技术领域technical field
本发明属于地质及岩土工程等勘察技术领域,尤其涉及一种地层地质界面仪器钻探感应识别系统,可用于地质及岩土工程中地层界面、断裂构造、破碎带、软弱含水层、岩溶空洞、采空区及充填胶结状态等地层结构异化特征的识别。The invention belongs to the technical field of geology and geotechnical engineering, and particularly relates to a drilling induction recognition system for stratum geological interface instruments, which can be used for stratum interfaces, fracture structures, fractured zones, weak aquifers, karst cavities, etc. in geology and geotechnical engineering. Identification of stratum structure dissimilation characteristics such as goaf and filling cementation state.
背景技术Background technique
目前,在地质及岩土工程等勘察中,通常采用的界面识别方法为钻探,其识别技术方法如静力触探试验(cone penetration test:CPT)、圆锥动力触探(dynamic penetration test:DPT)、标准贯入试验(standard penetration test:SPT)及岩石可钻性试验(rockdrillability test:RDT)等。在钻孔过程中,为了获取地层剖面,需要进行钻孔编录、取样、地质分析、土工及岩石力学等大量试验,工作量大,耗时长,费用高。据统计,在国内外地基钻孔勘探中,纯钻孔时间在整个钻孔勘探中的耗时比例不到30%,钻孔勘探费用一般占整个工程建设费用的15%~28%。At present, in geological and geotechnical engineering surveys, the commonly used interface identification method is drilling, and its identification technology methods such as static penetration test (cone penetration test: CPT), cone dynamic penetration test (dynamic penetration test: DPT) , standard penetration test (standard penetration test: SPT) and rock drillability test (rock drillability test: RDT), etc. During the drilling process, in order to obtain the stratum profile, a large number of tests such as drilling record, sampling, geological analysis, geotechnical and rock mechanics, etc. are required. The workload is heavy, time-consuming and expensive. According to statistics, in domestic and foreign foundation drilling exploration, the pure drilling time accounts for less than 30% of the entire drilling exploration time, and the drilling exploration cost generally accounts for 15% to 28% of the entire project construction cost.
在国际岩土工程领域,英、法、日、美、加拿大及俄罗斯等针对地质勘探方法和岩土工程钻探方法的不足,一直在探索一种简单、有效的方法来获取有关地层的工程信息。仪器钻进系统应运而生。ENPASOL、PAPERO、Kajima、KYPC、HDK及DPM等仪器钻进系统在钻孔过程中虽然可以对钻机运行参数如钻机工作压力、钻头位移、转数及扭矩进行自动监测,但存在如下问题:(1)提取纯钻进子过程数据相当复杂,只能进行简单地层的判层;(2)不能对钻头破碎岩石的力学过程进行监测,数据后处理工作量大、繁杂,不能进行实时判层。In the field of international geotechnical engineering, Britain, France, Japan, the United States, Canada and Russia have been exploring a simple and effective method to obtain engineering information about strata in view of the shortcomings of geological exploration methods and geotechnical engineering drilling methods. The instrumented drilling system came into being. Drilling systems such as ENPASOL, PAPERO, Kajima, KYPC, HDK and DPM can automatically monitor the operating parameters of the drilling rig such as the working pressure of the drilling rig, the displacement of the drill bit, the number of revolutions and the torque during the drilling process, but there are the following problems: (1 ) Extraction of pure drilling sub-process data is quite complicated, and only simple layer judgment can be carried out; (2) The mechanical process of rock breaking by the drill bit cannot be monitored, and the data post-processing workload is heavy and complicated, and real-time layer judgment cannot be performed.
本发明基于钻头冲击或旋转破碎岩石的原理,利用采集钻孔机或钻探机的钻进工作参数、振动及钻杆中的应力波,并对钻进地层进行识别和力学分级,同时,通过压力、温度、燃料耗量及流量对钻机进行故障诊断和管理。The present invention is based on the principle that the drill bit impacts or rotates to break the rock, utilizes the drilling working parameters of the drilling machine or the drilling machine, the vibration and the stress wave in the drill pipe to identify and mechanically classify the drilled formation, and at the same time, through the pressure , temperature, fuel consumption and flow for fault diagnosis and management of the drilling rig.
发明内容Contents of the invention
本发明的目的是提供一种克服现有钻探取样工作量大,且需要大量土工及岩石力学试验,耗时长、费用高,以及现有仪器钻进系统纯钻进子过程识别困难等局限性的地层地质界面仪器钻探感应识别系统。The purpose of the present invention is to provide a method that overcomes the limitations of the existing drilling and sampling workload, the need for a large number of geotechnical and rock mechanics tests, the time-consuming, high cost, and the difficulty in identifying the pure drilling sub-process of the existing instrument drilling system. Drilling induction identification system of formation geological interface instrument.
本发明一种地层地质界面仪器钻探感应识别系统,该系统包括数据感应单元,数据采集单元和数据分析单元;The invention relates to a drilling induction recognition system for stratum geological interface instruments, the system includes a data sensing unit, a data acquisition unit and a data analysis unit;
所述数据感应单元,由压力传感器,流量传感器,温度传感器,振动传感器,应力传感器构成;The data sensing unit is composed of a pressure sensor, a flow sensor, a temperature sensor, a vibration sensor, and a stress sensor;
其中,所述压力传感器用于采集钻机水平向前或后退运动、钻头及钻杆的前进或后退、冲洗水/液压力产生动力荷载时的液体或气体压力,所产生的电信号通过标定输出为压力信号;Wherein, the pressure sensor is used to collect the horizontal forward or backward movement of the drilling rig, the forward or backward movement of the drill bit and the drill pipe, and the liquid or gas pressure when the flushing water/hydraulic pressure generates a dynamic load, and the generated electrical signal is calibrated and output as pressure signal;
所述流量传感器用于采集钻进液的流量以及燃料油、液压油及润滑油的消耗量,所产生的电信号通过标定输出为压力信号;The flow sensor is used to collect the flow rate of drilling fluid and the consumption of fuel oil, hydraulic oil and lubricating oil, and the generated electrical signal is output as a pressure signal through calibration;
所述温度传感器用于采集钻井液或燃料油、润滑油和液压油的温度变化;输出温度信号;The temperature sensor is used to collect temperature changes of drilling fluid or fuel oil, lubricating oil and hydraulic oil; output temperature signal;
所述振动传感器用于采集钻进过程中钻机的轴向和横向振动所产生振动信号;The vibration sensor is used to collect the vibration signals generated by the axial and lateral vibrations of the drilling machine during the drilling process;
所述应力传感器用于监测钻机在旋转钻进过程中,钻头破碎岩石所产生的应力波信号;The stress sensor is used to monitor the stress wave signal generated by the drill bit breaking the rock during the rotary drilling process of the drilling rig;
所述数据采集单元,由转换盒、放大器、数字应变仪和数据集成盒构成;其中,所述压力信号经转换盒转化成数字信号后通过所述数字应变仪进入所述数据集成盒,所述振动信号和应力波信号经所述放大器放大后通过所述数字应变仪进入所述数据集成盒,所述温度信号直接进入数据集成盒,进行数据集成然后上传到所述数据分析单元;The data acquisition unit is composed of a conversion box, an amplifier, a digital strain gauge and a data integration box; wherein, the pressure signal is converted into a digital signal by the conversion box and enters the data integration box through the digital strain gauge, and the The vibration signal and the stress wave signal enter the data integration box through the digital strain gauge after being amplified by the amplifier, and the temperature signal directly enters the data integration box for data integration and then uploads to the data analysis unit;
所述数据分析单元,由计算机,打印机和外部显示单元构成,所述数据分析单元通过分析所述应变传感器感应钻具中的轴向应力-应变的变化和所述振动传感器振动及钻进特征参数来判别不同阻抗材料的分异性,实现对钻进地层进行识别和力学分级;通过监控压力、温度、燃料耗量及流量对钻机进行故障诊断和管理。The data analysis unit is composed of a computer, a printer and an external display unit, and the data analysis unit senses the change of the axial stress-strain in the drilling tool by the strain sensor and the vibration and drilling characteristic parameters of the vibration sensor To distinguish the differentiation of different impedance materials, to realize the identification and mechanical classification of the drilled formation; to diagnose and manage the fault of the drilling rig by monitoring the pressure, temperature, fuel consumption and flow.
所述数据感应单元还包括转数传感器和位移传感器,所述转速传感器用于采集钻头及钻杆的转速;所述位置传感器用于采集钻头的位置的变化。The data sensing unit also includes a rotation speed sensor and a displacement sensor, the rotation speed sensor is used to collect the rotation speed of the drill bit and the drill rod; the position sensor is used to collect the change of the position of the drill bit.
所述转换盒与所述数字应变仪采用CR-655接口电缆传输数据,所述数字应变仪与所述数据集成盒通过RS-232C接口电缆传输数据,所述数据集成盒与数据分析单元采用CR-553B接口电缆传输数据。The conversion box and the digital strain gauge use a CR-655 interface cable to transmit data, the digital strain gauge and the data integration box transmit data through an RS-232C interface cable, and the data integration box and the data analysis unit use a CR-655 interface cable to transmit data. The -553B interface cable transmits data.
所述数字应变仪的工作电压为6V。The operating voltage of the digital strain gauge is 6V.
所述数据集成盒的工作电压为12V。The working voltage of the data integration box is 12V.
本发明的有益效果是,由于采用上述技术方案,该系统将钻机工作参数的监测与钻头钻进参数的监测有效结合,一方面,通过钻机工作压力、温度、冲洗液及燃料油的监测,可实现对钻机工作状态、油耗及发热等状态进行实时监测和故障诊断;另一方面,通过对钻头旋转钻进的轴向应变以及振动等进行监测,对钻头钻进过程中的受力进行分析,根据钻进力对所穿透的地质材料进行地层的力学判层和分级。该系统可用于一切旋转钻进,取代传统的取样钻进,在破坏式钻进中获得岩土地层的分层特性,实现地层、矿岩边界、岩溶、水及断层破碎带等界面的实时连续识别和分级。无须取样、土工试验及室内岩土力学性能测试,可节省取样钻进时间的2/3左右;易于安装,操作简单,样本海量,土工及岩石力学等试验,自动化程度及识别精度高。The beneficial effects of the present invention are that, due to the adoption of the above-mentioned technical scheme, the system effectively combines the monitoring of the working parameters of the drilling rig with the monitoring of the drilling parameters of the drill bit. On the one hand, through the monitoring of the working pressure, temperature, flushing fluid and fuel oil of the drilling rig, Real-time monitoring and fault diagnosis of the working status, fuel consumption and heat generation of the drilling rig; on the other hand, by monitoring the axial strain and vibration of the drill bit during rotary drilling, the force of the drill bit during the drilling process is analyzed. According to the drilling force, the mechanical stratification and classification of the penetrated geological materials are carried out. The system can be used for all rotary drilling, replacing traditional sampling drilling, obtaining stratification characteristics of rock and soil strata in destructive drilling, and realizing real-time continuity of strata, ore-rock boundaries, karst, water and fault fracture zones. identification and grading. There is no need for sampling, geotechnical testing and indoor rock and soil mechanical performance testing, which can save about 2/3 of the drilling time for sampling; easy to install, simple to operate, massive samples, geotechnical and rock mechanics tests, high degree of automation and identification accuracy.
附图说明Description of drawings
图1是本发明地层地质界面仪器钻探感应识别系统的系统构造图;Fig. 1 is the system structural diagram of the drilling induction identification system of the formation geological interface instrument of the present invention;
图2是本发明在实例中压力传感器的连接图。Fig. 2 is a connection diagram of a pressure sensor in an example of the present invention.
图3是本发明在实例中应变测量布置图。Fig. 3 is an arrangement diagram of strain measurement in an example of the present invention.
图4是本发明在实例中旋转传感器的布置图。Fig. 4 is a layout diagram of a rotation sensor in an example of the present invention.
图5是本发明在实例中激光位移传感器的布置图。Fig. 5 is a layout diagram of a laser displacement sensor in an example of the present invention.
图6是本发明在实例中数据输出的一种连接方式图。Fig. 6 is a connection diagram of data output in an example of the present invention.
图中:In the picture:
1.驱动马达 9.压力阀1. Drive motor 9. Pressure valve
2.减速箱 10.压力表2. Gearbox 10. Pressure gauge
3.滑块 11.压力传感器3.
4.减速箱输出轴 12.信号线缆4.
5.钻杆 13.连接头5.
6.钻头 14.转数传感器6. Drill
7.传动部 15.激光测距仪7.
8.标准靶 16.激光束8.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
如图1所示,本发明地层地质界面仪器钻探感应识别系统,该系统包括数据感应单元,数据采集单元及数据分析单元;As shown in Figure 1, the drilling induction recognition system of the formation geological interface instrument of the present invention includes a data sensing unit, a data acquisition unit and a data analysis unit;
感应单元包括压力传感器S1,用来监测钻机水平向前或后退运动、钻头及钻杆的前进或后退、冲洗水/液压力等产生动力荷载时的液体或气体压力。对于液压旋转式钻机,动荷载包括:(1)钻机沿水平导轨前进或后退运动的压力;(2)钻具沿钻架钻进或退出运动的压力,即轴压力和调压力;(3)冲洗液压力。一般需要5个或更多压力传感器,作用于钻机及钻具的动荷载与钻孔方式有关,视钻孔机的类型会有改变。在斜坡土钉钻进中,一般采用气动驱动和气动排碴。但流体介质的改变,一般只会改变压力的幅值及动力效率,而监测原理是完全相同的。不同之处是液压驱动的压力通常比气动时高出数倍到数十倍。因此,不同的动力驱动方式,选择的压力传感器的量测范围会不同;流量传感器S2主要用来测量钻进液的流量以及燃料油的消耗,和监测燃料、液压油及润滑油的消耗量与消耗速率;温度传感器S3主要用于监测钻机发动机及钻具驱动马达燃料及润滑油的温度;振动传感器S4用来监测钻进过程中钻机的轴向和横向振动,通过分析振动的变化情况可以判断地层的变化;应变传感器S5主要用于监测钻机在旋转钻进过程中,钻头破碎岩石所产生的应力波;转速传感器用来监测钻头及钻杆的转速;位置传感器用来监测钻头的位置;各个感应器获到的感测数据上传到数据采集单元。The sensing unit includes a pressure sensor S1, which is used to monitor the horizontal forward or backward movement of the drilling rig, the forward or backward movement of the drill bit and drill pipe, the flushing water/hydraulic pressure, and other liquid or gas pressures when dynamic loads are generated. For hydraulic rotary drilling rigs, the dynamic load includes: (1) the pressure of the drilling rig moving forward or backward along the horizontal guide rail; (2) the pressure of the drilling tool moving in or out along the drill frame, that is, the axial pressure and the regulating pressure; (3) Fluid pressure. Generally, 5 or more pressure sensors are required, and the dynamic load acting on the drilling rig and drilling tools is related to the drilling method, and it will change depending on the type of drilling machine. In slope soil nailing, pneumatic drive and pneumatic ballast removal are generally used. However, the change of the fluid medium generally only changes the amplitude of the pressure and the power efficiency, and the monitoring principle is exactly the same. The difference is that the pressure of hydraulic drive is usually several times to dozens of times higher than that of pneumatic drive. Therefore, the measurement range of the selected pressure sensor will be different for different power driving modes; the flow sensor S2 is mainly used to measure the flow rate of drilling fluid and the consumption of fuel oil, and monitor the consumption and consumption of fuel, hydraulic oil and lubricating oil. Consumption rate; the temperature sensor S3 is mainly used to monitor the temperature of the fuel and lubricating oil of the drilling rig engine and the drilling tool drive motor; the vibration sensor S4 is used to monitor the axial and lateral vibration of the drilling rig during the drilling process, and it can be judged by analyzing the change of vibration Changes in the formation; the strain sensor S5 is mainly used to monitor the stress wave generated by the drill bit breaking the rock during the rotary drilling process; the speed sensor is used to monitor the speed of the drill bit and the drill pipe; the position sensor is used to monitor the position of the drill bit; The sensing data obtained by the sensor is uploaded to the data acquisition unit.
数据采集单元,包括放大器,用以将应变信号放大;转换盒,将压力传感器采集和流量传感器的模拟数据进行转换。它通过CR-655接口电缆与数字式应变仪相连;转换盒将输入的压力信号变换为数字信号,通过RS-232C接口电缆将数据输入到数据集成盒;数据集成盒,将感应单元输入的数据进行集成,通过CR-553B接口电缆输入到数据分析单元。The data acquisition unit includes an amplifier to amplify the strain signal; a conversion box to convert the analog data collected by the pressure sensor and the flow sensor. It is connected to the digital strain gauge through the CR-655 interface cable; the conversion box converts the input pressure signal into a digital signal, and inputs the data into the data integration box through the RS-232C interface cable; the data integration box converts the data input from the sensing unit For integration, input to the data analysis unit through the CR-553B interface cable.
所述数据分析单元,由计算机,打印机和外部显示单元构成,所述数据分析单元通过分析所述应变传感器感应钻具中的轴向应力-应变的变化和所述振动传感器振动及钻进特征参数来判别不同阻抗材料的分异性,实现对钻进地层进行识别和力学分级;通过监控压力、温度、燃料耗量及流量对钻机进行故障诊断和管理。The data analysis unit is composed of a computer, a printer and an external display unit, and the data analysis unit senses the change of the axial stress-strain in the drilling tool by the strain sensor and the vibration and drilling characteristic parameters of the vibration sensor To distinguish the differentiation of different impedance materials, to realize the identification and mechanical classification of the drilled formation; to diagnose and manage the fault of the drilling rig by monitoring the pressure, temperature, fuel consumption and flow.
如图2所示,本发明在实例中压力传感器的连接图,流量传感器和温度传感器安装在管路中的输入I-输出O回路中压力表10的前方,当压力流体输入到管路中,经压力阀9、压力表10及传感器11输入到工作机构,当压力流体经压力传感器11时,压力作用于传感器上的压阻片,使其变形从而使电阻、电流或电压等电信号发生改变,电信号经数据电缆12传输给数据采集系统,钻井液或燃料油、润滑油和液压油的消耗和温度变化,由流量传感器S2和温度传感器S3拾取,在通过数据电缆传输到数据采集系统;As shown in Figure 2, the connection diagram of the pressure sensor in the example of the present invention, the flow sensor and the temperature sensor are installed in the front of the pressure gauge 10 in the input I-output O circuit in the pipeline, when the pressure fluid is input in the pipeline, It is input to the working mechanism through the pressure valve 9, pressure gauge 10 and
如图3所示,本发明在实例中应变测量布置图,振动传感器S4安装在钻机机架或机座的固定部位,当钻头穿透不同的岩石地层时,钻具的振动将发生改变,经钻头向钻杆传播的压缩振动波由振动传感器S4拾取,再由数据电缆12传输给数据采集系统;应变传感器S5的应变片8安装在减速器输出轴的联结头4上,并通过信号线12与放大器及数字式应变仪相连,应变片8用以记录钻进过程中由钻头6破碎岩石所产生的触发,通过钻杆5传输到联结头4上的入射应力波,再由数据电缆12传输给数据采集系统。As shown in Figure 3, the strain measurement arrangement diagram in the example of the present invention, the vibration sensor S4 is installed on the fixed position of the drilling rig frame or machine base, when the drill bit penetrates different rock formations, the vibration of the drilling tool will change, through The compression vibration wave transmitted from the drill bit to the drill pipe is picked up by the vibration sensor S4, and then transmitted to the data acquisition system by the
如图4所示,本发明在实例中转速传感器的布置图。转速传感器14安装在钻架上与探针13对应的位置上。当探针13与钻杆5一起转动时,探针13将在转速传感器14前端扫过(虚线园为探针6转动时的轨迹),即传感器14位于探针13旋转圆周线所包络的平面中。此时转速传感As shown in Fig. 4, the arrangement diagram of the rotational speed sensor in the example of the present invention. The
器14发生电磁脉冲,并通过数据电缆12传输给数据采集系统。本发明中钻具是指钻杆5、联接套13及钻头6的总称。因此,钻头6和减速箱2的输出轴具有相同的转速。如图5所示,本发明在实例中激光位移传感器的布置图,驱动马达1通过输出轴与减速箱2相连,1、2的外体与滑块3固定联接,滑块3通过链条或活塞7带动,沿钻架上的滑轨滑动,从而带动钻杆5与钻头6运动,激光测距仪15固定在减速箱2上的适当位置,安装时激光测距仪15的轴线及激光线束16与钻杆5轴线相互平行,激光束16照射在钻孔地面的标准靶8上。激光束16与标准靶8相互垂直,当不垂直时位移应修正为钻杆5轴线上的位移。The electromagnetic pulse is generated by the
钻头在传动部7施加的轴压、驱动马达1及减速箱2输出轴旋转产生的力矩作用下,破碎岩石,并以一定的速率穿透地层,从而产生位移。在钻进过程中,钻机每次推进一定长度,多次循环推进。此时,钻头的实际进尺是多次循环推进后的位移的总和。它由减速箱2前端面到标准测靶8间的距离变化来反映钻头位置的改变。位移传感器15的监测数据通过其接口电缆12传输到数据采集系统。Under the action of the axial pressure applied by the
如图6所示,数据采集子单元安装在地面工作台上,将感应系统采集的各种数据信号进行放大、转化后,将数据传输到计算机,计算机通过程序对接收到的数据进行分析,当钻头在轴压和旋转力矩的作用下,当地层岩石的钻进强度发生变化时,将产生冲击应力波。在同一地层中钻进时,这种应力波相对平稳而且比较弱,当岩石变化差异较大,这种应力波会发生显著变化,实现对地层行识别和力学分级,然后通过打印机输出,外部显示单元显示分析结果。As shown in Figure 6, the data acquisition sub-unit is installed on the ground workbench, after amplifying and transforming various data signals collected by the sensing system, the data is transmitted to the computer, and the computer analyzes the received data through the program. Under the action of axial pressure and rotational moment, when the drilling strength of formation rock changes, shock stress waves will be generated. When drilling in the same formation, the stress wave is relatively stable and weak. When the rock changes greatly, the stress wave will change significantly to realize the identification and mechanical classification of the formation, and then output it through the printer for external display. The cell displays the analysis results.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010116385XACN101761328B (en) | 2010-03-03 | 2010-03-03 | Stratum geology interface instrument drilling induction recognition system |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010116385XACN101761328B (en) | 2010-03-03 | 2010-03-03 | Stratum geology interface instrument drilling induction recognition system |
Publication Number | Publication Date |
---|---|
CN101761328Atrue CN101761328A (en) | 2010-06-30 |
CN101761328B CN101761328B (en) | 2013-01-02 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010116385XAExpired - Fee RelatedCN101761328B (en) | 2010-03-03 | 2010-03-03 | Stratum geology interface instrument drilling induction recognition system |
Country | Link |
---|---|
CN (1) | CN101761328B (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102263690A (en)* | 2011-05-23 | 2011-11-30 | 中国石油大学(华东) | A method for uploading data of measurement-while-drilling system |
CN103306662A (en)* | 2013-07-02 | 2013-09-18 | 中煤科工集团西安研究院 | On-line monitoring and diagnosing system of all-hydraulic drill |
CN105756659A (en)* | 2016-04-12 | 2016-07-13 | 安庆市鸿裕工业产品设计有限公司 | Drill bit operation position regulation and control assembly for concrete core-drilling machine |
CN105927211A (en)* | 2016-04-18 | 2016-09-07 | 中国科学院武汉岩土力学研究所 | Method and device for rock mass mechanical property in-situ drilling test of deep underground engineering |
CN105973551A (en)* | 2015-03-13 | 2016-09-28 | 谭乃根 | Boring dynamics simulation test system |
CN106837324A (en)* | 2017-04-06 | 2017-06-13 | 山东科技大学 | The fast determination method and borehole data acquisition system of rock lithology title and intensity |
CN106988721A (en)* | 2017-05-26 | 2017-07-28 | 长沙矿山研究院有限责任公司 | Drilling system and its control method |
CN107060728A (en)* | 2016-10-20 | 2017-08-18 | 中国矿业大学 | A kind of system and application method for being used to recognize coal petrography and injecting paste material |
CN109854226A (en)* | 2019-03-13 | 2019-06-07 | 深圳市勘察测绘院(集团)有限公司 | The automatic monitoring equipment of drilling machine operation |
CN109989739A (en)* | 2019-03-13 | 2019-07-09 | 深圳市勘察测绘院(集团)有限公司 | Drilling machine operation automatic monitoring method |
CN110185383A (en)* | 2019-06-14 | 2019-08-30 | 中国科学院武汉岩土力学研究所 | A kind of small indoor drilling parameter device for quick collecting |
CN110849448A (en)* | 2019-10-13 | 2020-02-28 | 江苏远望仪器集团有限公司 | Sensor data automatic acquisition, recording, analysis, processing and control system |
CN112088233A (en)* | 2018-03-01 | 2020-12-15 | 包尔特殊基础工程有限公司 | Method and system for building foundation elements |
CN112096272A (en)* | 2020-09-20 | 2020-12-18 | 中国科学院武汉岩土力学研究所 | Intelligent drilling method of rock drill |
CN112196523A (en)* | 2020-05-13 | 2021-01-08 | 北京科技大学 | Rock mass strength parameter drilling real-time measurement system |
CN112432811A (en)* | 2020-12-01 | 2021-03-02 | 中科土壤环境科技(江苏)有限公司 | Drilling follow-up underground object identification control system |
CN115103950A (en)* | 2020-02-13 | 2022-09-23 | 安百拓凿岩钎具有限公司 | Drilling tools and systems for drilling tool identification |
CN115142795A (en)* | 2022-06-24 | 2022-10-04 | 山东大学 | A laser-assisted geological drilling rig and its non-submerged construction technology |
CN116122787A (en)* | 2023-03-17 | 2023-05-16 | 江苏理工学院 | Drilling structure for drilling detection of jumbolter |
CN116576953A (en)* | 2023-07-11 | 2023-08-11 | 吉林大学 | 4D printing self-powered vibration sensor for planetary sampling |
CN117389217A (en)* | 2023-09-01 | 2024-01-12 | 西安易诺敬业电子科技有限责任公司 | Safety production management system and method based on industrial Internet |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5553407A (en)* | 1995-06-19 | 1996-09-10 | Vermeer Manufacturing Company | Excavator data acquisition and control system and method of use |
US20010042642A1 (en)* | 1996-03-25 | 2001-11-22 | King William W. | Iterative drilling simulation process for enhanced economic decision making |
CN1475653A (en)* | 2002-08-13 | 2004-02-18 | 中国石化集团中原石油勘探局 | Drilling parameter acquisition and processing method |
CA2269498C (en)* | 1996-10-22 | 2005-01-11 | Baker Hughes Incorporated | Drilling system with integrated bottom hole assembly |
CN201381802Y (en)* | 2009-04-07 | 2010-01-13 | 铁道第三勘察设计院集团有限公司 | Drilling and sounding seismic comprehensive exploration instrument |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5553407A (en)* | 1995-06-19 | 1996-09-10 | Vermeer Manufacturing Company | Excavator data acquisition and control system and method of use |
US20010042642A1 (en)* | 1996-03-25 | 2001-11-22 | King William W. | Iterative drilling simulation process for enhanced economic decision making |
CA2269498C (en)* | 1996-10-22 | 2005-01-11 | Baker Hughes Incorporated | Drilling system with integrated bottom hole assembly |
CN1475653A (en)* | 2002-08-13 | 2004-02-18 | 中国石化集团中原石油勘探局 | Drilling parameter acquisition and processing method |
CN201381802Y (en)* | 2009-04-07 | 2010-01-13 | 铁道第三勘察设计院集团有限公司 | Drilling and sounding seismic comprehensive exploration instrument |
Title |
---|
《北京科技大学学报》 20060925 谭卓英等 基于岩石可钻性指标的地层界面识别理论与方法 全文 1-2 , 第09期* |
《北京科技大学学报》 20070715 谭卓英等 基于仪器钻进系统的风化花岗岩地层界面识别 全文 1-2 , 第07期* |
《岩石力学与工程学报》 20080215 谭卓英等 岩土工程界面识别中的地层判别分类方法研究 全文 1-2 , 第02期* |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102263690A (en)* | 2011-05-23 | 2011-11-30 | 中国石油大学(华东) | A method for uploading data of measurement-while-drilling system |
CN102263690B (en)* | 2011-05-23 | 2014-04-09 | 中国石油大学(华东) | Method for uploading data in measurement-while-drilling system |
CN103306662A (en)* | 2013-07-02 | 2013-09-18 | 中煤科工集团西安研究院 | On-line monitoring and diagnosing system of all-hydraulic drill |
CN103306662B (en)* | 2013-07-02 | 2015-08-05 | 中煤科工集团西安研究院有限公司 | A kind of on-line monitoring and diagnosis system of all-hydraulic drill |
CN105973551A (en)* | 2015-03-13 | 2016-09-28 | 谭乃根 | Boring dynamics simulation test system |
CN105756659A (en)* | 2016-04-12 | 2016-07-13 | 安庆市鸿裕工业产品设计有限公司 | Drill bit operation position regulation and control assembly for concrete core-drilling machine |
CN105927211A (en)* | 2016-04-18 | 2016-09-07 | 中国科学院武汉岩土力学研究所 | Method and device for rock mass mechanical property in-situ drilling test of deep underground engineering |
CN105927211B (en)* | 2016-04-18 | 2019-04-16 | 中国科学院武汉岩土力学研究所 | A kind of the rock mass mechanics characteristic original position drilling test method and device of deep underground engineering |
CN107060728A (en)* | 2016-10-20 | 2017-08-18 | 中国矿业大学 | A kind of system and application method for being used to recognize coal petrography and injecting paste material |
CN106837324A (en)* | 2017-04-06 | 2017-06-13 | 山东科技大学 | The fast determination method and borehole data acquisition system of rock lithology title and intensity |
CN106837324B (en)* | 2017-04-06 | 2023-06-02 | 山东科技大学 | Rapid Determination Method of Rock Lithology Name and Strength and Drilling Data Acquisition System |
CN106988721A (en)* | 2017-05-26 | 2017-07-28 | 长沙矿山研究院有限责任公司 | Drilling system and its control method |
CN106988721B (en)* | 2017-05-26 | 2024-04-12 | 长沙矿山研究院有限责任公司 | Drilling system and control method thereof |
US12104342B2 (en) | 2018-03-01 | 2024-10-01 | Bauer Spezialtiefbau Gmbh | Method and system for producing a foundation element in the ground |
CN112088233A (en)* | 2018-03-01 | 2020-12-15 | 包尔特殊基础工程有限公司 | Method and system for building foundation elements |
CN112088233B (en)* | 2018-03-01 | 2022-05-10 | 包尔特殊基础工程有限公司 | Method and system for building foundation elements |
CN109854226B (en)* | 2019-03-13 | 2024-02-20 | 深圳市勘察测绘院(集团)有限公司 | Automatic supervision equipment for drilling machine operation |
CN109989739A (en)* | 2019-03-13 | 2019-07-09 | 深圳市勘察测绘院(集团)有限公司 | Drilling machine operation automatic monitoring method |
CN109854226A (en)* | 2019-03-13 | 2019-06-07 | 深圳市勘察测绘院(集团)有限公司 | The automatic monitoring equipment of drilling machine operation |
CN110185383A (en)* | 2019-06-14 | 2019-08-30 | 中国科学院武汉岩土力学研究所 | A kind of small indoor drilling parameter device for quick collecting |
CN110185383B (en)* | 2019-06-14 | 2024-05-03 | 中国科学院武汉岩土力学研究所 | Small-size indoor drilling parameter rapid acquisition device |
CN110849448A (en)* | 2019-10-13 | 2020-02-28 | 江苏远望仪器集团有限公司 | Sensor data automatic acquisition, recording, analysis, processing and control system |
CN115103950A (en)* | 2020-02-13 | 2022-09-23 | 安百拓凿岩钎具有限公司 | Drilling tools and systems for drilling tool identification |
CN112196523A (en)* | 2020-05-13 | 2021-01-08 | 北京科技大学 | Rock mass strength parameter drilling real-time measurement system |
CN112096272A (en)* | 2020-09-20 | 2020-12-18 | 中国科学院武汉岩土力学研究所 | Intelligent drilling method of rock drill |
CN112432811A (en)* | 2020-12-01 | 2021-03-02 | 中科土壤环境科技(江苏)有限公司 | Drilling follow-up underground object identification control system |
CN115142795A (en)* | 2022-06-24 | 2022-10-04 | 山东大学 | A laser-assisted geological drilling rig and its non-submerged construction technology |
CN116122787A (en)* | 2023-03-17 | 2023-05-16 | 江苏理工学院 | Drilling structure for drilling detection of jumbolter |
CN116122787B (en)* | 2023-03-17 | 2024-06-14 | 江苏理工学院 | Drilling structure for drilling detection of jumbolter |
CN116576953A (en)* | 2023-07-11 | 2023-08-11 | 吉林大学 | 4D printing self-powered vibration sensor for planetary sampling |
CN117389217A (en)* | 2023-09-01 | 2024-01-12 | 西安易诺敬业电子科技有限责任公司 | Safety production management system and method based on industrial Internet |
CN117389217B (en)* | 2023-09-01 | 2024-07-26 | 西安易诺敬业电子科技有限责任公司 | Safety production management system and method based on industrial Internet |
Publication number | Publication date |
---|---|
CN101761328B (en) | 2013-01-02 |
Publication | Publication Date | Title |
---|---|---|
CN101761328A (en) | Stratum geology interface instrument drilling induction recognition system | |
CN110486007B (en) | In-situ testing device and method for mechanical parameters of coal mine surrounding rock while drilling | |
CN103018788B (en) | Profound tunnel unfavorable geology and Mechanical property forward probe device and method | |
CN113175302B (en) | A small drilling rig system and evaluation method for intelligent perception of rock quality | |
CN104793264B (en) | Geological state applied to rig reflects and forward probe system and method in real time | |
CN112196523A (en) | Rock mass strength parameter drilling real-time measurement system | |
CN106546366B (en) | An umbrella-shaped deep hole three-dimensional stress and displacement comprehensive testing device | |
CN105973551B (en) | Drilling power simulated testing system | |
CN202975361U (en) | Advance detection apparatus for unfavorable geology and rock mass mechanical property of deep and long tunnel | |
CN101761062A (en) | Wireless rotating penetrometer | |
CN103760005A (en) | Intensity distribution test device for deep-hole drilling rock and earth mass | |
CN105927211A (en) | Method and device for rock mass mechanical property in-situ drilling test of deep underground engineering | |
CN108612526B (en) | Penetration loading device for in-situ testing of boreholes and its application method | |
CN114740462B (en) | Deep hole wall stress relieving drilling machine data real-time acquisition system and method | |
CN109798100A (en) | Stratum based on nearly drill bit engineering parameter measurement-while-drilling judges recognition methods | |
CN101476462A (en) | Measurement while drilling for engineering geological drilling | |
CN201397207Y (en) | Coal and rock mass in-situ stress continuous testing device | |
CN118390484A (en) | Single probe rod integrated data acquisition device and use method | |
CN201056687Y (en) | Pneumatic down-the-hole hammer type dynamic sounding equipment | |
CN204924522U (en) | A moment of torsion detection device for revolving dig rig unit head | |
Mooney et al. | Influence of geological conditions on measured TBM vibration frequency | |
CN110632873B (en) | A real-time acquisition and automatic monitoring system for standard penetration and dynamic sounding data | |
CN105863613A (en) | Sleeve type CT imaging peep testing system and testing method thereof | |
CN111520127A (en) | A kind of advanced drilling in-situ testing device and application method of mechanical parameters of engineering rock mass | |
CN107476274A (en) | A kind of standard penetration test (SPT) sounding rod front end measure analysis system and method |
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20130102 Termination date:20180303 |