Movatterモバイル変換


[0]ホーム

URL:


CN101673018B - Solar photoelectric electrochromic device - Google Patents

Solar photoelectric electrochromic device
Download PDF

Info

Publication number
CN101673018B
CN101673018BCN2008102129539ACN200810212953ACN101673018BCN 101673018 BCN101673018 BCN 101673018BCN 2008102129539 ACN2008102129539 ACN 2008102129539ACN 200810212953 ACN200810212953 ACN 200810212953ACN 101673018 BCN101673018 BCN 101673018B
Authority
CN
China
Prior art keywords
thin film
film solar
electrochromic
electrochromic device
photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008102129539A
Other languages
Chinese (zh)
Other versions
CN101673018A (en
Inventor
黄莉媚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRIfiledCriticalIndustrial Technology Research Institute ITRI
Priority to CN2008102129539ApriorityCriticalpatent/CN101673018B/en
Publication of CN101673018ApublicationCriticalpatent/CN101673018A/en
Application grantedgrantedCritical
Publication of CN101673018BpublicationCriticalpatent/CN101673018B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Classifications

Landscapes

Abstract

The invention provides a solar photoelectric electrochromic device which comprises a semitransparent thin-film solar cell substrate, an electrochromic solution and a transparent non-conductive substrate. The electrochromic solution is positioned between the transparent non-conductive substrate and the semitransparent thin-film solar cell substrate. The semitransparent thin-film solar cell substrate comprises a transparent substrate and a plurality of thin-film solar cells, wherein the positive electrode and the negative electrode of each thin-film solar cell are simultaneously used as the positive electrode and the negative electrode of the solar photoelectric electrochromic device. Because the driving voltage required by the electrochromic solution is low, the thickness of the intrinsic layer of the thin-film solar cell can be reduced, and the transmittance of the solar photoelectric electrochromic device is increased. In addition, the solar photovoltaic electrochromic device can control the current output provided by the thin film solar cells by adding an output switch configuration connected with the thin film solar cells.

Description

Translated fromChinese
太阳光电电致变色器件Solar photoelectric electrochromic device

【技术领域】【Technical field】

本发明涉及一种电致变色器件(electrochromic device,ECD),特别是涉及一种太阳光电电致变色器件(solar photovoltaic electrochromic device)。The present invention relates to an electrochromic device (electrochromic device, ECD), particularly relates to a kind of solar photoelectric electrochromic device (solar photovoltaic electrochromic device).

【背景技术】【Background technique】

所谓的电致变色器件是由导电物质组成的、可通过施加电场或电流引起可逆的氧化/还原(redox)反应而产生颜色变化的器件,电致变色器件的制作需满足下列几种特性,包括:不同电位下所呈现的颜色必须能够很容易分辨,颜色的变化快速且均一,器件颜色的可逆变化需能够重复上万次以上,以及稳定性高。常见的电致变色器件包括表面限制薄膜型(surfaceconfined thin film)电致变色器件以及溶液型电致变色器件。The so-called electrochromic device is a device composed of conductive substances that can cause a reversible oxidation/reduction (redox) reaction by applying an electric field or current to produce a color change. The fabrication of an electrochromic device needs to meet the following characteristics, including : The colors presented at different potentials must be easily distinguishable, the color changes quickly and uniformly, the reversible change of the device color must be able to repeat tens of thousands of times, and have high stability. Common electrochromic devices include surface confined thin film electrochromic devices and solution electrochromic devices.

表面限制薄膜型电致变色器件的结构是由上、下两层透明基材加上位于其间的电致变色多层膜所组成。其中电致变色多层膜类似于电池的结构,至少含有五层不同功能的涂/镀层。上述五层涂/镀层依次为透明导电层、电致变色层、电解质层、离子储存层以及透明导电层。溶液型电致变色器件的结构则比较简单,由上、下两个透明导电基材组成,通过环氧树脂胶以电极层相向的方式贴合两面基材,其间配置电致变色有机溶液,溶液的成分包含氧化或还原型电致变色有机小分子材料、高分子电解质以及溶剂。The structure of the surface-limited thin-film electrochromic device is composed of upper and lower layers of transparent substrates and an electrochromic multilayer film in between. Among them, the electrochromic multilayer film is similar to the structure of a battery, and contains at least five layers of coating/plating layers with different functions. The above five layers of coating/plating are sequentially a transparent conductive layer, an electrochromic layer, an electrolyte layer, an ion storage layer and a transparent conductive layer. The structure of the solution-type electrochromic device is relatively simple. It consists of two transparent conductive substrates, the upper and the lower. The two substrates are bonded by epoxy resin glue in the way that the electrode layers face each other, and the electrochromic organic solution is placed in between. The components include oxidized or reduced electrochromic organic small molecule materials, polymer electrolytes and solvents.

虽然电致变色技术历经多年的研究,但至今只有电致变色后视镜被商业化,其它大面积电致变色器件100仍然无法有效地克服变色不均匀的虹膜效应(iris effect),如图1所示。这样的现象可以图2作说明,在图2中显示一般电致变色器件200,其由两面透明导电基材210与夹在两透明导电基材210之间的电致变色溶液220组成。通电时电源分别从两面透明导电基材210的电极230四周供应,但由于电致变色器件200平面中心与边缘的电场路径长短不同,造成边缘区域和中心区域之间的阻抗有明显的差异。而阻抗的差异则导致如图1所示,变色浓度由边缘起至中心区域呈现同心椭圆形梯度变化,影响变色效果的均匀度。Although electrochromic technology has been researched for many years, only electrochromic rearview mirrors have been commercialized so far, and other large-areaelectrochromic devices 100 still cannot effectively overcome the iris effect of uneven discoloration, as shown in Figure 1 shown. Such a phenomenon can be illustrated in FIG. 2 , which shows a generalelectrochromic device 200 composed of two transparentconductive substrates 210 and anelectrochromic solution 220 sandwiched between the two transparentconductive substrates 210 . When power is turned on, power is supplied from around theelectrodes 230 of the transparentconductive substrate 210 on both sides. However, due to the difference in the length of the electric field path between the center and the edge of the plane of theelectrochromic device 200, the impedance between the edge area and the center area is significantly different. The difference in impedance leads to a concentric elliptical gradient change in the color-changing concentration from the edge to the central area as shown in Figure 1, which affects the uniformity of the color-changing effect.

为拓展电致变色技术的应用范围,已有多项结合光电技术与太阳能电池的相关研究提供了更多样化的方向。例如整合在建筑物内的太阳能电池(building integrated photovoltaic,BIPV)可以配合电致变色技术,在不用额外提供电源的情况下,根据室内外光照强度的变化,自动调整电致变色窗颜色的深浅,减少室内热能。由于节能意识的抬头,此应用方法已成为一种新的趋势。In order to expand the application range of electrochromic technology, a number of related researches combining photoelectric technology and solar cells have provided more diversified directions. For example, solar cells (building integrated photovoltaic, BIPV) integrated in buildings can cooperate with electrochromic technology to automatically adjust the color depth of electrochromic windows according to changes in indoor and outdoor light intensity without additional power supply. Reduce indoor heat energy. Due to the rising awareness of energy saving, this application method has become a new trend.

例如美国专利US 5,377,037揭示了一种整合了硅薄膜太阳能电池与变色物质的电致变色器件。其结构为在两面透明导电玻璃基材之间,依次设置堆栈型(tandem)结构的硅薄膜太阳能电池、电致变色器件以及电解质层。最后并以分压器电阻串联位于堆栈结构两面最外层的透明导电玻璃基材,以控制调整硅薄膜太阳能电池作用时驱动电致变色器件的电压,故无须外部电源即可控制变色。然而,此两面电极结构虽可整合电致变色器件与太阳能电池,但由于无机材质变色所需的电荷密度(charge density)相当大,需要比较大的电压来驱动变色,无可避免需应用较厚的本质层(intrinsiclayer),来提高光电转换效率,甚至应用多层堆栈(tandem)以提高硅薄膜太阳能电池的开路电压(Voc)。如此硅薄膜太阳能电池的透射比便因而降低。另外,由于电源由电极边缘供应,仍然会有虹膜效应发生。For example, U.S. Patent No. 5,377,037 discloses an electrochromic device integrating a silicon thin-film solar cell and a color-changing substance. Its structure is that a silicon thin-film solar cell, an electrochromic device and an electrolyte layer of a stacked (tandem) structure are sequentially arranged between two transparent conductive glass substrates. Finally, a voltage divider resistor is connected in series with the transparent conductive glass substrates located on the outermost layers of both sides of the stack structure to control and adjust the voltage driving the electrochromic device when the silicon thin film solar cell works, so the discoloration can be controlled without an external power supply. However, although this two-sided electrode structure can integrate electrochromic devices and solar cells, because the charge density required for color change of inorganic materials is quite large, a relatively large voltage is required to drive the color change, and it is unavoidable to use a thicker electrode. The intrinsic layer (intrinsiclayer) to improve photoelectric conversion efficiency, and even the application of multi-layer stack (tandem) to improve the open circuit voltage (Voc) of silicon thin film solar cells. Thus, the transmittance of the silicon thin film solar cell is thus reduced. Also, since power is supplied from the edge of the electrode, there will still be an iris effect.

【发明内容】【Content of invention】

本发明提供一种太阳光电电致变色器件,具有均匀地改变颜色的效果,并具有较高的透射比(transmittance)。The invention provides a solar photoelectric electrochromic device, which has the effect of uniformly changing colors and has high transmittance.

本发明提供一种太阳光电电致变色器件,该器件包括半透明薄膜太阳能电池基材、电致变色溶液以及透明非导电基材,其中,电致变色溶液位于透明非导电基材与半透明薄膜太阳能电池基材之间。半透明薄膜太阳能电池基材包括透明基材和多个薄膜太阳能电池,这些薄膜太阳能电池的正极和负极同时作为太阳光电电致变色器件的正极及负极。The invention provides a solar photoelectric electrochromic device, which comprises a translucent film solar cell substrate, an electrochromic solution and a transparent non-conductive substrate, wherein the electrochromic solution is located between the transparent non-conductive substrate and the translucent film between solar cell substrates. The semi-transparent thin-film solar cell substrate includes a transparent substrate and a plurality of thin-film solar cells, and the positive and negative electrodes of these thin-film solar cells simultaneously serve as the positive and negative electrodes of the solar photoelectric electrochromic device.

在本发明的一种实施方案中,上述太阳光电电致变色器件还包括与各薄膜太阳能电池相连接的输出开关配置,以控制由薄膜太阳能电池提供的电流输出。In one embodiment of the present invention, the solar photoelectric electrochromic device further includes an output switch configuration connected to each thin film solar cell to control the current output provided by the thin film solar cell.

在本发明的一种实施方案中,上述薄膜太阳能电池可以并联或串联至该输出开关配置。In one embodiment of the present invention, the thin film solar cells described above may be connected in parallel or in series to the output switch configuration.

在本发明的另一实施方案实施例中,上述输出开关配置还可连接至直流/交流转换装置,由此将薄膜太阳能电池提供的电流转换为市电(交流电)。此外,上述输出开关配置还可连接至直流电荷储存装置,以储存薄膜太阳能电池提供的直流电流。In another implementation example of the present invention, the above-mentioned output switch configuration can also be connected to a DC/AC conversion device, thereby converting the current provided by the thin-film solar cell into commercial power (AC power). In addition, the above-mentioned output switch configuration can also be connected to a DC charge storage device to store the DC current provided by the thin film solar cell.

在本发明的一种实施方案中,上述的薄膜太阳能电池例如是呈矩阵排列或条状排列的。In one embodiment of the present invention, the above-mentioned thin-film solar cells are, for example, arranged in a matrix or strips.

在本发明的一种实施方案中,上述的电致变色溶液的成分包括氧化/还原型有机小分子电致变色材料以及溶剂。其中,前述氧化/还原型有机小分子电致变色材料选自负极变色材料以及正极变色材料中的一种或及其组合。其中,负极变色材料例如甲基紫精(methyl viologen)、乙基紫精(ethylviologen)、苯基紫精(benzyl viologen)或丙基紫精(propyl viologen)等;正极变色材料例如二甲基吩嗪(dimethylphenazine)或苯二胺(phenylenediamine)等。In one embodiment of the present invention, the components of the electrochromic solution include an oxidation/reduction organic small molecule electrochromic material and a solvent. Wherein, the aforementioned oxidation/reduction organic small molecule electrochromic material is selected from one or a combination of negative electrode color-changing materials and positive electrode color-changing materials. Among them, negative electrode color-changing materials such as methyl viologen (methyl viologen), ethyl viologen (ethylviologen), phenyl viologen (benzyl viologen) or propyl viologen (propyl viologen) etc.; positive electrode color-changing materials such as dimethyl phen Dimethylphenazine or phenylenediamine, etc.

在本发明的一种实施方案中,上述电致变色溶液中的溶剂例如碳酸异丙烯酯(propylene carbonate)、碳酸亚乙酯(ethylene carbonate)、γ-丁内酯(γ-butyrolactone)、乙腈(acetonitrile)、四氢呋喃(tetrahydrofuran,THF)或甲基吡咯烷酮(N-methyl-2-pyrrolidone,NMP)等。In one embodiment of the present invention, the solvent in the above-mentioned electrochromic solution is for example propylene carbonate (propylene carbonate), ethylene carbonate (ethylene carbonate), γ-butyrolactone (γ-butyrolactone), acetonitrile ( acetonitrole), tetrahydrofuran (tetrahydrofuran, THF) or methyl pyrrolidone (N-methyl-2-pyrrolidone, NMP), etc.

在本发明的另一实施方案中,上述电致变色溶液的成分还可包括碱金属盐(alkali metal salt),例如三氟甲磺酸锂(lithium triflate)、高氯酸锂(lithiumperchlorate),或四烷基铵盐(tetra alkyl ammonium salt)等。In another embodiment of the present invention, the composition of the above-mentioned electrochromic solution may also include alkali metal salt (alkali metal salt), such as lithium triflate (lithium triflate), lithium perchlorate (lithium perchlorate), or Tetra alkyl ammonium salt, etc.

在本发明的另一实施方案中,上述电致变色溶液的成分还可包括高分子电解质,例如聚环氧乙烷(polyethylene oxide)、聚环氧丙烷(polypropyleneoxide)或聚甲基丙烯酸甲酯(polymethylmetha acrylate)。In another embodiment of the present invention, the composition of the above-mentioned electrochromic solution may also include a polymer electrolyte, such as polyethylene oxide (polyethylene oxide), polypropylene oxide (polypropylene oxide) or polymethyl methacrylate ( polymethylmetha acrylate).

在本发明的另一实施方案中,上述电致变色材料的氧化/还原电位例如小于3V。In another embodiment of the present invention, the oxidation/reduction potential of the above-mentioned electrochromic material is, for example, less than 3V.

在本发明的一种实施方案中,上述半透明薄膜太阳能电池基材包括覆板(superstrate)或底板(substrate)结构的薄膜太阳能电池基材。In one embodiment of the present invention, the above-mentioned translucent thin film solar cell substrate includes a thin film solar cell substrate with superstrate or substrate structure.

在本发明的一种实施方案中,上述薄膜太阳能电池包括硅薄膜太阳能电池、铜铟镓硒(CIGS)薄膜太阳能电池或镉碲(CdTe)薄膜太阳能电池。In one embodiment of the present invention, the above-mentioned thin film solar cell includes a silicon thin film solar cell, a copper indium gallium selenide (CIGS) thin film solar cell or a cadmium tellurium (CdTe) thin film solar cell.

在本发明的一种实施方案中,上述太阳光电电致变色器件还包括多个薄膜晶体管(thin film transistor,TFT),用以主动控制薄膜太阳能电池。In one embodiment of the present invention, the solar photoelectric electrochromic device further includes a plurality of thin film transistors (thin film transistor, TFT), which are used to actively control the thin film solar cells.

本发明因采用在同一面基板上以例如矩阵排列或条状排列的方式分散配置薄膜太阳能电池,可使器件变色均匀。此外,本发明因电致变色溶液所需的氧化/还原电位较低,因此薄膜太阳能电池发电量需求降低,故可减少太阳能电池的构成材料或厚度,而增加整体器件的透射比。In the present invention, the thin-film solar cells are scattered and arranged on the same substrate in a matrix arrangement or a strip arrangement, so that the color of the device can be changed uniformly. In addition, because the oxidation/reduction potential required by the electrochromic solution is lower in the present invention, the power generation requirement of the thin-film solar cell is reduced, so the constituent materials or thickness of the solar cell can be reduced, and the transmittance of the overall device can be increased.

为让本发明上述特征和优点能更明显易懂,下文特举优选实施方案,并配合所附图式,作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the preferred embodiments are specifically cited below, together with the accompanying drawings, and described in detail as follows.

【附图说明】【Description of drawings】

图1是已知的虹膜效应的平面示意图。Fig. 1 is a schematic plan view of the known iris effect.

图2是已知的电致变色器件结构的立体示意图。Fig. 2 is a three-dimensional schematic view of the structure of a known electrochromic device.

图3A是依照本发明的一个优选实施方案的一种太阳光电电致变色器件的俯视示意图。Fig. 3A is a schematic top view of a solar photoelectric electrochromic device according to a preferred embodiment of the present invention.

图3B是图3A中B-B切面的剖面示意图。Fig. 3B is a schematic cross-sectional view of the B-B section in Fig. 3A.

图4是图3B太阳光电电致变色器件的立体示意图。Fig. 4 is a perspective view of the solar photoelectric electrochromic device in Fig. 3B.

图5是电致变色溶液的电致变色循环伏安(cyclic voltagram)曲线图。Fig. 5 is a graph of electrochromic cyclic voltammetry (cyclic voltagram) of the electrochromic solution.

图6是实验例所用的半透明薄膜太阳能电池基材的剖面示意图。Fig. 6 is a schematic cross-sectional view of a translucent thin-film solar cell substrate used in an experimental example.

图7是依照本发明第二实施方案的一种太阳光电电致变色器件的俯视示意图。Fig. 7 is a schematic top view of a solar photoelectric electrochromic device according to the second embodiment of the present invention.

图8为依照本发明第三实施方案所示的一种太阳光电电致变色器件的俯视示意图。Fig. 8 is a schematic top view of a solar photoelectric electrochromic device according to the third embodiment of the present invention.

图9是依照本发明第四实施方案所示的一种太阳光电电致变色器件的另一种变形的俯视示意图。Fig. 9 is a schematic top view of another modification of a solar photoelectric electrochromic device according to the fourth embodiment of the present invention.

图10是图9的太阳光电电致变色器件的另一种变形的俯视示意图。FIG. 10 is a schematic top view of another modification of the solar photoelectric electrochromic device in FIG. 9 .

图11是图9的太阳光电电致变色器件与一种输出开关配置之间的电路示意图。FIG. 11 is a schematic circuit diagram between the solar photoelectric electrochromic device of FIG. 9 and an output switch configuration.

图12是图9的太阳光电电致变色器件与另一种输出开关配置之间的电路示意图。FIG. 12 is a schematic circuit diagram between the solar photoelectric electrochromic device of FIG. 9 and another output switch configuration.

图13是图9的太阳光电电致变色器件与薄膜晶体管的电路示意图。FIG. 13 is a schematic circuit diagram of the solar photoelectric electrochromic device and the thin film transistor in FIG. 9 .

【主要器件标号说明】【Description of the main components label】

100、200、1100:电致变色器件100, 200, 1100: Electrochromic devices

210:透明导电基材210: transparent conductive substrate

220、420:电致变色溶液220, 420: Electrochromic solution

230:电极230: electrode

300、300a、300b、300c、300d:正极300, 300a, 300b, 300c, 300d: positive electrode

310、310a、310b、310c、310d:负极310, 310a, 310b, 310c, 310d: Negative electrode

400、700、800:半透明薄膜太阳能电池基材400, 700, 800: Translucent thin-film solar cell substrates

402:透明基材402: transparent substrate

404:硅薄膜太阳能电池404: Silicon thin film solar cells

410:透明非导电基材410: transparent non-conductive substrate

422:P型层422: P-type layer

424:本质层424: Essence layer

426:N型层426: N-type layer

428:透明导电氧化物层428: transparent conductive oxide layer

430:金属层430: metal layer

500:太阳光500: sunlight

600:玻璃基材600: glass substrate

602、610:ZnO:Al层602, 610: ZnO: Al layer

604:p型层604: p-type layer

606:a-SiH层606: a-SiH layer

608:n型层608: n-type layer

612:Ag层612: Ag layer

802:铜铟镓硒(CIGS)薄膜太阳能电池802: Copper Indium Gallium Selenide (CIGS) Thin Film Solar Cell

804:CIGS吸收层804: CIGS absorbing layer

806:缓冲层806: buffer layer

900:输出开关配置900: output switch configuration

1102:薄膜太阳能电池1102: Thin Film Solar Cell

1104:直流/交流转换装置1104: DC/AC conversion device

1106:开关1106: switch

1108:市电1108: mains electricity

1200:直流电荷储存装置1200: DC charge storage device

1300:薄膜晶体管1300: thin film transistor

【具体实施方式】【Detailed ways】

图3A为依照本发明第一实施方案所绘制的太阳光电电致变色器件的俯视示意图,图3B为图3A中B-B切面的剖面示意图。Fig. 3A is a schematic top view of a solar photoelectric electrochromic device drawn according to the first embodiment of the present invention, and Fig. 3B is a schematic cross-sectional view of a section B-B in Fig. 3A.

请同时参照图3A与图3B,本实施方案的太阳光电电致变色器件是由半透明薄膜太阳能电池基材400、透明非导电基材410以及电致变色溶液420所组成。电致变色溶液420位于半透明薄膜太阳能电池基材400与透明非导电基材410之间,而组成一种单面导电基材的太阳光电电致变色器件。如图4所示,半透明薄膜太阳能电池基材400为一种覆板(superstrate)结构的薄膜太阳能电池基材,包括透明基材402与多个硅薄膜太阳能电池404,其中透明基材402的材料为例如玻璃、塑料或其它适合的透明可挠性基材。透明非导电基材410的材料则例如是玻璃、塑料或可挠性基材。至于硅薄膜太阳能电池404是由例如正极300、P型层422、本质层424、N型层426以及负极310组成。其中正极300的材料例如透明导电氧化物(transparentconductive oxide,TCO)。负极310则可包括一层透明导电氧化物层428及一层金属层430,且负极310的透明导电氧化物层428直接接触N型层426。Please refer to FIG. 3A and FIG. 3B at the same time. The solar photoelectric electrochromic device of this embodiment is composed of a translucent thin filmsolar cell substrate 400 , a transparentnon-conductive substrate 410 and anelectrochromic solution 420 . Theelectrochromic solution 420 is located between the translucent thin-filmsolar cell substrate 400 and the transparentnon-conductive substrate 410 to form a solar photoelectric electrochromic device with a single-sided conductive substrate. As shown in Figure 4, the translucent thin filmsolar cell substrate 400 is a thin film solar cell substrate with a superstrate structure, including atransparent substrate 402 and a plurality of silicon thin filmsolar cells 404, wherein thetransparent substrate 402 The material is eg glass, plastic or other suitable transparent flexible substrates. The material of the transparentnon-conductive substrate 410 is, for example, glass, plastic or flexible substrate. The silicon thin filmsolar cell 404 is composed of, for example, thepositive electrode 300 , the P-type layer 422 , theintrinsic layer 424 , the N-type layer 426 and thenegative electrode 310 . The material of thepositive electrode 300 is, for example, transparent conductive oxide (TCO). Thenegative electrode 310 may include a transparentconductive oxide layer 428 and ametal layer 430 , and the transparentconductive oxide layer 428 of thenegative electrode 310 directly contacts the N-type layer 426 .

在本实施方案中,电致变色溶液420的成分例如有氧化/还原型有机小分子电致变色材料以及溶剂,而形成一种溶液。其中氧化/还原型有机小分子电致变色材料例如是选自负极变色材料以及正极变色材料中的一种或及其组合。前述负极变色材料例如甲基紫精、乙基紫精、苯基紫精或丙基紫精等;正极变色材料例如二甲基吩嗪或苯二胺等,且其氧化/还原电位皆小于3V。此外,电致变色溶液420的成分还可包括碱金属盐,例如三氟甲基磺酸锂、高氯酸锂或四烷基铵盐等。另外,在电致变色溶液420中还包括适当添加量的高分子电解质,以提高电致变色溶液420的黏度;例如聚环氧乙烷、聚环氧丙烷或聚甲基丙烯酸甲酯等。而电致变色溶液420中的溶剂则例如碳酸异丙烯酯、碳酸亚乙酯、γ-丁内酯、乙腈、四氢呋喃或甲基吡咯烷酮。In this embodiment, the components of theelectrochromic solution 420 include, for example, an oxidation/reduction organic small molecule electrochromic material and a solvent to form a solution. Wherein the oxidation/reduction organic small molecule electrochromic material is, for example, one or a combination thereof selected from negative electrode color materials and positive electrode color materials. The aforementioned negative electrode color-changing materials such as methyl viologen, ethyl viologen, phenyl viologen or propyl viologen, etc.; positive electrode color-changing materials such as dimethylphenazine or phenylenediamine, etc., and their oxidation/reduction potentials are all less than 3V . In addition, the components of theelectrochromic solution 420 may also include alkali metal salts, such as lithium trifluoromethanesulfonate, lithium perchlorate, or tetraalkylammonium salts. In addition, theelectrochromic solution 420 also includes an appropriate amount of polymer electrolyte to increase the viscosity of theelectrochromic solution 420 ; for example, polyethylene oxide, polypropylene oxide or polymethyl methacrylate. The solvent in theelectrochromic solution 420 is, for example, propylene carbonate, ethylene carbonate, γ-butyrolactone, acetonitrile, tetrahydrofuran or methylpyrrolidone.

上述正极300与负极310不但是硅薄膜太阳能电池404的正极与负极,也同时作为本实施例的太阳光电电致变色器件的正极与负极。如图4所示,其为图3B的太阳光电电致变色器件的立体示意图,当太阳光500由半透明薄膜太阳能电池基材400表面进入太阳光电电致变色器件时,薄膜太阳能电池(请见图4的404)立刻产生电子-空穴对。在发电状态下薄膜太阳能电池所产生的电流,经由正极300与负极310被输送到电致变色溶液420里,使原本处于透明无色状态的电致变色溶液420发生氧化/还原反应,此时的正极300、负极310以及电致变色溶液420即组成电致变色器件。在负极310处获得薄膜太阳能电池所释放的电子后,负极变色材料发生还原反应并变色。而正极变色材料在正极300处获得薄膜太阳能电池所释放的空穴而发生氧化反应并变色。Thepositive electrode 300 and thenegative electrode 310 are not only the positive electrode and the negative electrode of the silicon thin filmsolar cell 404, but also serve as the positive electrode and the negative electrode of the solar photoelectric electrochromic device of this embodiment. As shown in Figure 4, it is the three-dimensional schematic view of the solar photoelectric electrochromic device of Figure 3B, whensunlight 500 enters the solar photoelectric electrochromic device from the surface of the translucent thin filmsolar cell substrate 400, the thin film solar cell (see 404) of FIG. 4 immediately creates electron-hole pairs. In the state of power generation, the current generated by the thin-film solar cell is transported to theelectrochromic solution 420 through thepositive electrode 300 and thenegative electrode 310, so that theelectrochromic solution 420, which is originally in a transparent and colorless state, undergoes an oxidation/reduction reaction. Thepositive electrode 300, thenegative electrode 310 and theelectrochromic solution 420 constitute an electrochromic device. After obtaining the electrons released by the thin film solar cell at thenegative electrode 310 , the color-changing material of the negative electrode undergoes a reduction reaction and changes color. The anode color-changing material obtains the holes released by the thin-film solar cell at theanode 300 to undergo an oxidation reaction and change color.

当太阳光强度减弱,薄膜太阳能电池所产生的电子、空穴渐渐变少,太阳光电电致变色器件的驱动电压逐渐消失,在负极310表面的负极变色材料即从有色还原态逐步褪色,而变回透明呈无色氧化态。在正极300表面的正极变色材料从有色氧化态逐步褪色,而变成透明无色还原态。而由于薄膜太阳能电池产生的电流在电致变色溶液420中被转换成离子流,因此通电后,虽然正极300、负极310同时接触电致变色溶液420,但并不会有短路问题发生。为了达到电致变色时正负极的氧化/还原反应电荷平衡,正极300与负极310的面积比率要接近。When the sunlight intensity weakens, the electrons and holes generated by the thin-film solar cell gradually decrease, the driving voltage of the solar photoelectric electrochromic device gradually disappears, and the negative electrode color-changing material on the surface of thenegative electrode 310 gradually fades from the colored reduction state to become Back to transparent in a colorless oxidation state. The anode color-changing material on the surface of theanode 300 gradually fades from a colored oxidation state to a transparent colorless reduction state. Since the current generated by the thin film solar cell is converted into ion flow in theelectrochromic solution 420 , even though thepositive electrode 300 and thenegative electrode 310 contact theelectrochromic solution 420 at the same time after electrification, there will be no short circuit problem. In order to achieve the charge balance of the oxidation/reduction reactions of the positive and negative electrodes during electrochromism, the area ratio of thepositive electrode 300 and thenegative electrode 310 should be close.

在本实施方案中,电致变色溶液420仅需低电压低电流即可驱动变色。举例来说,可先将0.05克的甲基紫精二氯化物溶于5毫升纯水内,并充分搅拌以配成均匀无色的电致变色溶液。上述甲基紫精二氯化物是指1,1’-二甲基-4,4’-联吡啶鎓二氯化物(1,1’-dimethyl-4,4’-bipyridinium dichloride),其结构式如下所示:In this embodiment, theelectrochromic solution 420 only needs low voltage and low current to drive the color change. For example, 0.05 g of methyl viologen dichloride can be dissolved in 5 ml of pure water, and fully stirred to prepare a uniform colorless electrochromic solution. Above-mentioned methyl viologen dichloride refers to 1,1'-dimethyl-4,4'-bipyridinium dichloride (1,1'-dimethyl-4,4'-bipyridinium dichloride), its structural formula is as follows Shown:

Figure G2008102129539D00071
Figure G2008102129539D00071

接着,将此电致变色溶液涂布在面积2cm×2cm铟锡氧化物(indium tinoxide,ITO)导电玻璃基材上,再覆盖上另一面铟锡氧化物导电玻璃基材,组成电致变色器件。将此电致变色器件的正、负极接到电化学分析仪,由-1V到3V进行循环伏安(cyclic voltammogram,CV)扫描。其扫瞄结果如图5循环伏安曲线图所示,在+0.16V处就开始产生还原反应。一般有机小分子的氧化/还原电位都相当低,以紫精类负极变色材料为例,电荷密度达2mC/cm2已足于产生明显的彩色对比。Next, apply the electrochromic solution on an indium tin oxide (ITO) conductive glass substrate with an area of 2cm×2cm, and then cover the other side of the indium tin oxide conductive glass substrate to form an electrochromic device. . Connect the positive and negative electrodes of the electrochromic device to an electrochemical analyzer, and perform cyclic voltammetry (cyclic voltammogram, CV) scanning from -1V to 3V. The scanning result is shown in the cyclic voltammetry curve in Figure 5, and the reduction reaction begins at +0.16V. Generally, the oxidation/reduction potential of small organic molecules is quite low. Taking viologen negative electrode color-changing materials as an example, a charge density of 2mC/cm2 is enough to produce obvious color contrast.

请再度参照图3B,由于电致变色溶液420的氧化/还原电位不高,以及变色所需的电荷密度不高,因此当薄膜太阳能电池404的效能足以发生电致变色时,可单独由透明导电氧化物层428构成负极310,而且本质层424的厚度可以降低,使整体太阳光电电致变色器件的透射比增加。Please refer to FIG. 3B again. Since the oxidation/reduction potential of theelectrochromic solution 420 is not high, and the charge density required for discoloration is not high, when the efficiency of the thin-filmsolar cell 404 is sufficient for electrochromism, it can be made of transparent conductive material alone. Theoxide layer 428 constitutes thenegative electrode 310, and the thickness of theintrinsic layer 424 can be reduced to increase the transmittance of the overall solar photoelectric electrochromic device.

以下通过实验例来证实本实施方案的太阳光电电致变色器件的可行性。The feasibility of the solar photoelectric electrochromic device of this embodiment will be verified through the following experimental examples.

实验例1Experimental example 1

先准备透明玻璃基材。另外将0.05克高氯酸锂以及0.05克甲基紫精(1,1’-dimethyl-4,4’-bipyridinium dichloride,1,1’-二甲基-4,4’-联吡啶鎓二氯化物)溶于5毫升纯水内,并搅拌配成均匀透明无色的电致变色溶液。将该电致变色溶液涂布于上述透明玻璃基材上,再将面积为15cm×15cm的半透明薄膜太阳能电池基材以环氧树脂胶贴合于透明玻璃基材。其中所使用的是硅薄膜太阳能电池,且硅薄膜太阳能电池呈矩阵排列,单一矩阵面积约为0.25cm2。而上述环氧树脂胶的厚度约为0.5厘米,并混合有玻璃球作为间隙物,使两个基材产生一定的间距。Prepare the transparent glass substrate first. In addition, 0.05 grams of lithium perchlorate and 0.05 grams of methyl viologen (1,1'-dimethyl-4,4'-bipyridinium dichloride, 1,1'-dimethyl-4,4'-bipyridinium dichloride compound) was dissolved in 5 milliliters of pure water and stirred to form a uniform, transparent and colorless electrochromic solution. The electrochromic solution was coated on the above-mentioned transparent glass substrate, and then the translucent thin-film solar cell substrate with an area of 15 cm×15 cm was attached to the transparent glass substrate with epoxy glue. The silicon thin-film solar cells are used, and the silicon thin-film solar cells are arranged in a matrix, and the area of a single matrix is about 0.25 cm2 . The thickness of the above-mentioned epoxy resin glue is about 0.5 cm, and glass balls are mixed therein as spacers to make a certain distance between the two base materials.

其中,所用的半透明薄膜太阳能电池基材可以采用溅射方法形成:在15cm×15cm的玻璃基材上生长一层透明导电层,再以电浆辅助化学气相沉积法再透明导电玻璃层上进行硅薄膜的连续镀膜,最后在硅薄膜层上沉积透明导电层以及金属镀膜。再以532nm脉冲激光将上述部分硅薄膜镀层剥除,得到矩阵状的硅薄膜太阳能电池,其中负极方块为面积等于0.5cm×0.5cm的硅薄膜镀层,方块以外的区域皆为正极,且负极方块与负极方块之间的间隔为0.2cm,总负极方块数目为196个。其结构如图6所示,包括:面积为15×15cm2的玻璃基材600;作为正极的ZnO:Al层602,其厚度为10nm;p型层604,其厚度为30nm;作为本质层的a-SiH层606,其厚度为450nm;n型层608,其厚度为30nm;80nm厚的ZnO:Al层610和300nm厚的Ag层612,两者构成负极。Among them, the semi-transparent thin-film solar cell substrate used can be formed by sputtering: a layer of transparent conductive layer is grown on a glass substrate of 15cm×15cm, and then plasma-assisted chemical vapor deposition is carried out on the transparent conductive glass layer. Continuous coating of silicon thin film, finally depositing a transparent conductive layer and metal coating on the silicon thin film layer. Then use a 532nm pulsed laser to peel off the above part of the silicon thin film coating to obtain a matrix silicon thin film solar cell. The distance between the negative square and the negative square is 0.2cm, and the total number of negative squares is 196. Its structure is shown in Figure 6, including: a glass substrate 600 with an area of 15×15cm2 ; a ZnO:Al layer 602 as the positive electrode, with a thickness of 10nm; a p-type layer 604, with a thickness of 30nm; The a-SiH layer 606 has a thickness of 450nm; the n-type layer 608 has a thickness of 30nm; an 80nm thick ZnO:Al layer 610 and a 300nm thick Ag layer 612 constitute the negative electrode.

半透明薄膜太阳能电池的开路电压Voc为0.6V,电流密度Jsc为5mA/cm2以及Pmax为0.5mW。因此,当太阳光照射太阳光电电致变色器件时,在30秒钟时间内,电致变色溶液在负极的正下方开始产生变色,由透明无色逐渐变成浅蓝色,再变成深蓝色。当太阳光停止照射,太阳光电电致变色器件在15秒内又恢复变成透明色。The open circuit voltage Voc of the semitransparent thin film solar cell is 0.6V, the current density Jsc is 5mA/cm2 and the Pmax is 0.5mW. Therefore, when sunlight irradiates the solar photoelectric electrochromic device, within 30 seconds, the electrochromic solution begins to change color directly under the negative electrode, from transparent and colorless to light blue and then dark blue. . When the sunlight stops shining, the solar photoelectric electrochromic device returns to transparent color within 15 seconds.

实验例2Experimental example 2

先准备透明玻璃基材。另外将0.05克5,10-二氢-5,10-二甲基吩嗪(5,10-dihydro-5,10-dimethyl phenazine)溶于5毫升碳酸异丙烯酯(propylenecarbonate)溶剂内,并搅拌配成均匀透明无色的电致变色溶液。将该电致变色溶液涂布于上述透明玻璃基材上,再将面积为15cm×15cm的半透明薄膜太阳能电池基材以环氧树脂胶贴合于透明玻璃基材。其中所使用的是呈矩阵排列的硅薄膜太阳能电池,单一矩阵面积约为0.25cm2,其结构与实施例1相同。而上述环氧树脂胶的厚度约为0.5厘米,并混合有玻璃球作为间隙物,使两个基材产生一定的间距。Prepare the transparent glass substrate first. In addition, 0.05 g of 5,10-dihydro-5,10-dimethylphenazine (5,10-dihydro-5,10-dimethylphenazine) was dissolved in 5 ml of propylene carbonate (propylenecarbonate) solvent, and stirred Dubbed into a uniform, transparent and colorless electrochromic solution. The electrochromic solution was coated on the above-mentioned transparent glass substrate, and then the translucent thin-film solar cell substrate with an area of 15 cm×15 cm was attached to the transparent glass substrate with epoxy glue. The silicon thin-film solar cells arranged in a matrix are used, the area of a single matrix is about 0.25 cm2 , and its structure is the same as that of the first embodiment. The thickness of the above-mentioned epoxy resin glue is about 0.5 cm, and glass balls are mixed therein as spacers to make a certain distance between the two base materials.

半透明薄膜太阳能电池的开路电压Voc为0.62V,电流密度Jsc为5.2mA/cm2以及Pmax为0.55mW。因此,当太阳光照射太阳光电电致变色器件时,在40秒钟时间内,电致变色溶液在正极的正下方开始产生变色,由透明浅黄色逐渐变成黄色,再变成绿色。当太阳光停止照射,太阳光电电致变色器件在20秒内又恢复变成透明浅黄色。The open circuit voltage Voc of the semitransparent thin film solar cell is 0.62V, the current density Jsc is 5.2mA/cm2 and the Pmax is 0.55mW. Therefore, when sunlight irradiates the solar photoelectric electrochromic device, within 40 seconds, the electrochromic solution starts to change color directly under the positive electrode, gradually changing from transparent light yellow to yellow and then to green. When the sunlight stops shining, the solar photoelectric electrochromic device returns to transparent light yellow within 20 seconds.

图7为依照本发明第二实施实施方案所示的一种太阳光电电致变色器件的俯视示意图,其中使用与第一实施方案相同的标号来代表相同的部件。请参照图7,第二实施方案的太阳光电电致变色器件是由半透明薄膜太阳能电池基材700、电致变色溶液420、透明非导电基材410所组成。上述半透明薄膜太阳能电池基材700为一种底板(substrate)结构的薄膜太阳能电池基材(太阳光500从透明非导电基材410入射),包括硅薄膜太阳能电池404和透明基材402。至于硅薄膜太阳能电池404是由负极310、N型层426、本质层424、P型层422以及正极300组成。其中正极300的材料为例如透明导电氧化物(TCO),负极310则可包括一层透明导电氧化物层428及位于N型层426与透明导电氧化物层428之间的金属层430。由于半透明薄膜太阳能电池基材700属于底板结构的薄膜太阳能电池基材,所以电致变色溶液420的变色情况有可能影响硅薄膜太阳能电池404产生电的条件,因此第二实施方案的太阳光电电致变色器件可应用于需要循环式变色的器件。Fig. 7 is a schematic top view of a solar photoelectric electrochromic device according to the second embodiment of the present invention, wherein the same symbols as those in the first embodiment are used to denote the same components. Please refer to FIG. 7 , the solar photoelectric electrochromic device of the second embodiment is composed of a translucent thin-filmsolar cell substrate 700 , anelectrochromic solution 420 , and a transparentnon-conductive substrate 410 . The semi-transparent thin filmsolar cell substrate 700 is a substrate structure thin film solar cell substrate (sunlight 500 is incident from the transparent non-conductive substrate 410 ), including silicon thin filmsolar cell 404 andtransparent substrate 402 . As for the silicon thin filmsolar cell 404 is composed of thenegative electrode 310 , the N-type layer 426 , theintrinsic layer 424 , the P-type layer 422 and thepositive electrode 300 . Thepositive electrode 300 is made of transparent conductive oxide (TCO), and thenegative electrode 310 may include a transparentconductive oxide layer 428 and ametal layer 430 between the N-type layer 426 and the transparentconductive oxide layer 428 . Since the translucent thin-filmsolar cell substrate 700 belongs to the thin-film solar cell substrate of the bottom plate structure, the discoloration of theelectrochromic solution 420 may affect the conditions for the silicon thin-filmsolar cell 404 to generate electricity. Therefore, the solar photovoltaic cell of the second embodiment Chromogenic devices can be applied to devices that require cyclic discoloration.

图8为依照本发明第三实施方案所示的一种太阳光电电致变色器件的俯视示意图,其中使用与第二实施方案相同的标号来代表相同的部件。请参照图8,第三实施方案的太阳光电电致变色器件与第二实施方案最大的差异在于,半透明薄膜太阳能电池基材800包括透明基材402与多个铜铟镓硒(CIGS)薄膜太阳能电池802,其中CIGS薄膜太阳能电池802是由例如正极300、CIGS吸收层(absorber layer)804、缓冲层(buffer layer)806以及负极310组成。其中正极300与负极310的材料为例如透明导电氧化物(TCO)。此外,镉碲(CdTe)薄膜太阳能电池同样适用于第三实施方案的薄膜太阳能电池。Fig. 8 is a schematic top view of a solar photoelectric electrochromic device according to the third embodiment of the present invention, wherein the same symbols as those in the second embodiment are used to denote the same components. Please refer to FIG. 8, the biggest difference between the solar photoelectric electrochromic device of the third embodiment and the second embodiment is that the semi-transparent thin-filmsolar cell substrate 800 includes atransparent substrate 402 and a plurality of copper indium gallium selenide (CIGS) thin films A solar cell 802 , wherein the CIGS thin film solar cell 802 is composed of, for example, apositive electrode 300 , a CIGS absorber layer (absorber layer) 804 , a buffer layer (buffer layer) 806 and anegative electrode 310 . The materials of thepositive electrode 300 and thenegative electrode 310 are, for example, transparent conductive oxide (TCO). In addition, a cadmium tellurium (CdTe) thin film solar cell is also applicable to the thin film solar cell of the third embodiment.

图9为依照本发明第四实施方案所示的一种太阳光电电致变色器件的俯视示意图。请参照图9,本实施方案的太阳光电电致变色器件除了上述各实施方案中的半透明薄膜太阳能电池基材(如图4的400、图7的700、图8的800)、电致变色溶液(如图4的420)以及透明非导电基材(如图4的410)之外,还包括与薄膜太阳能电池(如图4的404、图8的802等)相连接的输出开关配置900,藉由连接其正极300与负极310来控制薄膜太阳能电池404的电流输出。有关本实施方案的太阳光电电致变色器件中的构件,可参照上面实施方案所描述,故不再赘述。Fig. 9 is a schematic top view of a solar photoelectric electrochromic device according to the fourth embodiment of the present invention. Please refer to Fig. 9, the solar photoelectric electrochromic device of the present embodiment except the translucent thin-film solar cell substrate (400 of Fig. 4, 700 of Fig. 7, 800 of Fig. 8) in the above-mentioned each embodiment, electrochromic In addition to the solution (such as 420 in Figure 4) and the transparent non-conductive substrate (such as 410 in Figure 4), it also includes anoutput switch configuration 900 connected to a thin film solar cell (such as 404 in Figure 4, 802 in Figure 8, etc.) , by connecting thepositive electrode 300 and thenegative electrode 310 to control the current output of the thin filmsolar cell 404 . For the components in the solar photoelectric electrochromic device of this embodiment, reference may be made to the description of the above embodiment, so details are not repeated here.

而图9所示的是以并联方式连接的形式,其中薄膜太阳能电池的正极300是连接输出开关配置900的连续膜,且正极300与呈条状排列的负极310a、310b、310c以及310d分别连接到输出开关配置900。However, what is shown in FIG. 9 is connected in parallel, wherein thepositive electrode 300 of the thin-film solar cell is a continuous film connected to theoutput switch configuration 900, and thepositive electrode 300 is connected to thenegative electrodes 310a, 310b, 310c, and 310d arranged in strips, respectively. tooutput switch configuration 900.

有关输出开关配置900的连接方式除图9的并联方式外,还可采取如图10所示的串联方式,将不连续的正极300b、300c以及300d与另一薄膜太阳能电池的负极310a、310b、310c连接,再将正极300a与负极310d连接至输出开关配置900。In addition to the parallel connection method shown in FIG. 9, the connection method of theoutput switch configuration 900 can also be connected in series as shown in FIG. 310c, then connect thepositive pole 300a and thenegative pole 310d to theoutput switch configuration 900.

上述的输出开关配置900可采用各种现有技术。举例来说,图11与图12分别显示图9的太阳光电电致变色器件与不同的输出开关配置之间的电路示意图。Theoutput switch configuration 900 described above can adopt various existing technologies. For example, FIG. 11 and FIG. 12 respectively show schematic diagrams of circuits between the solar photoelectric electrochromic device of FIG. 9 and different output switch configurations.

请参照图11,1100代表图9(或图10)的太阳光电电致变色器件中的电致变色器件,其与薄膜太阳能电池1102被连接至直流/交流转换装置(DC/AC inverter)1104,当开关1106连接时,由薄膜太阳能电池1102提供的电流会转换为市电1108(即交流电),供应一般交流电器使用。Please refer to FIG. 11, 1100 represents the electrochromic device in the solar photoelectric electrochromic device of FIG. 9 (or FIG. 10), which is connected to a DC/AC converter (DC/AC inverter) 1104 with a thin filmsolar cell 1102, When theswitch 1106 is connected, the current provided by the thin-filmsolar cell 1102 will be converted into the commercial power 1108 (namely, alternating current), which is supplied to common AC appliances.

此外,请参照图12,电致变色器件1100与薄膜太阳能电池1102也可选择被连接至直流电荷储存装置1200(蓄电装置),藉以储存薄膜太阳能电池1102提供的直流电,供应一般直流电器使用。当开关1106连接时,电致变色器件1100就会变暗。In addition, referring to FIG. 12 , theelectrochromic device 1100 and the thin-filmsolar cell 1102 can also optionally be connected to a DC charge storage device 1200 (storage device), so as to store the DC power provided by the thin-filmsolar cell 1102 and supply it to general DC appliances. When theswitch 1106 is connected, theelectrochromic device 1100 is dimmed.

此外,图9(或图10)的太阳光电电致变色器件更可以配合运用薄膜晶体管(thin film transistor,TFT)技术,在半透明薄膜太阳能电池基材上配置薄膜晶体管1300,其电路图如图13所示,以主动控制薄膜太阳能电池1102,藉以控制电致变色器件1100变色与否。In addition, the solar photoelectric electrochromic device shown in Figure 9 (or Figure 10 ) can also use thin film transistor (thin film transistor, TFT) technology to configure athin film transistor 1300 on a semi-transparent thin film solar cell substrate, the circuit diagram of which is shown in Figure 13 As shown, the thin filmsolar cell 1102 is actively controlled to control whether theelectrochromic device 1100 changes color or not.

综上所述,本发明至少包括以下特点:In summary, the present invention at least includes the following features:

1.本发明的太阳光电电致变色器件所产生的电流在电致变色溶液中会被转换成离子流,因此通电后,虽然正、负极同时接触,并不会有短路问题。1. The current generated by the solar photoelectric electrochromic device of the present invention will be converted into ion flow in the electrochromic solution, so after electrification, although the positive and negative electrodes are in contact at the same time, there will be no short circuit problem.

2.由于本发明的太阳光电电致变色器件中的电极并非如传统电致变色器件那样,电源由电极边缘供应,而可依所需平均散布于整面的半透明薄膜太阳能电池基材中,因此可形成均匀的电场,让电致变色溶液在不同区域有相同的变色程度,避免虹膜效应的发生。2. Because the electrodes in the solar photoelectric electrochromic device of the present invention are not like traditional electrochromic devices, the power supply is supplied by the edge of the electrode, but can be evenly distributed in the translucent thin film solar cell substrate of the entire surface as required, Therefore, a uniform electric field can be formed, so that the electrochromic solution has the same degree of discoloration in different regions, and the iris effect can be avoided.

3.本发明的太阳光电电致变色器件由于选用的氧化/还原型有机小分子电致变色材料其氧化/还原电位小于1.5V,具低电压低电流即可驱动的特性。因此薄膜太阳能电池的本质层厚度可减少,而单独由透明导电氧化物层作为负极,以增加器件的光线透射比,扩大此器件的应用范围,更可以降低器件的制造成本。3. The solar photoelectric electrochromic device of the present invention has the characteristic of being driven by low voltage and low current because the oxidation/reduction organic small molecule electrochromic material selected has an oxidation/reduction potential less than 1.5V. Therefore, the thickness of the essential layer of the thin-film solar cell can be reduced, and the transparent conductive oxide layer alone is used as the negative electrode to increase the light transmittance of the device, expand the application range of the device, and reduce the manufacturing cost of the device.

4.本发明的太阳光电电致变色器件也可以包含输出开关配置,并通过它连接包括直流/交流转换装置以及直流电荷储存装置,以利用器件产生的电流供应交流电器以及直流电器,为现今能源的短缺情况增加一种电力的来源。4. The solar photoelectric electrochromic device of the present invention can also include an output switch configuration, and through it, it is connected to include a DC/AC conversion device and a DC charge storage device, so that the current generated by the device can be used to supply AC appliances and DC appliances, which is the current energy source. In the event of a shortage, add a source of electricity.

虽然本发明已以优选实施方案揭露如上,然其并非用以限定本发明,任何所属技术领域的普通技术人员,在不脱离本发明之精神和范围内,可以做某些变化与改进,因此本发明的保护范围应当以所附权利要求所限定的范围为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make some changes and improvements without departing from the spirit and scope of the present invention. Therefore, this The scope of protection of the invention should be defined by the appended claims.

Claims (19)

Translated fromChinese
1.太阳光电电致变色器件,其包括:1. Solar photoelectric electrochromic device, which includes:透明非导电基材;Transparent non-conductive substrates;半透明薄膜太阳能电池基材,所述半透明薄膜太阳能电池基材包括透明基材与多个薄膜太阳能电池,其中所述多个薄膜太阳能电池具有正极和负极;以及A semitransparent thin film solar cell substrate, the semitransparent thin film solar cell substrate comprising a transparent substrate and a plurality of thin film solar cells, wherein the plurality of thin film solar cells have positive and negative electrodes; and电致变色溶液,所述电致变色溶液位于所述透明非导电基材和所述半透明薄膜太阳能电池基材之间,且所述电致变色溶液同时与每个薄膜太阳能电池的所述正极和所述负极接触,而使所述多个薄膜太阳能电池的正极和负极同时作为所述太阳光电电致变色器件的正极和负极。An electrochromic solution, the electrochromic solution is located between the transparent non-conductive substrate and the semitransparent thin film solar cell substrate, and the electrochromic solution is simultaneously connected with the positive electrode of each thin film solar cell contact with the negative pole, so that the positive pole and the negative pole of the plurality of thin film solar cells are simultaneously used as the positive pole and the negative pole of the solar photoelectric electrochromic device.2.根据权利要求1所述的太阳光电电致变色器件,还包括与所述多个薄膜太阳能电池相连接的输出开关配置,以控制由所述多个薄膜太阳能电池提供的电流输出。2. The solar photovoltaic electrochromic device according to claim 1, further comprising an output switch configuration connected to the plurality of thin film solar cells to control the current output provided by the plurality of thin film solar cells.3.根据权利要求2所述的太阳光电电致变色器件,其中所述多个薄膜太阳能电池并联或串联至所述输出开关配置。3. The solar photovoltaic electrochromic device according to claim 2, wherein the plurality of thin film solar cells are connected in parallel or in series to the output switching configuration.4.根据权利要求2所述的太阳光电电致变色器件,其中所述输出开关配置还连接至直流/交流转换装置,借以将所述多个薄膜太阳能电池提供的电流转换为市电。4. The solar photoelectric electrochromic device according to claim 2, wherein the output switch configuration is further connected to a DC/AC conversion device, so as to convert the current provided by the plurality of thin film solar cells into commercial power.5.根据权利要求2所述的太阳光电电致变色器件,其中所述输出开关配置还连接至直流电荷储存装置,借以储存所述多个薄膜太阳能电池提供的直流电流。5. The solar photoelectric electrochromic device according to claim 2, wherein the output switch configuration is further connected to a DC charge storage device for storing the DC current provided by the plurality of thin film solar cells.6.根据权利要求1或2所述的太阳光电电致变色器件,其中所述多个薄膜太阳能电池包括呈矩阵排列或呈条状排列。6. The solar photoelectric electrochromic device according to claim 1 or 2, wherein the plurality of thin film solar cells are arranged in a matrix or in a strip.7.根据权利要求1或2所述的太阳光电电致变色器件,其中所述电致变色溶液的成分包括氧化/还原型有机小分子电致变色材料以及溶剂。7. The solar photoelectric electrochromic device according to claim 1 or 2, wherein the components of the electrochromic solution include an oxidation/reduction organic small molecule electrochromic material and a solvent.8.根据权利要求7所述的太阳光电电致变色器件,其中所述氧化/还原型有机小分子电致变色材料选自负极变色材料以及正极变色材料中的一种或及其组合。8 . The solar photoelectric electrochromic device according to claim 7 , wherein the oxidized/reduced organic small molecule electrochromic material is selected from one or a combination of negative electrode color materials and positive electrode color materials.9.根据权利要求8所述的太阳光电电致变色器件,其中所述负极变色材料包括甲基紫精、乙基紫精、苯基紫精或丙基紫精。9. The solar photoelectric electrochromic device according to claim 8, wherein the negative electrode color-changing material comprises methyl viologen, ethyl viologen, phenyl viologen or propyl viologen.10.根据权利要求8所述的太阳光电电致变色器件,其中所述正极变色材料包括二甲基吩嗪或苯二胺。10. The solar photoelectric electrochromic device according to claim 8, wherein the positive electrode color-changing material comprises dimethylphenazine or phenylenediamine.11.根据权利要求7所述的太阳光电电致变色器件,其中所述溶剂包括碳酸异丙烯酯、碳酸亚乙酯、γ-丁内酯、乙腈、四氢呋喃或甲基吡咯烷酮。11. The solar photoelectric electrochromic device according to claim 7, wherein the solvent comprises propylene carbonate, ethylene carbonate, γ-butyrolactone, acetonitrile, tetrahydrofuran or methylpyrrolidone.12.根据权利要求7所述的太阳光电电致变色器件,其中所述电致变色溶液的成分还包括碱金属盐。12. The solar photoelectric electrochromic device according to claim 7, wherein the composition of the electrochromic solution further comprises an alkali metal salt.13.根据权利要求12所述的太阳光电电致变色器件,其中所述碱金属盐包括三氟甲磺酸锂、高氯酸锂或四烷基铵盐。13. The solar photovoltaic electrochromic device according to claim 12, wherein the alkali metal salt comprises lithium triflate, lithium perchlorate or tetraalkylammonium salt.14.根据权利要求7所述的太阳光电电致变色器件,其中所述电致变色溶液的成分还包括高分子电解质。14. The solar photoelectric electrochromic device according to claim 7, wherein the composition of the electrochromic solution further includes a polymer electrolyte.15.根据权利要求14所述的太阳光电电致变色器件,其中所述高分子电解质包括聚环氧乙烯、聚环氧丙烷或聚甲基丙烯酸甲酯。15. The solar photoelectric electrochromic device according to claim 14, wherein the polymer electrolyte comprises polyethylene oxide, polypropylene oxide or polymethyl methacrylate.16.根据权利要求1或2所述的太阳光电电致变色器件,其中所述电致变色溶液的氧化/还原电位小于3V。16. The solar photoelectric electrochromic device according to claim 1 or 2, wherein the oxidation/reduction potential of the electrochromic solution is less than 3V.17.根据权利要求1或2所述的太阳光电电致变色器件,其中所述半透明薄膜太阳能电池基材包括覆板或底板结构的薄膜太阳能电池基材。17. The solar photoelectric electrochromic device according to claim 1 or 2, wherein the semi-transparent thin film solar cell substrate comprises a thin film solar cell substrate of a superstrate or a bottom plate structure.18.根据权利要求1或2所述的太阳光电电致变色器件,其中所述多个薄膜太阳能电池包括硅薄膜太阳能电池、铜铟镓硒薄膜太阳能电池或镉碲薄膜太阳能电池。18. The solar photovoltaic electrochromic device according to claim 1 or 2, wherein the plurality of thin film solar cells comprise silicon thin film solar cells, copper indium gallium selenide thin film solar cells or cadmium tellurium thin film solar cells.19.根据权利要求1或2所述的太阳光电电致变色器件,其中还包括多个薄膜晶体管,用以主动控制所述多个薄膜太阳能电池。19. The solar photoelectric electrochromic device according to claim 1 or 2, further comprising a plurality of thin film transistors for actively controlling the plurality of thin film solar cells.
CN2008102129539A2008-09-102008-09-10 Solar photoelectric electrochromic deviceExpired - Fee RelatedCN101673018B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN2008102129539ACN101673018B (en)2008-09-102008-09-10 Solar photoelectric electrochromic device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN2008102129539ACN101673018B (en)2008-09-102008-09-10 Solar photoelectric electrochromic device

Publications (2)

Publication NumberPublication Date
CN101673018A CN101673018A (en)2010-03-17
CN101673018Btrue CN101673018B (en)2011-08-31

Family

ID=42020304

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN2008102129539AExpired - Fee RelatedCN101673018B (en)2008-09-102008-09-10 Solar photoelectric electrochromic device

Country Status (1)

CountryLink
CN (1)CN101673018B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE212013000019U1 (en)2012-10-172014-05-21Hunan Xingye Solar Energy Science and Technology Co., Ltd. Photo electrochromic device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102279496B (en)*2010-06-132013-06-26财团法人工业技术研究院 Adjustable Solar Photoelectric Electrochromic Components and Modules
US9030725B2 (en)2012-04-172015-05-12View, Inc.Driving thin film switchable optical devices
US9412290B2 (en)2013-06-282016-08-09View, Inc.Controlling transitions in optically switchable devices
US9778532B2 (en)2011-03-162017-10-03View, Inc.Controlling transitions in optically switchable devices
US11630367B2 (en)2011-03-162023-04-18View, Inc.Driving thin film switchable optical devices
US10935865B2 (en)2011-03-162021-03-02View, Inc.Driving thin film switchable optical devices
US9454055B2 (en)2011-03-162016-09-27View, Inc.Multipurpose controller for multistate windows
US10503039B2 (en)2013-06-282019-12-10View, Inc.Controlling transitions in optically switchable devices
US12061404B2 (en)2013-06-282024-08-13View, Inc.Controlling transitions in optically switchable devices
US12353111B2 (en)2013-06-282025-07-08View Operating CorporationControlling transitions in optically switchable devices
US9885935B2 (en)2013-06-282018-02-06View, Inc.Controlling transitions in optically switchable devices
CN104698714B (en)*2015-03-182017-10-24哈尔滨工业大学A kind of whole chromatogram electrochromic display device (ECD)
EP4130865A1 (en)2016-04-292023-02-08View, Inc.Calibration of eletrical parameters in optically switchable windows
US10193494B2 (en)*2017-05-262019-01-29Ford Global Technologies, LlcVehicle glass roof systems
CN113741111B (en)*2021-08-062023-11-10浙江工业大学 An integrated electrochromic device and its preparation method
US20240345447A1 (en)*2022-06-302024-10-17Beijing Boe Technology Development Co., Ltd.Dimming structure and dimming device

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS62119529A (en)1985-11-201987-05-30Sanyo Electric Co LtdDisplay device
US5377037A (en)*1992-11-061994-12-27Midwest Research InstituteElectrochromic-photovoltaic film for light-sensitive control of optical transmittance
US5457564A (en)*1990-02-261995-10-10Molecular Displays, Inc.Complementary surface confined polymer electrochromic materials, systems, and methods of fabrication therefor
US5805330A (en)*1996-03-151998-09-08Gentex CorporationElectro-optic window incorporating a discrete photovoltaic device
JP2001069688A (en)*1999-08-312001-03-16Nippon Telegr & Teleph Corp <Ntt> Independent photovoltaic power generation system and power generation method
DE20309281U1 (en)*2003-06-122003-10-16DaimlerChrysler AG, 70567 StuttgartChassis part for vehicles has solar cell arranged between support and covering layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS62119529A (en)1985-11-201987-05-30Sanyo Electric Co LtdDisplay device
US5457564A (en)*1990-02-261995-10-10Molecular Displays, Inc.Complementary surface confined polymer electrochromic materials, systems, and methods of fabrication therefor
US5377037A (en)*1992-11-061994-12-27Midwest Research InstituteElectrochromic-photovoltaic film for light-sensitive control of optical transmittance
US5805330A (en)*1996-03-151998-09-08Gentex CorporationElectro-optic window incorporating a discrete photovoltaic device
JP2001069688A (en)*1999-08-312001-03-16Nippon Telegr & Teleph Corp <Ntt> Independent photovoltaic power generation system and power generation method
DE20309281U1 (en)*2003-06-122003-10-16DaimlerChrysler AG, 70567 StuttgartChassis part for vehicles has solar cell arranged between support and covering layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE212013000019U1 (en)2012-10-172014-05-21Hunan Xingye Solar Energy Science and Technology Co., Ltd. Photo electrochromic device

Also Published As

Publication numberPublication date
CN101673018A (en)2010-03-17

Similar Documents

PublicationPublication DateTitle
CN101673018B (en) Solar photoelectric electrochromic device
JP5196271B2 (en) Photoelectric conversion electrochromic device
CN102033380B (en) Multi-color Solar Photoelectric Electrochromic Device
TWI385814B (en) Photochromic element and manufacturing method thereof
TWI395809B (en) Multi-color solar photoelectric electrochromic device
US11796883B2 (en)Integrated photovoltaic and electrochromic windows
Huang et al.Photovoltaic electrochromic device for solar cell module and self-powered smart glass applications
TWI344219B (en)Photosensitive electrochromic device
US8605350B2 (en)Tunable photovoltaic electrochromic device and module
Pugliese et al.Highly efficient all-solid-state WO3-perovskite photovoltachromic cells for single-glass smart windows
US8508834B2 (en)Printable photovoltaic electrochromic device and module
WO2014059802A1 (en)Photoelectrochromic device
Bogati et al.Development of photochromic device with magnetron sputtered titanium dioxide and tungsten trioxide films
CN108646498A (en)A kind of electrochromic device, preparation method and electrochomeric glass
CN102183863A (en)Photoelectrochromic device and preparation method thereof
Huang et al.Tunable photovoltaic electrochromic device and module
US11189433B2 (en)Multifunctional solid-state devices for solar control, photovoltaic conversion and artificial lighting
CN102279496A (en)Adjustable solar photoelectric color-changing assembly and module
CN101833213B (en)photosensitive electrochromic device
JPH0677513A (en)Photoelectricity source capable of displaying output
CN117631394A (en) Adaptive light control device, adaptive light control system and adaptive light control method
WO2020147154A1 (en)Photoelectrochromic device and manufacturing method thereof

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20110831


[8]ページ先頭

©2009-2025 Movatter.jp