?Cys?Gly?Val?Ala?Trp?Ser?Arg?Ala?Ser?Tyr?Arg
35??????????????????40??????????????????45
cga?gcc?tcc?gtt?cgt?gcc?atg?ggt?gcc?gct?tca?tcg?tct?tcg?tcg?tcg????192
Arg?Ala?Ser?Val?Arg?Ala?Met?Gly?Ala?Ala?Ser?Ser?Ser?Ser?Ser?Ser
50??????????????????55??????????????????60
tcg?tcg?tcg?tct?ccg?tcg?ccg?cag?ggt?caa?gcc?caa?gcc?caa?gcc?caa????240
Ser?Ser?Ser?Ser?Pro?Ser?Pro?Gln?Gly?Gln?Ala?Gln?Ala?Gln?Ala?Gln
65??????????????????70??????????????????75??????????????????80
ggt?aaa?ccg?aac?tac?agt?aca?tct?ctg?act?gat?gag?gag?tgg?agg?aag????288
Gly?Lys?Pro?Asn?Tyr?Ser?Thr?Ser?Leu?Thr?Asp?Glu?Glu?Trp?Arg?Lys
85??????????????????90??????????????????95
cgc?ctg?aca?aaa?gat?cag?tat?tac?att?act?cgg?cag?aag?ggc?aca?gaa????336
Arg?Leu?Thr?Lys?Asp?Gln?Tyr?Tyr?Ile?Thr?Arg?Gln?Lys?Gly?Thr?Glu
100?????????????????105?????????????????110
aga?gca?ttt?act?ggg?gaa?tac?tgg?aac?acc?aaa?acc?ccg?ggc?atc?tac????384
Arg?Ala?Phe?Thr?Gly?Glu?Tyr?Trp?Asn?Thr?Lys?Thr?Pro?Gly?Ile?Tyr
115?????????????????120?????????????????125
cat?tgt?gtc?tgc?tgt?gac?acc?cct?ctt?ttt?gag?tca?tcg?acc?aaa?ttt????432
His?Cys?Val?Cys?Cys?Asp?Thr?Pro?Leu?Phe?Glu?Ser?Ser?Thr?Lys?Phe
130?????????????????135?????????????????140
gat?agt?ggt?act?ggg?tgg?ccg?tca?tat?tat?caa?ccc?att?gga?gat?aat????480
Asp?Ser?Gly?Thr?Gly?Trp?Pro?Ser?Tyr?Tyr?Gln?Pro?Ile?Gly?Asp?Asn
145?????????????????150?????????????????155?????????????????160
gta?aag?tgc?aag?ctt?gat?atg?tcc?atc?ata?ttc?atg?cct?cgg?act?gag????528
Val?Lys?Cys?Lys?Leu?Asp?Met?Ser?Ile?Ile?Phe?Met?Pro?Arg?Thr?Glu
165?????????????????170?????????????????175
gtg?ctg?tgt?gct?gtc?tgt?gac?gct?cat?ctg?ggg?cac?gtg?ttt?gat?gat????576
Val?Leu?Cys?Ala?Val?Cys?Asp?Ala?His?Leu?Gly?His?Val?Phe?Asp?Asp
180?????????????????185?????????????????190
ggg?cca?cga?cca?aca?ggg?aaa?aga?tac?tgt?atc?aat?agc?gca?tct?ctc????624
Gly?Pro?Arg?Pro?Thr?Gly?Lys?Arg?Tyr?Cys?Ile?Asn?Ser?Ala?Ser?Leu
195?????????????????200?????????????????205
aag?ctg?aag?aag?acc?cag?tag????????????????????????????????????????645
Lys?Leu?Lys?Lys?Thr?Gln
210
 
<210>6
<211>214
<212>PRT
<213〉rice
 
<400>6
Met?Ala?Met?Arg?Gln?Tyr?Ala?Ala?Ala?Thr?Ala?Ala?Ser?Ser?Ser?Phe
1???????????????5???????????????????10??????????????????15
Arg?Ala?Arg?Pro?Arg?Ala?Arg?Pro?Ser?Cys?Leu?Pro?Ala?Ala?Ala?Leu
20??????????????????25??????????????????30
Pro?Leu?Ala?Pro?Cys?Cys?Gly?Val?Ala?Trp?Ser?Arg?Ala?Ser?Tyr?Arg
35??????????????????40??????????????????45
Arg?Ala?Ser?Val?Arg?Ala?Met?Gly?Ala?Ala?Ser?Ser?Ser?Ser?Ser?Ser
50??????????????????55??????????????????60
Ser?Ser?Ser?Ser?Pro?Ser?Pro?Gln?Gly?Gln?Ala?Gln?Ala?Gln?Ala?Gln
65??????????????????70??????????????????75??????????????????80
Gly?Lys?Pro?Asn?Tyr?Ser?Thr?Ser?Leu?Thr?Asp?Glu?Glu?Trp?Arg?Lys
85??????????????????90??????????????????95
Arg?Leu?Thr?Lys?Asp?Gln?Tyr?Tyr?Ile?Thr?Arg?Gln?Lys?Gly?Thr?Glu
100?????????????????105?????????????????110
Arg?Ala?Phe?Thr?Gly?Glu?Tyr?Trp?Asn?Thr?Lys?Thr?Pro?Gly?Ile?Tyr
115?????????????????120?????????????????125
His?Cys?Val?Cys?Cys?Asp?Thr?Pro?Leu?Phe?Glu?Ser?Ser?Thr?Lys?Phe
130?????????????????135?????????????????140
Asp?Ser?Gly?Thr?Gly?Trp?Pro?Ser?Tyr?Tyr?Gln?Pro?Ile?Gly?Asp?Asn
145?????????????????150?????????????????155?????????????????160
Val?Lys?Cys?Lys?Leu?Asp?Met?Ser?Ile?Ile?Phe?Met?Pro?Arg?Thr?Glu
165?????????????????170?????????????????175
Val?Leu?Cys?Ala?Val?Cys?Asp?Ala?His?Leu?Gly?His?Val?Phe?Asp?Asp
180?????????????????185?????????????????190
Gly?Pro?Arg?Pro?Thr?Gly?Lys?Arg?Tyr?Cys?Ile?Asn?Ser?Ala?Ser?Leu
195?????????????????200?????????????????205
Lys?Leu?Lys?Lys?Thr?Gln
210
<210>7
<211>609
<212>DNA
<213〉soybean
 
<220>
<221>CDS
<222>(1)..(609)
<223〉methionine sulfoxide reductase family protein (GM53626178)
 
<400>7
atg?gga?ttg?agt?att?ctg?aga?agc?act?tcc?att?tcc?act?cct?atc?tct?????48
Met?Gly?Leu?Ser?Ile?Leu?Arg?Ser?Thr?Ser?Ile?Ser?Thr?Pro?Ile?Ser
1???????????????5???????????????????10??????????????????15
tcc?tcc?aaa?tcc?aaa?ccc?att?ttc?tca?act?ctt?gtt?cgt?tca?tct?ttc?????96
Ser?Ser?Lys?Ser?Lys?Pro?Ile?Phe?Ser?Thr?Leu?Val?Arg?Ser?Ser?Phe
20??????????????????25??????????????????30
gcc?tcc?att?tcc?ccc?aca?aag?tgt?gtt?act?ccc?acc?act?ctt?ttc?gtt????144
Ala?Ser?Ile?Ser?Pro?Thr?Lys?Cys?Val?Thr?Pro?Thr?Thr?Leu?Phe?Val
35??????????????????40??????????????????45
tct?gcc?acc?ccc?ttc?ttc?acc?gcc?tca?ccc?aag?cgc?ggc?ttt?cgt?ggt????192
Ser?Ala?Thr?Pro?Phe?Phe?Thr?Ala?Ser?Pro?Lys?Arg?Gly?Phe?Arg?Gly
50??????????????????55??????????????????60
ggg?att?gtg?gcc?atg?gcc?gcc?gct?ggc?tcg?ctc?cgc?aaa?tca?gag?gaa????240
Gly?Ile?Val?Ala?Met?Ala?Ala?Ala?Gly?Ser?Leu?Arg?Lys?Ser?Glu?Glu
65??????????????????70??????????????????75??????????????????80
gag?tgg?cgc?gca?gtt?ctc?tcc?cct?gaa?cag?ttt?cgt?att?ctc?agg?caa????288
Glu?Trp?Arg?Ala?Val?Leu?Ser?Pro?Glu?Gln?Phe?Arg?Ile?Leu?Arg?Gln
85??????????????????90??????????????????95
aag?ggc?acc?gag?ttc?cct?gga?aca?gga?gag?tat?gac?aag?ttc?ttt?gat????336
Lys?Gly?Thr?Glu?Phe?Pro?Gly?Thr?Gly?Glu?Tyr?Asp?Lys?Phe?Phe?Asp
100?????????????????105?????????????????110
gag?gga?gtt?tac?aac?tgt?gct?ggt?tgt?ggg?aca?cct?ctc?tac?agg?tcc????384
Glu?Gly?Val?Tyr?Asn?Cys?Ala?Gly?Cys?Gly?Thr?Pro?Leu?Tyr?Arg?Ser
115?????????????????120?????????????????125
tta?aca?aaa?ttc?aat?tct?ggt?tgt?ggc?tgg?cca?gcc?ttc?tat?gag?ggg????432
Leu?Thr?Lys?Phe?Asn?Ser?Gly?Cys?Gly?Trp?Pro?Ala?Phe?Tyr?Glu?Gly
130?????????????????135?????????????????140
att?cct?gga?gcc?ata?aat?cgc?aat?ccg?gac?cct?gat?ggg?atg?agg?aca????480
Ile?Pro?Gly?Ala?Ile?Asn?Arg?Asn?Pro?Asp?Pro?Asp?Gly?Met?Arg?Thr
145?????????????????150?????????????????155?????????????????160
gaa?ata?acg?tgt?gct?gct?tgt?ggg?gga?cat?cta?ggt?cac?gtc?ttt?aaa????528
Glu?Ile?Thr?Cys?Ala?Ala?Cys?Gly?Gly?His?Leu?Gly?His?Val?Phe?Lys
165?????????????????170?????????????????175
gga?gaa?gga?ttt?cca?acg?ccc?act?aac?gaa?cgc?cat?tgt?gtc?aat?agc????576
Gly?Glu?Gly?Phe?Pro?Thr?Pro?Thr?Asn?Glu?Arg?His?Cys?Val?Asn?Ser
180?????????????????185?????????????????190
att?tca?ctg?aaa?ttt?gcg?cca?gcc?aat?tct?taa????????????????????????609
Ile?Ser?Leu?Lys?Phe?Ala?Pro?Ala?Asn?Ser
195?????????????????200
 
<210>8
<211>202
<212>PRT
<213〉soybean
 
<400>8
 
Met?Gly?Leu?Ser?Ile?Leu?Arg?Ser?Thr?Ser?Ile?Ser?Thr?Pro?Ile?Ser
1???????????????5???????????????????10??????????????????15
Ser?Ser?Lys?Ser?Lys?Pro?Ile?Phe?Ser?Thr?Leu?Val?Arg?Ser?Ser?Phe
20??????????????????25??????????????????30
Ala?Ser?Ile?Ser?Pro?Thr?Lys?Cys?Val?Thr?Pro?Thr?Thr?Leu?Phe?Val
35??????????????????40??????????????????45
Ser?Ala?Thr?Pro?Phe?Phe?Thr?Ala?Ser?Pro?Lys?Arg?Gly?Phe?Arg?Gly
50??????????????????55??????????????????60
Gly?Ile?Val?Ala?Met?Ala?Ala?Ala?Gly?Ser?Leu?Arg?Lys?Ser?Glu?Glu
65??????????????????70??????????????????75??????????????????80
Glu?Trp?Arg?Ala?Val?Leu?Ser?Pro?Glu?Gln?Phe?Arg?Ile?Leu?Arg?Gln
85??????????????????90??????????????????95
Lys?Gly?Thr?Glu?Phe?Pro?Gly?Thr?Gly?Glu?Tyr?Asp?Lys?Phe?Phe?Asp
100?????????????????105?????????????????110
Glu?Gly?Val?Tyr?Asn?Cys?Ala?Gly?Cys?Gly?Thr?Pro?Leu?Tyr?Arg?Ser
115?????????????????120?????????????????125
Leu?Thr?Lys?Phe?Asn?Ser?Gly?Cys?Gly?Trp?Pro?Ala?Phe?Tyr?Glu?Gly
130?????????????????135?????????????????140
Ile?Pro?Gly?Ala?Ile?Asn?Arg?Asn?Pro?Asp?Pro?Asp?Gly?Met?Arg?Thr
145?????????????????150?????????????????155?????????????????160
Glu?Ile?Thr?Cys?Ala?Ala?Cys?Gly?Gly?His?Leu?Gly?His?Val?Phe?Lys
165?????????????????170?????????????????175
Gly?Glu?Gly?Phe?Pro?Thr?Pro?Thr?Asn?Glu?Arg?His?Cys?Val?Asn?Ser
180?????????????????185?????????????????190
Ile?Ser?Leu?Lys?Phe?Ala?Pro?Ala?Asn?Ser
195?????????????????200
 
<210>9
<211>621
<212>DNA
<213〉wheat
 
<220>
<221>CDS
<222>(1)..(621)
<223〉methionine sulfoxide reductase family protein (TA6540264)
 
<400>9
atg?gcg?tcg?ccc?cac?gcc?cac?ccg?gcc?acg?cgg?ccc?ctc?tca?tcg?ctc?????48
Met?Ala?Ser?Pro?His?Ala?His?Pro?Ala?Thr?Arg?Pro?Leu?Ser?Ser?Leu
1???????????????5???????????????????10??????????????????15
ccg?tcc?ctc?ctc?ctc?gcc?cgc?tcc?tcc?tcc?gcc?gcc?acc?gcc?gcc?gcg?????96
Pro?Ser?Leu?Leu?Leu?Ala?Arg?Ser?Ser?Ser?Ala?Ala?Thr?Ala?Ala?Ala
20??????????????????25??????????????????30
tcg?tcc?gcc?cgc?ccc?gcc?tcc?ctc?tcc?ctc?tcg?tgc?tcg?cgg?tcg?cgg????144
Ser?Ser?Ala?Arg?Pro?Ala?Ser?Leu?Ser?Leu?Ser?Cys?Ser?Arg?Ser?Arg
35??????????????????40??????????????????45
gcg?cgg?gcc?tac?tgc?cca?gcc?gga?cga?cgg?ttg?ccg?ggc?gcc?gtg?gtg????192
Ala?Arg?Ala?Tyr?Cys?Pro?Ala?Gly?Arg?Arg?Leu?Pro?Gly?Ala?Val?Val
50??????????????????55??????????????????60
gct?atg?tcg?tcg?gcg?gcg?ccc?acg?ccg?ggg?ccc?gtg?cag?aag?tcg?gag????240
Ala?Met?Ser?Ser?Ala?Ala?Pro?Thr?Pro?Gly?Pro?Val?Gln?Lys?Ser?Glu
65??????????????????70??????????????????75??????????????????80
gag?gag?tgg?gag?gcc?gtc?ctc?acg?ccg?gag?cag?ttc?cgc?atc?ctc?cgc????288
Glu?Glu?Trp?Glu?Ala?Val?Leu?Thr?Pro?Glu?Gln?Phe?Arg?Ile?Leu?Arg
85??????????????????90??????????????????95
cgc?aag?ggc?acc?gag?tat?cct?gga?aca?ggt?gaa?tat?gac?aag?ttc?ttc????336
Arg?Lys?Gly?Thr?Glu?Tyr?Pro?Gly?Thr?Gly?Glu?Tyr?Asp?Lys?Phe?Phe
100?????????????????105?????????????????110
agt?gag?ggt?att?tac?gga?tgt?gct?ggc?tgt?gga?acc?ccc?ttg?tac?aaa????384
Ser?Glu?Gly?Ile?Tyr?Gly?Cys?Ala?Gly?Cys?Gly?Thr?Pro?Leu?Tyr?Lys
115?????????????????120?????????????????125
tca?tct?acg?aag?ttc?aac?tca?ggg?tgt?ggt?tgg?cca?gca?ttc?tat?gaa????432
Ser?Ser?Thr?Lys?Phe?Asn?Ser?Gly?Cys?Gly?Trp?Pro?Ala?Phe?Tyr?Glu
130?????????????????135?????????????????140
gga?ttt?cct?gga?gcc?ata?aaa?cgg?acg?gcg?gat?cct?gat?ggg?agg?cga????480
Gly?Phe?Pro?Gly?Ala?Ile?Lys?Arg?Thr?Ala?Asp?Pro?Asp?Gly?Arg?Arg
145?????????????????150?????????????????155?????????????????160
att?gag?atc?aca?tgt?gct?gct?tgt?gaa?gga?cat?ctg?ggg?cat?gtg?ttc????528
Ile?Glu?Ile?Thr?Cys?Ala?Ala?Cys?Glu?Gly?His?Leu?Gly?His?Val?Phe
165?????????????????170?????????????????175
aaa?ggg?gag?ggg?ttc?aac?acg?ccg?act?gat?gag?cga?cac?tgc?gtc?aac????576
Lys?Gly?Glu?Gly?Phe?Asn?Thr?Pro?Thr?Asp?Glu?Arg?His?Cys?Val?Asn
180?????????????????185?????????????????190
agt?atc?tca?ctc?aag?ttc?gtt?ccg?gcc?tct?gaa?gag?gct?agt?tga????????621
Ser?Ile?Ser?Leu?Lys?Phe?Val?Pro?Ala?Ser?Glu?Glu?Ala?Ser
195?????????????????200?????????????????205
 
<210>10
<211>206
<212>PRT
<213〉wheat
 
<400>10
 
Met?Ala?Ser?Pro?His?Ala?His?Pro?Ala?Thr?Arg?Pro?Leu?Ser?Ser?Leu
1???????????????5???????????????????10??????????????????15
Pro?Ser?Leu?Leu?Leu?Ala?Arg?Ser?Ser?Ser?Ala?Ala?Thr?Ala?Ala?Ala
20??????????????????25??????????????????30
Ser?Ser?Ala?Arg?Pro?Ala?Ser?Leu?Ser?Leu?Ser?Cys?Ser?Arg?Ser?Arg
35??????????????????40??????????????????45
Ala?Arg?Ala?Tyr?Cys?Pro?Ala?Gly?Arg?Arg?Leu?Pro?Gly?Ala?Val?Val
50??????????????????55??????????????????60
Ala?Met?Ser?Ser?Ala?Ala?Pro?Thr?Pro?Gly?Pro?Val?Gln?Lys?Ser?Glu
65??????????????????70??????????????????75??????????????????80
Glu?Glu?Trp?Glu?Ala?Val?Leu?Thr?Pro?Glu?Gln?Phe?Arg?Ile?Leu?Arg
85??????????????????90??????????????????95
Arg?Lys?Gly?Thr?Glu?Tyr?Pro?Gly?Thr?Gly?Glu?Tyr?Asp?Lys?Phe?Phe
100?????????????????105?????????????????110
Ser?Glu?Gly?Ile?Tyr?Gly?Cys?Ala?Gly?Cys?Gly?Thr?Pro?Leu?Tyr?Lys
115?????????????????120?????????????????125
Ser?Ser?Thr?Lys?Phe?Asn?Ser?Gly?Cys?Gly?Trp?Pro?Ala?Phe?Tyr?Glu
130?????????????????135?????????????????140
Gly?Phe?Pro?Gly?Ala?Ile?Lys?Arg?Thr?Ala?Asp?Pro?Asp?Gly?Arg?Arg
145?????????????????150?????????????????155?????????????????160
Ile?Glu?Ile?Thr?Cys?Ala?Ala?Cys?Glu?Gly?His?Leu?Gly?His?Val?Phe
165?????????????????170?????????????????175
Lys?Gly?Glu?Gly?Phe?Asn?Thr?Pro?Thr?Asp?Glu?Arg?His?Cys?Val?Asn
180?????????????????185?????????????????190
Ser?Ile?Ser?Leu?Lys?Phe?Val?Pro?Ala?Ser?Glu?Glu?Ala?Ser
195?????????????????200?????????????????205
<210>11
<211>933
<212>DNA
<213〉colea
 
<220>
<221>CDS
<222>(1)..(933)
<223〉homeodomain-leucine zipper protein matter (BN45206322)
 
<400>11
atg?atg?aag?aga?tta?agc?agt?tca?gat?tca?gtg?ggt?ggt?ctc?atc?tct?????48
Met?Met?Lys?Arg?Leu?Ser?Ser?Ser?Asp?Ser?Val?Gly?Gly?Leu?Ile?Ser
1???????????????5???????????????????10??????????????????15
tta?tgt?ccc?act?act?tcc?aca?gat?cag?ccg?aat?cca?aga?aga?tgc?ggg?????96
Leu?Cys?Pro?Thr?Thr?Ser?Thr?Asp?Gln?Pro?Asn?Pro?Arg?Arg?Cys?Gly
20??????????????????25??????????????????30
aga?gaa?ttt?cag?tcg?atg?ctc?gaa?ggt?tac?gag?gag?gaa?gaa?gaa?gaa????144
Arg?Glu?Phe?Gln?Ser?Met?Leu?Glu?Gly?Tyr?Glu?Glu?Glu?Glu?Glu?Glu
35??????????????????40??????????????????45
gcc?ata?acc?gag?gaa?aga?gga?caa?acc?ggt?tta?gcc?gag?aag?aag?aga????192
Ala?Ile?Thr?Glu?Glu?Arg?Gly?Gln?Thr?Gly?Leu?Ala?Glu?Lys?Lys?Arg
50??????????????????55??????????????????60
cgg?tta?aac?att?aac?caa?gtt?aaa?gcc?ttg?gag?aaa?aat?ttc?gag?tta????240
Arg?Leu?Asn?Ile?Asn?Gln?Val?Lys?Ala?Leu?Glu?Lys?Asn?Phe?Glu?Leu
65??????????????????70??????????????????75??????????????????80
gag?aac?aag?ctt?gag?cct?gag?agg?aaa?gtg?aag?tta?gct?caa?gaa?ctt????288
Glu?Asn?Lys?Leu?Glu?Pro?Glu?Arg?Lys?Val?Lys?Leu?Ala?Gln?Glu?Leu
85??????????????????90??????????????????95
ggt?ctc?caa?cct?cgt?caa?gta?gct?gtt?tgg?ttt?cag?aac?cgc?cgt?gcg????336
Gly?Leu?Gln?Pro?Arg?Gln?Val?Ala?Val?Trp?Phe?Gln?Asn?Arg?Arg?Ala
100?????????????????105?????????????????110
cgg?tgg?aag?aca?aaa?cag?ctt?gag?aaa?gat?tac?ggt?gtt?ctc?aaa?acg????384
Arg?Trp?Lys?Thr?Lys?Gln?Leu?Glu?Lys?Asp?Tyr?Gly?Val?Leu?Lys?Thr
115?????????????????120?????????????????125
caa?tac?gat?tct?ctc?cgc?cat?aac?ttt?gat?tcc?ctc?cgc?cgt?gaa?aat????432
Gln?Tyr?Asp?Ser?Leu?Arg?His?Asn?Phe?Asp?Ser?Leu?Arg?Arg?Glu?Asn
130?????????????????135?????????????????140
gaa?tct?ctt?ctt?caa?gag?atc?ggt?aaa?cta?aaa?gct?aag?ctt?aac?gga????480
Glu?Ser?Leu?Leu?Gln?Glu?Ile?Gly?Lys?Leu?Lys?Ala?Lys?Leu?Asn?Gly
145?????????????????150?????????????????155?????????????????160
gaa?gaa?gaa?gga?gat?gat?gtt?gat?gaa?gaa?gag?aac?aac?ttg?gcg?acg????528
Glu?Glu?Glu?Gly?Asp?Asp?Val?Asp?Glu?Glu?Glu?Asn?Asn?Leu?Ala?Thr
165?????????????????170?????????????????175
atg?gag?agt?gat?gtt?tcc?gtc?aag?gaa?gaa?gaa?gtt?tcg?ttg?ccg?gag????576
Met?Glu?Ser?Asp?Val?Ser?Val?Lys?Glu?Glu?Glu?Val?Ser?Leu?Pro?Glu
180?????????????????185?????????????????190
cag?atc?aca?gag?ccg?ccg?tct?tct?cct?ccg?cag?ctt?cta?gag?cat?tcc????624
Gln?Ile?Thr?Glu?Pro?Pro?Ser?Ser?Pro?Pro?Gln?Leu?Leu?Glu?His?Ser
195?????????????????200?????????????????205
gac?agt?ttc?aat?tac?cgg?agt?ttc?acc?gac?ctc?cgc?gac?ctt?ctt?ccg????672
Asp?Ser?Phe?Asn?Tyr?Arg?Ser?Phe?Thr?Asp?Leu?Arg?Asp?Leu?Leu?Pro
210?????????????????215?????????????????220
tta?aag?gcc?gcg?gct?tcc?tcc?gtc?gcc?gcc?gct?gga?tcg?tcg?gac?agt????720
Leu?Lys?Ala?Ala?Ala?Ser?Ser?Val?Ala?Ala?Ala?Gly?Ser?Ser?Asp?Ser
225?????????????????230?????????????????235?????????????????240
agc?gat?tcg?agc?gcc?gtg?ttg?aac?gag?gaa?agt?agc?tct?aac?gtt?acg????768
Ser?Asp?Ser?Ser?Ala?Val?Leu?Asn?Glu?Glu?Ser?Ser?Ser?Asn?Val?Thr
245?????????????????250?????????????????255
gcg?gct?ccg?gcg?acg?gtt?ccc?ggc?ggc?agt?ttc?ttg?cag?ttt?gtg?aaa????816
Ala?Ala?Pro?Ala?Thr?Val?Pro?Gly?Gly?Ser?Phe?Leu?Gln?Phe?Val?Lys
260?????????????????265?????????????????270
atg?gag?cag?acg?gag?gat?cac?gac?gac?ttt?ctg?agt?gga?gaa?gaa?gcg????864
Met?Glu?Gln?Thr?Glu?Asp?His?Asp?Asp?Phe?Leu?Ser?Gly?Glu?Glu?Ala
275?????????????????280?????????????????285
tgc?ggg?ttt?ttc?tcc?gat?gaa?cag?cca?ccg?tct?ctg?cac?tgg?tat?tcc????912
Cys?Gly?Phe?Phe?Ser?Asp?Glu?Gln?Pro?Pro?Ser?Leu?His?Trp?Tyr?Ser
290?????????????????295?????????????????300
acc?gtt?gat?cag?tgg?aac?tga????????????????????????????????????????933
Thr?Val?Asp?Gln?Trp?Asn
305?????????????????310
 
<210>12
<211>310
<212>PRT
<213〉colea
 
<400>12
 
Met?Met?Lys?Arg?Leu?Ser?Ser?Ser?Asp?Ser?Val?Gly?Gly?Leu?Ile?Ser
1???????????????5???????????????????10??????????????????15
Leu?Cys?Pro?Thr?Thr?Ser?Thr?Asp?Gln?Pro?Asn?Pro?Arg?Arg?Cys?Gly
20??????????????????25??????????????????30
Arg?Glu?Phe?Gln?Ser?Met?Leu?Glu?Gly?Tyr?Glu?Glu?Glu?Glu?Glu?Glu
35??????????????????40??????????????????45
Ala?Ile?Thr?Glu?Glu?Arg?Gly?Gln?Thr?Gly?Leu?Ala?Glu?Lys?Lys?Arg
50??????????????????55??????????????????60
Arg?Leu?Asn?Ile?Asn?Gln?Val?Lys?Ala?Leu?Glu?Lys?Asn?Phe?Glu?Leu
65??????????????????70??????????????????75??????????????????80
Glu?Asn?Lys?Leu?Glu?Pro?Glu?Arg?Lys?Val?Lys?Leu?Ala?Gln?Glu?Leu
85??????????????????90??????????????????95
Gly?Leu?Gln?Pro?Arg?Gln?Val?Ala?Val?Trp?Phe?Gln?Asn?Arg?Arg?Ala
100?????????????????105?????????????????110
Arg?Trp?Lys?Thr?Lys?Gln?Leu?Glu?Lys?Asp?Tyr?Gly?Val?Leu?Lys?Thr
115?????????????????120?????????????????125
Gln?Tyr?Asp?Ser?Leu?Arg?His?Asn?Phe?Asp?Ser?Leu?Arg?Arg?Glu?Asn
130?????????????????135?????????????????140
Glu?Ser?Leu?Leu?Gln?Glu?Ile?Gly?Lys?Leu?Lys?Ala?Lys?Leu?Asn?Gly
145?????????????????150?????????????????155?????????????????160
Glu?Glu?Glu?Gly?Asp?Asp?Val?Asp?Glu?Glu?Glu?Asn?Asn?Leu?Ala?Thr
165?????????????????170?????????????????175
Met?Glu?Ser?Asp?Val?Ser?Val?Lys?Glu?Glu?Glu?Val?Ser?Leu?Pro?Glu
180?????????????????185?????????????????190
Gln?Ile?Thr?Glu?Pro?Pro?Ser?Ser?Pro?Pro?Gln?Leu?Leu?Glu?His?Ser
195?????????????????200?????????????????205
Asp?Ser?Phe?Asn?Tyr?Arg?Ser?Phe?Thr?Asp?Leu?Arg?Asp?Leu?Leu?Pro
210?????????????????215?????????????????220
Leu?Lys?Ala?Ala?Ala?Ser?Ser?Val?Ala?Ala?Ala?Gly?Ser?Ser?Asp?Ser
225?????????????????230?????????????????235?????????????????240
Ser?Asp?Ser?Ser?Ala?Val?Leu?Asn?Glu?Glu?Ser?Ser?Ser?Asn?Val?Thr
245?????????????????250?????????????????255
Ala?Ala?Pro?Ala?Thr?Val?Pro?Gly?Gly?Ser?Phe?Leu?Gln?Phe?Val?Lys
260?????????????????265?????????????????270
Met?Glu?Gln?Thr?Glu?Asp?His?Asp?Asp?Phe?Leu?Ser?Gly?Glu?Glu?Ala
275?????????????????280?????????????????285
Cys?Gly?Phe?Phe?Ser?Asp?Glu?Gln?Pro?Pro?Ser?Leu?His?Trp?Tyr?Ser
290?????????????????295?????????????????300
Thr?Val?Asp?Gln?Trp?Asn
305?????????????????310
 
<210>13
<211>996
<212>DNA
<213〉soybean
 
<220>
<221>CDS
<222>(1)..(996)
<223〉homeodomain-leucine zipper protein matter (GM48923793)
 
<400>13
atg?gcg?ggt?agt?gga?agt?gcc?ttt?tcc?aac?atc?act?agc?ttt?ctt?cgc????48
Met?Ala?Gly?Ser?Gly?Ser?Ala?Phe?Ser?Asn?Ile?Thr?Ser?Phe?Leu?Arg
1???????????????5???????????????????10??????????????????15
acc?caa?caa?ccc?tct?tct?caa?cct?ctc?gat?tct?tct?ctc?ttc?ctc?tct?????96
Thr?Gln?Gln?Pro?Ser?Ser?Gln?Pro?Leu?Asp?Ser?Ser?Leu?Phe?Leu?Ser
20??????????????????25??????????????????30
gca?cct?tcc?tct?gct?cct?ttc?ctc?ggt?tcg?aga?tcc?atg?atg?agt?ttt????144
Ala?Pro?Ser?Ser?Ala?Pro?Phe?Leu?Gly?Ser?Arg?Ser?Met?Met?Ser?Phe
35??????????????????40??????????????????45
gat?gga?gaa?gga?ggg?aag?ggg?tgt?aac?ggc?tcc?ttc?ttc?cgc?gcg?ttt????192
Asp?Gly?Glu?Gly?Gly?Lys?Gly?Cys?Asn?Gly?Ser?Phe?Phe?Arg?Ala?Phe
50??????????????????55??????????????????60
gac?atg?gac?gac?aat?ggg?gat?gag?tgc?atg?gac?gag?tac?ttt?cat?caa????240
Asp?Met?Asp?Asp?Asn?Gly?Asp?Glu?Cys?Met?Asp?Glu?Tyr?Phe?His?Gln
65??????????????????70??????????????????75??????????????????80
ccc?gag?aag?aag?cga?cgt?ctc?tct?gcg?agc?cag?gtt?cag?ttt?cta?gag????288
Pro?Glu?Lys?Lys?Arg?Arg?Leu?Ser?Ala?Ser?Gln?Val?Gln?Phe?Leu?Glu
85??????????????????90??????????????????95
aag?agc?ttc?gag?gag?gag?aac?aag?ctt?gaa?ccc?gag?aga?aag?acc?aaa????336
Lys?Ser?Phe?Glu?Glu?Glu?Asn?Lys?Leu?Glu?Pro?Glu?Arg?Lys?Thr?Lys
100?????????????????105?????????????????110
cta?gcc?aaa?gac?ctt?ggt?ttg?cag?cca?cgg?caa?gtt?gct?att?tgg?ttc????384
Leu?Ala?Lys?Asp?Leu?Gly?Leu?Gln?Pro?Arg?Gln?Val?Ala?Ile?Trp?Phe
115?????????????????120?????????????????125
cag?aac?cgt?aga?gct?cgg?tgg?aag?aac?aaa?cag?ctg?gag?aag?gat?tac????432
Gln?Asn?Arg?Arg?Ala?Arg?Trp?Lys?Asn?Lys?Gln?Leu?Glu?Lys?Asp?Tyr
130?????????????????135?????????????????140
gag?act?ctg?cat?gca?agt?ttt?gag?agt?ctc?aag?tcc?aac?tat?gac?tgt????480
Glu?Thr?Leu?His?Ala?Ser?Phe?Glu?Ser?Leu?Lys?Ser?Asn?Tyr?Asp?Cys
145?????????????????150?????????????????155?????????????????160
ctt?ctc?aag?gag?aaa?gac?aag?tta?aaa?gct?gag?gtg?gcg?agc?ctc?act????528
Leu?Leu?Lys?Glu?Lys?Asp?Lys?Leu?Lys?Ala?Glu?Val?Ala?Ser?Leu?Thr
165?????????????????170?????????????????175
gag?aag?gtg?ctt?gca?aga?ggg?aaa?caa?gag?ggg?cac?atg?aag?cag?gct????576
Glu?Lys?Val?Leu?Ala?Arg?Gly?Lys?Gln?Glu?Gly?His?Met?Lys?Gln?Ala
180?????????????????185?????????????????190
gaa?agt?gaa?agt?gaa?gaa?aca?aaa?gga?tta?ttg?cat?ttg?cag?gaa?cag????624
Glu?Ser?Glu?Ser?Glu?Glu?Thr?Lys?Gly?Leu?Leu?His?Leu?Gln?Glu?Gln
195?????????????????200?????????????????205
gaa?cca?ccc?cag?agg?ctt?tta?ctg?caa?tca?gtt?tcg?gag?gga?gaa?gga????672
Glu?Pro?Pro?Gln?Arg?Leu?Leu?Leu?Gln?Ser?Val?Ser?Glu?Gly?Glu?Gly
210?????????????????215?????????????????220
tcc?aaa?gtc?tct?tct?gtc?gtt?ggg?ggt?tgt?aaa?cag?gaa?gat?atc?agt????720
Ser?Lys?Val?Ser?Ser?Val?Val?Gly?Gly?Cys?Lys?Gln?Glu?Asp?Ile?Ser
225?????????????????230?????????????????235?????????????????240
tca?gca?agg?agt?gac?att?ttg?gat?tca?gat?agt?cca?cat?tac?acc?gat????768
Ser?Ala?Arg?Ser?Asp?Ile?Leu?Asp?Ser?Asp?Ser?Pro?His?Tyr?Thr?Asp
245?????????????????250?????????????????255
gga?gtt?cac?tct?gcg?ctg?cta?gag?cat?ggt?gat?tct?tct?tat?gtg?ttt????816
Gly?Val?His?Ser?Ala?Leu?Leu?Glu?His?Gly?Asp?Ser?Ser?Tyr?Val?Phe
260?????????????????265?????????????????270
gag?cct?gat?caa?tca?gat?atg?tca?caa?gat?gaa?gaa?gat?aac?ctc?agc????864
Glu?Pro?Asp?Gln?Ser?Asp?Met?Ser?Gln?Asp?Glu?Glu?Asp?Asn?Leu?Ser
275?????????????????280?????????????????285
aag?agt?ctc?tac?cct?tcg?tac?ctc?ttt?ccc?aaa?ctt?gaa?gaa?gat?gtg????912
Lys?Ser?Leu?Tyr?Pro?Ser?Tyr?Leu?Phe?Pro?Lys?Leu?Glu?Glu?Asp?Val
290?????????????????295?????????????????300
gat?tac?tcc?gac?cca?cct?gaa?agt?tct?tgt?aat?ttt?gga?ttt?cct?gag????960
Asp?Tyr?Ser?Asp?Pro?Pro?Glu?Ser?Ser?Cys?Asn?Phe?Gly?Phe?Pro?Glu
305?????????????????310?????????????????315?????????????????320
gaa?gat?cat?gtc?ctt?tgg?acc?tgg?gct?tac?tac?taa????????????????????996
Glu?Asp?His?Val?Leu?Trp?Thr?Trp?Ala?Tyr?Tyr
325?????????????????330
 
<210>14
<211>331
<212>PRT
<213〉soybean
 
<400>14
Met?Ala?Gly?Ser?Gly?Ser?Ala?Phe?Ser?Asn?Ile?Thr?Ser?Phe?Leu?Arg
1???????????????5???????????????????10??????????????????15
Thr?Gln?Gln?Pro?Ser?Ser?Gln?Pro?Leu?Asp?Ser?Ser?Leu?Phe?Leu?Ser
20??????????????????25??????????????????30
Ala?Pro?Ser?Ser?Ala?Pro?Phe?Leu?Gly?Ser?Arg?Ser?Met?Met?Ser?Phe
35??????????????????40??????????????????45
Asp?Gly?Glu?Gly?Gly?Lys?Gly?Cys?Asn?Gly?Ser?Phe?Phe?Arg?Ala?Phe
50??????????????????55??????????????????60
Asp?Met?Asp?Asp?Asn?Gly?Asp?Glu?Cys?Met?Asp?Glu?Tyr?Phe?His?Gln
65??????????????????70??????????????????75??????????????????80
Pro?Glu?Lys?Lys?Arg?Arg?Leu?Ser?Ala?Ser?Gln?Val?Gln?Phe?Leu?Glu
85??????????????????90??????????????????95
Lys?Ser?Phe?Glu?Glu?Glu?Asn?Lys?Leu?Glu?Pro?Glu?Arg?Lys?Thr?Lys
100?????????????????105?????????????????110
Leu?Ala?Lys?Asp?Leu?Gly?Leu?Gln?Pro?Arg?Gln?Val?Ala?Ile?Trp?Phe
115?????????????????120?????????????????125
Gln?Asn?Arg?Arg?Ala?Arg?Trp?Lys?Asn?Lys?Gln?Leu?Glu?Lys?Asp?Tyr
130?????????????????135?????????????????140
Glu?Thr?Leu?His?Ala?Ser?Phe?Glu?Ser?Leu?Lys?Ser?Asn?Tyr?Asp?Cys
145?????????????????150?????????????????155?????????????????160
Leu?Leu?Lys?Glu?Lys?Asp?Lys?Leu?Lys?Ala?Glu?Val?Ala?Ser?Leu?Thr
165?????????????????170?????????????????175
Glu?Lys?Val?Leu?Ala?Arg?Gly?Lys?Gln?Glu?Gly?His?Met?Lys?Gln?Ala
180?????????????????185?????????????????190
Glu?Ser?Glu?Ser?Glu?Glu?Thr?Lys?Gly?Leu?Leu?His?Leu?Gln?Glu?Gln
195?????????????????200?????????????????205
Glu?Pro?Pro?Gln?Arg?Leu?Leu?Leu?Gln?Ser?Val?Ser?Glu?Gly?Glu?Gly
210?????????????????215?????????????????220
Ser?Lys?Val?Ser?Ser?Val?Val?Gly?Gly?Cys?Lys?Gln?Glu?Asp?Ile?Ser
225?????????????????230?????????????????235?????????????????240
Ser?Ala?Arg?Ser?Asp?Ile?Leu?Asp?Ser?Asp?Ser?Pro?His?Tyr?Thr?Asp
245?????????????????250?????????????????255
Gly?Val?His?Ser?Ala?Leu?Leu?Glu?His?Gly?Asp?Ser?Ser?Tyr?Val?Phe
260?????????????????265?????????????????270
Glu?Pro?Asp?Gln?Ser?Asp?Met?Ser?Gln?Asp?Glu?Glu?Asp?Asn?Leu?Ser
275?????????????????280?????????????????285
Lys?Ser?Leu?Tyr?Pro?Ser?Tyr?Leu?Phe?Pro?Lys?Leu?Glu?Glu?Asp?Val
290?????????????????295?????????????????300
Asp?Tyr?Ser?Asp?Pro?Pro?Glu?Ser?Ser?Cys?Asn?Phe?Gly?Phe?Pro?Glu
305?????????????????310?????????????????315?????????????????320
Glu?Asp?His?Val?Leu?Trp?Thr?Trp?Ala?Tyr?Tyr
325?????????????????330
 
<210>15
<211>1023
<212>DNA
<213〉wheat
 
<220>
<221>CDS
<222>(1)..(1023)
<223〉homeodomain-leucine zipper protein matter (TA55969932)
 
<400>15
atg?gag?ccc?ggc?cgg?ctc?atc?ttc?aac?acg?tcg?ggc?tcc?ggc?aac?gga?????48
Met?Glu?Pro?Gly?Arg?Leu?Ile?Phe?Asn?Thr?Ser?Gly?Ser?Gly?Asn?Gly
1???????????????5???????????????????10??????????????????15
cag?atg?ctc?ttc?atg?gac?tgc?ggc?gcg?ggc?ggc?atc?gcc?ggc?gcg?gcc?????96
Gln?Met?Leu?Phe?Met?Asp?Cys?Gly?Ala?Gly?Gly?Ile?Ala?Gly?Ala?Ala
20??????????????????25??????????????????30
ggc?atg?ttc?cat?cga?ggg?gtg?aga?ccg?gtc?ctc?ggc?ggc?atg?gaa?gaa????144
Gly?Met?Phe?His?Arg?Gly?Val?Arg?Pro?Val?Leu?Gly?Gly?Met?Glu?Glu
35??????????????????40??????????????????45
ggg?cgc?ggc?gtg?aag?cgg?ccc?ttc?ttc?acc?tcg?ccg?gat?gac?atg?ctg????192
Gly?Arg?Gly?Val?Lys?Arg?Pro?Phe?Phe?Thr?Ser?Pro?Asp?Asp?Met?Leu
50??????????????????55??????????????????60
gag?gag?gag?tac?tac?gac?gag?cag?ctc?ccg?gag?aag?aag?cgg?cgc?ctc????240
Glu?Glu?Glu?Tyr?Tyr?Asp?Glu?Gln?Leu?Pro?Glu?Lys?Lys?Arg?Arg?Leu
65??????????????????70??????????????????75??????????????????80
acg?ccg?gag?cag?gtc?cac?ctg?ctg?gag?agg?agc?ttc?gag?gag?gag?aac????288
Thr?Pro?Glu?Gln?Val?His?Leu?Leu?Glu?Arg?Ser?Phe?Glu?Glu?Glu?Asn
85??????????????????90??????????????????95
aag?ctg?gag?ccg?gag?agg?aag?acg?gag?ctg?gcc?cgc?aag?ctc?ggg?ctg????336
Lys?Leu?Glu?Pro?Glu?Arg?Lys?Thr?Glu?Leu?Ala?Arg?Lys?Leu?Gly?Leu
100?????????????????105?????????????????110
cag?cca?cgg?cag?gtg?gcc?gtc?tgg?ttc?cag?aac?cgc?cgc?gcc?cgg?tgg????384
Gln?Pro?Arg?Gln?Val?Ala?Val?Trp?Phe?Gln?Asn?Arg?Arg?Ala?Arg?Trp
115?????????????????120?????????????????125
aag?aca?aag?acg?ctg?gag?cgc?gac?ttc?gac?cgc?ctc?aag?gcg?tcc?ttc????432
Lys?Thr?Lys?Thr?Leu?Glu?Arg?Asp?Phe?Asp?Arg?Leu?Lys?Ala?Ser?Phe
130?????????????????135?????????????????140
gac?gcc?ctc?cgc?gcc?gac?cac?gac?gcg?ctc?ctc?cag?gac?aac?cac?cgg????480
Asp?Ala?Leu?Arg?Ala?Asp?His?Asp?Ala?Leu?Leu?Gln?Asp?Asn?His?Arg
145?????????????????150?????????????????155?????????????????160
ctc?cgg?tca?cag?gtg?gta?acg?ttg?acc?gag?aag?atg?caa?gat?aag?gag????528
Leu?Arg?Ser?Gln?Val?Val?Thr?Leu?Thr?Glu?Lys?Met?Gln?Asp?Lys?Glu
165?????????????????170?????????????????175
gcg?ccg?gaa?ggc?agc?ttc?ggt?gca?gcc?gcc?gac?gcc?tcg?gag?ccg?gag????576
Ala?Pro?Glu?Gly?Ser?Phe?Gly?Ala?Ala?Ala?Asp?Ala?Ser?Glu?Pro?Glu
180?????????????????185?????????????????190
cag?gcg?gcg?gcg?gag?gcg?aag?gct?tcc?ttg?gcc?gac?gcc?gag?gag?cag????624
Gln?Ala?Ala?Ala?Glu?Ala?Lys?Ala?Ser?Leu?Ala?Asp?Ala?Glu?Glu?Gln
195?????????????????200?????????????????205
gcc?gcg?gca?gcg?gag?gcg?ttc?gag?gtg?gtg?cag?cag?cag?ctg?cac?gtg????672
Ala?Ala?Ala?Ala?Glu?Ala?Phe?Glu?Val?Val?Gln?Gln?Gln?Leu?His?Val
210?????????????????215?????????????????220
aag?gac?gag?gag?agg?ctg?agc?ccg?ggg?agc?ggc?ggg?agc?gcg?gtg?ctg????720
Lys?Asp?Glu?Glu?Arg?Leu?Ser?Pro?Gly?Ser?Gly?Gly?Ser?Ala?Val?Leu
225?????????????????230?????????????????235?????????????????240
gac?gcg?agg?gac?gcg?ctg?ctc?ggg?agc?gga?tgc?ggc?ctc?gcc?ggc?gtg????768
Asp?Ala?Arg?Asp?Ala?Leu?Leu?Gly?Ser?Gly?Cys?Gly?Leu?Ala?Gly?Val
245?????????????????250?????????????????255
gtg?gac?agc?agc?gtg?gac?tcg?tac?tgc?ttc?ccg?ggg?ggc?gcc?ggc?ggc????816
Val?Asp?Ser?Ser?Val?Asp?Ser?Tyr?Cys?Phe?Pro?Gly?Gly?Ala?Gly?Gly
260?????????????????265?????????????????270
gac?gag?tac?cac?gag?tgc?gtg?gtg?ggc?ccc?gtg?gcg?ggc?ggc?atc?cag????864
Asp?Glu?Tyr?His?Glu?Cys?Val?Val?Gly?Pro?Val?Ala?Gly?Gly?Ile?Gln
275?????????????????280?????????????????285
tcg?gag?gag?gac?gac?ggc?gcg?ggc?agc?gac?gag?ggc?tgc?agc?tac?tac????912
Ser?Glu?Glu?Asp?Asp?Gly?Ala?Gly?Ser?Asp?Glu?Gly?Cys?Ser?Tyr?Tyr
290?????????????????295?????????????????300
ccc?gac?gac?gcc?gcc?gtc?ttc?ttc?gcc?gcc?gcg?caa?ggg?cac?ggc?cac????960
Pro?Asp?Asp?Ala?Ala?Val?Phe?Phe?Ala?Ala?Ala?Gln?Gly?Hi?s?Gly?His
305?????????????????310?????????????????315?????????????????320
cat?cgc?acg?gac?gac?gac?gat?cag?cag?gac?gac?ggc?cag?atc?agc?tac???1008
His?Arg?Thr?Asp?Asp?Asp?Asp?Gln?Gln?Asp?Asp?Gly?Gln?Ile?Ser?Tyr
325?????????????????330?????????????????335
tgg?atg?tgg?aac?tag???????????????????????????????????????????????1023
Trp?Met?Trp?Asn
340
 
<210>16
<211>340
<212>PRT
<213〉wheat
 
<400>16
 
Met?Glu?Pro?Gly?Arg?Leu?Ile?Phe?Asn?Thr?Ser?Gly?Ser?Gly?Asn?Gly
1???????????????5???????????????????10??????????????????15
Gln?Met?Leu?Phe?Met?Asp?Cys?Gly?Ala?Gly?Gly?Ile?Ala?Gly?Ala?Ala
20??????????????????25??????????????????30
Gly?Met?Phe?His?Arg?Gly?Val?Arg?Pro?Val?Leu?Gly?Gly?Met?Glu?Glu
35??????????????????40??????????????????45
Gly?Arg?Gly?Val?Lys?Arg?Pro?Phe?Phe?Thr?Ser?Pro?Asp?Asp?Met?Leu
50??????????????????55??????????????????60
Glu?Glu?Glu?Tyr?Tyr?Asp?Glu?Gln?Leu?Pro?Glu?Lys?Lys?Arg?Arg?Leu
65??????????????????70??????????????????75??????????????????80
Thr?Pro?Glu?Gln?Val?His?Leu?Leu?Glu?Arg?Ser?Phe?Glu?Glu?Glu?Asn
85??????????????????90??????????????????95
Lys?Leu?Glu?Pro?Glu?Arg?Lys?Thr?Glu?Leu?Ala?Arg?Lys?Leu?Gly?Leu
100?????????????????105?????????????????110
Gln?Pro?Arg?Gln?Val?Ala?Val?Trp?Phe?Gln?Asn?Arg?Arg?Ala?Arg?Trp
115?????????????????120?????????????????125
Lys?Thr?Lys?Thr?Leu?Glu?Arg?Asp?Phe?Asp?Arg?Leu?Lys?Ala?Ser?Phe
130?????????????????135?????????????????140
Asp?Ala?Leu?Arg?Ala?Asp?His?Asp?Ala?Leu?Leu?Gln?Asp?Asn?His?Arg
145?????????????????150?????????????????155?????????????????160
Leu?Arg?Ser?Gln?Val?Val?Thr?Leu?Thr?Glu?Lys?Met?Gln?Asp?Lys?Glu
165?????????????????170?????????????????175
Ala?Pro?Glu?Gly?Ser?Phe?Gly?Ala?Ala?Ala?Asp?Ala?Ser?Glu?Pro?Glu
180?????????????????185?????????????????190
Gln?Ala?Ala?Ala?Glu?Ala?Lys?Ala?Ser?Leu?Ala?Asp?Ala?Glu?Glu?Gln
195?????????????????200?????????????????205
Ala?Ala?Ala?Ala?Glu?Ala?Phe?Glu?Val?Val?Gln?Gln?Gln?Leu?His?Val
210?????????????????215?????????????????220
Lys?Asp?Glu?Glu?Arg?Leu?Ser?Pro?Gly?Ser?Gly?Gly?Ser?Ala?Val?Leu
225?????????????????230?????????????????235?????????????????240
Asp?Ala?Arg?Asp?Ala?Leu?Leu?Gly?Ser?Gly?Cys?Gly?Leu?Ala?Gly?Val
245?????????????????250?????????????????255
Val?Asp?Ser?Ser?Val?Asp?Ser?Tyr?Cys?Phe?Pro?Gly?Gly?Ala?Gly?Gly
260?????????????????265?????????????????270
Asp?Glu?Tyr?His?Glu?Cys?Val?Val?Gly?Pro?Val?Ala?Gly?Gly?Ile?Gln
275?????????????????280?????????????????285
Ser?Glu?Glu?Asp?Asp?Gly?Ala?Gly?Ser?Asp?Glu?Gly?Cys?Ser?Tyr?Tyr
290?????????????????295?????????????????300
Pro?Asp?Asp?Ala?Ala?Val?Phe?Phe?Ala?Ala?Ala?Gln?Gly?His?Gly?His
305?????????????????310?????????????????315?????????????????320
His?Arg?Thr?Asp?Asp?Asp?Asp?Gln?Gln?Asp?Asp?Gly?Gln?Ile?Ser?Tyr
325?????????????????330?????????????????335
Trp?Met?Trp?Asn
340
 
<210>17
<211>534
<212>DNA
<213〉colea
 
<220>
<221>CDS
<222>(1)..(534)
<223〉contain the zinc finger protein matter (BN47310186) of A20 structural domain and AN1 structural domain
 
<400>17
atg?gac?cac?gac?aaa?aca?gga?tgc?caa?agc?cca?cct?gaa?ggt?ccc?aag?????48
Met?Asp?His?Asp?Lys?Thr?Gly?Cys?Gln?Ser?Pro?Pro?Glu?Gly?Pro?Lys
1???????????????5???????????????????10??????????????????15
cta?tgc?atc?aac?aac?tgc?ggt?ttc?ttc?gga?agc?gct?gcc?aca?atg?aac?????96
Leu?Cys?Ile?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Ser?Ala?Ala?Thr?Met?Asn
20??????????????????25??????????????????30
atg?tgt?tcc?aag?tgt?cac?aag?gct?atc?ctg?ttt?caa?cag?gaa?cag?ggg????144
Met?Cys?Ser?Lys?Cys?His?Lys?Ala?Ile?Leu?Phe?Gln?Gln?Glu?Gln?Gly
35??????????????????40??????????????????45
gct?agg?ttt?gca?tct?gca?gtg?tct?ggt?ggt?aca?tca?tca?tcc?agc?aac????192
Ala?Arg?Phe?Ala?Ser?Ala?Val?Ser?Gly?Gly?Thr?Ser?Ser?Ser?Ser?Asn
50??????????????????55??????????????????60
atc?tta?aag?gaa?acc?ttt?gct?gct?acc?gcg?ctg?gtt?gat?gct?gaa?acc????240
Ile?Leu?Lys?Glu?Thr?Phe?Ala?Ala?Thr?Ala?Leu?Val?Asp?Ala?Glu?Thr
65??????????????????70??????????????????75??????????????????80
aaa?tcc?gtt?gag?ccg?gtg?gct?gtc?tct?gta?cag?cca?tct?tct?gtc?caa????288
Lys?Ser?Val?Glu?Pro?Val?Ala?Val?Ser?Val?Gln?Pro?Ser?Ser?Val?Gln
85??????????????????90??????????????????95
gtt?gcc?gca?gag?gta?gta?gct?cca?gaa?gcc?gct?gca?gca?aaa?cta?aag????336
Val?Ala?Ala?Glu?Val?Val?Ala?Pro?Glu?Ala?Ala?Ala?Ala?Lys?Leu?Lys
100?????????????????105?????????????????110
gaa?gga?cca?agc?cga?tgt?gct?act?tgc?aat?aaa?cgg?gtt?ggt?ctg?act????384
Glu?Gly?Pro?Ser?Arg?Cys?Ala?Thr?Cys?Asn?Lys?Arg?Val?Gly?Leu?Thr
115?????????????????120?????????????????125
gga?ttc?aaa?tgt?cgc?tgt?ggt?gac?ctc?ttc?tgc?ggg?acg?cac?cgt?tat????432
Gly?Phe?Lys?Cys?Arg?Cys?Gly?Asp?Leu?Phe?Cys?Gly?Thr?His?Arg?Tyr
130?????????????????135?????????????????140
gca?gac?ata?cac?aac?tgc?tcc?ttc?aat?tac?cat?gcc?gct?gcg?caa?gaa????480
Ala?Asp?Ile?His?Asn?Cys?Ser?Phe?Asn?Tyr?His?Ala?Ala?Ala?Gln?Glu
145?????????????????150?????????????????155?????????????????160
gct?ata?gct?aaa?gca?aac?ccg?gtt?gtg?aag?gca?gag?aag?ctt?gac?aaa????528
Ala?Ile?Ala?Lys?Ala?Asn?Pro?Val?Val?Lys?Ala?Glu?Lys?Leu?Asp?Lys
165?????????????????170?????????????????175
atc?tga????????????????????????????????????????????????????????????534
Ile
 
<210>18
<211>177
<212>PRT
<213〉colea
 
<400>18
 
Met?Asp?His?Asp?Lys?Thr?Gly?Cys?Gln?Ser?Pro?Pro?Glu?Gly?Pro?Lys
1???????????????5???????????????????10??????????????????15
Leu?Cys?Ile?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Ser?Ala?Ala?Thr?Met?Asn
20??????????????????25??????????????????30
Met?Cys?Ser?Lys?Cys?His?Lys?Ala?Ile?Leu?Phe?Gln?Gln?Glu?Gln?Gly
35??????????????????40??????????????????45
Ala?Arg?Phe?Ala?Ser?Ala?Val?Ser?Gly?Gly?Thr?Ser?Ser?Ser?Ser?Asn
50??????????????????55??????????????????60
Ile?Leu?Lys?Glu?Thr?Phe?Ala?Ala?Thr?Ala?Leu?Val?Asp?Ala?Glu?Thr
65??????????????????70??????????????????75??????????????????80
Lys?Ser?Val?Glu?Pro?Val?Ala?Val?Ser?Val?Gln?Pro?Ser?Ser?Val?Gln
85??????????????????90??????????????????95
Val?Ala?Ala?Glu?Val?Val?Ala?Pro?Glu?Ala?Ala?Ala?Ala?Lys?Leu?Lys
100?????????????????105?????????????????110
Glu?Gly?Pro?Ser?Arg?Cys?Ala?Thr?Cys?Asn?Lys?Arg?Val?Gly?Leu?Thr
115?????????????????120?????????????????125
Gly?Phe?Lys?Cys?Arg?Cys?Gly?Asp?Leu?Phe?Cys?Gly?Thr?His?Arg?Tyr
130?????????????????135?????????????????140
Ala?Asp?Ile?His?Asn?Cys?Ser?Phe?Asn?Tyr?His?Ala?Ala?Ala?Gln?Glu
145?????????????????150?????????????????155?????????????????160
Ala?Ile?Ala?Lys?Ala?Asn?Pro?Val?Val?Lys?Ala?Glu?Lys?Leu?Asp?Lys
165?????????????????170?????????????????175
Ile
 
<210>19
<211>564
<212>DNA
<213〉colea
 
<220>
<221>CDS
<222>(1)..(564)
<223〉contain the zinc finger protein matter (BN51359456) of A20 structural domain and AN1 structural domain
<400>19
atg?gcg?gaa?gag?cat?cga?tgc?cag?acg?ccg?gaa?ggc?cac?cgt?ctc?tgt?????48
Met?Ala?Glu?Glu?His?Arg?Cys?Gln?Thr?Pro?Glu?Gly?His?Arg?Leu?Cys
1???????????????5???????????????????10??????????????????15
gct?aac?aac?tgc?ggc?ttc?ctc?ggc?agc?tcc?gcc?acc?atg?aat?cta?tgc?????96
Ala?Asn?Asn?Cys?Gly?Phe?Leu?Gly?Ser?Ser?Ala?Thr?Met?Asn?Leu?Cys
20??????????????????25??????????????????30
tcc?aac?tgc?tac?ggc?gat?ctc?tgc?ctt?aag?caa?cag?caa?gct?tcc?atg????144
Ser?Asn?Cys?Tyr?Gly?Asp?Leu?Cys?Leu?Lys?Gln?Gln?Gln?Ala?Ser?Met
35??????????????????40??????????????????45
aaa?tcc?acc?gtc?gaa?tcc?tct?ctc?tcc?gcc?gta?tct?cct?ccg?tcg?tca????192
Lys?Ser?Thr?Val?Glu?Ser?Ser?Leu?Ser?Ala?Val?Ser?Pro?Pro?Ser?Ser
50??????????????????55??????????????????60
gag?atc?ggc?tct?atg?caa?tcc?acc?gtt?gaa?tcc?tct?ctc?tcc?gac?gta????240
Glu?Ile?Gly?Ser?Met?Gln?Ser?Thr?Val?Glu?Ser?Ser?Leu?Ser?Asp?Val
65??????????????????70??????????????????75??????????????????80
tct?cct?cca?tca?ccg?gag?acc?att?tcc?atc?tcc?tct?cca?atg?atc?cag????288
Ser?Pro?Pro?Ser?Pro?Glu?Thr?Ile?Ser?Ile?Ser?Ser?Pro?Met?Ile?Gln
85??????????????????90??????????????????95
cct?ctc?gtt?cga?aac?cca?tca?gct?gaa?ttg?gag?gta?acg?gcg?acg?aag????336
Pro?Leu?Val?Arg?Asn?Pro?Ser?Ala?Glu?Leu?Glu?Val?Thr?Ala?Thr?Lys
100?????????????????105?????????????????110
acg?gtg?act?ccg?ccg?ccg?gag?cag?cag?cag?aaa?cgg?ccg?aat?cgg?tgc????384
Thr?Val?Thr?Pro?Pro?Pro?Glu?Gln?Gln?Gln?Lys?Arg?Pro?Asn?Arg?Cys
115?????????????????120?????????????????125
acg?acg?tgt?agg?aaa?cgg?gtc?ggg?ttg?acc?ggg?ttc?aag?tgc?cgg?tgc????432
Thr?Thr?Cys?Arg?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Lys?Cys?Arg?Cys
130?????????????????135?????????????????140
ggg?acg?act?ttt?tgc?ggg?gct?cac?agg?tac?ccg?gag?gtc?cat?gga?tgc????480
Gly?Thr?Thr?Phe?Cys?Gly?Ala?His?Arg?Tyr?Pro?Glu?Val?His?Gly?Cys
145?????????????????150?????????????????155?????????????????160
acc?ttc?gat?ttc?aaa?tcg?gcc?ggt?cgc?gaa?gag?atc?gcc?aag?gcg?aac????528
Thr?Phe?Asp?Phe?Lys?Ser?Ala?Gly?Arg?Glu?Glu?Ile?Ala?Lys?Ala?Asn
165?????????????????170?????????????????175
cca?ctc?gtc?aaa?gcg?gcg?aag?ctt?cag?aag?att?tga??????????????????????64
Pro?Leu?Val?Lys?Ala?Ala?Lys?Leu?Gln?Lys?Ile
180?????????????????185
 
<210>20
<211>187
<212>PRT
<213〉colea
 
<400>20
 
Met?Ala?Glu?Glu?His?Arg?Cys?Gln?Thr?Pro?Glu?Gly?His?Arg?Leu?Cys
1???????????????5???????????????????10??????????????????15
Ala?Asn?Asn?Cys?Gly?Phe?Leu?Gly?Ser?Ser?Ala?Thr?Met?Asn?Leu?Cys
20??????????????????25??????????????????30
Ser?Asn?Cys?Tyr?Gly?Asp?Leu?Cys?Leu?Lys?Gln?Gln?Gln?Ala?Ser?Met
35??????????????????40??????????????????45
Lys?Ser?Thr?Val?Glu?Ser?Ser?Leu?Ser?Ala?Val?Ser?Pro?Pro?Ser?Ser
50??????????????????55??????????????????60
Glu?Ile?Gly?Ser?Met?Gln?Ser?Thr?Val?Glu?Ser?Ser?Leu?Ser?Asp?Val
65??????????????????70??????????????????75??????????????????80
Ser?Pro?Pro?Ser?Pro?Glu?Thr?Ile?Ser?Ile?Ser?Ser?Pro?Met?Ile?Gln
85??????????????????90??????????????????95
Pro?Leu?Val?Arg?Asn?Pro?Ser?Ala?Glu?Leu?Glu?Val?Thr?Ala?Thr?Lys
100?????????????????105?????????????????110
Thr?Val?Thr?Pro?Pro?Pro?Glu?Gln?Gln?Gln?Lys?Arg?Pro?Asn?Arg?Cys
115?????????????????120?????????????????125
Thr?Thr?Cys?Arg?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Lys?Cys?Arg?Cys
130?????????????????135?????????????????140
Gly?Thr?Thr?Phe?Cys?Gly?Ala?His?Arg?Tyr?Pro?Glu?Val?His?Gly?Cys
145?????????????????150?????????????????155?????????????????160
Thr?Phe?Asp?Phe?Lys?Ser?Ala?Gly?Arg?Glu?Glu?Ile?Ala?Lys?Ala?Asn
165?????????????????170?????????????????175
Pro?Leu?Val?Lys?Ala?Ala?Lys?Leu?Gln?Lys?Ile
180?????????????????185
 
<210>21
<211>465
<212>DNA
<213〉barley
 
<220>
<221>CDS
<222>(1)..(465)
<223〉contain the zinc finger protein matter (HV62552639) of A20 structural domain and AN1 structural domain
 
<400>21
atg?gcc?cag?gag?agt?tgt?gat?ctc?aac?aag?gac?gag?gcc?gag?atc?ctg?????48
Met?Ala?Gln?Glu?Ser?Cys?Asp?Leu?Asn?Lys?Asp?Glu?Ala?Glu?Ile?Leu
1???????????????5???????????????????10??????????????????15
aag?cca?tcc?tcc?tcc?aca?cct?tcg?cct?cct?tcg?cca?gcc?aca?cca?cca?????96
Lys?Pro?Ser?Ser?Ser?Thr?Pro?Ser?Pro?Pro?Ser?Pro?Ala?Thr?Pro?Pro
20??????????????????25??????????????????30
cca?cca?acc?gct?caa?ata?cca?gaa?cca?caa?cct?cca?cac?tca?cca?cca????144
Pro?Pro?Thr?Ala?Gln?Ile?Pro?Glu?Pro?Gln?Pro?Pro?His?Ser?Pro?Pro
35??????????????????40??????????????????45
caa?cca?ccg?gca?gct?caa?ttc?ttg?tcc?agg?ccc?tgc?gag?gtt?gtt?ccc????192
Gln?Pro?Pro?Ala?Ala?Gln?Phe?Leu?Ser?Arg?Pro?Cys?Glu?Val?Val?Pro
50??????????????????55??????????????????60
ata?gag?act?tcc?aaa?aag?agg?aaa?cat?gct?gat?gcg?gtg?tca?atg?gcc????240
Ile?Glu?Thr?Ser?Lys?Lys?Arg?Lys?His?Ala?Asp?Ala?Val?Ser?Met?Ala
65??????????????????70??????????????????75??????????????????80
att?gtg?gtt?gag?cca?ttg?tcg?tct?gtg?ctg?ttc?gtt?aac?cgt?tgc?aac????288
Ile?Val?Val?Glu?Pro?Leu?Ser?Ser?Val?Leu?Phe?Val?Asn?Arg?Cys?Asn
85??????????????????90??????????????????95
gtg?tgc?cgc?aag?aga?gtt?ggt?ttg?acc?ggg?ttc?cgt?tgc?cgg?tgt?gag????336
Val?Cys?Arg?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Arg?Cys?Arg?Cys?Glu
100?????????????????105?????????????????110
aag?ctc?ttt?tgt?ccg?cgc?cac?cgg?cat?tca?gaa?agc?cac?gac?tgc?tca????384
Lys?Leu?Phe?Cys?Pro?Arg?His?Arg?His?Ser?Glu?Ser?His?Asp?Cys?Ser
115?????????????????120?????????????????125
ttt?gat?tat?aaa?act?gtg?ggt?cgg?gag?gag?att?gcc?cgg?gca?aac?cct????432
Phe?Asp?Tyr?Lys?Thr?Val?Gly?Arg?Glu?Glu?Ile?Ala?Arg?Ala?Asn?Pro
130?????????????????135?????????????????140
ctg?atc?agg?gct?gcc?aag?atc?att?agg?ata?tga????????????????????????465
Leu?Ile?Arg?Ala?Ala?Lys?Ile?Ile?Arg?Ile
145?????????????????150
 
<210>22
<211>154
<212>PRT
<213〉barley
 
<400>22
 
Met?Ala?Gln?Glu?Ser?Cys?Asp?Leu?Asn?Lys?Asp?Glu?Ala?Glu?Ile?Leu
1???????????????5???????????????????10??????????????????15
Lys?Pro?Ser?Ser?Ser?Thr?Pro?Ser?Pro?Pro?Ser?Pro?Ala?Thr?Pro?Pro
20??????????????????25??????????????????30
Pro?Pro?Thr?Ala?Gln?Ile?Pro?Glu?Pro?Gln?Pro?Pro?His?Ser?Pro?Pro
35??????????????????40??????????????????45
Gln?Pro?Pro?Ala?Ala?Gln?Phe?Leu?Ser?Arg?Pro?Cys?Glu?Val?Val?Pro
50??????????????????55??????????????????60
Ile?Glu?Thr?Ser?Lys?Lys?Arg?Lys?His?Ala?Asp?Ala?Val?Ser?Met?Ala
65??????????????????70??????????????????75??????????????????80
Ile?Val?Val?Glu?Pro?Leu?Ser?Ser?Val?Leu?Phe?Val?Asn?Arg?Cys?Asn
85??????????????????90??????????????????95
Val?Cys?Arg?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Arg?Cys?Arg?Cys?Glu
100?????????????????105?????????????????110
Lys?Leu?Phe?Cys?Pro?Arg?His?Arg?His?Ser?Glu?Ser?His?Asp?Cys?Ser
115?????????????????120?????????????????125
Phe?Asp?Tyr?Lys?Thr?Val?Gly?Arg?Glu?Glu?Ile?Ala?Arg?Ala?Asn?Pro
130?????????????????135?????????????????140
Leu?Ile?Arg?Ala?Ala?Lys?Ile?Ile?Arg?Ile
145?????????????????150
 
<210>23
<211>516
<212>DNA
<213〉corn
 
<220>
<221>CDS
<222>(1)..(516)
<223〉contain the zinc finger protein matter (ZM61995511) of A20 structural domain and AN1 structural domain
 
<400>23
atg?gaa?cac?aag?gag?gcg?ggc?tgc?cag?cag?ccg?gag?ggc?cca?atc?cta?????48
Met?Glu?His?Lys?Glu?Ala?Gly?Cys?Gln?Gln?Pro?Glu?Gly?Pro?Ile?Leu
1???????????????5???????????????????10??????????????????15
tgc?atc?aat?aac?tgc?ggc?ttc?ttc?ggc?agt?gct?gcg?acg?atg?aac?atg?????96
Cys?Ile?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Ser?Ala?Ala?Thr?Met?Asn?Met
20??????????????????25??????????????????30
tgc?tcc?aag?tgc?cac?aag?gag?atg?ata?acg?aag?cag?gag?cag?gcc?cag????144
Cys?Ser?Lys?Cys?His?Lys?Glu?Met?Ile?Thr?Lys?Gln?Glu?Gln?Ala?Gln
35??????????????????40??????????????????45
ctg?gct?gcc?tcc?ccc?atc?gat?agc?att?gtc?aat?ggc?ggt?gac?ggc?ggg????192
Leu?Ala?Ala?Ser?Pro?Ile?Asp?Ser?Ile?Val?Asn?Gly?Gly?Asp?Gly?Gly
50??????????????????55??????????????????60
aaa?gga?cct?gta?att?gct?gca?tct?gta?aat?gtg?gca?gtt?cct?caa?gtt????240
Lys?Gly?Pro?Val?Ile?Ala?Ala?Ser?Val?Asn?Val?Ala?Val?Pro?Gln?Val
65??????????????????70??????????????????75??????????????????80
gag?cag?aag?act?att?gtt?gtg?cag?ccc?atg?ctt?gta?gct?gaa?acc?agc????288
Glu?Gln?Lys?Thr?Ile?Val?Val?Gln?Pro?Met?Leu?Val?Ala?Glu?Thr?Ser
85??????????????????90??????????????????95
gag?gct?gct?gct?gta?atc?ccc?aag?gcc?aag?gaa?ggc?cca?gac?cgg?tgc????336
Glu?Ala?Ala?Ala?Val?Ile?Pro?Lys?Ala?Lys?Glu?Gly?Pro?Asp?Arg?Cys
100?????????????????105?????????????????110
gcg?gcc?tgc?agg?aag?cgt?gtt?ggg?ctg?acg?gga?ttt?agc?tgc?cga?tgc????384
Ala?Ala?Cys?Arg?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Ser?Cys?Arg?Cys
115?????????????????120?????????????????125
ggg?aac?atg?tac?tgt?tcg?gtg?cac?cgc?tac?tcc?gac?aaa?cat?gac?tgt????432
Gly?Asn?Met?Tyr?Cys?Ser?Val?His?Arg?Tyr?Ser?Asp?Lys?His?Asp?Cys
130?????????????????135?????????????????140
cag?ttc?gac?tat?cgg?act?gca?gca?agg?gac?gcg?att?gcc?aag?gcc?aat????480
Gln?Phe?Asp?Tyr?Arg?Thr?Ala?Ala?Arg?Asp?Ala?Ile?Ala?Lys?Ala?Asn
145?????????????????150?????????????????155?????????????????160
cct?gtg?gtg?agg?gcg?gag?aag?ctc?gac?aag?atc?tga????????????????????516
Pro?Val?Val?Arg?Ala?Glu?Lys?Leu?Asp?Lys?Ile
165?????????????????170
 
<210>24
<211>171
<212>PRT
<213〉corn
 
<400>24
 
Met?Glu?His?Lys?Glu?Ala?Gly?Cys?Gln?Gln?Pro?Glu?Gly?Pro?Ile?Leu
1???????????????5???????????????????10??????????????????15
Cys?Ile?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Ser?Ala?Ala?Thr?Met?Asn?Met
20??????????????????25??????????????????30
Cys?Ser?Lys?Cys?His?Lys?Glu?Met?Ile?Thr?Lys?Gln?Glu?Gln?Ala?Gln
35??????????????????40??????????????????45
Leu?Ala?Ala?Ser?Pro?Ile?Asp?Ser?Ile?Val?Asn?Gly?Gly?Asp?Gly?Gly
50??????????????????55??????????????????60
Lys?Gly?Pro?Val?Ile?Ala?Ala?Ser?Val?Asn?Val?Ala?Val?Pro?Gln?Val
65??????????????????70??????????????????75??????????????????80
Glu?Gln?Lys?Thr?Ile?Val?Val?Gln?Pro?Met?Leu?Val?Ala?Glu?Thr?Ser
85??????????????????90??????????????????95
Glu?Ala?Ala?Ala?Val?Ile?Pro?Lys?Ala?Lys?Glu?Gly?Pro?Asp?Arg?Cys
100?????????????????105?????????????????110
Ala?Ala?Cys?Arg?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Ser?Cys?Arg?Cys
115?????????????????120?????????????????125
Gly?Asn?Met?Tyr?Cys?Ser?Val?His?Arg?Tyr?Ser?Asp?Lys?His?Asp?Cys
130?????????????????135?????????????????140
Gln?Phe?Asp?Tyr?Arg?Thr?Ala?Ala?Arg?Asp?Ala?Ile?Ala?Lys?Ala?Asn
145?????????????????150?????????????????155?????????????????160
Pro?Val?Val?Arg?Ala?Glu?Lys?Leu?Asp?Lys?Ile
165?????????????????170
 
<210>25
<211>720
<212>DNA
<213〉flax
 
<220>
<221>CDS
<222>(1)..(720)
<223〉contain the zinc finger protein matter (LU61567101) of A20 structural domain and AN1 structural domain
 
<400>25
atg?gct?cct?tca?cct?tgc?gtc?cac?ggc?tgc?acg?gcc?aat?tgc?ccc?cgc?????48
Met?Ala?Pro?Ser?Pro?Cys?Val?His?Gly?Cys?Thr?Ala?Asn?Cys?Pro?Arg
1???????????????5???????????????????10??????????????????15
tgc?cac?tct?tac?gga?cac?ccc?atc?ttc?ggg?aac?tca?gat?ctc?gcc?gct?????96
Cys?His?Ser?Tyr?Gly?His?Pro?Ile?Phe?Gly?Asn?Ser?Asp?Leu?Ala?Ala
20??????????????????25??????????????????30
ggc?ggc?agc?gat?acg?tcc?acg?tcg?gtg?ttt?gga?aaa?gta?gga?tcc?gtc????144
Gly?Gly?Ser?Asp?Thr?Ser?Thr?Ser?Val?Phe?Gly?Lys?Val?Gly?Ser?Val
35??????????????????40??????????????????45
gtg?att?cag?tcg?cct?gcg?aag?aat?cac?gcg?ttc?ggc?caa?gct?tgt?ggc????192
Val?Ile?Gln?Ser?Pro?Ala?Lys?Asn?His?Ala?Phe?Gly?Gln?Ala?Cys?Gly
50??????????????????55??????????????????60
ccg?gtt?ttt?ccc?tcg?agc?tcc?tcc?cct?ttc?cgc?cgc?atc?aag?ttc?ggc????240
Pro?Val?Phe?Pro?Ser?Ser?Ser?Ser?Pro?Phe?Arg?Arg?Ile?Lys?Phe?Gly
65??????????????????70??????????????????75??????????????????80
ccc?aaa?gat?ggc?gag?ggg?aaa?gga?ccg?ctg?aag?ccg?atc?gag?aag?cag????288
Pro?Lys?Asp?Gly?Glu?Gly?Lys?Gly?Pro?Leu?Lys?Pro?Ile?Glu?Lys?Gln
85??????????????????90??????????????????95
ccg?tcg?aag?aag?cgt?ccg?ttc?tgc?ttc?tct?ccc?gac?gag?acg?att?gac????336
Pro?Ser?Lys?Lys?Arg?Pro?Phe?Cys?Phe?Ser?Pro?Asp?Glu?Thr?Ile?Asp
100?????????????????105?????????????????110
gcg?acg?gtt?cct?ccg?tcc?acc?aaa?ccg?ttc?ggt?tcg?ttc?cgt?tcc?gtc????384
Ala?Thr?Val?Pro?Pro?Ser?Thr?Lys?Pro?Phe?Gly?Ser?Phe?Arg?Ser?Val
115?????????????????120?????????????????125
tgt?gtc?acg?gac?gcc?gac?gag?gcc?agg?ttg?aag?gcg?aac?cgc?gag?ttc????432
Cys?Val?Thr?Asp?Ala?Asp?Glu?Ala?Arg?Leu?Lys?Ala?Asn?Arg?Glu?Phe
130?????????????????135?????????????????140
ttc?gct?ccg?gta?tcc?cgc?aaa?cgt?ggc?ttc?gat?ccg?act?gac?atg?acc????480
Phe?Ala?Pro?Val?Ser?Arg?Lys?Arg?Gly?Phe?Asp?Pro?Thr?Asp?Met?Thr
145?????????????????150?????????????????155?????????????????160
ttc?ggt?aac?gcc?gcc?gcc?gct?gcg?gct?aat?gcg?agg?gag?gaa?gcg?aag????528
Phe?Gly?Asn?Ala?Ala?Ala?Ala?Ala?Ala?Asn?Ala?Arg?Glu?Glu?Ala?Lys
165?????????????????170?????????????????175
aag?tgg?tgc?ggc?agt?tgc?aag?aag?cgc?gtg?ggg?ctg?tta?ggg?ttc?aag????576
Lys?Trp?Cys?Gly?Ser?Cys?Lys?Lys?Arg?Val?Gly?Leu?Leu?Gly?Phe?Lys
180?????????????????185?????????????????190
tgc?agg?tgt?acg?aag?ttc?ttc?tgt?ggg?aag?cat?cgg?tat?cct?gag?gag????624
Cys?Arg?Cys?Thr?Lys?Phe?Phe?Cys?Gly?Lys?His?Arg?Tyr?Pro?Glu?Glu
195?????????????????200?????????????????205
cat?ggt?tgt?acg?ttc?gat?cat?gtg?gcg?ttc?ggg?agg?cgg?att?atc?gag????672
His?Gly?Cys?Thr?Phe?Asp?His?Val?Ala?Phe?Gly?Arg?Arg?Ile?Ile?Glu
210?????????????????215?????????????????220
aaa?cag?aat?cct?gtt?ctc?gag?acc?gac?aag?ctg?gtg?gac?aga?atc?tga????720
Lys?Gln?Asn?Pro?Val?Leu?Glu?Thr?Asp?Lys?Leu?Val?Asp?Arg?Ile
225?????????????????230?????????????????235
<210>26
<211>239
<212>PRT
<213〉flax
 
<400>26
 
Met?Ala?Pro?Ser?Pro?Cys?Val?His?Gly?Cys?Thr?Ala?Asn?Cys?Pro?Arg
1???????????????5???????????????????10??????????????????15
Cys?His?Ser?Tyr?Gly?His?Pro?Ile?Phe?Gly?Asn?Ser?Asp?Leu?Ala?Ala
20??????????????????25??????????????????30
Gly?Gly?Ser?Asp?Thr?Ser?Thr?Ser?Val?Phe?Gly?Lys?Val?Gly?Ser?Val
35??????????????????40??????????????????45
Val?Ile?Gln?Ser?Pro?Ala?Lys?Asn?His?Ala?Phe?Gly?Gln?Ala?Cys?Gly
50??????????????????55??????????????????60
Pro?Val?Phe?Pro?Ser?Ser?Ser?Ser?Pro?Phe?Arg?Arg?Ile?Lys?Phe?Gly
65??????????????????70??????????????????75??????????????????80
Pro?Lys?Asp?Gly?Glu?Gly?Lys?Gly?Pro?Leu?Lys?Pro?Ile?Glu?Lys?Gln
85??????????????????90??????????????????95
Pro?Ser?Lys?Lys?Arg?Pro?Phe?Cys?Phe?Ser?Pro?Asp?Glu?Thr?Ile?Asp
100?????????????????105?????????????????110
Ala?Thr?Val?Pro?Pro?Ser?Thr?Lys?Pro?Phe?Gly?Ser?Phe?Arg?Ser?Val
115?????????????????120?????????????????125
Cys?Val?Thr?Asp?Ala?Asp?Glu?Ala?Arg?Leu?Lys?Ala?Asn?Arg?Glu?Phe
130?????????????????135?????????????????140
Phe?Ala?Pro?Val?Ser?Arg?Lys?Arg?Gly?Phe?Asp?Pro?Thr?Asp?Met?Thr
145?????????????????150?????????????????155?????????????????160
Phe?Gly?Asn?Ala?Ala?Ala?Ala?Ala?Ala?Asn?Ala?Arg?Glu?Glu?Ala?Lys
165?????????????????170?????????????????175
Lys?Trp?Cys?Gly?Ser?Cys?Lys?Lys?Arg?Val?Gly?Leu?Leu?Gly?Phe?Lys
180?????????????????185?????????????????190
Cys?Arg?Cys?Thr?Lys?Phe?Phe?Cys?Gly?Lys?His?Arg?Tyr?Pro?Glu?Glu
195?????????????????200?????????????????205
His?Gly?Cys?Thr?Phe?Asp?His?Val?Ala?Phe?Gly?Arg?Arg?Ile?Ile?Glu
210?????????????????215?????????????????220
Lys?Gln?Asn?Pro?Val?Leu?Glu?Thr?Asp?Lys?Leu?Val?Asp?Arg?Ile
225?????????????????230?????????????????235
 
<210>27
<211>510
<212>DNA
<213〉flax
 
<220>
<221>CDS
<222>(1)..(510)
<223〉contain the zinc finger protein matter (LU61893412) of A20 structural domain and AN1 structural domain
 
<400>27
atg?gac?cat?gac?gag?gca?ggc?tgc?cag?gct?cct?tcc?gat?cat?cct?att?????48
Met?Asp?His?Asp?Glu?Ala?Gly?Cys?Gln?Ala?Pro?Ser?Asp?His?Pro?Ile
1???????????????5???????????????????10??????????????????15
ctg?tgc?gtt?aac?aat?tgc?ggc?ttc?ttc?gga?agt?gct?gcc?acc?atg?aac?????96
Leu?Cys?Val?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Ser?Ala?Ala?Thr?Met?Asn
20??????????????????25??????????????????30
atg?tgc?tca?aag?tgc?cac?aag?gat?acg?atg?cta?aac?caa?gag?caa?tcc????144
Met?Cys?Ser?Lys?Cys?His?Lys?Asp?Thr?Met?Leu?Asn?Gln?Glu?Gln?Ser
35??????????????????40??????????????????45
aag?ctt?gct?gct?tca?tcg?gca?gca?agt?atc?ctc?aac?gga?tcg?tcg?atg????192
Lys?Leu?Ala?Ala?Ser?Ser?Ala?Ala?Ser?Ile?Leu?Asn?Gly?Ser?Ser?Met
50??????????????????55??????????????????60
agc?ctc?gga?agg?gaa?ctc?gtt?att?gct?gct?aag?acc?aat?tcg?gta?gaa????240
Ser?Leu?Gly?Arg?Glu?Leu?Val?Ile?Ala?Ala?Lys?Thr?Asn?Ser?Val?Glu
65??????????????????70??????????????????75??????????????????80
ccc?aag?acc?atc?tcc?gtc?caa?cca?tct?tct?gct?tca?agt?gct?gaa?gag????288
Pro?Lys?Thr?Ile?Ser?Val?Gln?Pro?Ser?Ser?Ala?Ser?Ser?Ala?Glu?Glu
85??????????????????90??????????????????95
agt?atc?gaa?atg?aag?ctg?cca?aaa?gaa?ggg?ccc?agt?agg?tgc?aac?act????336
Ser?Ile?Glu?Met?Lys?Leu?Pro?Lys?Glu?Gly?Pro?Ser?Arg?Cys?Asn?Thr
100?????????????????105?????????????????110
tgc?aac?aaa?cgt?gtc?ggt?ttg?acc?gga?ttc?aaa?tgt?cgg?tgc?gag?aac????384
Cys?Asn?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Lys?Cys?Arg?Cys?Glu?Asn
115?????????????????120?????????????????125
atg?ttc?tgc?gca?aac?cat?cgc?tac?tcg?gac?aag?cac?aat?tgc?ccc?ttt????432
Met?Phe?Cys?Ala?Asn?His?Arg?Tyr?Ser?Asp?Lys?His?Asn?Cys?Pro?Phe
130?????????????????135?????????????????140
gat?tac?cgc?act?gct?ggc?cgt?gaa?gct?atc?tca?aag?gcc?aat?cct?ttg????480
Asp?Tyr?Arg?Thr?Ala?Gly?Arg?Glu?Ala?Ile?Ser?Lys?Ala?Asn?Pro?Leu
145?????????????????150?????????????????155?????????????????160
gtg?aag?gcg?gag?aag?ctc?gac?aaa?atc?tga????????????????????????????510
Val?Lys?Ala?Glu?Lys?Leu?Asp?Lys?Ile
165
 
<210>28
<211>169
<212>PRT
<213〉flax
 
<400>28
 
Met?Asp?His?Asp?Glu?Ala?Gly?Cys?Gln?Ala?Pro?Ser?Asp?His?Pro?Ile
1???????????????5???????????????????10??????????????????15
Leu?Cys?Val?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Ser?Ala?Ala?Thr?Met?Asn
20??????????????????25??????????????????30
Met?Cys?Ser?Lys?Cys?His?Lys?Asp?Thr?Met?Leu?Asn?Gln?Glu?Gln?Ser
35??????????????????40??????????????????45
Lys?Leu?Ala?Ala?Ser?Ser?Ala?Ala?Ser?Ile?Leu?Asn?Gly?Ser?Ser?Met
50??????????????????55??????????????????60
Ser?Leu?Gly?Arg?Glu?Leu?Val?Ile?Ala?Ala?Lys?Thr?Asn?Ser?Val?Glu
65??????????????????70??????????????????75??????????????????80
Pro?Lys?Thr?Ile?Ser?Val?Gln?Pro?Ser?Ser?Ala?Ser?Ser?Ala?Glu?Glu
85??????????????????90??????????????????95
Ser?Ile?Glu?Met?Lys?Leu?Pro?Lys?Glu?Gly?Pro?Ser?Arg?Cys?Asn?Thr
100?????????????????105?????????????????110
Cys?Asn?Lys?Arg?Val?Gly?Leu?Thr?GIy?Phe?Lys?Cys?Arg?Cys?Glu?Asn
115?????????????????120?????????????????125
Met?Phe?Cys?Ala?Asn?His?Arg?Tyr?Ser?Asp?Lys?His?Asn?Cys?Pro?Phe
130?????????????????135?????????????????140
Asp?Tyr?Arg?Thr?Ala?Gly?Arg?Glu?Ala?Ile?Ser?Lys?Ala?Asn?Pro?Leu
145?????????????????150?????????????????155?????????????????160
Val?Lys?Ala?Glu?Lys?Leu?Asp?Lys?Ile
165
 
<210>29
<211>495
<212>DNA
<213〉rice
 
<220>
<221>CDS
<222>(1)..(495)
<223〉contain the zinc finger protein matter (OS39781852) of A20 structural domain and AN1 structural domain
 
<400>29
atg?gcg?cag?cgc?gac?aag?aag?gat?cag?gag?ccg?acg?gag?ctc?agg?gcg?????48
Met?Ala?Gln?Arg?Asp?Lys?Lys?Asp?Gln?Glu?Pro?Thr?Glu?Leu?Arg?Ala
1???????????????5???????????????????10??????????????????15
ccg?gag?atc?acg?ctg?tgc?gcc?aac?agc?tgc?gga?ttc?ccg?ggc?aac?ccg?????96
Pro?Glu?Ile?Thr?Leu?Cys?Ala?Asn?Ser?Cys?Gly?Phe?Pro?Gly?Asn?Pro
20??????????????????25??????????????????30
gcc?acg?cag?aac?ctc?tgc?cag?aac?tgc?ttc?ttg?gcg?gcc?acg?gcg?tcc????144
Ala?Thr?Gln?Asn?Leu?Cys?Gln?Asn?Cys?Phe?Leu?Ala?Ala?Thr?Ala?Ser
35??????????????????40??????????????????45
acc?tcg?tcg?ccg?tct?tct?ttg?tcg?tca?ccg?gtg?ctc?gac?aag?cag?ccg????192
Thr?Ser?Ser?Pro?Ser?Ser?Leu?Ser?Ser?Pro?Val?Leu?Asp?Lys?Gln?Pro
50??????????????????55??????????????????60
ccg?agg?ccg?gcg?gcg?ccg?ctg?gtt?gag?cct?cag?gct?cct?ctc?cca?ccg????240
Pro?Arg?Pro?Ala?Ala?Pro?Leu?Val?Glu?Pro?Gln?Ala?Pro?Leu?Pro?Pro
65??????????????????70??????????????????75??????????????????80
cct?gtg?gag?gag?atg?gcc?tcc?gcg?ctc?gcg?acg?gcg?ccg?gcg?ccg?gtc????288
Pro?Val?Glu?Glu?Met?Ala?Ser?Ala?Leu?Ala?Thr?Ala?Pro?Ala?Pro?Val
85??????????????????90??????????????????95
gcc?aag?acg?tcg?gcg?gtg?aac?cgg?tgc?tcc?agg?tgc?cgg?aag?cgt?gtc????336
Ala?Lys?Thr?Ser?Ala?Val?Asn?Arg?Cys?Ser?Arg?Cys?Arg?Lys?Arg?Val
100?????????????????105?????????????????110
ggc?ctc?acc?ggg?ttc?cgg?tgc?cgg?tgc?ggc?cac?ctg?ttc?tgc?ggc?gag????384
Gly?Leu?Thr?Gly?Phe?Arg?Cys?Arg?Cys?Gly?His?Leu?Phe?Cys?Gly?Glu
115?????????????????120?????????????????125
cac?cgg?tac?tcc?gac?cgc?cac?ggc?tgc?agc?tac?gac?tac?aag?tcg?gcg????432
His?Arg?Tyr?Ser?Asp?Arg?His?Gly?Cys?Ser?Tyr?Asp?Tyr?Lys?Ser?Ala
130?????????????????135?????????????????140
gcg?agg?gac?gcc?atc?gcc?agg?gac?aac?ccg?gtg?gtg?cgc?gcg?gcc?aag????480
Ala?Arg?Asp?Ala?Ile?Ala?Arg?Asp?Asn?Pro?Val?Val?Arg?Ala?Ala?Lys
145?????????????????150?????????????????155?????????????????160
atc?gtt?agg?ttc?tga????????????????????????????????????????????????495
Ile?Val?Arg?Phe
 
<210>30
<211>164
<212>PRT
<213〉rice
 
<400>30
 
Met?Ala?Gln?Arg?Asp?Lys?Lys?Asp?Gln?Glu?Pro?Thr?Glu?Leu?Arg?Ala
1???????????????5???????????????????10??????????????????15
Pro?Glu?Ile?Thr?Leu?Cys?Ala?Asn?Ser?Cys?Gly?Phe?Pro?Gly?Asn?Pro
20??????????????????25??????????????????30
Ala?Thr?Gln?Asn?Leu?Cys?Gln?Asn?Cys?Phe?Leu?Ala?Ala?Thr?Ala?Ser
35??????????????????40??????????????????45
Thr?Ser?Ser?Pro?Ser?Ser?Leu?Ser?Ser?Pro?Val?Leu?Asp?Lys?Gln?Pro
50??????????????????55??????????????????60
Pro?Arg?Pro?Ala?Ala?Pro?Leu?Val?Glu?Pro?Gln?Ala?Pro?Leu?Pro?Pro
65??????????????????70??????????????????75??????????????????80
Pro?Val?Glu?Glu?Met?Ala?Ser?Ala?Leu?Ala?Thr?Ala?Pro?Ala?Pro?Val
85??????????????????90??????????????????95
Ala?Lys?Thr?Ser?Ala?Val?Asn?Arg?Cys?Ser?Arg?Cys?Arg?Lys?Arg?Val
100?????????????????105?????????????????110
Gly?Leu?Thr?Gly?Phe?Arg?Cys?Arg?Cys?Gly?His?Leu?Phe?Cys?Gly?Glu
115?????????????????120?????????????????125
His?Arg?Tyr?Ser?Asp?Arg?His?Gly?Cys?Ser?Tyr?Asp?Tyr?Lys?Ser?Ala
130?????????????????135?????????????????140
Ala?Arg?Asp?Ala?Ile?Ala?Arg?Asp?Asn?Pro?Val?Val?Arg?Ala?Ala?Lys
145?????????????????150?????????????????155?????????????????160
Ile?Val?Arg?Phe
 
<210>31
<211>495
<212>DNA
<213〉rice
 
<220>
<221>CDS
<222>(1)..(495)
<223〉contain the zinc finger protein matter (OS34701560) of A20 structural domain and AN1 structural domain
 
<400>31
atg?gcc?gaa?gaa?cac?cga?tgc?caa?gct?ccc?gaa?ggt?cac?aga?ctc?tgc????48
Met?Ala?Glu?Glu?His?Arg?Cys?Gln?Ala?Pro?Glu?Gly?His?Arg?Leu?Cys
1???????????????5???????????????????10??????????????????15
tcc?aac?aac?tgc?ggt?ttc?ttt?ggt?agc?ccc?gcc?acc?atg?aat?ctc?tgt?????96
Ser?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Ser?Pro?Ala?Thr?Met?Asn?Leu?Cys
20??????????????????25??????????????????30
tcc?aaa?tgc?tac?aga?gac?atc?cgt?ttg?aag?gaa?gaa?gaa?caa?gcc?aaa????144
Ser?Lys?Cys?Tyr?Arg?Asp?Ile?Arg?Leu?Lys?Glu?Glu?Glu?Gln?Ala?Lys
35??????????????????40??????????????????45
acc?aaa?tcc?aca?atc?gaa?acc?gct?ctt?tca?gga?tct?tcc?tcc?gcc?acc????192
Thr?Lys?Ser?Thr?Ile?Glu?Thr?Ala?Leu?Ser?Gly?Ser?Ser?Ser?Ala?Thr
50??????????????????55??????????????????60
gtc?acc?gca?acc?gcc?gtc?gtt?gcc?tcc?tcc?gtg?gaa?tcc?cct?tcg?gcg????240
Val?Thr?Ala?Thr?Ala?Val?Val?Ala?Ser?Ser?Val?Glu?Ser?Pro?Ser?Ala
65??????????????????70??????????????????75??????????????????80
ccg?gtt?gaa?tcc?ctc?cct?caa?cca?ccg?gtg?ctg?att?tcg?ccg?gat?ata????288
Pro?Val?Glu?Ser?Leu?Pro?Gln?Pro?Pro?Val?Leu?Ile?Ser?Pro?Asp?Ile
85??????????????????90??????????????????95
gcc?gca?ccg?gtt?cag?gcg?aac?cgg?tgc?ggc?gcg?tgt?agg?aag?cgc?gtg????336
Ala?Ala?Pro?Val?Gln?Ala?Asn?Arg?Cys?Gly?Ala?Cys?Arg?Lys?Arg?Val
100?????????????????105?????????????????110
ggg?ttg?aca?ggg?ttc?aag?tgc?agg?tgc?gga?aca?acg?ttt?tgt?ggg?agc????384
Gly?Leu?Thr?Gly?Phe?Lys?Cys?Arg?Cys?Gly?Thr?Thr?Phe?Cys?Gly?Ser
115?????????????????120?????????????????125
cac?agg?tac?ccc?gag?aaa?cac?gcg?tgt?ggc?ttc?gat?ttc?aag?gcg?gtg????432
His?Arg?Tyr?Pro?Glu?Lys?His?Ala?Cys?Gly?Phe?Asp?Phe?Lys?Ala?Val
130?????????????????135?????????????????140
ggg?aga?gag?gag?ata?gca?cgg?gcg?aat?ccc?gtg?atc?aaa?ggc?gag?aag????480
Gly?Arg?Glu?Glu?Ile?Ala?Arg?Ala?Asn?Pro?Val?Ile?Lys?Gly?Glu?Lys
145?????????????????150?????????????????155?????????????????160
cta?cgg?agg?att?taa????????????????????????????????????????????????495
Leu?Arg?Arg?Ile
 
<210>32
<211>164
<212>PRT
<213〉rice
 
<400>32
 
Met?Ala?Glu?Glu?His?Arg?Cys?Gln?Ala?Pro?Glu?Gly?His?Arg?Leu?Cys
1???????????????5???????????????????10??????????????????15
Ser?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Ser?Pro?Ala?Thr?Met?Asn?Leu?Cys
20??????????????????25??????????????????30
Ser?Lys?Cys?Tyr?Arg?Asp?Ile?Arg?Leu?Lys?Glu?Glu?Glu?Gln?Ala?Lys
35??????????????????40??????????????????45
Thr?Lys?Ser?Thr?Ile?Glu?Thr?Ala?Leu?Ser?Gly?Ser?Ser?Ser?Ala?Thr
50??????????????????55??????????????????60
Val?Thr?Ala?Thr?Ala?Val?Val?Ala?Ser?Ser?Val?Glu?Ser?Pro?Ser?Ala
65??????????????????70??????????????????75??????????????????80
Pro?Val?Glu?Ser?Leu?Pro?Gln?Pro?Pro?Val?Leu?Ile?Ser?Pro?Asp?Ile
85??????????????????90??????????????????95
Ala?Ala?Pro?Val?Gln?Ala?Asn?Arg?Cys?Gly?Ala?Cys?Arg?Lys?Arg?Val
100?????????????????105?????????????????110
Gly?Leu?Thr?Gly?Phe?Lys?Cys?Arg?Cys?Gly?Thr?Thr?Phe?Cys?Gly?Ser
115?????????????????120?????????????????125
His?Arg?Tyr?Pro?Glu?Lys?His?Ala?Cys?Gly?Phe?Asp?Phe?Lys?Ala?Val
130?????????????????135?????????????????140
Gly?Arg?Glu?Glu?Ile?Ala?Arg?Ala?Asn?Pro?Val?Ile?Lys?Gly?Glu?Lys
145?????????????????150?????????????????155?????????????????160
Leu?Arg?Arg?Ile
 
<210>33
<211>513
<212>DNA
<213〉rice
 
<220>
<221>CDS
<222>(1)..(513)
<223〉contain the zinc finger protein matter (OS36821256) of A20 structural domain and AN1 structural domain
 
<400>33
atg?gcg?cag?agg?gag?aag?aag?gtg?gag?gag?ccg?acg?gag?ctg?agg?gcg?????48
Met?Ala?Gln?Arg?Glu?Lys?Lys?Val?Glu?Glu?Pro?Thr?Glu?Leu?Arg?Ala
1???????????????5???????????????????10??????????????????15
ccg?gag?atg?acg?ctc?tgc?gcc?aac?agc?tgc?ggg?ttc?ccg?ggc?aac?ccg?????96
Pro?Glu?Met?Thr?Leu?Cys?Ala?Asn?Ser?Cys?Gly?Phe?Pro?Gly?Asn?Pro
20??????????????????25??????????????????30
gcg?acc?aac?aac?ctc?tgc?cag?aac?tgc?ttc?ttg?gct?gcc?tcg?gcg?tct????144
Ala?Thr?Asn?Asn?Leu?Cys?Gln?Asn?Cys?Phe?Leu?Ala?Ala?Ser?Ala?Ser
35??????????????????40??????????????????45
tct?tct?tct?tct?tcc?gcc?gct?gcc?tcg?ccg?tcg?acg?acg?tcg?ttg?ccg????192
Ser?Ser?Ser?Ser?Ser?Ala?Ala?Ala?Ser?Pro?Ser?Thr?Thr?Ser?Leu?Pro
50??????????????????55??????????????????60
gtg?ttt?ccg?gtg?gtg?gag?aag?ccg?agg?cag?gcc?gta?cag?tcg?tcg?gcg????240
Val?Phe?Pro?Val?Val?Glu?Lys?Pro?Arg?Gln?Ala?Val?Gln?Ser?Ser?Ala
65??????????????????70??????????????????75??????????????????80
gcg?gcg?gcg?gtg?gcg?ctg?gtg?gtt?gag?cgg?ccg?acg?gcg?ggg?ccg?gtg????288
Ala?Ala?Ala?Val?Ala?Leu?Val?Val?Glu?Arg?Pro?Thr?Ala?Gly?Pro?Val
85??????????????????90??????????????????95
gag?tcg?tcg?tcg?aag?gcg?tcg?agg?tcg?tcg?tcg?gtc?aac?cga?tgc?cac????336
Glu?Ser?Ser?Ser?Lys?Ala?Ser?Arg?Ser?Ser?Ser?Val?Asn?Arg?Cys?His
100?????????????????105?????????????????110
agc?tgc?cgg?agg?cgg?gtg?ggc?ctg?acc?ggg?ttc?cgg?tgc?cgc?tgc?ggc????384
Ser?Cys?Arg?Arg?Arg?Val?Gly?Leu?Thr?Gly?Phe?Arg?Cys?Arg?Cys?Gly
115?????????????????120?????????????????125
gag?ctc?tac?tgc?ggc?gcg?cac?cgg?tac?tcc?gac?cgc?cac?gac?tgc?agc????432
Glu?Leu?Tyr?Cys?Gly?Ala?His?Arg?Tyr?Ser?Asp?Arg?His?Asp?Cys?Ser
130?????????????????135?????????????????140
ttc?gac?tac?aag?tcg?gcg?gcg?agg?gac?gcc?atc?gcc?agg?gag?aac?ccc????480
Phe?Asp?Tyr?Lys?Ser?Ala?Ala?Arg?Asp?Ala?Ile?Ala?Arg?Glu?Asn?Pro
145?????????????????150?????????????????155?????????????????160
gtc?gtc?cgc?gcc?gcc?aag?atc?gtt?agg?ttc?taa??????????????????????????513
Val?Val?Arg?Ala?Ala?Lys?Ile?Val?Arg?Phe
165?????????????????170
 
<210>34
<211>170
<212>PRT
<213〉rice
 
<400>34
 
Met?Ala?Gln?Arg?Glu?Lys?Lys?Val?Glu?Glu?Pro?Thr?Glu?Leu?Arg?Ala
1???????????????5???????????????????10??????????????????15
Pro?Glu?Met?Thr?Leu?Cys?Ala?Asn?Ser?Cys?Gly?Phe?Pro?Gly?Asn?Pro
20??????????????????25??????????????????30
Ala?Thr?Asn?Asn?Leu?Cys?Gln?Asn?Cys?Phe?Leu?Ala?Ala?Ser?Ala?Ser
35??????????????????40??????????????????45
Ser?Ser?Ser?Ser?Ser?Ala?Ala?Ala?Ser?Pro?Ser?Thr?Thr?Ser?Leu?Pro
50??????????????????55??????????????????60
Val?Phe?Pro?Val?Val?Glu?Lys?Pro?Arg?Gln?Ala?Val?Gln?Ser?Ser?Ala
65??????????????????70??????????????????75??????????????????80
Ala?Ala?Ala?Val?Ala?Leu?Val?Val?Glu?Arg?Pro?Thr?Ala?Gly?Pro?Val
85??????????????????90??????????????????95
Glu?Ser?Ser?Ser?Lys?Ala?Ser?Arg?Ser?Ser?Ser?Val?Asn?Arg?Cys?His
100?????????????????105?????????????????110
Ser?Cys?Arg?Arg?Arg?Val?Gly?Leu?Thr?Gly?Phe?Arg?Cys?Arg?Cys?Gly
115?????????????????120?????????????????125
Glu?Leu?Tyr?Cys?Gly?Ala?His?Arg?Tyr?Ser?Asp?Arg?His?Asp?Cys?Ser
130?????????????????135?????????????????140
Phe?Asp?Tyr?Lys?Ser?Ala?Ala?Arg?Asp?Ala?Ile?Ala?Arg?Glu?Asn?Pro
145?????????????????150?????????????????155?????????????????160
Val?Val?Arg?Ala?Ala?Lys?Ile?Val?Arg?Phe
165?????????????????170
 
<210>35
<211>486
<212>DNA
<213〉soybean
 
<220>
<221>CDS
<222>(1)..(486)
<223〉contain the zinc finger protein matter (GM51659494) of A20 structural domain and AN1 structural domain
 
<400>35
atg?gct?cag?aaa?acc?gag?aas?gaa?gaa?acc?gac?ttc?aaa?gtt?ccg?gaa????48
Met?Ala?Gln?Lys?Thr?Glu?Lys?Glu?Glu?Thr?Asp?Phe?Lys?Val?Pro?Glu
1???????????????5???????????????????10??????????????????15
acg?att?acg?ctt?tgc?gtc?aac?aac?tgc?ggc?gtc?acc?gga?aac?cct?gcc????96
Thr?Ile?Thr?Leu?Cys?Val?Asn?Asn?Cys?Gly?Val?Thr?Gly?Asn?Pro?Ala
20??????????????????25??????????????????30
acg?aat?aac?atg?tgc?cag?aag?tgc?ttc?act?gcc?tct?acc?gcc?acc?act????144
Thr?Asn?Asn?Met?Cys?Gln?Lys?Cys?Phe?Thr?Ala?Ser?Thr?Ala?Thr?Thr
35??????????????????40??????????????????45
tcc?ggc?gcc?gga?ggt?gcc?gga?ata?gct?tct?ccg?gcg?acc?aga?tcc?ggc????192
Ser?Gly?Ala?Gly?Gly?Ala?Gly?Ile?Ala?Ser?Pro?Ala?Thr?Arg?Ser?Gly
50??????????????????55??????????????????60
gtc?tcc?gcg?cgt?cct?cag?aag?aga?tct?ttt?cct?gaa?gag?ccc?tcg?ccg????240
Val?Ser?Ala?Arg?Pro?Gln?Lys?Arg?Ser?Phe?Pro?Glu?Glu?Pro?Ser?Pro
65??????????????????70??????????????????75??????????????????80
gtg?gcg?gat?cct?cct?tct?tcg?gac?cag?acg?acg?ccg?tcg?gag?gcg?aag????288
Val?Ala?Asp?Pro?Pro?Ser?Ser?Asp?Gln?Thr?Thr?Pro?Ser?Glu?Ala?Lys
85??????????????????90??????????????????95
cgc?gtg?gtc?aac?cgc?tgc?tcc?gga?tgc?cgg?cgg?aag?gtc?gga?ctc?acc????336
Arg?Val?Val?Asn?Arg?Cys?Ser?Gly?Cys?Arg?Arg?Lys?Val?Gly?Leu?Thr
100?????????????????105?????????????????110
gga?ttc?cgg?tgc?cgg?tgc?ggc?gag?ctc?ttc?tgc?gcc?gag?cac?cgg?tac????384
Gly?Phe?Arg?Cys?Arg?Cys?Gly?Glu?Leu?Phe?Cys?Ala?Glu?His?Arg?Tyr
115?????????????????120?????????????????125
tcc?gac?cgc?cac?gac?tgc?agc?tat?gac?tac?aaa?gcc?gcc?gga?aga?gaa????432
Ser?Asp?Arg?His?Asp?Cys?Ser?Tyr?Asp?Tyr?Lys?Ala?Ala?Gly?Arg?Glu
130?????????????????135?????????????????140
gcc?atc?gcg?agg?gag?aat?ccg?gtg?atc?aga?gct?gcg?aag?atc?gtc?aaa????480
Ala?Ile?Ala?Arg?Glu?Asn?Pro?Val?Ile?Arg?Ala?Ala?Lys?Ile?Val?Lys
145?????????????????150?????????????????155?????????????????160
gtc?tga????????????????????????????????????????????????????????????486
Val
 
<210>36
<211>161
<212>PRT
<213〉soybean
 
<400>36
 
Met?Ala?Gln?Lys?Thr?Glu?Lys?Glu?Glu?Thr?Asp?Phe?Lys?Val?Pro?Glu
1???????????????5???????????????????10??????????????????15
Thr?Ile?Thr?Leu?Cys?Val?Asn?Asn?Cys?Gly?Val?Thr?Gly?Asn?Pro?Ala
20??????????????????25??????????????????30
Thr?Asn?Asn?Met?Cys?Gln?Lys?Cys?Phe?Thr?Ala?Ser?Thr?Ala?Thr?Thr
35??????????????????40??????????????????45
Ser?Gly?Ala?Gly?Gly?Ala?Gly?Ile?Ala?Ser?Pro?Ala?Thr?Arg?Ser?Gly
50??????????????????55??????????????????60
Val?Ser?Ala?Arg?Pro?Gln?Lys?Arg?Ser?Phe?Pro?Glu?Glu?Pro?Ser?Pro
65??????????????????70??????????????????75??????????????????80
Val?Ala?Asp?Pro?Pro?Ser?Ser?Asp?Gln?Thr?Thr?Pro?Ser?Glu?Ala?Lys
85??????????????????90??????????????????95
Arg?Val?Val?Asn?Arg?Cys?Ser?Gly?Cys?Arg?Arg?Lys?Val?Gly?Leu?Thr
100?????????????????105?????????????????110
Gly?Phe?Arg?Cys?Arg?Cys?Gly?Glu?Leu?Phe?Cys?Ala?Glu?His?Arg?Tyr
115?????????????????120?????????????????125
Ser?Asp?Arg?His?Asp?Cys?Ser?Tyr?Asp?Tyr?Lys?Ala?Ala?Gly?Arg?Glu
130?????????????????135?????????????????140
Ala?Ile?Ala?Arg?Glu?Asn?Pro?Val?Ile?Arg?Ala?Ala?Lys?Ile?Val?Lys
145?????????????????150?????????????????155?????????????????160
Val
 
<210>37
<211>519
<212>DNA
<213〉soybean
 
<220>
<221>CDS
<222>(1)..(519)
<223〉contain the zinc finger protein matter (GM49780101) of A20 structural domain and AN1 structural domain
 
<400>37
atg?gag?cct?cat?gat?gag?act?gga?tgc?cag?gct?cct?gaa?cgc?ccc?att?????48
Met?Glu?Pro?His?Asp?Glu?Thr?Gly?Cys?Gln?Ala?Pro?Glu?Arg?Pro?Ile
1???????????????5???????????????????10??????????????????15
ctt?tgc?att?aat?aat?tgt?ggc?ttc?ttt?gga?aga?gca?gct?acc?atg?aac?????96
Leu?Cys?Ile?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Arg?Ala?Ala?Thr?Met?Asn
20??????????????????25??????????????????30
atg?tgt?tcc?aag?tgt?tac?aag?gac?atg?ctg?ttg?aag?cag?gag?cag?gac????144
Met?Cys?Ser?Lys?Cys?Tyr?Lys?Asp?Met?Leu?Leu?Lys?Gln?Glu?Gln?Asp
35??????????????????40??????????????????45
aaa?ttt?gca?gca?tca?tcc?gtt?gaa?aac?att?gtg?aat?ggc?agt?tcc?aat????192
Lys?Phe?Ala?Ala?Ser?Ser?Val?Glu?Asn?lle?Val?Asn?Gly?Ser?Ser?Asn
50??????????????????55??????????????????60
ggc?aat?gga?aag?cag?gct?gtg?gct?act?ggt?gct?gtt?gct?gta?caa?gtt????240
Gly?Asn?Gly?Lys?Gln?Ala?Val?Ala?Thr?Gly?Ala?Val?Ala?Val?Gln?Val
65??????????????????70??????????????????75??????????????????80
gaa?gct?gtg?gag?gtc?aag?att?gtc?tgt?gct?cag?agt?tct?gtg?gat?tcg????288
Glu?Ala?Val?Glu?Val?Lys?Ile?Val?Cys?Ala?Gln?Ser?Ser?Val?Asp?Ser
85??????????????????90??????????????????95
tcc?tcc?ggt?gat?agt?ttg?gag?atg?aaa?gcc?aag?act?ggt?ccc?agt?aga????336
Ser?Ser?Gly?Asp?Ser?Leu?Glu?Met?Lys?Ala?Lys?Thr?Gly?Pro?Ser?Arg
100?????????????????105?????????????????110
tgt?gct?aca?tgc?cgg?aaa?cgt?gtt?ggt?tta?act?ggt?ttc?agc?tgc?aaa????384
Cys?Ala?Thr?Cys?Arg?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Ser?Cys?Lys
115?????????????????120?????????????????125
tgt?ggc?aac?ctc?ttc?tgt?gca?atg?cat?cgc?tat?tct?gat?aaa?cat?gat????432
Cys?Gly?Asn?Leu?Phe?Cys?A1a?Met?His?Arg?Tyr?Ser?Asp?Lys?His?Asp
130?????????????????135?????????????????140
tgc?cct?ttt?gat?tat?agg?act?gtt?ggt?cag?gat?gcc?ata?gct?aaa?gcc????480
Cys?Pro?Phe?Asp?Tyr?Arg?Thr?Val?Gly?Gln?Asp?Ala?Ile?Ala?Lys?Ala
145?????????????????150?????????????????155?????????????????160
aac?ccc?ata?att?aag?gca?gat?aag?ctc?gac?aaa?atc?tag????????????????519
Asn?Pro?Ile?Ile?Lys?Ala?Asp?Lys?Leu?Asp?Lys?Ile
165?????????????????170
 
<210>38
<211>172
<212>PRT
<213〉soybean
 
<400>38
 
Met?Glu?Pro?His?Asp?Glu?Thr?Gly?Cys?Gln?Ala?Pro?Glu?Arg?Pro?Ile
1???????????????5???????????????????10??????????????????15
Leu?Cys?Ile?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Arg?Ala?Ala?Thr?Met?Asn
20??????????????????25??????????????????30
Met?Cys?Ser?Lys?Cys?Tyr?Lys?Asp?Met?Leu?Leu?Lys?Gln?Glu?Gln?Asp
35??????????????????40??????????????????45
Lys?Phe?Ala?Ala?Ser?Ser?Val?Glu?Asn?Ile?Val?Asn?Gly?Ser?Ser?Asn
50??????????????????55??????????????????60
Gly?Asn?Gly?Lys?Gln?Ala?Val?Ala?Thr?Gly?Ala?Val?Ala?Val?Gln?Val
65??????????????????70??????????????????75??????????????????80
Glu?Ala?Val?Glu?Val?Lys?Ile?Val?Cys?Ala?Gln?Ser?Ser?Val?Asp?Ser
85??????????????????90??????????????????95
Ser?Ser?Gly?Asp?Ser?Leu?Glu?Met?Lys?Ala?Lys?Thr?Gly?Pro?Ser?Arg
100?????????????????105?????????????????110
Cys?Ala?Thr?Cys?Arg?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Ser?Cys?Lys
115?????????????????120?????????????????125
Cys?Gly?Asn?Leu?Phe?Cys?Ala?Met?His?Arg?Tyr?Ser?Asp?Lys?His?Asp
130?????????????????135?????????????????140
Cys?Pro?Phe?Asp?Tyr?Arg?Thr?Val?Gly?Gln?Asp?Ala?Ile?Ala?Lys?Ala
145?????????????????150?????????????????155?????????????????160
Asn?Pro?Ile?Ile?Lys?Ala?Asp?Lys?Leu?Asp?Lys?Ile
165?????????????????170
 
<210>39
<211>525
<212>DNA
<213〉soybean
 
<220>
<221>CDS
<222>(1)..(525)
<223〉contain the zinc finger protein matter (GM59637305) of A20 structural domain and AN1 structural domain
 
<400>39
atg?gac?cat?gac?aag?act?ggg?tgc?caa?gct?cct?cct?gaa?ggt?cct?ata?????48
Met?Asp?His?Asp?Lys?Thr?Gly?Cys?Gln?Ala?Pro?Pro?Glu?Gly?Pro?Ile
1???????????????5???????????????????10??????????????????15
ttg?tgc?atc?aac?aac?tgt?ggg?ttt?ttt?gga?agt?gca?gct?acc?atg?aac?????96
Leu?Cys?Ile?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Ser?Ala?Ala?Thr?Met?Asn
20??????????????????25??????????????????30
atg?tgt?tct?aaa?tgc?cac?aaa?gac?ata?ttg?ctg?aaa?cag?gag?cag?gcc????144
Met?Cys?Ser?Lys?Cys?His?Lys?Asp?Ile?Leu?Leu?Lys?Gln?Glu?Gln?Ala
35??????????????????40??????????????????45
aag?ctt?gca?gca?tca?tcc?att?ggg?aat?att?atg?aat?ggg?tca?tca?agc????192
Lys?Leu?Ala?Ala?Ser?Ser?Ile?Gly?Asn?Ile?Met?Asn?Gly?Ser?Ser?Ser
50??????????????????55??????????????????60
agc?act?gaa?aag?gaa?cct?gtt?gtt?gct?gct?gct?gct?aat?att?gat?atc????240
Ser?Thr?Glu?Lys?Glu?Pro?Val?Val?Ala?Ala?Ala?Ala?Asn?Ile?Asp?Ile
65??????????????????70??????????????????75??????????????????80
cca?gtt?att?cca?gta?gag?cct?aaa?act?gtc?tct?gtg?caa?cct?tta?ttt????288
Pro?Val?Ile?Pro?Val?Glu?Pro?Lys?Thr?Val?Ser?Val?Gln?Pro?Leu?Phe
85??????????????????90??????????????????95
ggt?tca?ggt?cca?gag?ggg?agt?gtt?gag?gca?aag?ccg?aag?gat?gga?cca????336
Gly?Ser?Gly?Pro?Glu?Gly?Ser?Val?Glu?Ala?Lys?Pro?Lys?Asp?Gly?Pro
100?????????????????105?????????????????110
aaa?cgt?tgc?agc?agc?tgc?aac?aag?cga?gtt?ggt?ttg?aca?ggg?ttt?aat????384
Lys?Arg?Cys?Ser?Ser?Cys?Asn?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Asn
115?????????????????120?????????????????125
tgt?cga?tgt?ggt?gac?ctt?ttt?ttg?tgc?tgt?aca?tcg?cta?ctc?gac?aag????432
Cys?Arg?Cys?Gly?Asp?Leu?Phe?Leu?Cys?Cys?Thr?Ser?Leu?Leu?Asp?Lys
130?????????????????135?????????????????140
cat?aat?tgc?cca?ttt?gat?tac?cgc?act?gcc?gct?caa?gat?gct?ata?gct????480
His?Asn?Cys?Pro?Phe?Asp?Tyr?Arg?Thr?Ala?Ala?Gln?Asp?Ala?Ile?Ala
145?????????????????150?????????????????155?????????????????160
aaa?gca?aac?cca?gtt?gtc?aag?gct?gaa?aag?ctt?gat?aag?atc?taa????????525
Lys?Ala?Asn?Pro?Val?Val?Lys?Ala?Glu?Lys?Leu?Asp?Lys?Ile
165?????????????????170
 
<210>40
<211>174
<212>PRT
<213〉soybean
 
<400>40
 
Met?Asp?His?Asp?Lys?Thr?Gly?Cys?Gln?Ala?Pro?Pro?Glu?Gly?Pro?Ile
1???????????????5???????????????????10??????????????????15
Leu?Cys?Ile?Asn?Asn?Cys?Gly?Phe?Phe?Gly?Ser?Ala?Ala?Thr?Met?Asn
20??????????????????25??????????????????30
Met?Cys?Ser?Lys?Cys?His?Lys?Asp?Ile?Leu?Leu?Lys?Gln?Glu?Gln?Ala
35??????????????????40??????????????????45
Lys?Leu?Ala?Ala?Ser?Ser?Ile?Gly?Asn?Ile?Met?Asn?Gly?Ser?Ser?Ser
50??????????????????55??????????????????60
Ser?Thr?Glu?Lys?Glu?Pro?Val?Val?Ala?Ala?Ala?Ala?Asn?Ile?Asp?Ile
65??????????????????70??????????????????75??????????????????80
Pro?Val?Ile?Pro?Val?Glu?Pro?Lys?Thr?Val?Ser?Val?Gln?Pro?Leu?Phe
85??????????????????90??????????????????95
Gly?Ser?Gly?Pro?Glu?Gly?Ser?Val?Glu?Ala?Lys?Pro?Lys?Asp?Gly?Pro
100?????????????????105?????????????????110
Lys?Arg?Cys?Ser?Ser?Cys?Asn?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Asn
115?????????????????120?????????????????125
Cys?Arg?Cys?Gly?Asp?Leu?Phe?Leu?Cys?Cys?Thr?Ser?Leu?Leu?Asp?Lys
130?????????????????135?????????????????140
His?Asn?Cys?Pro?Phe?Asp?Tyr?Arg?Thr?Ala?Ala?Gln?Asp?Ala?Ile?Ala
145?????????????????150?????????????????155?????????????????160
Lys?Ala?Asn?Pro?Val?Val?Lys?Ala?Glu?Lys?Leu?Asp?Lys?Ile
165?????????????????170
 
<210>41
<211>498
<212>DNA
<213〉wheat
 
<220>
<221>CDS
<222>(1)..(498)
<223〉contain the zinc finger protein matter (TA55974113) of A20 structural domain and AN1 structural domain
 
<400>41
atg?gcg?cag?cgg?gat?cac?aag?cag?gag?gag?ccc?acg?gag?ctg?cgg?gcg????48
Met?Ala?Gln?Arg?Asp?His?Lys?Gln?Glu?Glu?Pro?Thr?Glu?Leu?Arg?Ala
1???????????????5???????????????????10??????????????????15
ccg?gag?atc?acg?ctc?tgc?gcc?aac?agc?tgc?ggc?ttc?ccg?ggc?aac?ccg?????96
Pro?Glu?Ile?Thr?Leu?Cys?Ala?Asn?Ser?Cys?Gly?Phe?Pro?Gly?Asn?Pro
20??????????????????25??????????????????30
gcc?acg?cag?aac?ctc?tgc?cag?aac?tgc?ttc?ttg?gcc?ggc?ccg?gcg?tcc????144
Ala?Thr?Gln?Asn?Leu?Cys?Gln?Asn?Cys?Phe?Leu?Ala?Gly?Pro?Ala?Ser
35??????????????????40??????????????????45
acg?tcg?ccg?tct?tcc?tcc?tcc?tcc?tcc?tcc?tct?tct?ctg?ccg?ggc?gtg????192
Thr?Ser?Pro?Ser?Ser?Ser?Ser?Ser?Ser?Ser?Ser?Ser?Leu?Pro?Gly?Val
50??????????????????55??????????????????60
tcc?gcg?ccg?acc?ccc?gtc?atc?gac?agg?ccg?agg?ccg?gcg?ccg?ttg?gag????240
Ser?Ala?Pro?Thr?Pro?Val?Ile?Asp?Arg?Pro?Arg?Pro?Ala?Pro?Leu?Glu
65??????????????????70??????????????????75??????????????????80
gcg?gag?ctg?gca?cgc?ccc?gcc?gtc?gac?ctt?gct?ccg?gcg?acg?gag?gcg????288
Ala?Glu?Leu?Ala?Arg?Pro?Ala?Val?Asp?Leu?Ala?Pro?Ala?Thr?Glu?Ala
85??????????????????90??????????????????95
aag?ccg?gcg?agg?acg?tcg?gtg?aac?cgg?tgc?tcc?agc?tgc?cgg?aag?cgc????336
Lys?Pro?Ala?Arg?Thr?Ser?Val?Asn?Arg?Cys?Ser?Ser?Cys?Arg?Lys?Arg
100?????????????????105?????????????????110
gtg?ggg?ctg?acg?ggg?ttc?cgg?tgc?cgg?tgc?ggc?gac?atg?ttc?tgc?ggc????384
Val?Gly?Leu?Thr?Gly?Phe?Arg?Cys?Arg?Cys?Gly?Asp?Met?Phe?Cys?Gly
115?????????????????120?????????????????125
gag?cac?cgg?tac?tcg?gac?cgg?cac?ggg?tgc?agc?tac?gac?tac?aag?gcc????432
Glu?His?Arg?Tyr?Ser?Asp?Arg?His?Gly?Cys?Ser?Tyr?Asp?Tyr?Lys?Ala
130?????????????????135?????????????????140
gcc?gcc?agg?gac?gcc?atc?gcc?agg?gac?aac?ccc?gtc?gtg?cgc?gcc?gcc????480
Ala?Ala?Arg?Asp?Ala?Ile?Ala?Arg?Asp?Asn?Pro?Val?Val?Arg?Ala?Ala
145?????????????????150?????????????????155?????????????????160
aag?atc?gtc?agg?ttc?tga????????????????????????????????????????????498
Lys?Ile?Val?Arg?Phe
165
 
<210>42
<211>165
<212>PRT
<213〉wheat
 
<400>42
 
Met?Ala?Gln?Arg?Asp?His?Lys?Gln?Glu?Glu?Pro?Thr?Glu?Leu?Arg?Ala
1???????????????5???????????????????10??????????????????15
Pro?Glu?Ile?Thr?Leu?Cys?Ala?Asn?Ser?Cys?Gly?Phe?Pro?Gly?Asn?Pro
20??????????????????25??????????????????30
Ala?Thr?Gln?Asn?Leu?Cys?Gln?Asn?Cys?Phe?Leu?Ala?Gly?Pro?Ala?Ser
35??????????????????40??????????????????45
Thr?Ser?Pro?Ser?Ser?Ser?Ser?Ser?Ser?Ser?Ser?Ser?Leu?Pro?Gly?Val
50??????????????????55??????????????????60
Ser?Ala?Pro?Thr?Pro?Val?Ile?Asp?Arg?Pro?Arg?Pro?Ala?Pro?Leu?Glu
65??????????????????70??????????????????75??????????????????80
Ala?Glu?Leu?Ala?Arg?Pro?Ala?Val?Asp?Leu?Ala?Pro?Ala?Thr?Glu?Ala
85??????????????????90??????????????????95
Lys?Pro?Ala?Arg?Thr?Ser?Val?Asn?Arg?Cys?Ser?Ser?Cys?Arg?Lys?Arg
100?????????????????105?????????????????110
Val?Gly?Leu?Thr?Gly?Phe?Arg?Cys?Arg?Cys?Gly?Asp?Met?Phe?Cys?Gly
115?????????????????120?????????????????125
Glu?His?Arg?Tyr?Ser?Asp?Arg?His?Gly?Cys?Ser?Tyr?Asp?Tyr?Lys?Ala
130?????????????????135?????????????????140
Ala?Ala?Arg?Asp?Ala?Ile?Ala?Arg?Asp?Asn?Pro?Val?Val?Arg?Ala?Ala
145?????????????????150?????????????????155?????????????????160
Lys?Ile?Val?Arg?Phe
165
 
<210>43
<211>207
<212>PRT
<213〉small liwan moss
<220>
<221>MISC_FEATURE
<222>(1)..(207)
<223〉methionine sulfoxide reductase family protein (EST65)
 
<400>43
 
Met?Val?Ala?Glu?Ser?Val?Leu?Val?Cys?Arg?Ser?Ser?Val?Val?Gly?Ala
1???????????????5???????????????????10??????????????????15
Gly?Leu?Gln?Ser?Phe?Val?Gly?Glu?Gly?Ala?Lys?Arg?Glu?Ser?Ala?Gly
20??????????????????25??????????????????30
Pro?Gly?Arg?Ser?Val?Phe?Leu?GlyAla?Gln?Val?Gln?Lys?Met?Gly?Ala
35??????????????????40??????????????????45
Gly?Met?Ser?Ala?Arg?Ser?Asp?Val?Arg?Pro?Ala?Ala?Val?Pro?Lys?Ala
50??????????????????55??????????????????60
Ser?Gly?Asp?Val?Ser?Glu?Gln?Thr?Asp?Tyr?Lys?Thr?Phe?Ser?Asp?Glu
65??????????????????70??????????????????75??????????????????80
Glu?Trp?Lys?Lys?Arg?Leu?Ser?Gln?Gln?Gln?Phe?Tyr?Val?Ala?Arg?Lys
85??????????????????90??????????????????95
Lys?Gly?Thr?Glu?Arg?Pro?Phe?Thr?Gly?Glu?Tyr?Trp?Asn?Thr?Lys?Thr
100?????????????????105?????????????????110
Ala?Gly?Thr?Tyr?Leu?Cys?Val?Cys?Cys?Lys?Thr?Pro?Leu?Phe?Ser?Ser
115?????????????????120?????????????????125
Lys?Thr?Lys?Phe?Asp?Ser?Gly?Thr?Gly?Trp?Pro?Ser?Tyr?Tyr?Asp?Thr
130?????????????????135?????????????????140
Ile?Gly?Asp?Asn?Val?Lys?Ser?His?Met?Asp?Trp?Ser?Ile?Pro?Phe?Met
145?????????????????150?????????????????155?????????????????160
Pro?Arg?Thr?Glu?Val?Val?Cys?Ala?Val?Cys?Asp?Ala?His?Leu?Gly?His
165?????????????????170?????????????????175
Val?Phe?Asp?Asp?Gly?Pro?Arg?Pro?Thr?Gly?Lys?Arg?Tyr?Cys?Ile?Asn
180?????????????????185?????????????????190
Ser?Ala?Ala?Ile?Asp?Leu?Lys?Ala?Glu?Lys?Gln?Glu?Glu?Arg?Asn
195?????????????????200?????????????????205
 
<210>44
<211>339
<212>PRT
<213〉small liwan moss
 
<220>
<221>MISC_FEATURE
<222>(1)..(339)
<223〉homeodomain-leucine zipper protein matter (EST12)
 
<400>44
 
Met?Val?Val?Pro?Ser?Leu?Pro?Ala?Phe?Gly?Gly?Gln?Asn?Ala?Met?Leu
1???????????????5???????????????????10??????????????????15
Arg?Arg?Asn?Ile?Asp?Asn?Asn?Thr?Asp?Thr?Leu?Ile?Ser?Leu?Leu?Gln
20??????????????????25??????????????????30
Gly?Ser?Cys?Ser?Pro?Arg?Val?Ser?Met?Gln?Gln?Val?Pro?Arg?Ser?Ser
35??????????????????40??????????????????45
Glu?Ser?Leu?Glu?Asn?Met?Met?Gly?Ala?Cys?Gly?Gln?Lys?Leu?Pro?Tyr
50??????????????????55??????????????????60
Phe?Ser?Ser?Phe?Asp?Gly?Pro?Ser?Val?Glu?Glu?Gln?Glu?Asp?Val?Asp
65??????????????????70??????????????????75??????????????????80
Glu?Gly?Ile?Asp?Glu?Phe?Ala?His?His?Val?Glu?Lys?Lys?Arg?Arg?Leu
85??????????????????90??????????????????95
Ser?Leu?Glu?Gln?Val?Arg?Ser?Leu?Glu?Arg?Asn?Phe?Glu?Val?Glu?Asn
100?????????????????105?????????????????110
Lys?Leu?Glu?Pro?Glu?Arg?Lys?Met?Gln?Leu?Ala?Lys?Glu?Leu?Gly?Leu
115?????????????????120?????????????????125
Arg?Pro?Arg?Gln?Val?Ala?Val?Trp?Phe?Gln?Asn?Arg?Arg?Ala?Arg?Trp
130?????????????????135?????????????????140
Lys?Thr?Lys?Gln?Leu?Glu?His?Asp?Tyr?Glu?Thr?Leu?Lys?Lys?Ala?Tyr
145?????????????????150?????????????????155?????????????????160
Asp?Arg?Leu?Lys?Ala?Asp?Phe?Glu?Ala?Val?Thr?Leu?Asp?Thr?Asn?Ala
165?????????????????170?????????????????175
Leu?Lys?Ala?Glu?Val?Ser?Arg?Leu?Lys?Gly?Ile?Ser?Asn?Asp?Asp?Val
180?????????????????185?????????????????190
Lys?Pro?Ala?Glu?Phe?Val?Gln?Gly?Lys?Cys?Asp?Thr?Thr?Ser?His?Pro
195?????????????????200?????????????????205
Ala?Ser?Pro?Ala?Gln?Ser?Glu?Arg?Ser?Asp?Ile?Val?Ser?Ser?Arg?Asn
210?????????????????215?????????????????220
Arg?Thr?Thr?Pro?Thr?Ile?His?Val?Asp?Pro?Val?Ala?Pro?Glu?Glu?Ala
225?????????????????230?????????????????235?????????????????240
Gly?Ala?His?Leu?Thr?Met?Ser?Ser?Asp?Ser?Asn?Ser?Ser?Glu?Val?Met
245?????????????????250?????????????????255
Asp?Ala?Asp?Ser?Pro?Arg?Thr?Ser?His?Thr?Ser?Ala?Ser?Arg?Ser?Thr
260?????????????????265?????????????????270
Leu?Ser?Thr?Ser?Val?Val?Gln?Pro?Asp?Glu?Gly?Leu?Gly?Val?Ala?Gln
275?????????????????280?????????????????285
Tyr?Pro?His?Phe?Ser?Pro?Glu?Asn?Phe?Val?Gly?Pro?Asn?Met?Pro?Glu
290?????????????????295?????????????????300
Ile?Cys?Ala?Asp?Gln?Ser?Leu?Ala?Ser?Gln?Val?Lys?Leu?Glu?Glu?Ile
305?????????????????310?????????????????315?????????????????320
His?Ser?Phe?Asn?Pro?Asp?Gln?Thr?Phe?Leu?Leu?Leu?Pro?Asn?Trp?Trp
325?????????????????330?????????????????335
Asp?Trp?Ala
 
<210>45
<211>188
<212>PRT
<213〉small liwan moss
 
<220>
<221>MISC_FEATURE
<222>(1)..(188)
<223〉contain the zinc finger protein matter (EST307) of A20 structural domain and AN1 structural domain
 
<400>45
 
Met?Ala?Thr?Glu?Arg?Val?Ser?Gln?Glu?Thr?Thr?Ser?Gln?Ala?Pro?Glu
1???????????????5???????????????????10??????????????????15
Gly?Pro?Val?Met?Cys?Lys?Asn?Leu?Cys?Gly?Phe?Phe?Gly?Ser?Gln?Ala
20??????????????????25??????????????????30
Thr?Met?Gly?Leu?Cys?Ser?Lys?Cys?Tyr?Arg?Glu?Thr?Val?Met?Gln?Ala
35??????????????????40??????????????????45
Lys?Met?Thr?Ala?Leu?Ala?Glu?Gln?Ala?Thr?Gln?Ala?Ala?Gln?Ala?Thr
50??????????????????55??????????????????60
Ser?Ala?Thr?Ala?Ala?Ala?Val?Gln?Pro?Pro?Ala?Pro?Val?His?Glu?Thr
65??????????????????70??????????????????75??????????????????80
Lys?Leu?Thr?Cys?Glu?Val?Glu?Arg?Thr?Met?Ile?Val?Pro?His?Gln?Ser
85??????????????????90??????????????????95
Ser?Ser?Tyr?Gln?Gln?Asp?Leu?Val?Thr?Pro?Ala?Ala?Ala?Ala?Pro?Gln
100?????????????????105?????????????????110
Ala?Val?Lys?Ser?Ser?Ile?Ala?Ala?Pro?Ser?Arg?Pro?Glu?Pro?Asn?Arg
115?????????????????120?????????????????125
Cys?Gly?Ser?Cys?Arg?Lys?Arg?Val?Gly?Leu?Thr?Gly?Phe?Lys?Cys?Arg
130?????????????????135?????????????????140
Cys?Gly?Asn?Leu?Tyr?Cys?Ala?Leu?His?Arg?Tyr?Ser?Asp?Lys?His?Thr
145?????????????????150?????????????????155?????????????????160
Cys?Thr?Tyr?Asp?Tyr?Lys?Ala?Ala?Gly?Gln?Glu?Ala?Ile?Ala?Lys?Ala
165?????????????????170?????????????????175
Asn?Pro?Leu?Val?Val?Ala?Glu?Lys?Val?Val?Lys?Phe
180?????????????????185

Claims (7)

1. with the transfer-gen plant of expression cassette conversion, described expression cassette comprises isolating polynucleotide, and the sequence of its encoded polypeptides is selected from SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQID NO:8 and SEQ ID NO:10.
2. with the transfer-gen plant of expression cassette conversion, described expression cassette comprises isolating polynucleotide, and the sequence of its encoded polypeptides is selected from SEQ ID NO:12, SEQ ID NO:14 and SEQ ID NO:16.
3. with the transfer-gen plant of expression cassette conversion, described expression cassette comprises isolating polynucleotide, and the sequence of its encoded polypeptides is selected from SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42 and SEQ ID NO:44.
4. isolating polynucleotide, its sequence are selected from the listed polymerized nucleoside acid sequence of table 1.
5. isolated polypeptide, its sequence is selected from the listed peptide sequence of table 1.
6. produce the method for the transfer-gen plant that comprises the listed at least a polynucleotide of table 1; wherein the expression of polynucleotide in plant caused plant to be compared with the multiple plant of wild-type; under normal or condition that water is limited, growth and/or output have been increased; and/or having increased tolerance to environment-stress, described method comprises the following steps:
(a) will comprise the expression vector introduced plant cell of the listed at least a polynucleotide of table 1,
(b) produce the transfer-gen plant of expressing polynucleotide by this vegetable cell; wherein the expression of polynucleotide in transfer-gen plant makes plant compare with the multiple plant of wild-type; under normal or condition that water is limited, increase growth and/or output, and/or increase tolerance environment-stress.
7. increase plant under normal or condition that water is limited growth and/or output and/or increase the method for plant to the tolerance of environment-stress, described method is included in the step of the expression of the listed at least a polynucleotide of increase table 1 in the plant.
CN200880101619.4A2007-08-022008-08-01Transgenic plants with increased stress tolerance and yieldPendingCN101809155A (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US95356207P2007-08-022007-08-02
US60/953,5622007-08-02
PCT/EP2008/060106WO2009016249A2 (en)2007-08-022008-08-01Transgenic plants with increased stress tolerance and yield

Publications (1)

Publication NumberPublication Date
CN101809155Atrue CN101809155A (en)2010-08-18

Family

ID=39929606

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN200880101619.4APendingCN101809155A (en)2007-08-022008-08-01Transgenic plants with increased stress tolerance and yield

Country Status (8)

CountryLink
US (2)US8367894B2 (en)
EP (2)EP2183373A2 (en)
CN (1)CN101809155A (en)
AR (1)AR067795A1 (en)
AU (1)AU2008281715A1 (en)
BR (1)BRPI0814379A2 (en)
CA (1)CA2694142A1 (en)
WO (1)WO2009016249A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104292320A (en)*2014-10-102015-01-21东北农业大学Marker gene for identifying whether cucumbers suffer from low nitrate nitrogen stress and application of marker gene
CN111304351A (en)*2020-02-142020-06-19山西省农业科学院生物技术研究中心Method for screening wheat with different grain number per ear and single plant yield and kit used by method
CN113337526A (en)*2021-06-082021-09-03吉林大学Corn methionine sulfoxide reductase gene ZmMSRB3 and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CA2713208C (en)2008-02-152021-02-16Ceres, Inc.Drought and heat tolerance in plants
US20110185452A1 (en)*2008-06-032011-07-28Sathish PuthigaeCompositions and methods for improving plants
CN104357478B (en)*2014-11-042017-04-12南京农业大学Bacterial leaf blight resistant gene engineering application of rice zinc finger protein gene
CN114807215A (en)*2022-04-182022-07-29云南中烟工业有限责任公司 Application of a tobacco methionine sulfoxide reductase gene NtE4 in tobacco stress resistance

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5504200A (en)1983-04-151996-04-02Mycogen Plant Science, Inc.Plant gene expression
US5380831A (en)1986-04-041995-01-10Mycogen Plant Science, Inc.Synthetic insecticidal crystal protein gene
US4666844A (en)1984-09-071987-05-19Sungene Technologies CorporationProcess for regenerating cereals
US5100792A (en)1984-11-131992-03-31Cornell Research Foundation, Inc.Method for transporting substances into living cells and tissues
US5036006A (en)1984-11-131991-07-30Cornell Research Foundation, Inc.Method for transporting substances into living cells and tissues and apparatus therefor
US4945050A (en)1984-11-131990-07-31Cornell Research Foundation, Inc.Method for transporting substances into living cells and tissues and apparatus therefor
US5420034A (en)1986-07-311995-05-30Calgene, Inc.Seed-specific transcriptional regulation
US5187073A (en)1986-06-301993-02-16The University Of ToledoProcess for transforming gramineae and the products thereof
US5004863B2 (en)1986-12-032000-10-17AgracetusGenetic engineering of cotton plants and lines
US5120657A (en)1986-12-051992-06-09Agracetus, Inc.Apparatus for genetic transformation
JPH04501201A (en)1987-12-211992-03-05ジ・アップジョン・カンパニー Agrobacterium-mediated transformation of germinated plant seeds
US5614395A (en)1988-03-081997-03-25Ciba-Geigy CorporationChemically regulatable and anti-pathogenic DNA sequences and uses thereof
US5350688A (en)1988-03-311994-09-27Kirin Beer Kabushiki KaishaMethod for regeneration of rice plants
US5990387A (en)1988-06-101999-11-23Pioneer Hi-Bred International, Inc.Stable transformation of plant cells
NZ230375A (en)1988-09-091991-07-26Lubrizol Genetics IncSynthetic gene encoding b. thuringiensis insecticidal protein
DE3843628A1 (en)1988-12-211990-07-05Inst Genbiologische Forschung Wound-inducible and potato-tuber-specific transcriptional regulation
JP3364616B2 (en)1989-02-242003-01-08モンサント テクノロジー エルエルシー Synthetic plant genes and preparation methods
US5086169A (en)1989-04-201992-02-04The Research Foundation Of State University Of New YorkIsolated pollen-specific promoter of corn
US5302523A (en)1989-06-211994-04-12Zeneca LimitedTransformation of plant cells
US5550318A (en)1990-04-171996-08-27Dekalb Genetics CorporationMethods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5322783A (en)1989-10-171994-06-21Pioneer Hi-Bred International, Inc.Soybean transformation by microparticle bombardment
ATE205530T1 (en)1990-03-162001-09-15Calgene Llc NEW SEQUENCES PREFERABLY EXPRESSED DURING EARLY GERM DEVELOPMENT AND RELATED METHODS
WO1991016432A1 (en)1990-04-181991-10-31Plant Genetic Systems N.V.Modified bacillus thuringiensis insecticidal-crystal protein genes and their expression in plant cells
US5187267A (en)1990-06-191993-02-16Calgene, Inc.Plant proteins, promoters, coding sequences and use
US5932782A (en)1990-11-141999-08-03Pioneer Hi-Bred International, Inc.Plant transformation method using agrobacterium species adhered to microprojectiles
US5767366A (en)1991-02-191998-06-16Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical CollegeMutant acetolactate synthase gene from Ararbidopsis thaliana for conferring imidazolinone resistance to crop plants
EP0539563B2 (en)1991-05-152008-01-23Monsanto Technology LLCMethod of creating a transformed rice plant
AU2781892A (en)1991-10-071993-05-03Ciba-Geigy AgParticle gun for introducing dna into intact cells
TW261517B (en)1991-11-291995-11-01Mitsubishi Shozi Kk
PT637339E (en)1992-04-132002-03-28Syngenta Ltd DNA BUILDINGS AND PLANS THAT INCORPORATE THEM
EP0604662B1 (en)1992-07-072008-06-18Japan Tobacco Inc.Method of transforming monocotyledon
EP0651814B1 (en)1992-07-091997-01-08Pioneer Hi-Bred International, Inc.Maize pollen-specific polygalacturonase gene
US5470353A (en)1993-10-201995-11-28Hollister IncorporatedPost-operative thermal blanket
CA2174954C (en)1993-11-192005-03-15Stanton B. GelvinChimeric regulatory regions and gene cassettes for expression of genes in plants
GB9324707D0 (en)1993-12-021994-01-19Olsen Odd ArnePromoter
EP0687730B1 (en)1993-12-082007-05-16Japan Tobacco Inc.Method of transforming plant and vector therefor
GB9403512D0 (en)1994-02-241994-04-13Olsen Odd ArnePromoter
US5470359A (en)1994-04-211995-11-28Pioneer Hi-Bred Internation, Inc.Regulatory element conferring tapetum specificity
GB9421286D0 (en)1994-10-211994-12-07DaniscoPromoter
US5846797A (en)1995-10-041998-12-08Calgene, Inc.Cotton transformation
GB9524395D0 (en)1995-11-291996-01-31Nickerson Biocem LtdPromoters
JPH10117776A (en)1996-10-221998-05-12Japan Tobacco IncTransformation of indica rice
US5981840A (en)1997-01-241999-11-09Pioneer Hi-Bred International, Inc.Methods for agrobacterium-mediated transformation
ES2229472T3 (en)1997-02-202005-04-16Bayer Bioscience N.V. IMPROVED TRANSFORMATION METHOD FOR PLANTS.
US5977436A (en)1997-04-091999-11-02Rhone Poulenc AgrochimieOleosin 5' regulatory region for the modification of plant seed lipid composition
US6162965A (en)1997-06-022000-12-19Novartis AgPlant transformation methods
ES2276475T5 (en)1997-09-302014-07-11The Regents Of The University Of California Protein production in plant seeds
US6153813A (en)1997-12-112000-11-28Mississippi State UniversityMethods for genotype-independent nuclear and plastid transformation coupled with clonal regeneration utilizing mature zygotic embryos in rice (Oryza sativa) seeds
US6153811A (en)1997-12-222000-11-28Dekalb Genetics CorporationMethod for reduction of transgene copy number
US6333449B1 (en)1998-11-032001-12-25Plant Genetic Systems, N.V.Glufosinate tolerant rice
US6420630B1 (en)1998-12-012002-07-16Stine BiotechnologyMethods for tissue culturing and transforming elite inbreds of Zea mays L.
EP1033405A3 (en)*1999-02-252001-08-01Ceres IncorporatedSequence-determined DNA fragments and corresponding polypeptides encoded thereby
US20020152497A1 (en)*1999-05-072002-10-17Falco Saverio CarlNucleic acid fragments encoding proteins involved in stress response
AU2001277520B2 (en)2000-06-282006-08-03Sungene Gmbh & Co. KgaaBinary vectors for improved transformation of plant systems
CA2465951A1 (en)*2001-11-092003-05-15Basf Plant Science GmbhTranscription factor stress-related polypeptides and methods of use in plants
US7576263B2 (en)*2002-12-312009-08-18University Of DelhiGene OSISAP1 of rice confers tolerance to stresses and a method thereof
EP1699928B9 (en)*2003-10-022010-11-03Monsanto Technology, LLCStacking crop improvement traits in transgenic plants
CN1528895A (en)*2003-10-162004-09-15上海交通大学 Coding Sequence of BnHB6 Protein Coding Sequence of Drought and Salt Tolerance Transcription Factor in Brassica napus
EP1566443A1 (en)2004-02-232005-08-24SunGene GmbH &amp; Co.KgaAImproved transformation of brassica species
MXPA06013357A (en)2004-06-072007-03-01Basf Plant Science GmbhImproved transformation of soybean.
US20060135758A1 (en)*2004-08-312006-06-22Kunsheng WuSoybean polymorphisms and methods of genotyping
US8853492B2 (en)*2005-11-072014-10-07Cropdesign N.V.Plants having improved growth characteristics and a method for making the same
AU2006310495B2 (en)*2005-11-072013-05-16Cropdesign N.V.Plants having improved growth characteristics and a method for making the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104292320A (en)*2014-10-102015-01-21东北农业大学Marker gene for identifying whether cucumbers suffer from low nitrate nitrogen stress and application of marker gene
CN111304351A (en)*2020-02-142020-06-19山西省农业科学院生物技术研究中心Method for screening wheat with different grain number per ear and single plant yield and kit used by method
CN111304351B (en)*2020-02-142023-03-28山西省农业科学院生物技术研究中心Method for screening wheat with different grain counts per ear and single plant yield and kit used by method
CN113337526A (en)*2021-06-082021-09-03吉林大学Corn methionine sulfoxide reductase gene ZmMSRB3 and application thereof
CN113337526B (en)*2021-06-082023-03-28吉林大学Corn methionine sulfoxide reductase gene ZmMSRB3 and application thereof

Also Published As

Publication numberPublication date
AR067795A1 (en)2009-10-21
CA2694142A1 (en)2009-02-05
US8367894B2 (en)2013-02-05
EP2487246A2 (en)2012-08-15
EP2487246A3 (en)2012-09-19
BRPI0814379A2 (en)2017-05-09
AU2008281715A1 (en)2009-02-05
EP2487246A9 (en)2013-05-15
US20100223692A1 (en)2010-09-02
WO2009016249A3 (en)2009-04-02
WO2009016249A2 (en)2009-02-05
EP2183373A2 (en)2010-05-12
US20130139281A1 (en)2013-05-30

Similar Documents

PublicationPublication DateTitle
US8338661B2 (en)Transgenic plants with increased stress tolerance and yield
CN101889089B (en)Transgenic plants with increased stress tolerance and yield
CN109456982B (en)Application of rice OsMYB6 gene and encoding protein thereof in drought resistance and salt resistance
CN101679999A (en)Transgenic plants with increased stress tolerance and yield
CN104450640A (en)Transgenic Plant With Increased Stress Tolerance And Yield
BRPI0413917B1 (en) non-transgenic mutagenized rice ahas nucleic acid, isolated ahas polypeptide, and weed control method within the vicinity of a rice plant
CN102174560A (en)Stress tolerance and delayed senescence in plants
MX2010013622A (en)Plants having enhanced yield-related traits and a method for making the same.
US20120042418A1 (en)Engineering NF-YB Transcription Factors for Enhanced Drought Resistance and Increased Yield in Transgenic Plants
BRPI0710192A2 (en) isolated nucleic acid, vector, transgenic plant cell, transgenic plant, plant seed, and method for producing a transgenic plant
CN101809155A (en)Transgenic plants with increased stress tolerance and yield
CN104903444B (en)Highly yielding ability nucleic acid, the method for preparing the increased genetically modified plants of yield, the method for increasing the yield of plant are assigned to plant
CN108948162B (en)Peanut adversity stress gene AhDOG1L and application thereof
WO1999031259A1 (en)Transgenic plants with an altered potassium metabolism
CN102356157A (en)Transgenic plants having altered nitrogen metabolism
Li et al.Isolation and functional characterisation of CDPKs gene from Arachis hypogaea under salt stress
CN101864429B (en) Method for cultivating cotton bollworm-resistant plants using maize Lc gene
CN120060344A (en)Application of peanut gene AhHDZ4 in plant salt tolerance and drought resistance
AU2013202535A1 (en)Transgenic plants with increased stress tolerance and yield
AU2013203387A1 (en)Engineering NF-YB transcription factors for enhanced drought resistance and increased yield in transgenic plants

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C02Deemed withdrawal of patent application after publication (patent law 2001)
WD01Invention patent application deemed withdrawn after publication

Application publication date:20100818


[8]ページ先頭

©2009-2025 Movatter.jp