





技术领域technical field
本申请一般涉及从流动的流体获得能量,且更具体地,涉及通过流动的流体引起振荡并利用该振荡发电的能量转换器和发电机的独特设计。 The present application generally relates to harvesting energy from flowing fluids, and more specifically, to the unique design of energy converters and generators that induce oscillations through flowing fluids and use the oscillations to generate electricity. the
背景技术Background technique
例如风或水的流动的流体中存在的动能已成功地应用于生产性的人类目的,例如碾磨谷物或抽水。开发出了风动发电机以利用这些流体流(fluid flow)用于发电。现今,风动发电机具有涡轮或旋转翼的广泛存在的形式。尽管这些基于涡轮的风力发电机在某些风速一直很高的开放空间中一般是有用的,但缺点仍然存在,例如高昂的初始投资成本、除了窄的风速范围外完全低效、在较低的功率输出水平(<1kW)是成本效率不足,等等。 The kinetic energy present in flowing fluids such as wind or water has been successfully applied for productive human purposes such as grinding grain or pumping water. Wind powered generators have been developed to harness these fluid flows for power generation. Today, wind powered generators are in the ubiquitous form of turbines or rotary wings. Although these turbine-based wind turbines are generally useful in certain open spaces where wind speeds are consistently high, disadvantages remain such as high initial investment costs, total inefficiency except in a narrow range of wind speeds, Power output levels (<1 kW) are not cost efficient, etc. the
为了避免基于涡轮的装置的缺点,设计各种可选的发电机来利用其他的自然流动现象。然而,由于设计的复杂性、增加的成本、对复杂安装结构的需要、能量生产的低效、发电的不足、产生振动的效率低、限制于高流动速度等,这些提议不是令人满意的。 To avoid the disadvantages of turbine-based devices, various alternative generators have been designed to take advantage of other natural flow phenomena. However, these proposals are unsatisfactory due to design complexity, increased cost, need for complex installation structures, inefficiency in energy production, insufficient power generation, inefficiency in generating vibrations, limitations to high flow velocities, and the like. the
发明概述 Summary of the invention
本公开描述了有效地促进由流动的流体引起的振荡,并利用该振荡产生电或其他类型的能量的独特的发电机的各种实施方式。在一方面,示例性的发电机以沿着固定在两个或更多个点的张紧的膜或“带”引起的摆动或涡旋脱落(vortices shedding)的组合的方式,来利用流体流的能量。带也可被称为“柔性的振动构件”。膜可具有拉长的(elongated)形状或促进利用流动的流体振动的已知的其他类型的形状。 The present disclosure describes various embodiments of unique electrical generators that efficiently facilitate oscillations caused by flowing fluid and utilize the oscillations to generate electricity or other types of energy. In one aspect, the exemplary generator utilizes a combination of oscillating or vortices shedding along a tensioned membrane or "belt" fixed at two or more points. energy of. The belt may also be referred to as a "flexible vibrating member". The membrane may have an elongated shape or other type of shape known to facilitate vibration with flowing fluid. the
示例性的发电机包括至少一个磁场发生器或磁场产生构件、至少一个电导体或导体构件,和具有至少两个固定端的至少一个柔性膜。膜在遭受流体流时振动。电导体和磁场发生器中的一个连接到膜并配置成与膜一起运动。由流体流引起的膜的振动造成电导体和所施加的磁场之间的相对运动。该相对运动造成施加到电导体的磁场的强度的变化,且施加到电导体的磁场的强度的变化引起在导体中流动的电流。发电机的一个或所有部分可实现为MEMS(微机电系统)装置。在一方面,当膜不振动时,磁场的方向可基本上垂直于由电导体围绕的区域。 An exemplary generator includes at least one magnetic field generator or magnetic field generating member, at least one electrical conductor or conductor member, and at least one flexible membrane having at least two fixed ends. The membrane vibrates when subjected to fluid flow. One of the electrical conductor and the magnetic field generator is connected to the membrane and configured to move with the membrane. Vibration of the membrane caused by fluid flow causes relative motion between the electrical conductor and the applied magnetic field. This relative motion causes a change in the strength of the magnetic field applied to the electrical conductor, and the change in the strength of the magnetic field applied to the electrical conductor causes a current to flow in the conductor. One or all parts of the generator may be implemented as MEMS (Micro-Electro-Mechanical Systems) devices. In one aspect, when the membrane is not vibrating, the direction of the magnetic field may be substantially perpendicular to the area surrounded by the electrical conductor. the
示例性的发电机可进一步包括连接到膜的至少一个块状物(mass),以在膜遭受流体流时促进膜的运动或振动。在一个实施方式中,可提供功率调节电路以调节引起的电流。功率调节电路可包括配置成对电流进行整流的整流电路。在另一个实施方式中,磁场发生器包括至少一个永磁体。在又一个实施方式中,示例性的发电机包括多组电导体,例如线圈。由多组导体产生的电流可以串联方式组合。可提供可再充电的电功率存储装置,例如电池或电容器,以由电流或充电。 Exemplary generators may further include at least one mass connected to the membrane to facilitate movement or vibration of the membrane when subjected to fluid flow. In one embodiment, a power regulation circuit may be provided to regulate the drawn current. The power conditioning circuit may include a rectification circuit configured to rectify electrical current. In another embodiment, the magnetic field generator comprises at least one permanent magnet. In yet another embodiment, an exemplary generator includes sets of electrical conductors, such as coils. The currents generated by sets of conductors can be combined in series. A rechargeable electrical power storage device, such as a battery or capacitor, may be provided to be charged by an electrical current. the
在一个实施方式中,示例性的发电机进一步包括支持结构。膜的固定端被固定到所述支持结构。电导体连接到膜。磁场发生器布置在支持结构上。在另一个实施方式中,磁场发生器连接到膜,且电导体布置在支持结构上。在另一个实施方式中,磁场发生器被定向为使得垂直于膜的平面射出磁场(即,极间轴线(pole to pole axis))。在又一个实施方式中,磁场发生器被定向为使得平行于膜的平面射出磁场。当然,在每个相应的实施方式中重新排列电导体以作为磁场方向的变化原因。 In one embodiment, the exemplary generator further includes a support structure. The fixed end of the membrane is fixed to the support structure. Electrical conductors are connected to the membrane. A magnetic field generator is arranged on the support structure. In another embodiment, the magnetic field generator is attached to the membrane and the electrical conductors are arranged on the support structure. In another embodiment, the magnetic field generator is oriented such that the magnetic field is projected perpendicular to the plane of the membrane (ie, pole to pole axis). In yet another embodiment, the magnetic field generator is oriented such that the magnetic field is projected parallel to the plane of the membrane. Of course, the electrical conductors are rearranged in each respective embodiment to account for the change in the direction of the magnetic field. the
根据另一个实施方式,示例性的发电机包括可调张力提供器,例如发动机,配置成根据流体流的速度在膜的固定端之间施加可调张力。可提供传感器以产生指示流体流的作用的信号。在一方面,可基于电流调节张力。 According to another embodiment, an exemplary generator includes an adjustable tension provider, such as a motor, configured to apply an adjustable tension between the fixed ends of the membrane according to the velocity of the fluid flow. A sensor may be provided to generate a signal indicative of the effect of the fluid flow. In one aspect, tension can be adjusted based on electrical current. the
根据另一个实施方式,示例性的发电机可包括多个柔性膜。在一方面,膜可固定到相同的支持结构。 According to another embodiment, an exemplary generator may include a plurality of flexible membranes. In one aspect, the membranes can be secured to the same support structure. the
根据下面详细的描述,对于本领域技术人员来说,本公开的附加的方面和优点将变得很明显,其中只是简单通过用于为实现本公开而设想的最佳模式的阐述,来显示和描述了本公开的示例性的实施方式。如将被认识到的,本公开能够有其他的和不同的实施方式,且其一些细节能够在不同的显而易见的方面进行更改,完全不偏离本公开。因此,附图和描述应认为本质上是例证性的,而不是限制性的。 Additional aspects and advantages of the present disclosure will become apparent to those skilled in the art from the following detailed description, which is shown simply by way of illustration of the best mode contemplated for carrying out the disclosure, and Exemplary embodiments of the present disclosure have been described. As will be realized, the disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature and not restrictive. the
附图简述 Brief description of the drawings
图1是根据本公开的示例性的发电机的透视图。 FIG. 1 is a perspective view of an exemplary generator according to the present disclosure. the
图2是例证性的实施方式的示例性的振动模式的侧视图。 FIG. 2 is a side view of an exemplary vibration mode of an illustrative embodiment. the
图3是永磁体及其产生的场的示例性的方向的图示。 Figure 3 is an illustration of an exemplary orientation of a permanent magnet and the field it generates. the
图4是用于处理由示例性的发电机产生的电流的电路的原理图。 4 is a schematic diagram of a circuit for processing electrical current produced by an exemplary generator. the
图5是示例性的发电机的另一个实施方式的透视图。 5 is a perspective view of another embodiment of an exemplary generator. the
图6是利用由流动的流体引起的振荡的示例性的发电机的又一实施方式的透视图。 6 is a perspective view of yet another embodiment of an exemplary generator utilizing oscillations caused by flowing fluid. the
图7是另一种振动模式的透视图。 Fig. 7 is a perspective view of another vibration mode. the
图8是示例性的发电机的定向振动(orientation variation)的截面透视图。 8 is a cross-sectional perspective view of an exemplary generator orientation variation. the
例证性实施方式的详细描述 Detailed Description of Illustrative Embodiments
在下面的描述中,为了说明的目的,陈述了许多具体的细节以提供对本公开的全面的理解。然而,对本领域技术人员来说明显的是本公开可以在没有这些具体细节的情况下实施。在其他例子中,为避免无谓地使本公开难于理解,以方块图形式显示了公知的结构和装置。 In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be apparent, however, to one skilled in the art that the present disclosure may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present disclosure. the
示例性的发电机包括磁场发生器和用于将流体流,例如气流、水流、潮汐等中存在的能量转换成振动或振荡的柔性膜。柔性膜包括连接到它的至少一个电导体并具有至少两个固定端。膜在遭受流体流时振动。如在此 使用的,术语“柔性”指具有这种能力的膜,即响应于所施加的力的作用,变形为许多种确定和不确定的形状而没有损伤。 An exemplary generator includes a magnetic field generator and a flexible membrane for converting energy present in a fluid flow, such as air currents, water currents, tides, etc., into vibrations or oscillations. The flexible membrane includes at least one electrical conductor connected thereto and has at least two fixed ends. The membrane vibrates when subjected to fluid flow. As used herein, the term "flexible" refers to a film that has the ability to deform into a wide variety of defined and indeterminate shapes in response to an applied force without damage. the
至少一个电导体可实现为连接到膜并配置成与膜一起运动的铝或铜线圈。例如,一个或更多的线圈被集成到振荡的膜中或集成到振荡的膜上。那些线圈悬于相应的磁场发生器之上。在一个实施方式中,线圈借助于新近研发的用于RFID标签和贴片天线的技术而被直接印到膜上。 The at least one electrical conductor may be realized as an aluminum or copper coil connected to the membrane and configured to move with the membrane. For example, one or more coils are integrated into or onto the oscillating membrane. Those coils are suspended above corresponding magnetic field generators. In one embodiment, the coils are printed directly onto the film by means of a recently developed technique for RFID tags and patch antennas. the
由流体流引起的膜的振动造成电导体和所施加的磁场之间的相对运动。该相对运动造成施加到电导体的磁场的强度的变化,而施加到电导体的磁场的强度的变化引起在导体中流动的电流。 Vibration of the membrane caused by fluid flow causes relative motion between the electrical conductor and the applied magnetic field. This relative motion causes a change in the strength of the magnetic field applied to the electrical conductor, which in turn causes a current to flow in the conductor. the
当使用风或气流驱动示例性的发电机时,风垂直于膜(例如具有拉长形状的膜)的长轴线流动。流动的流体引起张紧的膜自发的不稳定(通常所说的摆动)。在适当设计的变化形式中,膜的摆动导致有规律的、减小的扭矩的高能量振荡模式。此模式经常称为振荡的第一简正模式(normalmode)。另外,涡旋脱落可沿着膜的边缘和表面发生,在某些情况下增强振荡。 When wind or air flow is used to drive an exemplary generator, the wind flows perpendicular to the long axis of the membrane (eg, a membrane having an elongated shape). The flowing fluid causes spontaneous instability (commonly known as rocking) of the tensioned membrane. In properly designed variations, oscillation of the membrane results in a regular, high energy oscillatory mode of reduced torque. This mode is often referred to as the first normal mode of oscillation. Additionally, vortex shedding can occur along membrane edges and surfaces, enhancing oscillations in some cases. the
由此膜的振荡造成线圈相对于磁体运动。变化的磁场穿过由线圈限定的闭合区域,因而在所述线圈内产生EMF。由此电流产生,而不要求振动的膜物理耦合到活塞或凸轮系统来发电。此发电机工作在多种风速下,包括比大多数基于涡轮的风力发电机所需的速度低的速度。而且,本公开的示例性的发电机的成本基本低于大多数其他的基于涡轮的发电机,且没有物理上研磨的部分提供了长时间、无噪音、免维修操作的可能性。不需要引导用的钝体(leading bluff body),尽管如果需要的话可以使用这样的钝体。 Oscillation of the membrane thus causes the coil to move relative to the magnet. A changing magnetic field passes through the closed area defined by the coil, thus generating an EMF within said coil. Electric current is thus generated without requiring a vibrating membrane to be physically coupled to a piston or cam system to generate electricity. This generator operates at a variety of wind speeds, including speeds lower than required by most turbine-based wind generators. Furthermore, the cost of the exemplary generator of the present disclosure is substantially lower than most other turbine-based generators, and the absence of physically ground parts provides the possibility of long-term, noise-free, maintenance-free operation. A leading bluff body is not required, although such a bluff body may be used if desired. the
另外,示例性的发电机,特别是在小规格情况下,达到了比涡轮或基于涡轮的发电机(例如那些使用传统的压电方法的发电机)更好的效率。没有对基于翼的旋转涡轮的贝兹极限(Betz limit)的限制,可为此改进的风力发电机类型确定较不严格的效率限制。 Additionally, the exemplary generators, especially at small sizes, achieve better efficiencies than turbine or turbine-based generators such as those using conventional piezoelectric methods. There is no Betz limit limit for wing-based rotary turbines, a less stringent efficiency limit can be established for this improved wind turbine type. the
在此公开的概念解决了许多领域中对于能量的需要,这些领域从用于小规格RF传感器阵列的能量获得到分散的农村电气化,到并网式(grid-connected)大规模的电力供应。 The concepts disclosed herein address energy needs in many areas, from energy harvesting for small-scale RF sensor arrays, to decentralized rural electrification, to grid-connected large-scale power supplies. the
在某些实施方式中,振荡处于有两个相对固定的节点的模式中,而在其他实施方式种,可设立跨过膜的多个节点。此外,在某些实施方式中,线圈置于膜上且相对于固定的一组磁体运动,而在其他实施方式中,线圈静止在支撑物(mount)上,而磁体被固定到运动的膜。另外,可通过永磁体或电磁感应产生磁场,将由发电机产生的一些电送入电磁体的配线中以保持它们的场。线圈可呈现不同的形状、结构或形式。 In some embodiments, the oscillations are in a mode with two relatively fixed nodes, while in other embodiments, multiple nodes may be established across the membrane. Furthermore, in some embodiments the coil is placed on the membrane and moves relative to a fixed set of magnets, while in other embodiments the coil is stationary on a mount while the magnets are fixed to the moving membrane. Alternatively, the magnetic field can be generated by permanent magnets or electromagnetic induction, feeding some of the electricity generated by the generator into the wiring of the electromagnets to maintain their field. The coils may assume different shapes, structures or forms. the
图1描示了根据本公开的示例性的发电机100。发电机100包括拉长的膜2、两个线圈4a、4b和支持结构6。支持结构6包括底部8及其用于容纳永磁体12a、12b的两部分。提供了粘合剂14a、14b以将膜2连结到底部8。在底部/膜上或远离底部/膜提供功率调节电路以处理由线圈4a、4b产生的电流。线圈4a、4b粘附到膜2的表面或粘附到膜2中,并分别悬在磁体12a、12b的上方。两导线16a、16b分别耦合到线圈4a、4b。施加到膜2的张力是膜2的弹性和底部8的物理特性(即杨氏模量等)连同底部8的端部之间的特定距离的函数。 FIG. 1 depicts an
图1中所示的示例性的发电机100如下操作。流体的流动,可包括例如水的液体流动,或空气的流动,例如在人工通风系统或自然风中存在的空气的流动,这种流体的流动跨过拉长并张紧的膜2行进。此流体流在近似垂直于膜的长轴(major axis)的方向上行进,这之后膜的自激振荡将会开始。此振荡通常以膜2的轻微扭转起始。然而,这种初始状态将快速(约<1秒)稳定到扭矩减小的最低简正模式的振荡,例如图2中所描示的。随着膜2的振动,线圈4a、4b将在固定的永磁体12a、12b之上,同样地与膜2一起振荡。图2中示出了此振动的侧视图。 The
图3示出了在线圈4a、4b下方的磁体12a、12b的示例性的方向。磁场定向为使得线圈4a、4b的闭合区域被垂直的场线越过,如最初由迈克尔·法拉第所描述的。应注意,磁体的几种定向将产生恰当定向的磁场。随着线圈4a、4b相对于固定的磁体12a、12b移动,通过线圈4a、4b的该场的强度变化。磁场的此变化产生电动势(EMF)。依赖于载荷状况、内阻、阻抗以及一系列的因素,EMF产生电流,即电子的流动。Figure 3 shows an exemplary orientation of the
在振荡的第一简正模式中,线圈4a、4b近似彼此同相地振荡。流过各导线16a、16b的电流可以结合,而没有明显的相消干涉。依赖于馈入与发电机100关联的功率调节电路的期望的电压和电流,导线16a、16b可并联或串联连接。 In a first normal mode of oscillation, the
图1中显示的结构有效地将整个膜的振荡的能量集中在一个或更多的离散区域。这以与杠杆将大的平移的运动“浓缩”成具有较大有势力(potential force)的较小的运动的方式类似的方式起作用。该靠近膜的端部的较大的力允许并入较重和较厚的线圈,而不减弱掉振荡。因此,需要较小的磁场来填充线圈经过的较小的空间体积,这说明磁体成本较小。另外,通过很大程度上将线圈放置在流动的流体的通路之外,膜的中心区域的大部分可响应那些流动,而没有配线的妨碍。 The structure shown in Figure 1 effectively concentrates the energy of the oscillations of the entire membrane in one or more discrete regions. This works in a similar way to how a lever "condenses" a large translational motion into a smaller motion with greater potential force. This greater force near the end of the membrane allows the incorporation of heavier and thicker coils without dampening the oscillations. Therefore, a smaller magnetic field is required to fill the smaller volume of space through which the coil passes, which translates into less magnet cost. Additionally, by placing the coils largely out of the path of the flowing fluids, a large portion of the central region of the membrane can respond to those flows without the hindrance of wiring. the
图4显示了对于低风速使用串联连接来达到较高的电压的示例性的功率调节电路40的方块图。电路40包括整流器41、平滑电容器42、步升电源(step-up supply)43,和储能装置44,例如可再充电的电池或超级电容器。整流器41和平滑电容器42将交流电形式的线圈4a、4b的输出转换成平滑的直流。如果期望有特定范围的电压用于终端应用,则将DC电流馈入步升电源43或升压转换器。提供储能装置44以在该应用吸取的电流和来自发电机100的线圈4a、4b的供应之间进行缓冲。 FIG. 4 shows a block diagram of an exemplary
如图1所示,底部8呈现弓形的形状。在短时间的偏移(deviation)过程,弓形底部在膜2上提供近似恒定的张力。这样,在膜2随时间伸展时,底部8的弹簧作用保证膜2保持在特定的张力下。应理解,其他形状的底部可用于实现发电机100。也可使用平的不弯曲的底部,膜2本身的自然弹性能够满足相同的效果。在另一个实施方式中,恒力弹簧(例如贝勒维尔垫圈(Belleville washer))或柔顺机构(compliant mechanism)可连接到膜的端部或并入底部本身的结构中,这使得在较长的时间段内,在膜2上能够保持更可靠的恒定的张力。对于膜被垂直定向的实施方式,可通过对膜2或底部8附加重量,由地球引力生成恒定的恢复力。 As shown in FIG. 1 , the bottom 8 exhibits an arcuate shape. The arcuate bottom provides an approximately constant tension on the
在另一个实施方式中,反馈系统安装到发电机100中以在更高的风速中提供或应用膜2更大程度的张紧。此反馈系统可以多种方式实现,例如在安装结构的底部8内安装螺线管。随后螺线管的推力可与线圈4a、4b的电输出一致地变化。在另一个实施方式中,使用随着输入电压的变化而改变形状的记忆合金或电介质材料,以响应于由传感器检测到的风速来改变膜2的张力。 In another embodiment, a feedback system is installed into the
图5描示了使用本公开的概念的示例性的发电机500的另一个实施方式,其中线圈52覆盖了膜表面54的较大区域。为了保持相似的电功率输出,将需要更多的永磁体56来提供类似地放大的磁场。图5中描示的设计对很小的发电机特别有用,例如MEMS装置或“片上发电机”,其中覆盖膜的较大部分的线圈是可接受的,因为充满线圈的平移的体积所需的磁场具有有限的量级。 FIG. 5 depicts another embodiment of an
图6示出了图1中显示的实施方式的变化形式600。在膜2上提供了至少一个块状物62。块状物62可包括具有对称或不对称的形状的一个或更多的轮廓低的物体(low-profile object)。对于具有较大尺寸的(例如长度>0.5米)膜,所附着的块状物62提供膜2的更剧烈的振荡。在某些情况下,块状物62起作用以在振荡的开始提供不稳定性的来源,由此引起膜2的轻微的最初的扭转。然而,块状物62的位置和几何形状以及膜2的张力、宽度和长度可以制成使得此不稳定性快速地转变成扭矩减小的第一简正模式的振荡。 FIG. 6 shows a
图7描示了本公开的另一个实施方式。在此实施方式中,线圈和膜的布置类似于图1中显示的发电机。然而,使图7中的膜以振动的其他简正模式振荡,例如图7中所示的第二模式。在功率调节电路中,可能需要一些简单的改变以适应多个线圈的异相振荡,而对于较大的发电机,这些替换的模式可在效率上提供显著的增益。 Figure 7 depicts another embodiment of the present disclosure. In this embodiment, the arrangement of coils and membranes is similar to the generator shown in FIG. 1 . However, the membrane in FIG. 7 is made to oscillate in other normal modes of vibration, such as the second mode shown in FIG. 7 . In power conditioning circuits, some simple changes may be required to accommodate out-of-phase oscillations of multiple coils, while for larger generators these alternate modes can provide significant gains in efficiency. the
尽管图1和图5-7中所示的实例包括关于一组固定的永磁体移动的一个或更多的线圈,但应理解,可以实现在膜上放置磁体并因此使磁体相对于固定的线圈移动的其他的实施方式。这样布置的优点在于来自线圈的引线不经受任何弯曲应力,所述弯曲应力如在移动的线圈实施方式下可能出现的。 Although the examples shown in Figure 1 and Figures 5-7 include one or more coils moving about a fixed set of permanent magnets, it should be understood that it is possible to implement magnets placed on the membrane and thus have the magnets move relative to a fixed set of coils. Other implementations of movement. The advantage of this arrangement is that the leads from the coil are not subject to any bending stresses as might arise in a moving coil embodiment. the
另外,尽管线圈可如图1所示基本上平行于拉长的膜2的表面放置,但另一个选择是将线圈布置成连接在膜2之上或以下,基本上更加垂直于膜。当然,永磁体的磁场的定向将需要被改变以适应这样的变化。类似地,线圈相对于膜的这种再定向选择还应用于磁场发生器连接到膜2而线圈固定到底部8的实施方式。图8示出了定向磁场发生器(例如磁体72)以便平行于膜2的平面射出磁场(即,极间轴线)的实施例的截面图,其中相应的线圈在所述磁场发生器的侧面。如图8所示,永磁体72连接到基本上刚性的构件74,构件74本身以大致垂直的布置连接到柔性膜2。永磁体72产生的场被引导通过线圈4a,线圈4a用支承件76支持靠近磁体72。当膜2振荡时,永磁体72也将振荡。此振荡将使被引导通过线圈4a的磁场的强度改变,由此产生EMF。此特定的实施方式有在宽范围的振荡速率下避免磁体-线圈接触的优点,因为磁体72沿着线圈4a的面移动,而不是朝向及远离所述线圈移动。附加的线圈可放置在磁体72的相对的侧上以受益于另外的极。根据一种变化形式,线圈4a和磁体72可用含铁材料支持(back with),以便形成完整的磁路,如在此申请的其他部分中所描述的。 Also, while the coils may be placed substantially parallel to the surface of the
根据另一个实施方式,不是将线圈附着到膜,而是直线发电机可被耦合到振荡膜2。尽管实现此耦合的最直接的方法是在直线发电机的磁体和膜之间连接轴状物或线状物(thread),但装到膜上的较小的磁体可用于不接触而通过排斥或吸引在直线发电机的磁体中激励振荡。直线发电机的磁体的振荡的固有频率优选匹配膜的驱动振荡的固有频率。此实施方式允许大的发电机安装以提高效率。 According to another embodiment, instead of attaching coils to the membrane, a linear generator can be coupled to the
可提供附加的变化形式以提高示例性的发电机的性能,以用于特定的应用。例如,可期望用铁氧体粉末(ferrite powder)或层状含铁金属填充发电机的线圈以增加通过线圈的磁通量。另外,如本领域所公知的,永磁体产生的磁场可通过在磁芯周围适当地放置层状或粉末状的铁磁体或铁 磁材料而制成“完整的回路”。此技术保证最大的磁场被引导到线圈的区域。 Additional variations may be provided to enhance the performance of the exemplary generator for specific applications. For example, it may be desirable to fill the coils of a generator with ferrite powder or layered ferrous metals to increase the magnetic flux through the coils. In addition, the magnetic field produced by the permanent magnets can be made "full circuit" by appropriately placing layers or powders of ferromagnetic or ferromagnetic materials around the magnetic core, as is known in the art. This technique ensures that the maximum magnetic field is directed into the area of the coil. the
许多铁磁材料可被用作发电机中磁场的源。NdFeB稀土磁体、陶瓷磁体、铝镍钴磁体和钐钴磁体是一些比较普遍的选择。 Many ferromagnetic materials can be used as the source of the magnetic field in a generator. NdFeB rare earth magnets, ceramic magnets, alnico magnets, and samarium cobalt magnets are some of the more common choices. the
另外,在发电机应用也称为励磁线圈(field coil)的电磁体可用来代替永磁体作为磁场的源。空芯或铁磁芯的一个或更多的线匝可以起励磁线圈的作用。这些励磁线圈在芯中充满着小的残余磁场,以在移动的膜线圈中引起最初的小EMF。此电流的一部分转回到励磁线圈中,仍导致较大的场。此增大的场导致在振荡膜线圈中产生的增加的EMF,且此正反馈循环继续直到达到一平衡,在该平衡点,励磁线圈产生类似于由永磁体产生的场的强场。这些有时被称为自激发电机,通常被分类到“串励”发电机、“并励”发电机或“复励”发电机的子集中,它们的原理在本领域中是公知的。另一个可能性是使用被分别激励的励磁线圈,电流对于由外部源提供的场来说是必要的。这两种非永磁体的选择对于大的永磁体的成本高的惊人的较大的安装特别有用。 Additionally, electromagnets, also known as field coils in generator applications, can be used instead of permanent magnets as the source of the magnetic field. One or more turns of an air or ferromagnetic core can function as a field coil. These field coils are filled with a small residual magnetic field in the core to induce an initial small EMF in the moving membrane coil. A portion of this current is diverted back into the field coil, still resulting in a larger field. This increased field results in an increased EMF generated in the vibrating membrane coil, and this positive feedback loop continues until an equilibrium is reached at which point the excitation coil generates a strong field similar to that generated by a permanent magnet. These are sometimes referred to as self-excited motors and are generally classified into the subsets of "series" generators, "shunt" generators or "compound" generators, the principles of which are well known in the art. Another possibility is to use field coils that are excited separately, the current being necessary for the field provided by an external source. These two non-permanent magnet options are particularly useful for larger installations where the cost of large permanent magnets is prohibitively high. the
一些其他的变化形式涉及到膜。膜的形状不必限于矩形。确切地说,锥形的膜和各种几何形状的膜可在某些标准下提供很大的优势。另外,膜不必限于薄膜或织物的平坦的网状结构,但也能够制成更接近于大致翼的外形,以提高拉长的柔性膜的振荡特性。此外,网状结构不必是全部连续的,而可以包括孔或凹陷处。在某些情况下,以安装膜的线圈为中心的孔可允许底部安装的磁体部分地穿过所述线圈,由此防止在某些实施方式中,在剧烈振荡过程中膜-磁体的碰撞。 Some other variations involve membranes. The shape of the membrane is not necessarily limited to a rectangle. Specifically, tapered membranes and membranes of various geometries may offer great advantages under certain criteria. Additionally, the membrane need not be limited to a flat web of film or fabric, but can also be made closer to a general wing shape to enhance the oscillatory properties of the elongated flexible membrane. Furthermore, the network need not be entirely continuous, but may include holes or depressions. In some cases, a hole centered on the membrane-mounted coil may allow a bottom-mounted magnet to partially pass through the coil, thereby preventing, in some embodiments, membrane-magnet collisions during violent oscillations. the
现在为止所描述的大多数实施方式也可以被定向在任何方向上,例如垂直地安装在极上,或水平地安装在两个塔(tower)之间,或任何组合或组合的变化形式。本公开示例性的发电机可用任何数量的膜材料,例如ripstock尼龙、超薄聚酯薄膜、涂覆聚酯薄膜的塔夫绸(mylar-coated taffeta)、Kevlar带,或聚乙烯薄膜,以列出很多可能中的很少的几个。 Most of the embodiments described so far can also be oriented in any orientation, such as vertically mounted on a pole, or horizontally between two towers, or any combination or variation of a combination. Exemplary generators of the present disclosure may use any number of membrane materials, such as ripstock nylon, ultra-thin mylar, mylar-coated taffeta, Kevlar tape, or polyethylene film, to list A few of the many possibilities. the
也能在动力装置中使用多个发电机以提供不同的水平的电力用于给定的区域或应用。经济有效的实施方式涉及使用具有嵌入的线圈的两个 膜,每个膜放置在永磁体的相对侧上。此布置允许利用磁场的两极。此双膜变化形式的每个膜的AC输出可以不同相,因而能够被分别地整流和调节,并随后重新组合为附加的DC输出。明显地,许多的这些发电机可堆叠到塔上或布置在框架中以获取大的截面积的风的能量,而不是只获取单个发电机单独所见的小区域。 Multiple generators can also be used in a power plant to provide different levels of power for a given area or application. A cost-effective implementation involves the use of two membranes with embedded coils, each placed on opposite sides of a permanent magnet. This arrangement allows the use of both poles of the magnetic field. The AC output of each membrane of this dual membrane variation can be out of phase, and thus can be rectified and conditioned separately, and then recombined into an additional DC output. Clearly, many of these generators could be stacked onto a tower or arranged in a frame to harvest wind energy over a large cross-sectional area, rather than just the small area seen by a single generator alone. the
示例性的发电机的另一个变化形式包括在两个远距离的点之间伸展的膜,例如,在两个建筑物之间或在两个塔之间伸展的膜。在此情况下,延伸膜的全长的底部是不必要的。确切地说,在膜的端部的夹具能够为膜和场的源(不管该源是一组永磁体还是励磁线圈)提供支持。弹簧或专门设计的柔顺机构可并入夹具中,以使得对膜施加恒定的张力,甚至跨过大的距离。 Another variation of the exemplary generator includes a membrane stretched between two distant points, eg, between two buildings or between two towers. In this case, it is not necessary to extend the bottom of the full length of the membrane. Specifically, clamps at the ends of the membrane can provide support for the membrane and the source of the field (whether that source is a set of permanent magnets or field coils). Springs or specially designed compliant mechanisms can be incorporated into the clamps so that constant tension is applied to the membrane, even across large distances. the
根据本公开的示例性的发电机的优点涉及对非常高的风速的反应。一般地,在传统的水平轴涡轮或垂直轴发电机中,卷起机构(furlingmechanism)必须被加入发电机的设计中。此卷起机构使发电机的叶片由于风流而弯曲,以在高风速条件下避免灾难性损害。该附加物在传统的基于风的发电机中是昂贵且复杂的部件。在某些情况下,尽管会防止卷起,但是涡轮叶片的大量的动能仍是危险的。相比之下,根据本公开的示例性的发电机在谨慎选定的张力条件下工作。因此,在可能危及发电机的高速风中,可简单地减小膜的张力,或膜轻微地扭曲以大大减少发电机到风流的耦合。当该情况发生时,膜将停止振荡直到其重新开始是安全的为止。此外,如果膜确实出现灾难性的故障并从安装结构脱离,那么与传统的基于涡轮的发电机相比,对于周围区域的危险也是小的。 An advantage of an exemplary generator according to the present disclosure relates to response to very high wind speeds. Generally, in conventional horizontal axis turbines or vertical axis generators, a furling mechanism must be incorporated into the design of the generator. This rolling mechanism causes the blades of the generator to bend due to wind currents to avoid catastrophic damage during high wind speed conditions. This addition is an expensive and complex component in conventional wind-based generators. In some cases, the large amount of kinetic energy of the turbine blades can be dangerous despite preventing windup. In contrast, exemplary generators according to the present disclosure operate under carefully selected tension conditions. Thus, in high speed winds that could endanger the generator, the membrane tension can simply be reduced, or the membrane twisted slightly to greatly reduce the coupling of the generator to the wind flow. When this happens, the membrane will stop oscillating until it is safe for it to restart. Furthermore, if the membrane does fail catastrophically and becomes detached from the mounting structure, the danger to the surrounding area is also small compared to conventional turbine based generators. the
根据本公开实现的发电机在各种不同的功率标准(power scale)下有许多的应用。例如,可在建筑物的HVAC管道遍布数百个根据本公开的小的发电机。这些发电机能够引流空气流遍及整个管道网以向附近的无线传感器提供连续的电力供应。这些传感器的阵列在“智能建筑物”的结构中是重要的。然而,结构中需要的传感器经常使用寿命三到五年的电池,这在传感器十或二十年的寿命周期中,在很大程度上增加了它们的维修成本。根据本公开实现的并遍布HVAC管道的发电机减少了对电池的依赖, 并扩大了此分布式的、长寿命传感器阵列的领域的范围。根据另一个实施方式,如果在不同风速下产生的电压对于给定的设计来说是已知的,则示例性的发电机自身可起风速传感器(wind sensor)和传输该传感器信息所需的电源的作用。 Generators implemented in accordance with the present disclosure have many applications at various power scales. For example, there may be hundreds of small generators according to the present disclosure scattered throughout the HVAC ducts of a building. These generators are capable of directing airflow throughout the duct network to provide a continuous supply of power to nearby wireless sensors. Arrays of these sensors are important in the construction of "smart buildings". However, the sensors required in the construction often have batteries with a service life of three to five years, which substantially increases the cost of repairing the sensors over their ten or twenty year life cycle. Generators implemented in accordance with the present disclosure and distributed throughout the HVAC duct reduce reliance on batteries and expand the scope of the field of this distributed, long-lived sensor array. According to another embodiment, if the voltages generated at different wind speeds are known for a given design, the exemplary generator itself can act as a wind sensor and the power supply needed to transmit the sensor information role. the
根据本公开的发电机的另一个重要应用是农村照明设备(rurallighting),主要是新兴经济体中的农村照明设备。发展中国家中的多数家庭花费他们百分之二十的年收入在煤油上以用于照明(一类冒烟的,基于燃料的照明设备,有火灾危险和室内空气质量健康危害)。通过使数十瓦标准的根据本公开的发电机与高效白光LED耦合可实现新的照明系统。新系统可持续地在十年或更长时间提供清洁、廉价的照明设备并可用几个月的煤油费用(US$10-$50)的价值支付。本公开示例性的发电机的相关应用是为无线数据传输网(例如WiFi或网状网络)中的节点提供动力。 Another important application of the generator according to the present disclosure is rural lighting, mainly in emerging economies. Most households in developing countries spend 20 percent of their annual income on kerosene for lighting (a type of smoking, fuel-based lighting that poses fire hazards and indoor air quality health hazards). New lighting systems can be realized by coupling generators according to the present disclosure, on a tens of watt scale, with high-efficiency white LEDs. The new system can sustainably provide clean, cheap lighting for a decade or more and pay for what the cost of kerosene (US$10-$50) is worth in a few months. A related application of the exemplary generators of the present disclosure is to power nodes in wireless data transmission networks such as WiFi or mesh networks. the
根据使用图1中示出的结构的一个实施方式,膜有具有两个固定端的拉长的形状。膜由涂覆聚酯薄膜的塔夫绸制成,尺寸是440mm长,25mm宽及0.1-0.15mm厚。两个线圈在距每个固定端74mm处附着到膜。线圈由38awg的涂覆搪瓷的线制成,每个线圈有约150匝且电阻约25欧姆。线圈内径约3/4″,而外径7/8″。这些线圈串联配线以实现约50欧姆的总电阻。底部由丙烯酸类(acrylic)制成。两个圆柱形NdFeB磁体布置在线圈之下。磁体厚1/2″,直径3/4″,且产生5840高斯的表面场。膜的峰-峰垂直振荡约20mm。此实施方式在匹配的负载上,在9-10mph的风速(4-4.5m/s)下产生约15-20mW,这足以为无线收发器提供动力来用于信息的连续RF传输,例如温度和电压,并对无线收发器中的电容器充电。此实施方式的较小的尺寸使其适合于工作在HVAC管道中以便收获气流的能量以为传感器阵列提供动力。 According to one embodiment using the structure shown in Figure 1, the membrane has an elongated shape with two fixed ends. The membranes were made of Mylar coated taffeta and measured 440mm long, 25mm wide and 0.1-0.15mm thick. Two coils were attached to the membrane at 74 mm from each fixed end. The coils were made from 38 awg enamelled wire with about 150 turns each and a resistance of about 25 ohms. The inner diameter of the coil is about 3/4", and the outer diameter is 7/8". These coils are wired in series to achieve a total resistance of approximately 50 ohms. The bottom is made of acrylic. Two cylindrical NdFeB magnets are arranged under the coil. The magnet is 1/2" thick, 3/4" in diameter, and produces a surface field of 5840 Gauss. The peak-to-peak vertical oscillation of the film is approximately 20 mm. This implementation produces about 15-20mW at a wind speed of 9-10mph (4-4.5m/s) at a matched load, which is sufficient to power a wireless transceiver for continuous RF transmission of information such as temperature and voltage and charges the capacitor in the wireless transceiver. The small size of this embodiment makes it suitable for working in HVAC ducts to harvest the energy of the airflow to power the sensor array. the
在另一个实施方式中,根据图1中显示结构而构造的示例性的发电机使用较大的膜,该膜由涂覆聚酯薄膜的塔夫绸或ripstock尼龙制成,且为1.75米长,50mm宽,在钢和HDPE底部上。在一个实施方式中,尺寸约1.5″×1.5″的薄矩形钢片附着到膜的中间以起如在图6中示出的块状物的作用。两个28awg的线的矩形线圈靠近带的端部被附着并悬于相应的矩形 NdFeB磁体之上。通过此示例性的发电机在匹配的负载上,在10mph的风速下产生的这种功率约0.5-1W,适合于对手机充电或为农村地区的照明设备提供功率。 In another embodiment, an exemplary generator constructed according to the structure shown in Figure 1 uses a larger membrane made of mylar coated taffeta or ripstock nylon and is 1.75 meters long , 50mm wide, on steel and HDPE bottom. In one embodiment, a thin rectangular steel sheet measuring approximately 1.5" x 1.5" is attached to the middle of the membrane to act as a block as shown in FIG. 6 . Two rectangular coils of 28awg wire were attached near the ends of the ribbon and suspended over corresponding rectangular NdFeB magnets. This power is about 0.5-1W produced by this exemplary generator on a matched load at a wind speed of 10mph, suitable for charging a mobile phone or powering lighting in rural areas. the
尽管利用获取气流的能量的实例描述了以上实施方式,但应理解,也可应用相同的设计以获取水流的能量。例如,具有更改的膜,具有较小的粘性阻力特性的发电机,可放置在海底以获取海流的能量。另外,以类似于在所讨论的HVAC系统中的能量收获的方式,基于本公开的原理的发电机可并入水管线路中。可使用海流和风力发电机的组合以在开阔的水体上形成遥感器阵列,尽管单独的海流或风力发电机也能够用于此用途。 Although the above embodiments have been described using the example of harvesting energy from a stream of air, it should be understood that the same design could be applied to harvest energy from a stream of water. For example, generators with altered membranes, with less viscous drag properties, could be placed on the ocean floor to harvest energy from ocean currents. Additionally, generators based on the principles of the present disclosure may be incorporated into water lines in a manner similar to energy harvesting in the discussed HVAC system. A combination of ocean currents and wind turbines can be used to form a remote sensor array over an open body of water, although ocean currents or wind turbines alone could also be used for this purpose. the
应理解,在此描述的示例性的发电机的一个或更多的部分或模块可被单独地销售以便组装到如本公开中描述的发电机中。例如,可提供能量转换器以用于具有磁场的发电机中。转换器包括至少一个柔性膜。每个膜具有至少两个固定端,并暴露在磁场中(当用于发电机中时)。另外,膜在遭受流体流时振动或振荡。每个膜具有至少一个连接的电导体。由流体流引起的每个膜的振动造成导体相对磁场的运动。导体的相对运动造成施加到电导体的磁场强度的变化。施加到电导体的磁场强度的变化引起在导体中流动的电流。还应理解,发电机可利用多组能量转换器来以较大规模产生能量。 It should be understood that one or more parts or modules of the exemplary generators described herein may be sold separately for assembly into a generator as described in this disclosure. For example, an energy converter may be provided for use in a generator with a magnetic field. The converter includes at least one flexible membrane. Each membrane has at least two fixed ends and is exposed to a magnetic field (when used in a generator). Additionally, the membrane vibrates or oscillates when subjected to fluid flow. Each membrane has at least one connected electrical conductor. Vibration of each membrane caused by fluid flow causes movement of the conductor relative to the magnetic field. The relative movement of the conductors causes a change in the strength of the magnetic field applied to the electrical conductor. A change in the strength of a magnetic field applied to an electrical conductor causes a current to flow in the conductor. It should also be understood that the generator may utilize multiple sets of energy converters to generate energy on a larger scale. the
根据另一个实施方式,提供示例性的能量转换器以用于包括至少一个磁场发生器和至少一个电导体中的一个的发电机中。转换器包括至少一个柔性膜和连接到膜的至少一个磁场发生器和至少一个电导体中的另一个。每个膜具有至少两个固定端。另外,每个膜在遭受流体流时振动。由流体流引起的每个膜的振动造成了至少一个导体和由至少一个磁场发生器产生的磁场之间的相对运动。该相对运动造成施加到至少一个电导体的磁场强度的变化。施加到至少一个电导体的磁场强度的变化引起在至少一个电导体中流动的电流。 According to another embodiment, an exemplary energy converter is provided for use in a generator including one of at least one magnetic field generator and at least one electrical conductor. The transducer includes at least one flexible membrane and the other of at least one magnetic field generator and at least one electrical conductor connected to the membrane. Each membrane has at least two fixed ends. Additionally, each membrane vibrates when subjected to fluid flow. Vibration of each membrane caused by fluid flow causes relative motion between at least one conductor and a magnetic field generated by at least one magnetic field generator. This relative movement causes a change in the strength of the magnetic field applied to the at least one electrical conductor. A change in the strength of the magnetic field applied to the at least one electrical conductor induces a current to flow in the at least one electrical conductor. the
本公开已参考其具体的实施方式进行了描述。然而,明显的是可对发明作出各种更改和改变而不偏离本公开广泛的精神和范围。本公开中描述 的原理可应用到网络化的显示系统的不同操作中而不背离该原理。因此,说明书和附图应认为是例证性的而非限制性的意思。 The disclosure has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes can be made to the invention without departing from the broad spirit and scope of the disclosure. The principles described in this disclosure can be applied to different operations of networked display systems without departing from the principles. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. the
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2006/061515WO2008066553A1 (en) | 2006-12-01 | 2006-12-01 | Generator utilizing fluid-induced oscillations |
| Publication Number | Publication Date |
|---|---|
| CN101601180A CN101601180A (en) | 2009-12-09 |
| CN101601180Btrue CN101601180B (en) | 2011-12-14 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2006800569001AExpired - Fee RelatedCN101601180B (en) | 2006-12-01 | 2006-12-01 | Generators using fluid-induced oscillations |
| Country | Link |
|---|---|
| EP (1) | EP2087579A1 (en) |
| JP (1) | JP2010512132A (en) |
| CN (1) | CN101601180B (en) |
| AU (1) | AU2006351227A1 (en) |
| CA (1) | CA2707177A1 (en) |
| WO (1) | WO2008066553A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101728925B (en)* | 2008-10-30 | 2013-03-27 | 刘新广 | Vibration wind driven generator |
| CN101752985B (en)* | 2008-12-04 | 2012-12-12 | 刘新广 | Compound power generating grid |
| US7816797B2 (en)* | 2009-01-07 | 2010-10-19 | Oscilla Power Inc. | Method and device for harvesting energy from ocean waves |
| CN101783570B (en)* | 2009-01-20 | 2013-05-01 | 刘新广 | Chatter wind power generation apparatus |
| CN101922399B (en)* | 2010-07-23 | 2012-03-21 | 南京航空航天大学 | Water flow vibration generator |
| FR2972772B1 (en) | 2011-03-14 | 2015-12-18 | Jean Baptiste Drevet | HYDROLIAN GENERATOR |
| JP5720379B2 (en)* | 2011-03-31 | 2015-05-20 | 日本電気株式会社 | Water current generator |
| US8854170B2 (en)* | 2011-05-20 | 2014-10-07 | GM Global Technology Operations LLC | System and method of filling an air gap between a pair of core sections of a transformer |
| JP5475719B2 (en)* | 2011-05-31 | 2014-04-16 | 慎二 比江島 | Vibrating body control device and vibrating body control method |
| CN104079208B (en)* | 2014-07-15 | 2016-01-27 | 哈尔滨工业大学 | A piezoelectric power generation device and method under the impact of low-speed water flow |
| CN105846721B (en)* | 2016-05-18 | 2017-10-27 | 重庆大学 | The Asymmetric Elasticity beam gathered for flowing water energy |
| IT201900004563A1 (en)* | 2019-03-27 | 2020-09-27 | Wa St Srls | PLANT TO GENERATE ELECTRICITY |
| CN110557044B (en)* | 2019-09-18 | 2021-09-17 | 重庆三峡学院 | Water flow power generation device with electromagnetic-friction power generation function |
| CN114938123B (en)* | 2022-05-12 | 2025-04-15 | 重庆大学 | Electromagnetic wind energy collector based on rotational vibration |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0977345A2 (en)* | 1998-07-31 | 2000-02-02 | Siemens Aktiengesellschaft | Electromagnetic voltage generator |
| DE10241854A1 (en)* | 2002-09-09 | 2003-04-03 | Manfred Lottermoser | Extracting electrical energy from water waves, involves moving magnets and current conductors acyclically past each other by devices moved by water waves to induce electric currents |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4024409A (en)* | 1975-01-07 | 1977-05-17 | Payne Peter R | Aeolian windmill |
| JPS5620802A (en)* | 1979-07-27 | 1981-02-26 | Yokogawa Hokushin Electric Corp | Transducer of air pulse signal into air pressure signal |
| JPS61239143A (en)* | 1985-04-16 | 1986-10-24 | Yokogawa Electric Corp | Oscillation type transducer |
| JPH1066322A (en)* | 1996-08-23 | 1998-03-06 | Matsushita Electric Ind Co Ltd | Power generator |
| JP2001157433A (en)* | 1999-11-26 | 2001-06-08 | Fujitsu Ltd | Vibration power generator by fluid |
| US6593666B1 (en)* | 2001-06-20 | 2003-07-15 | Ambient Systems, Inc. | Energy conversion systems using nanometer scale assemblies and methods for using same |
| JP2003116258A (en)* | 2001-10-05 | 2003-04-18 | Ntt Power & Building Facilities Inc | Wind power generator |
| JP3911405B2 (en)* | 2001-11-15 | 2007-05-09 | トヨタ自動車株式会社 | Sheet take-out apparatus and sheet take-out method |
| JP2006207749A (en)* | 2005-01-31 | 2006-08-10 | Tokai Rubber Ind Ltd | Damping device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0977345A2 (en)* | 1998-07-31 | 2000-02-02 | Siemens Aktiengesellschaft | Electromagnetic voltage generator |
| DE10241854A1 (en)* | 2002-09-09 | 2003-04-03 | Manfred Lottermoser | Extracting electrical energy from water waves, involves moving magnets and current conductors acyclically past each other by devices moved by water waves to induce electric currents |
| Publication number | Publication date |
|---|---|
| CA2707177A1 (en) | 2008-06-05 |
| WO2008066553A1 (en) | 2008-06-05 |
| CN101601180A (en) | 2009-12-09 |
| JP2010512132A (en) | 2010-04-15 |
| AU2006351227A1 (en) | 2008-06-05 |
| EP2087579A1 (en) | 2009-08-12 |
| Publication | Publication Date | Title |
|---|---|---|
| CN101601180B (en) | Generators using fluid-induced oscillations | |
| US7573143B2 (en) | Generator utilizing fluid-induced oscillations | |
| US8258644B2 (en) | Apparatus for harvesting energy from flow-induced oscillations and method for the same | |
| US7772712B2 (en) | Fluid-induced energy converter with curved parts | |
| US20110150669A1 (en) | Non-Propeller Fan | |
| US7986051B2 (en) | Energy converters utilizing fluid-induced oscillations | |
| US20160201646A1 (en) | Improvements for a non-rotating wind energy generator | |
| Zhu et al. | A novel miniature wind generator for wireless sensing applications | |
| JP2006291842A (en) | Wind power generation device | |
| JP4562617B2 (en) | Wind power generator | |
| HK1133332A (en) | Generator utilizing fluid-induced oscillations | |
| Fei et al. | A fluttering-to-electrical energy transduction system for consumer electronics applications | |
| CN108266327A (en) | A kind of model wind generating device | |
| WO2005106244A1 (en) | Self-generator for transforming tiny kinetic energy into electric energy | |
| CN114731092A (en) | Electric power generator | |
| CN120512024B (en) | Composite generator for collecting multidirectional vibration energy of power transmission line | |
| TW200911391A (en) | Generator and circuit utilizing fluid-induced oscillations | |
| Fei et al. | An indoor air duct flow energy conversion system: modeling and experiments | |
| JP5080331B2 (en) | Wind power generator | |
| WO2015020887A2 (en) | Improvements for a non-rotating wind energy generator | |
| US20120248782A1 (en) | Flying-magnet-dynamo applied in electrical energy generation from Wind, Marine or Mechanical energy transformation | |
| CN120613903A (en) | A dual-degree-of-freedom vibration energy harvester based on magnetic springs |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| REG | Reference to a national code | Ref country code:HK Ref legal event code:DE Ref document number:1133332 Country of ref document:HK | |
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20111214 Termination date:20141201 | |
| EXPY | Termination of patent right or utility model | ||
| REG | Reference to a national code | Ref country code:HK Ref legal event code:WD Ref document number:1133332 Country of ref document:HK |