


技术领域technical field
本发明涉及的是一种能源利用技术领域的装置,尤其涉及的是一种基于动力吸振器的压电振动能量收集装置。The invention relates to a device in the technical field of energy utilization, in particular to a piezoelectric vibration energy harvesting device based on a dynamic vibration absorber.
背景技术Background technique
无线传感网络、微机电系统和个人移动设备等微小机电系统有个共同特点:能量消耗很低,从几个μW到几百mW,但要求使用时间很长,非常关键的是由于使用条件的限制它们一般不能用电力线进行能量供应,目前的电池供能方式存在体积大、寿命短等缺点,而采用太阳能、热梯度等能量进行供电则需要在有相应的阳光或热梯度的环境中进行,这限制了他们的应用。Micro-electro-mechanical systems such as wireless sensor networks, micro-electro-mechanical systems, and personal mobile devices have a common feature: the energy consumption is very low, ranging from a few μW to hundreds of mW, but the use time is required to be very long, and the key is due to the conditions of use. Restricting them generally cannot use power lines for energy supply. The current battery energy supply method has disadvantages such as large volume and short life. However, the use of solar energy, thermal gradient and other energy for power supply needs to be carried out in an environment with corresponding sunlight or thermal gradient. This limits their applications.
环境中存在丰富的振动形式的能量,将这些能量收集起来为上述微小机电系统供电成为一种很好的选择。压电材料是一种可以实现机电能量互换的智能材料,当受到交变应力时便会产生源源不断的电能,它可以将振动的能量转换为电能。现在常用的压电材料有压电陶瓷和压电聚合物以及它们的复合物等,其中压电陶瓷的机电转换效率较高,是进行能量收集的优选材料。压电陶瓷常用的发电振动方式为采用电场垂直于长度的长度伸缩模(压电常数为d31)、电场平行于波传播方向的厚度伸缩模(压电常数为d33)和电场平行于波传播方向的厚度剪切模(压电常数为d15),其中:d33约为d31的2~3倍,而d15约为d31的3~4倍。根据应用场合采用合适的工作模式能够提高压电陶瓷的机电转换的效率。在特定的工作模式下要使压电材料产生多的电量就要施加大的应力或者使压电材料产生大的形变,由于振动元件的变形不会很大,因而不能靠振动元件的弯曲变形来驱动压电材料发电。压电悬臂梁结构常被用来进行振动能量收集,但其一般只适合于100Hz以下的振动。压电叠堆是将多片压电片层叠在一起并在电路上进行串联或并联或者部分串联、部分并联的结构,它主要利用压电常数较高的d33,压电片电路上串联可以提高输出电压,并联可以提高输出电流,可以根据实际收集电路对电压电流的要求进行串、并联设计,在同样大小的外部力作用下,对于同样大小的压电片,层叠的片数越多产生电量就越大,但片数过多增加了体积和成本,需要在实际用电量需求、应用空间要求及配置成本要求间进行权衡。通过对压电叠堆内压电片电路上的串并联设计,使其在增加压电材料长度和受力面积的同时使压电材料发电时的内部阻抗不增加或增加很小,以便于实现与外电路的阻抗匹配。目前,用压电叠堆进行能量收集的方法主要是将其嵌于振动元件中,使其两面受到等同的压(拉)力从而产生电能。如果只是将压电叠堆粘贴于振动元件表面,压电换能器的长度要等于四分之一波长的倍数,这会使压电材料在较低频率下尺寸过长,比如在5kHz下压电材料需要近21cm,因而这种方式只适用于几十千赫到上百千赫的频段。在压电叠堆上面附加一定的质量块再粘贴于振动元件上可以构成具有一定共振频率的弹簧质子结构,在这一共振频率附近电能转换效率很高,但是由于压电陶瓷很硬(刚度高),对于几百赫兹的振动就需要上百公斤的质量块,更难于应用于50Hz以下的频段,而且压电陶瓷受到较大的静态压缩力后压电系数会有一定的下降,使得机电转换效率变得很低,因而这种结构也很难应用。There is abundant energy in the form of vibrations in the environment, and it is a good choice to harvest this energy to power the above-mentioned micro-electromechanical systems. Piezoelectric material is a smart material that can realize electromechanical energy exchange. When subjected to alternating stress, it will generate a steady stream of electrical energy, and it can convert vibration energy into electrical energy. The commonly used piezoelectric materials include piezoelectric ceramics, piezoelectric polymers, and their composites. Among them, piezoelectric ceramics have high electromechanical conversion efficiency and are the preferred materials for energy harvesting. The commonly used power generation vibration mode of piezoelectric ceramics is the length expansion mode (the piezoelectric constant is d31 ) with the electric field perpendicular to the length, the thickness expansion mode (the piezoelectric constant is d33 ) with the electric field parallel to the wave propagation direction, and the electric field parallel to the wave propagation direction. The thickness shear mode (piezoelectric constant is d15 ), where: d33 is about 2 to 3 times of d31 , and d15 is about 3 to 4 times of d31 . Adopting an appropriate working mode according to the application can improve the electromechanical conversion efficiency of piezoelectric ceramics. In a specific working mode, to make the piezoelectric material generate more electricity, it is necessary to apply a large stress or cause a large deformation of the piezoelectric material. Since the deformation of the vibration element will not be large, it cannot be determined by the bending deformation of the vibration element. Drive the piezoelectric material to generate electricity. Piezoelectric cantilever structures are often used for vibration energy harvesting, but they are generally only suitable for vibrations below 100 Hz. A piezoelectric stack is a structure in which multiple piezoelectric sheets are stacked together and connected in series or in parallel or partly in series or partly in parallel on the circuit. It mainly uses d33 , which has a high piezoelectric constant. To increase the output voltage, parallel connection can increase the output current. According to the actual collection circuit's requirements for voltage and current, series and parallel design can be carried out. Under the action of the same size of external force, for the same size of piezoelectric sheets, the more the number of stacked sheets will produce The greater the power, but too many chips increase the size and cost, and a trade-off needs to be made between the actual power consumption requirements, application space requirements, and configuration cost requirements. Through the series-parallel design of the piezoelectric sheet circuit in the piezoelectric stack, it can increase the length and force-bearing area of the piezoelectric material and at the same time make the internal impedance of the piezoelectric material not increase or increase very little, so as to facilitate the realization Match the impedance of the external circuit. At present, the energy harvesting method of piezoelectric stack is mainly to embed it in the vibrating element, so that its two sides are subjected to equal pressure (pull) force to generate electric energy. If the piezoelectric stack is just pasted on the surface of the vibrating element, the length of the piezoelectric transducer must be equal to a multiple of a quarter of the wavelength, which will make the piezoelectric material too long at lower frequencies, such as piezoelectricity at 5kHz. The electrical material needs to be close to 21cm, so this method is only suitable for frequency bands from tens of kilohertz to hundreds of kilohertz. Attaching a certain mass block on the piezoelectric stack and pasting it on the vibrating element can form a spring proton structure with a certain resonant frequency. The electric energy conversion efficiency is very high near this resonant frequency, but because the piezoelectric ceramic is very hard (high stiffness) ), for the vibration of hundreds of Hz, a mass block of hundreds of kilograms is required, which is more difficult to apply to the frequency band below 50 Hz, and the piezoelectric coefficient of the piezoelectric ceramic will decrease after being subjected to a large static compression force, making the electromechanical conversion The efficiency becomes very low, so this structure is also difficult to apply.
经过对现有技术的检索发现,中国发明专利公告号:CN1258866,名称:压电产生装置,该装置包括由两个板形的压电陶瓷元件形成的压电陶瓷板,它们是分层的和以反极化彼此接合的,其中借助用硬拍打器拍打压电陶瓷板的一面或两面,从而激励在压电陶瓷板中的挠曲振动来产生电。由于拍打器一次拍打发电的时间是短暂的,需要拍打器持续的拍打才能产生稳定的电能,但它一般只适合于低频振动的情形,特别是拍打器需要有较大的振幅才能起振,这些都限制了它的应用。After searching the prior art, it was found that Chinese invention patent announcement number: CN1258866, name: piezoelectric generating device, the device includes a piezoelectric ceramic plate formed by two plate-shaped piezoelectric ceramic elements, which are layered and Connected to each other with reverse polarization, wherein electricity is generated by tapping one or both sides of the piezoelectric ceramic plate with a hard beater, thereby exciting the flexural vibration in the piezoelectric ceramic plate. Because the time for a flapper to generate electricity is short, it needs continuous flapping to generate stable electric energy, but it is generally only suitable for low-frequency vibrations, especially the flapper needs to have a larger amplitude to vibrate. All limit its application.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种基于动力吸振器的压电振动能量收集装置,采用振动控制中常用的动力吸振结构,将其附加于压电材料上,利用动力吸振器的强共振作用使得压电材料获得足够的应力,从而在振动元件的小幅振动下产生较多的电能。由于动力吸振器的共振频率可以设计在从几赫兹到几千赫兹的频域内,因而能量收集装置的工作频率可以在较宽的频域中选择。此外,通过设计可实现小尺寸、小质量的能量收集装置,而且同时采用压电叠堆和压电悬臂梁的结构可以拓宽能量收集装置的工作频带,提高能量收集装置的能量密度,从而获得易于应用、高效的振动能量收集装置。The purpose of the present invention is to overcome the deficiencies of the prior art, to provide a piezoelectric vibration energy harvesting device based on a dynamic vibration absorber, which adopts a dynamic vibration absorbing structure commonly used in vibration control, attaches it to a piezoelectric material, and utilizes a dynamic vibration absorber The strong resonance effect of the piezoelectric material obtains sufficient stress, thereby generating more electric energy under the small vibration of the vibrating element. Since the resonant frequency of the dynamic vibration absorber can be designed in the frequency range from a few Hz to several thousand Hz, the operating frequency of the energy harvesting device can be selected in a wider frequency range. In addition, small-sized, low-mass energy harvesting devices can be realized through design, and the structure of piezoelectric stacks and piezoelectric cantilever beams can broaden the operating frequency band of the energy harvesting device and increase the energy density of the energy harvesting device, thereby obtaining easy-to-use Application, efficient vibration energy harvesting device.
本发明是通过以下技术方案实现的,本发明包括:压电元件、盖板、动力吸振器和能量采集电路,其中:压电元件上固定盖板,盖板和动力吸振器相连,能量采集电路和压电元件相连。The present invention is achieved through the following technical solutions. The present invention includes: a piezoelectric element, a cover plate, a dynamic vibration absorber and an energy collection circuit, wherein: the cover plate is fixed on the piezoelectric element, the cover plate is connected to the dynamic vibration absorber, and the energy collection circuit connected to the piezoelectric element.
所述的动力吸振器包括:质量块和弹性元件,其中:弹性元件和盖板相连,质量块和弹性元件相连。The dynamic shock absorber includes: a mass block and an elastic element, wherein: the elastic element is connected with the cover plate, and the mass block is connected with the elastic element.
所述的弹性元件的阻尼比小于0.3。The damping ratio of the elastic element is less than 0.3.
所述的压电元件是压电叠堆或压电悬梁臂结构。The piezoelectric element is a piezoelectric stack or a piezoelectric cantilever arm structure.
所述的压电叠堆采用厚度伸缩模或厚度剪切模。The piezoelectric stack adopts a thickness stretching mode or a thickness shearing mode.
所述的能量收集电路采用全桥整流滤波电路。The energy collection circuit adopts a full-bridge rectification filter circuit.
本发明的工作过程:压电元件受外界振动元件激励产生强迫振动,在能量采集电路的工作频带内,由于弹性元件的阻尼比小于0.3,动力吸振器发生强共振作用从而驱动压电元件产生交变的电流,交变电流经能量采集电路整流滤波后获得了较稳定的直流电,从而进行存储或着直接利用。The working process of the present invention: the piezoelectric element is excited by the external vibrating element to generate forced vibration. In the working frequency band of the energy harvesting circuit, since the damping ratio of the elastic element is less than 0.3, the dynamic vibration absorber generates strong resonance to drive the piezoelectric element to generate alternating current. The alternating current is rectified and filtered by the energy harvesting circuit to obtain a relatively stable direct current, which can be stored or directly used.
本发明相比现有技术具有以下优点:由于采用了动力吸振器结构,本发明中压电元件不需要嵌入外界振动元件的内部,也不需要较大的振幅,可以方便地布置于振动元件的表面对小振幅的振动能量进行收集,并可将本装置的工作频率设计在较高的频域内,实现易于应用的、高效的振动能量的收集。Compared with the prior art, the present invention has the following advantages: due to the adoption of the dynamic vibration absorber structure, the piezoelectric element in the present invention does not need to be embedded in the interior of the external vibrating element, nor does it need a large amplitude, and can be conveniently arranged in the vibrating element The surface collects small-amplitude vibration energy, and the working frequency of the device can be designed in a higher frequency domain, so as to realize easy-to-apply and efficient collection of vibration energy.
附图说明Description of drawings
图1是实施例1的结构示意图;Fig. 1 is the structural representation of
图2是实施例2的结构示意图;Fig. 2 is the structural representation of
图3是实施例3的结构示意图;Fig. 3 is the structural representation of
图4是实施例4的结构示意图;Fig. 4 is the structural representation of
图5是实施例5的结构示意图。Figure 5 is a schematic structural view of Embodiment 5.
具体实施方式Detailed ways
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example.
实施例1Example 1
如图1所示,本实施例包括:振动元件1、压电元件2、盖板3、动力吸振器4和能量采集电路5,其中:振动元件1和压电元件2相连,压电元件2上固定盖板3,盖板3和动力吸振器4相连,能量采集电路5和压电元件2相连。As shown in Figure 1, this embodiment includes: a
所述的动力吸振器4包括:质量块6和弹性元件7,其中:弹性元件7和盖板3相连,质量块6和弹性元件7相连。The dynamic vibration absorber 4 includes: a
所述的弹性元件7的阻尼比小于0.3。The damping ratio of the elastic element 7 is less than 0.3.
本实施例的压电元件2采用厚度伸缩模,其压电常数为d33。The
所述的能量采集电路5是全桥整流滤波电路,包括:整流桥8、滤波电容9和负载10,其中:压电元件2和整流桥8相连,整流桥8和滤波电容9相连,负载10和滤波电容9并联。The energy harvesting circuit 5 is a full-bridge rectifier filter circuit, comprising: a rectifier bridge 8, a filter capacitor 9 and a
本实施例中压电元件2是压电叠堆,弹性元件7是弹簧。In this embodiment, the
盖板3的作用是保护压电元件2并使弹性元件7的力能均匀分布到压电元件2的整个表面。由于压电材料受拉伸易于损坏,而受压缩时的强度较高,因而当应用在振动强烈的场合需要对压电叠堆进行预紧,可以采用双盖板的结构,即在压电叠堆两边都布置盖板3,用螺钉穿过压电材料进行预紧,这样压电材料中间就需要有穿孔。The function of the
振动元件1、压电元件2和动力吸振器4组成的振动系统发生共振时产生的能量最多,此时压电元件2受力大于外部激振力;当激振频率等于动力吸振器4的固有频率时压电元件2受力等于激振力,此时整个装置产生的能量也较多;当动力吸振器4的固有频率等于振动元件1的固有频率时,本装置的共振频带最宽,此时增加质量块6与振动元件1的质量比可以拓宽本装置的共振频带。The vibration system composed of
实施例2Example 2
如图2所示,本实施例的动力吸振器4是两个弹性元件7和质量块6的叠加,构成了双层动力吸振结构。动力吸振器4包括第一弹簧11、第一质量块12、第二弹簧13和第二质量块14,其中:第一弹簧11和盖板3相连,第一弹簧11、第一质量块12、第二弹簧13和第二质量块14依次相连。即弹性元件7包括:第一弹簧11和第二弹簧13,质量块6包括:第一质量块12和第二质量块14。As shown in FIG. 2 , the
本实施例的其他实施方式和实施例1相同。Other implementation modes of this embodiment are the same as
该实施例采用两个弹簧和质量块6与振动元件1组成了三自由度振动系统,增加了共振峰个数和共振频带宽度,从而拓宽了整个装置的工作带宽。In this embodiment, two springs, a
实施例3Example 3
如图3所示,本实施例的弹性元件7包括:第一支架15、第二支架16、第三弹簧17和第一杠杆18,质量块6包括:第三质量块19和第四质量块20,其中:第一支架15和第四质量块20分别位于第一杠杆18的两端,第二支架16分别与第一杠杆18和盖板3相连,第一支架15和第三质量块19相连,第三质量块19和第三弹簧17相连,第三弹簧17和盖板3相连。As shown in Figure 3, the elastic element 7 of the present embodiment includes: a
本实施例的其他实施方式和实施例1相同。Other implementation modes of this embodiment are the same as
这种结构适合应用在对重量有限制的场合。This structure is suitable for applications where weight is limited.
实施例4Example 4
如图4所示,本实施例的弹性元件7包括:第三支架21、第四支架22和悬梁臂23,其中:悬梁臂23的一端和第四支架22固定相连,另一端上设有质量块6,第四支架22和盖板3固定相连,第三支架21和悬梁臂23活动连接,悬梁臂23的两侧分别粘附压电片24,整个弹性元件7的阻尼比要小于0.3。As shown in Figure 4, the elastic element 7 of the present embodiment includes: a third support 21, a fourth support 22 and a
本实施例中起振元件1上设有竖直的侧壁25,侧壁25上粘附第一压电叠堆26,第一压电叠堆26上设有盖板3,压电片24与悬梁臂23组成的压电悬梁臂结构和第一压电叠堆26构成了本实施例的压电元件2。第三支架21的一端和悬梁臂23活动相连,另一端和侧壁25固定相连。In this embodiment, the vibrating
侧壁25和第一压电叠堆26的接触面设有10~15度的角度,这使得第一压电叠堆26主要受平行于极化电场的拉伸和压缩力。The contact surface of the
能量采集电路5中设有两个整流桥8分别与压电片24和第一压电叠堆26相连,使压电输出的交流电变成单向输出的直流电,减少了两种结构输出电量的耦合作用,合理设计滤波电容9的数值能提供较稳定的电压给负载10。The energy harvesting circuit 5 is provided with two rectifier bridges 8 which are respectively connected to the
本实施例的其他实施方式和实施例1相同。Other implementation modes of this embodiment are the same as
本实施例中:当振动元件1振动时,动力吸振器4便会在某段频率发生共振,由于悬臂梁23是靠第三支架21和第四支架22固定的,这样便会在两个压电叠堆上产生交变的应力,而且由于悬臂梁23的自由部分长度较长,质量块6上下振动产生的应力在第四支架22上会产生杠杆放大作用,这将大大增加压电叠堆的发电能力。第一压电叠堆26的长度方向沿悬臂梁23的宽度方向布置,这样可以减小悬臂梁23固定部分的长度,增加杠杆的放大作用。实际上,由于采用悬臂梁23,动力吸振器4的共振频率较多,可以在多个频段内进行高效的振动能量收集。In this embodiment: when the vibrating
实施例5Example 5
如图5所示,本实施例采用压电常数较大(d15)的厚度剪切模,第二压电叠堆27粘贴于竖直侧壁25,侧壁25和第二压电叠堆27的接触面没有角度。本实施例中,弹性元件7包括:悬臂梁23、第五支架28和第六支架29,其中:第五支架28一端固定在侧壁25上,一端和悬臂梁23相连,第六支架29一端固定在盖板3上,一端和悬臂梁23相连。悬臂梁23的两侧设有压电片24。As shown in FIG. 5 , the present embodiment adopts a thickness shearing die with a relatively large piezoelectric constant (d15 ), and the second
本实施例的其他实施方式和实施例4相同。Other implementation modes of this embodiment are the same as
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210149507.4ACN102664555B (en) | 2010-03-24 | 2010-03-24 | A kind of Multi-frequency-bandpiezoelectric piezoelectric vibration energy collector |
| CN2010101305193ACN101741278B (en) | 2010-03-24 | 2010-03-24 | Piezoelectric Vibration Energy Harvesting Device Based on Dynamic Vibration Absorber |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010101305193ACN101741278B (en) | 2010-03-24 | 2010-03-24 | Piezoelectric Vibration Energy Harvesting Device Based on Dynamic Vibration Absorber |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210149507.4ADivisionCN102664555B (en) | 2010-03-24 | 2010-03-24 | A kind of Multi-frequency-bandpiezoelectric piezoelectric vibration energy collector |
| Publication Number | Publication Date |
|---|---|
| CN101741278A CN101741278A (en) | 2010-06-16 |
| CN101741278Btrue CN101741278B (en) | 2012-09-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010101305193AExpired - Fee RelatedCN101741278B (en) | 2010-03-24 | 2010-03-24 | Piezoelectric Vibration Energy Harvesting Device Based on Dynamic Vibration Absorber |
| Country | Link |
|---|---|
| CN (1) | CN101741278B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102427314A (en)* | 2011-11-02 | 2012-04-25 | 浙江师范大学 | Elevator rope head buffering power generation device |
| CN102647112B (en)* | 2012-05-07 | 2014-10-08 | 哈尔滨工业大学 | Rotary piezoelectric power generator |
| DE112013003943B4 (en)* | 2012-08-07 | 2021-01-14 | Murata Manufacturing Co., Ltd. | Piezoelectric power generating device |
| CN103023377B (en)* | 2012-12-24 | 2017-05-03 | 成都理工大学 | Piezoelectric and electromagnetic hybrid variable-frequency micro-power generation assembly and method for same |
| CN104104133B (en)* | 2014-06-21 | 2017-02-08 | 浙江师范大学 | An Adaptive Piezoelectric Energy Efficient Conversion Method |
| CN106712575B (en)* | 2016-11-17 | 2018-05-25 | 上海交通大学 | Amplitude amplification superpositing vibration electricity energy harvester |
| CN107598893B (en)* | 2017-08-28 | 2020-09-25 | 北京工业大学 | A Piezoelectric Electromagnetic Composite Energy Harvester Based on Parallel Mechanism |
| CN107623463A (en)* | 2017-10-24 | 2018-01-23 | 安徽理工大学 | Bistable Piezoelectric Energy Recovery Device |
| CN108828361B (en)* | 2018-06-27 | 2020-07-07 | 哈尔滨工业大学 | A piezoelectric energy harvester test device based on dynamic vibration absorber |
| CN109281417B (en)* | 2018-11-13 | 2024-03-26 | 广州广日电梯工业有限公司 | Self-powered piezoelectric damping system and method for elevator |
| CN111245293A (en)* | 2020-01-19 | 2020-06-05 | 上海电力大学 | A kind of elastic vibration type wind power generation device |
| CN111641351B (en)* | 2020-05-18 | 2022-03-25 | 扬州大学 | Vortex vibration piezoelectric power generation device with broadband energy collection function |
| CN111934581B (en)* | 2020-06-18 | 2024-07-30 | 重庆大学 | Energy recovery device utilizing piezoelectric stack energy harvesting |
| CN111664209A (en)* | 2020-07-13 | 2020-09-15 | 西南交通大学 | Vibration absorber, floating plate rail and vibration absorbing method |
| CN112019088B (en)* | 2020-09-10 | 2024-03-15 | 重庆大学 | Paper folding coupling broadband nonlinear piezoelectric vibration power generation device |
| CN112532108B (en)* | 2020-12-07 | 2022-02-22 | 上海大学 | Vibration energy collecting device based on piezoelectric stack and electromagnetic induction |
| CN113131789B (en)* | 2021-04-22 | 2022-06-17 | 长春工业大学 | A multi-modal road piezoelectric generator |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN2745781Y (en)* | 2004-11-08 | 2005-12-14 | 西安交通大学 | Piezoelectric device for generating by automobile vibration energy |
| CN1818683A (en)* | 2006-03-09 | 2006-08-16 | 西安交通大学 | Circuit and method for inspecting piezoelectric resonance mode by time-domain transient current |
| CN1860623A (en)* | 2003-07-30 | 2006-11-08 | 波音公司 | Strain energy shuttle apparatus and method for vibration energy harvesting |
| CN101340160A (en)* | 2008-08-07 | 2009-01-07 | 南京航空航天大学 | Multidirectional Vibration Energy Harvesting Device Based on Piezoelectric Materials |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007143353A (en)* | 2005-11-22 | 2007-06-07 | Matsushita Electric Ind Co Ltd | Power generation system and electronic equipment using the same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1860623A (en)* | 2003-07-30 | 2006-11-08 | 波音公司 | Strain energy shuttle apparatus and method for vibration energy harvesting |
| CN2745781Y (en)* | 2004-11-08 | 2005-12-14 | 西安交通大学 | Piezoelectric device for generating by automobile vibration energy |
| CN1818683A (en)* | 2006-03-09 | 2006-08-16 | 西安交通大学 | Circuit and method for inspecting piezoelectric resonance mode by time-domain transient current |
| CN101340160A (en)* | 2008-08-07 | 2009-01-07 | 南京航空航天大学 | Multidirectional Vibration Energy Harvesting Device Based on Piezoelectric Materials |
| Publication number | Publication date |
|---|---|
| CN101741278A (en) | 2010-06-16 |
| Publication | Publication Date | Title |
|---|---|---|
| CN101741278B (en) | Piezoelectric Vibration Energy Harvesting Device Based on Dynamic Vibration Absorber | |
| CN102664555B (en) | A kind of Multi-frequency-bandpiezoelectric piezoelectric vibration energy collector | |
| Ahmed et al. | A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity | |
| CN203219211U (en) | An Efficient Broadband Vibration Energy Harvester with Elastic Amplifying Mechanism | |
| CN103414379B (en) | Based on the piezoelectric energy gatherer of linear resonator and non-linear vibration generator | |
| CN103036478A (en) | Efficient wideband vibrating energy collector with elastic amplifying mechanism | |
| CN103199736A (en) | Composite structure piezoelectric energy collector driven by cantilever | |
| CN101854130B (en) | Force-electricity energy converter and array thereof | |
| CN102185523A (en) | Minitype composite vibration power generator | |
| CN101272109A (en) | A broadband piezoelectric vibration power generation device | |
| CN107707155A (en) | A kind of ultra wide band high energy efficiency device for collecting piezoelectric vibration energy | |
| CN202111635U (en) | Micro Compound Vibration Generator | |
| CN101764531B (en) | Multi-operation mode piezoelectric generator and power generation method thereof | |
| CN110445417A (en) | A kind of low frequency broadband vibration prisoner energy device | |
| US20150358737A1 (en) | Multi-directional high-efficiency piezoelectric energy transducer | |
| CN101764532A (en) | Piezoelectric giant magnetostrictive combined wideband vibration energy collector | |
| CN106602931A (en) | Piezoelectric material-based vibration energy recuperation apparatus | |
| CN110572076B (en) | Multi-direction piezoelectric vibration energy collecting device | |
| CN111371277B (en) | A conical cavity beam composite vibration energy harvester | |
| CN201656813U (en) | Node of wireless sensor networks using piezoelectric generator power supply | |
| CN111130387A (en) | Asymmetric combined type broadband vibration energy collector | |
| CN102751910B (en) | Up-conversion vibration energy collecting device suitable for collecting low-frequency vibration energy | |
| CN105958865B (en) | Piezoelectricity electromagnetism prisoner based on isosceles trapezoid cantilever beam can device | |
| CN104377993A (en) | Automatic parameter regulating bistable-state piezoelectric power generation structure | |
| CN102983781A (en) | A Piezoelectric Vibration Energy Harvester |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20120905 Termination date:20150324 | |
| EXPY | Termination of patent right or utility model |