关于联邦赞助研究或者开发的声明Statement Regarding Federally Sponsored Research or Development
本发明是在美国军方授予的政府合同W911W6-05-C-0013的支持下而完成的。政府具有对本发明的某些权利。This invention was made with support under Government Contract W911W6-05-C-0013 awarded by the United States Military. The government has certain rights in this invention.
技术领域technical field
本发明提供涉及到电化学激励的系统、设备和有关方法。The present invention provides systems, devices and related methods related to electrochemical actuation.
背景技术Background technique
激励一般涉及一种可以通过将能量(例如电能、化学能等)转换成机械能来调整或者移动物体或者物体的一部分的机制。激励器可以按能量转换方式来分类。例如,静电激励器将静电力转换成机械力。Actuation generally refers to a mechanism that can adjust or move an object or part of an object by converting energy (eg, electrical energy, chemical energy, etc.) into mechanical energy. Actuators can be classified according to how they convert energy. For example, electrostatic actuators convert electrostatic force into mechanical force.
压电激励提供高带宽和激励权力(authority)但是提供低应力(通常比1%小得多)并且要求高激励电压。形状记忆合金(SMA)、磁致伸缩体和新开发的铁磁形状记忆合金(FSMA)能够有更大应力但是产生更慢响应,这限制了它们的适用性。以场致域运动为基础的激励机制(压电,FSMA)也往往具有低的机体应力。上述激励方法是基于对基于重量的品质因数有负面影响的高密度活性材料(基于铅的氧化物、金属合金)的使用。因此需要一种能够提供高激励能量密度、高激励权力(应力)、大的自由应变和有用带宽的技术。Piezoelectric excitation offers high bandwidth and excitation authority but provides low stress (typically much less than 1%) and requires high excitation voltage. Shape memory alloys (SMAs), magnetostrictors and the newly developed ferromagnetic shape memory alloys (FSMAs) are capable of greater stress but produce slower responses, which limits their applicability. Actuation mechanisms based on field-induced field motion (piezoelectric, FSMA) also tend to have low body stress. The aforementioned excitation method is based on the use of high density active materials (lead-based oxides, metal alloys) which have a negative impact on the weight-based figure of merit. There is thus a need for a technique that can provide high excitation energy density, high excitation power (stress), large free strain, and useful bandwidth.
先前已经描述使用电化学的某些激励方法,其中承受负载的激励材料处于气相或者液相并且可以有望具有低弹性模量并且因而与本发明的方式相比,具有较低的激励能量密度和激励应力。尽管观测到移位,但是尚未证实机械功。Certain actuation methods using electrochemistry have been described previously, where the actuation material bearing the load is in the gas or liquid phase and can be expected to have a low modulus of elasticity and thus a lower actuation energy density and actuation energy compared to the approach of the present invention. stress. Although displacement was observed, mechanical work has not yet been demonstrated.
因而需要改进的方法和设备。There is thus a need for improved methods and apparatus.
发明内容Contents of the invention
本发明涉及被构造和布置成从第一定向移位到第二定向的激励器系统,包括:包括负电极和正电极的至少一个电化学电池,其中负电极和正电极中的一个或者两个是激励器并且包括第一部分和第二部分,以及其中在充电和/或放电时,物质以与第二部分不同的程度嵌入、脱嵌、合金化于、氧化、还原或者镀覆第一部分并且经历相对于第二部分而产生的尺寸变化,由此向激励器造成在第一部分与第二部分之间的差动应变且引起激励器的至少一部分的移位,激励器的移位做机械功且无需耦合到做所述功的结构。The present invention relates to an actuator system constructed and arranged to be displaced from a first orientation to a second orientation, comprising: at least one electrochemical cell comprising a negative electrode and a positive electrode, wherein one or both of the negative electrode and the positive electrode are The actuator and includes a first part and a second part, and wherein upon charging and/or discharging, a substance intercalates, deintercalates, alloys, oxidizes, reduces, or plates the first part to a different extent than the second part and undergoes a relative A dimensional change in the second portion, thereby causing a differential strain to the actuator between the first portion and the second portion and causing displacement of at least a portion of the actuator, the displacement of the actuator performing mechanical work without requiring coupled to a structure that does the work described.
本发明也涉及被构造和布置成从第一定向移位到第二定向的激励器系统,包括:包括负电极和正电极的至少一个电化学电池,其中负电极和正电极中的一个或者两个是激励器并且包括第一部分和第二部分,以及其中在充电和/或放电时,物质以与第二部分不同的程度嵌入、脱嵌或者合金化于第一部分并且经历相对于第二部分而产生的尺寸变化,由此向激励器造成在第一部分与第二部分之间的差动应变且引起激励器的至少一部分的移位,激励器的移位做机械功且无需耦合到做所述功的结构。The invention also relates to an actuator system constructed and arranged to be displaced from a first orientation to a second orientation, comprising: at least one electrochemical cell comprising a negative electrode and a positive electrode, wherein one or both of the negative electrode and the positive electrode is an actuator and includes a first part and a second part, and wherein, upon charging and/or discharging, a substance intercalates, deintercalates, or alloys in the first part to a different extent than the second part and undergoes generation relative to the second part dimensional change of the actuator, thereby causing a differential strain between the first part and the second part to the actuator and causing a displacement of at least a part of the actuator, the displacement of the actuator doing mechanical work and need not be coupled to do said work Structure.
本发明也涉及被构造和布置成从第一定向移位到第二定向的激励器系统,包括:包括负电极和正电极的至少一个电化学电池,其中负电极和正电极中的一个或者两个是激励器并且包括第一部分和第二部分,以及其中在第一部分的与第二部分不同的程度的氧化和/或还原时第一部分经历相对于第二部分而产生的尺寸变化,由此向激励器造成在第一部分与第二部分之间的差动应变且引起激励器的至少一部分的移位,激励器的移位做机械功且无需耦合到做所述功的结构。The invention also relates to an actuator system constructed and arranged to be displaced from a first orientation to a second orientation, comprising: at least one electrochemical cell comprising a negative electrode and a positive electrode, wherein one or both of the negative electrode and the positive electrode is an actuator and includes a first portion and a second portion, and wherein the first portion undergoes a dimensional change relative to the second portion upon oxidation and/or reduction of the first portion to a different degree than the second portion, thereby contributing to the excitation The actuator causes a differential strain between the first portion and the second portion and causes displacement of at least a portion of the actuator, the displacement of the actuator performing mechanical work without being coupled to a structure performing said work.
本发明也涉及被构造和布置成从第一定向移位到第二定向的激励器系统,包括:包括负电极和正电极的至少一个电化学电池,其中负电极和正电极中的一个或者两个是激励器并且包括第一部分和第二部分,以及其中在充电和/或放电时,物质以与第二部分不同的程度电化学沉积于第一部分并且经历相对于第二部分而产生的尺寸变化,由此向激励器造成在第一部分与第二部分之间的差动应变且引起激励器的至少一部分的移位,激励器的移位做机械功且无需耦合到做所述功的结构。The invention also relates to an actuator system constructed and arranged to be displaced from a first orientation to a second orientation, comprising: at least one electrochemical cell comprising a negative electrode and a positive electrode, wherein one or both of the negative electrode and the positive electrode is an actuator and includes a first part and a second part, and wherein upon charging and/or discharging a substance is electrochemically deposited on the first part to a different extent than the second part and undergoes a dimensional change relative to the second part, Thereby causing a differential strain to the actuator between the first and second portions and causing displacement of at least a portion of the actuator, the displacement of the actuator doing mechanical work without being coupled to a structure doing said work.
本发明也涉及激励器设备,包括:至少一个电化学电池,包括负电极、正电极和物质,物质可以以与电化学电池的第二部分不同的程度来嵌入、脱嵌、合金化于、氧化、还原或者镀覆电化学电池的第一部分,第一部分和/或第二部分由此在放电时经历尺寸变化从而造成做机械功的激励器移位,其中电化学电池被构造和布置成在制造时充电并且在使用之后部分地放电或者在首次放电之后没有进一步充电。The invention also relates to an actuator device comprising: at least one electrochemical cell comprising a negative electrode, a positive electrode and a substance which can be intercalated, deintercalated, alloyed with, oxidized to a different extent than the second part of the electrochemical cell , reduction or plating of a first part of an electrochemical cell, whereby the first part and/or the second part undergoes a dimensional change upon discharge thereby causing displacement of the actuator that performs mechanical work, wherein the electrochemical cell is constructed and arranged to be Charge from time to time and partially discharge after use or no further charge after the first discharge.
本发明也涉及输注泵,包括:至少一个电化学电池,包括负电极、正电极和嵌入物质,其中负电极和/正电极在充电和/或放电时经历尺寸变化以便造成流体注入到身体中。The invention also relates to an infusion pump comprising: at least one electrochemical cell comprising a negative electrode, a positive electrode and an intercalation substance, wherein the negative electrode and/or positive electrode undergoes a dimensional change upon charging and/or discharging in order to cause infusion of fluid into the body .
本发明也涉及被构造和布置成用于生理设施(physiological setting)中的激励器,该激励器包括:与第二部分相邻的第一部分,其中第一部分在暴露于包括物质的生理流体时经历尺寸变化,并且其中由于与物质的接触所导致的物质到第一部分中的电化学嵌入、物质从第一部分中的脱嵌或者第一部分的氧化/还原造成激励器的尺寸变化。The present invention also relates to an actuator constructed and arranged for use in a physiological setting, the actuator comprising: a first portion adjacent to a second portion, wherein the first portion experiences A dimensional change, and wherein the dimensional change of the actuator is caused by electrochemical intercalation of species into the first part, deintercalation of species from the first part, or oxidation/reduction of the first part due to contact with the species.
本发明也涉及用于将药物施用到身体中的电化学激励器,该电化学激励器包括:至少一个负电极;至少一个正电极;以及物质,其中电化学激励器受到施加的电压或者电流,由此电压或者电流的施加或者其停止施加包括物质在电化学激励器的至少一个电极中的嵌入从而造成电化学激励器的容积或者尺寸变化,以及其中容积或者尺寸变化导致将药物施用到身体中。The invention also relates to an electrochemical stimulator for administering a drug into the body, the electrochemical stimulator comprising: at least one negative electrode; at least one positive electrode; and a substance, wherein the electrochemical stimulator is subjected to an applied voltage or current, The application of a voltage or current, or cessation of application thereof, thus comprises the intercalation of a substance in at least one electrode of the electrochemical activator causing a change in volume or size of the electrochemical activator, and wherein the change in volume or size results in the administration of the drug into the body .
附图说明Description of drawings
图1示出了(a)在没有施加电压或者电流的情况下和(b)在施加电压或者电流的情况下根据本发明一个实施例的激励器系统的例子。Figure 1 shows an example of an actuator system according to one embodiment of the present invention (a) without applied voltage or current and (b) with applied voltage or current.
图2示出了(a)在没有施加电压或者电流的情况下和(b)在施加电压或者电流的情况下根据本发明一个实施例的用于在相邻流体容器中配发流体的激励器系统的例子。Figure 2 shows an actuator for dispensing fluid in adjacent fluid containers according to one embodiment of the invention (a) without and (b) with voltage or current applied System example.
图3A-C示出了具有足以影响激励器的移位速率和冲程长度的硬度的激励器系统。Figures 3A-C illustrate an actuator system with sufficient stiffness to affect the displacement rate and stroke length of the actuator.
图4示出了根据本发明一个实施例的激励器系统的例子。Figure 4 shows an example of an actuator system according to one embodiment of the invention.
图5示出了根据本发明一个实施例的激励器系统的另一例子。Figure 5 shows another example of an actuator system according to one embodiment of the present invention.
图6示出了根据本发明一个实施例的激励器系统的另一例子。Figure 6 shows another example of an actuator system according to one embodiment of the present invention.
图7示出了根据本发明一个实施例的激励器系统的另一例子。Figure 7 shows another example of an actuator system according to one embodiment of the present invention.
图8A示出了包括由不同材料形成的第一部分和第二部分的激励器系统。Figure 8A shows an actuator system comprising first and second parts formed from different materials.
图8B示出了在浸入水中之后的包括由不同材料形成的第一部分和第二部分的激励器系统。Figure 8B shows an actuator system comprising first and second parts formed of different materials after immersion in water.
图9示出了包括(a)Zn形式和(b)在Zn转换成Zn(OH)2从而实现激励器系统的激励时的Zn层的激励器系统。Figure 9 shows an actuator system comprising (a) the Zn form and (b) a Zn layer when the Zn is converted to Zn(OH)2 to enable excitation of the actuator system.
图10示出了包括(a)Zn形式和(b)在Zn转换成Zn(OH)2从而实现激励器系统的激励时的Zn层的另一激励器系统。Figure 10 shows another actuator system comprising (a) the Zn form and (b) a layer of Zn when the Zn is converted to Zn(OH)2 enabling excitation of the actuator system.
图11示出了包括锂离子耦合的激励器系统,其中激励器(a)在暴露于电解质之前处于零应变和(b)在暴露于电解质之后经历激励。Figure 11 shows an actuator system including a Li-ion coupling where the actuator is (a) at zero strain before exposure to the electrolyte and (b) undergoes excitation after exposure to the electrolyte.
图12示出了(a)在充电状态下和(b)在出现于电解质中之后自发放电时组装的锂离子耦合或者镍金属-氢化物耦合。Figure 12 shows the assembled Li-ion coupling or Nickel metal-hydride coupling (a) in the charged state and (b) upon spontaneous discharge after emergence in the electrolyte.
图13示出了(a)在暴露于电解质之前和(b)在暴露于电解质时的包括两个不同部分的激励器系统,其中该系统经历弯曲或者挤压。Figure 13 shows an actuator system comprising two different parts (a) before and (b) upon exposure to electrolyte, where the system is subjected to bending or crushing.
图14示出了(a)在暴露于电解质之前和(b)在暴露于电解质时的包括两个不同部分的激励器系统,其中该系统经历结构的弯曲或者开启。Figure 14 shows an actuator system comprising two different parts (a) before and (b) upon exposure to electrolyte, where the system undergoes bending or opening of the structure.
图15示出了(a)在暴露于物质之前和(b)在暴露于物质时的具有铰接结构的激励器系统,其中该系统经历激励。Figure 15 shows an actuator system with an articulated structure (a) before and (b) upon exposure to a substance where the system undergoes excitation.
图16示出了自供动力式电化学泵的示意设计。Figure 16 shows a schematic design of a self powered electrochemical pump.
图17示出了具有内置应变放大的自供动力式形变(morphing)激励器的移位对比时间曲线的曲线图。Figure 17 shows a graph of displacement versus time for a self-powered morphing actuator with built-in strain amplification.
图18示出了由20%占空比控制的电化学形变激励器的移位曲线的曲线图。Figure 18 shows a graph of the displacement curve of an electrochemical deformation actuator controlled by a 20% duty cycle.
图19示出了利用粘合到铜箔的0.10mm厚锡箔的压电双晶片(bimorph)电化学激励器的恒流(galvanostatic)放电分布。Figure 19 shows the galvanostatic discharge profile of a piezoelectric bimorph electrochemical actuator utilizing 0.10 mm thick tin foil bonded to copper foil.
图20示出了利用粘合到铜的0.05mm厚锡箔的电化学压电双晶片电池的恒流放电分布。Figure 20 shows the galvanostatic discharge profile of an electrochemical piezoelectric bimorph cell utilizing 0.05 mm thick tin foil bonded to copper.
在与附图结合考虑时,本发明的其它方面、实施例和特征将从以下具体描述中变得清楚。附图是示意性的并且并未打算按比例绘制。为求简洁,没有在每幅图中标记每个部件,而图中所示本发明各实施例的每个部件对于允许本领域普通技术人员理解本发明而言也并非都是必需的。这里引用的所有专利申请和专利通过引用而完全地结合于此。在有冲突的情况下以包括定义的本说明书为准。Other aspects, embodiments and features of the invention will become apparent from the following detailed description when considered in conjunction with the accompanying drawings. The figures are schematic and not intended to be drawn to scale. For the sake of clarity, not every component is labeled in every figure, nor is every component of the embodiments of the invention shown in the figures necessary to allow one of ordinary skill in the art to understand the invention. All patent applications and patents cited herein are hereby incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.
具体实施方式Detailed ways
本发明主要地提供涉及到电化学激励的系统和设备以及有关方法。The present invention generally provides systems and devices and related methods related to electrochemical actuation.
在一些情况下,本发明提供可以包括至少一个部件的系统(例如激励器系统),其中向该部件施加电压或者电流可以造成该部件的容积或者尺寸变化。在一些情况下,该容积或者尺寸变化可以产生机械功。在一些实施例中,该系统的至少一部分可以被构造和布置成从一个定向移位到另一定向。该系统也可以与另一结构关联,从而该系统的容积或者尺寸变化可以影响该结构的定向、形状、尺寸、容积或者其它特征。诸如这些系统的系统在例如包括泵(例如输注泵)和配药设备的各种应用中是有用的。In some cases, the invention provides systems (eg, actuator systems) that can include at least one component to which application of a voltage or current can cause a volume or dimension change of the component. In some cases, this volume or dimensional change can produce mechanical work. In some embodiments, at least a portion of the system can be constructed and arranged to be displaced from one orientation to another. The system may also be associated with another structure such that a change in volume or size of the system may affect the orientation, shape, size, volume or other characteristics of the structure. Systems such as these are useful in a variety of applications including, for example, pumps (eg, infusion pumps) and drug dispensing devices.
在一些实施例中,系统可以在该系统的操作过程中包括与一个或者多个部件(例如电极)关联的物质。诸如离子的物质能够与设备的一个或者多个部分反应。本发明的一些实施例可以涉及到物质与设备的一个或者多个电极的反应,该反应生成电极中的容积或者尺寸变化。如这里使用的那样,“容积或者尺寸变化”是指系统或者系统一部分的膨胀、收缩和/或其它移位。容积或者尺寸变化可以包括一个或者多个尺寸上一个或者多个数量的膨胀、收缩、拉伸、缩短、扭曲、弯曲、剪切或者其它移位。在一些情况下,容积或者尺寸变化可以是各向同性的。在一些情况下,容积或者尺寸变化可以是各向异性的。这样的变化可以用于机械功即激励。系统可以经历可以适合于具体应用的任何范围的容积或者尺寸变化。例如,激励器系统可以被定位成与流体容器接触并且可以膨胀和收缩从而系统作为用以从流体容器配发流体的抽运设备来工作。In some embodiments, a system may include a substance associated with one or more components (eg, electrodes) during operation of the system. Species such as ions can react with one or more parts of the device. Some embodiments of the invention may involve a reaction of a substance with one or more electrodes of a device, the reaction generating a volume or dimensional change in the electrodes. As used herein, "volume or dimensional change" refers to expansion, contraction and/or other displacement of a system or a portion of a system. A volumetric or dimensional change may include expansion, contraction, stretching, shortening, twisting, bending, shearing, or other displacement of one or more quantities in one or more dimensions. In some cases, the volume or dimensional change can be isotropic. In some cases, volumetric or dimensional changes may be anisotropic. Such changes can be used for mechanical work or excitation. The system may undergo any range of volumetric or dimensional changes that may be suitable for a particular application. For example, an actuator system may be positioned in contact with a fluid container and may expand and contract such that the system operates as a pumping device to dispense fluid from the fluid container.
在一些实施例中,本发明提供一种包括至少一个电化学电池的电化学激励器,该电化学电池包括阳极、阴极和物质(例如锂离子),其中电化学电池在施加电压或者电流时经历容积或者尺寸变化。在一些实施例中,电化学激励器也包括如下结构,该结构包括被构造和布置成例如通过一个或者多个电化学电池的容积或者尺寸变化从第一定向移位到第二定向的至少一个部分。在该结构的该部分移位时产生机械功。如下文更具体讨论的那样,可以通过电化学电池的容积或者尺寸变化来激励各种系统。In some embodiments, the present invention provides an electrochemical actuator comprising at least one electrochemical cell comprising an anode, a cathode, and a species (e.g., lithium ions), wherein the electrochemical cell experiences volume or size change. In some embodiments, the electrochemical actuator also includes a structure comprising at least one of the first orientations constructed and arranged to be displaced from a first orientation to a second orientation, for example, by a change in volume or size of one or more electrochemical cells. a part. Mechanical work is produced when the portion of the structure is displaced. As discussed in more detail below, various systems can be motivated by volumetric or dimensional changes in electrochemical cells.
如这里使用的那样,“被构造和布置成移位的”激励器系统是指如下激励器系统,该激励器系统可以更改该系统的定向即通过该系统至少一部分的移位(例如激励),这在该系统的预定目的之下影响该系统或者与该系统关联的结构的性能。本领域普通技术人员将理解这一术语的含义。在一个示例实施例中,激励器系统可以被定位在诸如流体容器或者储蓄器的结构附近,其中激励器系统被构造和布置成使得该系统的运动或者其它移位影响流体容器的位置、形状、尺寸或者其它特征以从流体容器抽运或者配发流体。As used herein, an actuator system "constructed and arranged to displace" refers to an actuator system that can alter the orientation of the system, i.e., through displacement (e.g., excitation) of at least a portion of the system, This affects the performance of the system or structures associated with the system under the intended purpose of the system. Those of ordinary skill in the art will understand the meaning of this term. In an example embodiment, the actuator system may be positioned near a structure such as a fluid container or reservoir, wherein the actuator system is constructed and arranged such that movement or other displacement of the system affects the position, shape, Dimensions or other characteristics to pump or dispense fluid from a fluid container.
有利地,可以通过例如弯曲、挤压、扭曲、拉伸和收缩的各种方法来实现系统或者系统的一部分从第一定向到第二定向的移位,如下文更完全描述的那样,这可以通过变化系统的材料组成、系统的一个或者多个电化学电池的配置、施加的电压或者电流、占空比或者其它操作参数来更改。在系统与结构关联的情况下,可以例如通过改变电化学电池相对于待移位的结构而言的定位、结构的形状、在电池与结构之间有操作关系的任何材料和/或部件的材料组成来更改系统的移位。在一些情况下,该移位可以包括系统的一部分的线性移位。在一些情况下,该移位可以包括系统的一部分的挤压。例如,该系统可以包括可以具有第一平面定向的盘状部分,并且在激励时该盘状部分可以经由挤压而移位到非平面半球形的第二定向。Advantageously, displacement of a system or a portion of a system from a first orientation to a second orientation can be accomplished by various methods such as bending, squeezing, twisting, stretching, and shrinking, as described more fully below. This can be altered by varying the material composition of the system, the configuration of one or more electrochemical cells of the system, the applied voltage or current, duty cycle, or other operating parameters. Where the system is associated with a structure, this can be achieved, for example, by altering the positioning of the electrochemical cell relative to the structure to be displaced, the shape of the structure, any materials and/or materials of components in an operative relationship between the cell and the structure composed to change the displacement of the system. In some cases, the shift may include a linear shift of a portion of the system. In some cases, this displacement may include squeezing of a portion of the system. For example, the system may include a disc-shaped portion that may have a first planar orientation, and upon actuation the disc-shaped portion may be displaced via compression to a second non-planar hemispherical orientation.
此外,结构或者结构的一部分的移位程度可以针对具体应用来定制。例如在一些实施例中,本发明的电化学电池可以造成结构或者结构的一部分例如大于5度、大于10度、大于20度、大于30度或者大于40度的移位。视具体应用而定,在其它实施例中,电化学电池可以造成例如大于1cm、大于10cm、大于20cm、大于50cm或者大于1m的移位。Furthermore, the degree of displacement of a structure or a portion of a structure can be tailored for a particular application. For example, in some embodiments, electrochemical cells of the present invention can cause a structure or a portion of a structure to displace, for example, greater than 5 degrees, greater than 10 degrees, greater than 20 degrees, greater than 30 degrees, or greater than 40 degrees. Depending on the particular application, in other embodiments, the electrochemical cell may cause a displacement, eg, greater than 1 cm, greater than 10 cm, greater than 20 cm, greater than 50 cm, or greater than 1 m.
在一些情况下,电化学电池在充电或者放电时的容积或者尺寸移位可以用来进行系统、系统的一部分或者与系统相邻或者以别的方式与系统关联的结构的物理移位。容积或者尺寸移位(净体积变化)可以在充电和/或放电过程中为正、零或者负。在一些情况下,可以按照电池的构成材料的组成或者电荷状态、使用用于构成材料的摩尔体积的列表数据、根据在各构成材料中出现的体积变化来容易地计算净体积变化或者在电化学电池上直接地测量净体积变化。In some cases, volumetric or dimensional displacement of an electrochemical cell upon charging or discharging may be used to physically displace a system, a portion of a system, or a structure adjacent to or otherwise associated with the system. The volume or size shift (net volume change) can be positive, zero or negative during charging and/or discharging. In some cases, the net volume change can be easily calculated from the volume changes that occur in each constituent material according to the composition or state of charge of the constituent materials of the battery, using tabular data for the molar volumes of the constituent materials, or in the electrochemical The net volume change is measured directly on the cell.
可以通过这里描述的电化学电池来激励数个不同结构。在一些实施例中,本发明提供被构造和布置成在充电或者放电时从第一定向移位到第二定向的激励器系统(例如电化学激励器)。在一些情况下,激励器系统可以被构造和布置成在充电或者放电时从第一形状更改成第二形状。在一些情况下,激励器产生的移位可以具有与在电化学电池中出现的容积或者尺寸变化相同的符号(例如正、负)。例如,正移位(例如线性尺寸的增加)可以对应于电化学电池本身的正净体积变化(例如膨胀),而负移位(线性尺寸的减少)可以对应于电化学电池本身的负净体积变化(收缩)。在一些情况下,激励器产生的移位可以不具有与在电化学电池中出现的容积或者尺寸变化相同的符号。例如,如在示例中所述,正移位可以由经历净负体积变化的电化学电池产生。也就是说,激励器的移位可以与电化学电池的容积或者尺寸变化去耦合。Several different structures can be excited by the electrochemical cells described here. In some embodiments, the present invention provides actuator systems (eg, electrochemical actuators) constructed and arranged to displace from a first orientation to a second orientation upon charging or discharging. In some cases, the actuator system may be constructed and arranged to change from a first shape to a second shape upon charging or discharging. In some cases, the displacement produced by the actuator may have the same sign (eg, positive, negative) as the volumetric or dimensional change that occurs in the electrochemical cell. For example, a positive shift (such as an increase in linear dimension) may correspond to a positive net volume change (such as swelling) of the electrochemical cell itself, while a negative shift (such as a decrease in linear dimension) may correspond to a negative net volume of the electrochemical cell itself. change (shrinkage). In some cases, the displacement produced by the actuator may not have the same sign as the volumetric or dimensional change that occurs in the electrochemical cell. For example, as described in the examples, a positive shift can result from an electrochemical cell that undergoes a net negative volume change. That is, the displacement of the actuator can be decoupled from the volumetric or dimensional change of the electrochemical cell.
激励器系统可以包括至少一个电化学电池,该电化学电池包括负电极和正电极。激励器系统也可以例如包括可以串行或者并行操作的大于或者等于2、大于或者等于4、大于或者等于10、大于或者等于20或者大于或者等于50个的电化学电池。在一些实施例中,多个电化学电池可以并联电接合、但是可以堆叠以便增加整体移位而又维持低的整体设备电压。在一些实施例中,电化学激励器的净体积变化用来执行物理移位,该物理移位导致包括但不限于包括药物的流体的抽运或配发或者流体施用到身体中。The actuator system may include at least one electrochemical cell including a negative electrode and a positive electrode. The actuator system may also comprise, for example, greater than or equal to 2, greater than or equal to 4, greater than or equal to 10, greater than or equal to 20, or greater than or equal to 50 electrochemical cells that can be operated in series or in parallel. In some embodiments, multiple electrochemical cells can be electrically joined in parallel, but can be stacked to increase overall displacement while maintaining a low overall device voltage. In some embodiments, the net volume change of the electrochemical activator is used to perform a physical displacement resulting in pumping or dispensing of fluids including, but not limited to, drugs or administration of fluids into the body.
在一些实施例中,负电极和正电极中的一个或者两个可以是激励器并且可以在电化学电池的充电或者放电时改变形状和/或从第一定向移位到第二定向。在一些情况下,激励器系统可以包括可选地相互电连通的第一部分和第二部分,其中第一部分和第二部分在充电或者放电时经历差动容积或者尺寸变化或者差动移位。例如,经历形状变化或者移位的一个或者多个电极可以包括第一部分,该第一部分对可以有助于一个或者多个电极的移位的第二部分施加机械约束。在一些实施例中,第一部分与第二部分电连通。在一些实施例中,第一部分没有与第二部分电连通。In some embodiments, one or both of the negative and positive electrodes can be an actuator and can change shape and/or shift from a first orientation to a second orientation upon charging or discharging of the electrochemical cell. In some cases, the actuator system may include a first portion and a second portion, optionally in electrical communication with each other, wherein the first portion and the second portion undergo a differential volume or size change or differential displacement upon charging or discharging. For example, one or more electrodes undergoing a shape change or displacement may include a first portion that imposes a mechanical constraint on a second portion that may facilitate displacement of the one or more electrodes. In some embodiments, the first portion is in electrical communication with the second portion. In some embodiments, the first portion is not in electrical communication with the second portion.
在一些实例中,第一部分和第二部分(例如分别对应于电化学电池的正电极和负电极或者反之亦然)可以是层的形式,这些层可以被定位成相互紧接地相邻或者在其它实施例中可以通过其它材料而相互隔离。在一些实施例中,第一部分和第二部分相互粘合。在一些实施例中,第一部分和第二部分是系统同一部分的不同区域,其中一个部分比另一部分经历更大程度的电化学引起的容积或者尺寸变化。In some examples, the first and second portions (e.g., corresponding to the positive and negative electrodes, respectively, of the electrochemical cell or vice versa) can be in the form of layers that can be positioned immediately adjacent to each other or in other Embodiments may be separated from each other by other materials. In some embodiments, the first part and the second part are bonded to each other. In some embodiments, the first portion and the second portion are different regions of the same portion of the system, wherein one portion undergoes a greater degree of electrochemically induced volumetric or dimensional change than the other portion.
在一些实施例中,在充电和/或放电时,物质(例如嵌入(intercalation)物质、电子或者镀覆物质)以与第二部分不同的程度(例如不同的力度、浓度、应变、体积、形状变化或者其它变化)嵌入、脱嵌、合金化于、氧化、还原、镀覆于或者镀覆第一部分。例如,物质可以基本上嵌入、脱嵌或者合金化于、氧化、还原或者镀覆第一部分但是第二部分并不这样,或者第二部分的程度少于第一部分。由于第一部分的差动嵌入、脱嵌或者合金化、氧化、还原或者镀覆与第二部分的程度不同,所以第一部分可以经历所导致的尺寸变化,诸如体积或者线性尺寸的增加或者减少或者纵横比的变化。由于第二部分没有嵌入、脱嵌或者合金化、氧化、还原或者镀覆物质或者嵌入、脱嵌或者合金化、氧化、还原或者镀覆物质的程度少于第一部分,所以第二部分可以不经历实际尺寸变化或者可以不经历与第一部分相同的尺寸变化。结果在第一部分与第二部分之间造成差动应变(例如相对应变),这可以造成激励器至少一部分的移位(例如内部挠曲或者弯曲)。所造成的激励器的移位可以做机械功而无需耦合到做所述功的结构。在本发明的某些实施例中,激励器的激励可以包括从第一定向到第二定向的膨胀、收缩、弯曲、弧曲(bowing)、挤压、折叠、卷动或者其它形式的移位。In some embodiments, upon charging and/or discharging, the species (e.g., intercalation species, electrons, or plating species) reacts to a different degree (eg, different force, concentration, strain, volume, shape) than the second part. changes or other changes) embedded in, out of intercalation, alloyed in, oxidized, reduced in, plated in or plated in the first part. For example, a substance may substantially intercalate, deintercalate, or alloy into, oxidize, reduce, or plate a first portion but not a second portion, or the second portion to a lesser extent than the first portion. As a result of the differential intercalation, deintercalation or alloying, oxidation, reduction or plating of the first part to a different extent than the second part, the first part may undergo resulting dimensional changes, such as increases or decreases in volume or linear dimensions or aspect ratios. change in ratio. Because the second part does not intercalate, deintercalate, or alloy, oxidize, reduce, or plate material or intercalate, deintercalate, or alloy, oxidize, reduce, or plate material to a lesser extent than the first The actual dimensional changes may or may not undergo the same dimensional changes as the first part. The result is a differential strain (eg relative strain) between the first portion and the second portion, which can cause displacement (eg internal flexing or bending) of at least a portion of the actuator. The resulting displacement of the actuator can do mechanical work without coupling to the structure doing the work. In some embodiments of the invention, actuation of the actuator may include expansion, contraction, bending, bowing, squeezing, folding, rolling, or other forms of movement from a first orientation to a second orientation. bit.
在一些情况下,激励器系统本身可以是应变放大或者应变缩小结构。例如,激励器系统或者其一部分(例如电极)可以放大例如由于在系统或者系统一部分中出现的体积变化而产生的任何移位。在一些实施例中,激励器系统或者设备可以放大由于电极的容积变化而产生的移位。激励器的移位可以用来施加力或者进行与激励器相邻的结构的移位。In some cases, the actuator system itself may be a strain-magnifying or strain-reducing structure. For example, an actuator system or a portion thereof (eg, an electrode) may amplify any displacement, eg, due to a volume change occurring in the system or a portion of the system. In some embodiments, the actuator system or device can amplify the displacement due to the volume change of the electrodes. Displacement of the actuator can be used to apply a force or to displace a structure adjacent to the actuator.
对于任何这里描述的激励器系统和设备(例如泵),尽管激励器系统或者其一部分的移位可以用来执行机械功而无需耦合到做所述功的结构,但是在一些情况下激励器系统可以耦合到做机械功的结构(例如应变放大结构、应变缩小结构)。在一些情况下,激励器系统可以耦合到做机械功的结构。As with any of the actuator systems and devices described herein (such as pumps), although displacement of the actuator system or a portion thereof can be used to perform mechanical work without being coupled to the structure doing the work, in some cases the actuator system Can be coupled to structures that do mechanical work (eg strain amplifying structures, strain reducing structures). In some cases, the actuator system can be coupled to a structure that performs mechanical work.
在图1A中图示的实施例中示出了激励器系统的例子。如这一示例实施例中所示,激励器系统110包括与正电极114电连通的负电极112。正电极114可以包括第一部分116和第二部分118。在一些实施例中,部分116和118由不同材料形成。部分116和118也可以具有不同电势。例如,部分116可以包括可以以与部分118不同的程度嵌入、脱嵌、合金化、氧化、还原或者镀覆物质的材料。部分118可以由基本上不会嵌入、脱嵌或者合金化、氧化、还原或者镀覆物质的材料形成。在一些情况下,部分116可以由包括铝、锑、铋、碳、镓、硅、银、锡、锌中的一个或者多个的材料或者可以在锂的嵌入或者合金化或者化合形成时膨胀的其它材料形成。在一个具体实施例中,部分116由包括可以在锂嵌入时膨胀的铝的材料形成。部分118可以由铜形成,因为铜基本上不会嵌入锂或者与锂合金化。在一些实例中,部分118可以充当正电极集电器并且可以在电化学电池以外延伸以例如形成接头或者电流引线。在其它实施例中,部分118可以接合到在电池以外延伸的接头或者电流引线。负电极112也可以包括集电器。激励器系统110可以包括隔离器122。该隔离器可以例如是有孔隔离器膜如玻璃纤维布或者有孔聚合物隔离器。也可以使用其它类型的隔离器,诸如在锂离子电池的构造中使用的那些隔离器。激励器也可以包括可以是流体、固体或者凝胶体形式的电解质124。该电解质可以包含电化学活性物质,诸如用来形成负电极的物质。激励器系统110可以密封于诸如聚合物封装的罩126中。An example of an actuator system is shown in the embodiment illustrated in FIG. 1A. As shown in this example embodiment, the actuator system 110 includes a negative electrode 112 in electrical communication with a positive electrode 114 . Positive electrode 114 may include a first portion 116 and a second portion 118 . In some embodiments, portions 116 and 118 are formed of different materials. Portions 116 and 118 may also have different potentials. For example, portion 116 may include a material that may intercalate, deintercalate, alloy, oxidize, reduce, or plate species to a different extent than portion 118 . Portion 118 may be formed from a material that does not substantially intercalate, deintercalate or alloy, oxidize, reduce or plate species. In some cases, portion 116 may be made of a material including one or more of aluminum, antimony, bismuth, carbon, gallium, silicon, silver, tin, zinc or may expand upon intercalation or alloying or compounding of lithium. other materials. In one particular embodiment, portion 116 is formed from a material including aluminum that can expand upon lithium intercalation. Portion 118 may be formed of copper since copper does not substantially intercalate or alloy with lithium. In some examples, portion 118 can serve as a positive electrode current collector and can extend beyond the electrochemical cell to, for example, form a tab or current lead. In other embodiments, portion 118 may be joined to a tab or current lead extending outside of the battery. Negative electrode 112 may also include a current collector. The exciter system 110 may include an isolator 122 . The separator may for example be a porous separator membrane such as glass fiber cloth or a porous polymer separator. Other types of separators may also be used, such as those used in the construction of lithium-ion batteries. The actuator may also include an electrolyte 124 which may be in fluid, solid or gel form. The electrolyte may contain electrochemically active species, such as those used to form the negative electrode. Actuator system 110 may be sealed within an enclosure 126 such as a polymer encapsulation.
如图1B中所示的实施例中所示,电化学电池可以具有电压132,从而当在负电极与正电极之间形成闭合电路时,电流可以经过外部电路在两个电极之间流动。如果负电极112是锂金属电极而电解质包含锂离子,则锂离子电流可以在内部从电极112流到电极114。部分116的锂的嵌入可以引起诸如体积膨胀的尺寸变化。在一些实例中,这一体积膨胀与初始体积相比可以达到至少25%、至少50%、至少75%、至少100%、至少150%、至少200%、至少250%或者至少300%。高的体积膨胀可以例如在部分116被锂饱和时出现。随着部分116由于锂的嵌入而体积增加,部分116可以结合到的部分118可能由于最少量或者没有锂的嵌入而基本上没有膨胀。部分116因此提供机械约束。在两个部分之间的这一差动应变造成正电极114经历弯曲或者挠曲。由于正电极的尺寸变化或者移位,激励器系统110可以从第一定向移位到第二定向。无论由于从负电极损失锂金属并且在正电极形成嵌入锂的化合物或者锂合金所造成的电化学电池的容积或者尺寸变化(例如净体积变化)是正、是零还是负都可以出现这一移位。在一些情况下,激励器移位可以随着激励器系统或者其一部分的为正的容积或者尺寸变化(例如净体积变化)而出现。在一些情况下,激励器移位可以随着激励器系统或者其一部分的为零的容积或者尺寸变化(例如净体积变化)而出现。在一些情况下,激励器移位可以随着激励器系统或者其一部分的为负的容积或者尺寸变化(例如净体积变化)而出现。As shown in the embodiment shown in FIG. 1B , the electrochemical cell can have a
如这里使用的那样,两个部分之间的“差动应变”是指各独立部分在电压或者电流施加到两个部分时的响应(例如激励)差异。也就是说,这里所述系统可以包括如下部件,该部件包括第一部分和与第一部分关联(例如可以接触第一部分、可以一体地连接到第一部分)的第二部分,其中在实质上相同条件之下,第一部分可以经历容积或者尺寸变化而第二部分没有经历容积或者尺寸变化,这在第一部分与第二部分之间产生应变。差动应变可以造成该部件或者其一部分从第一定向移位到第二定向。在一些情况下,可以通过物质与激励器系统的一个或者多个部分的差动嵌入、脱嵌、合金化、氧化、还原或者镀覆来产生差动应变。As used herein, "differential strain" between two parts refers to the difference in the response (eg, excitation) of the individual parts when a voltage or current is applied to the two parts. That is, a system as described herein may include a component comprising a first part and a second part associated with (e.g., contactable with, integrally connectable to) the first part, wherein between substantially the same conditions Here, the first part may undergo a volume or dimensional change without the second part undergoing a volume or dimensional change, which creates a strain between the first and second parts. Differential strain may cause the component, or a portion thereof, to displace from a first orientation to a second orientation. In some cases, differential strain may be produced by differential intercalation, deintercalation, alloying, oxidation, reduction, or plating of one or more portions of a species and actuator system.
例如,可以通过若干手段(图1A)来实现部分116相对于部分118的差动嵌入、脱嵌、合金化、氧化、还原或者镀覆。在一个实施例中,如上所述,部分116可以由与部分118不同的材料形成,其中材料之一基本上嵌入、脱嵌、合金化、氧化、还原或者镀覆物质,而第二部分以更小程度与物质反应。在另一实施例中,部分116和部分118可以由同一材料形成。例如,部分116和部分118可以由同一材料形成并且可以基本上密集或者有孔,诸如压制或者烧结的粉末或泡沫结构。在一些情况下,为了在电化学电池操作时产生差动应变,部分116或者118可以具有足够厚度,使得在电化学电池的操作过程中可能由于有限的离子传送而出现梯度组分,这产生差动应变。在一些实施例中,一个部分或者一个部分的区域可以相对于第二部分或者第二部分的区域优先地暴露于物质。在其它实例中,与未掩蔽或者屏蔽的部分相比,一个部分相对于另一部分的屏蔽或者掩蔽可以实现掩蔽或者屏蔽的部分更少或者更大的嵌入、脱嵌或者合金化。这可以例如通过表面处理或者沉积的阻挡层、借助阻挡层材料的层积或者化学或者热处理要被掩蔽/屏蔽的部分的表面来实现,从而有助于或者禁止与该部分的嵌入、脱嵌、合金化、氧化、还原或者镀覆。阻挡层可以由可以包括聚合物、金属或者陶瓷的任何适当材料形成。在一些情况下,阻挡层也可以在电化学电池中起到另一功能如集电器的作用。阻挡层在一些实施例中可以均匀地沉积到表面上。在其它情况下,阻挡层可以形成组成和/或尺寸梯度,从而只有表面的某些部分优先地有助于或者禁止表面的嵌入、脱嵌、合金化、氧化、还原或者镀覆。可以是线性、阶跃、指数和其它梯度。在一些实施例中,包括制备密集表面层在内的在穿过部分116或者118中的孔隙度变化可以用来辅助创建离子浓度梯度和差动应变。本发明也构思物质以不同程度与第一部分反应的其它方法以便引起在第一部分与第二部分之间的差动应变。如下文更具体所述,在一些实施例中,电极的挠曲或者弯曲用来施加力或者进行实现有用功能的移位。For example, differential intercalation, intercalation, alloying, oxidation, reduction, or plating of portion 116 relative to portion 118 may be accomplished by several means (FIG. 1A). In one embodiment, as described above, portion 116 may be formed of a different material than portion 118, wherein one of the materials substantially intercalates, intercalates, alloys, oxidizes, reduces, or coats the species, while the second portion is more Reacts with substances to a small extent. In another embodiment, portion 116 and portion 118 may be formed from the same material. For example, portion 116 and portion 118 may be formed from the same material and may be substantially dense or porous, such as a pressed or sintered powder or foam structure. In some cases, in order to generate differential strain during electrochemical cell operation, portion 116 or 118 may be of sufficient thickness such that a gradient composition may occur during operation of the electrochemical cell due to limited ion transport, which produces a differential strain. Dynamic strain. In some embodiments, one portion or an area of a portion may be preferentially exposed to a substance relative to a second portion or an area of a second portion. In other examples, shielding or masking of one portion relative to another portion may result in less or greater embedding, deintercalation, or alloying of the shielded or shielded portion compared to an unmasked or shielded portion. This can be achieved, for example, by surface treatment or deposited barrier layers, by lamination of barrier material or by chemical or thermal treatment of the surface of the part to be masked/shielded, thereby facilitating or prohibiting intercalation, de-intercalation, alloying, oxidation, reduction or plating. The barrier layer may be formed from any suitable material which may include polymers, metals or ceramics. In some cases, the barrier layer may also serve another function in the electrochemical cell, such as a current collector. The barrier layer may be deposited uniformly on the surface in some embodiments. In other cases, the barrier layer may form a compositional and/or dimensional gradient such that only certain portions of the surface preferentially facilitate or inhibit intercalation, intercalation, alloying, oxidation, reduction, or plating of the surface. Can be linear, step, exponential and other gradients. In some embodiments, the porosity variation in the passing portion 116 or 118, including the preparation of a dense surface layer, may be used to assist in creating ion concentration gradients and differential strains. Other methods in which the substance reacts with the first portion to a different degree in order to induce a differential strain between the first portion and the second portion are also contemplated by the present invention. As described in more detail below, in some embodiments, flexing or bending of the electrodes is used to apply a force or to perform a displacement that achieves a useful function.
在这里描述的数个实施例中,第一部分和第二部分可以描述为由不同材料形成,以实现不同特征和性质。应当理解,对于这里描述的任何实施例,第一部分和第二部分也可以由基本上相同材料形成。在第一部分和第二部分可以由相同材料形成的情况下,第一部分和第二部分可以可选地具有诸如尺寸、厚度、孔隙度等的至少一个不同特征,这可以产生引起差动应变的差动嵌入、脱嵌、合金化、氧化、还原或者镀覆。例如,第一部分和第二部分可以包括同一材料、但是可以具有不同孔隙度,这实现沿着第一部分和第二部分的孔隙度梯度。在一些情况下,第一部分可以包括具有第一密度的有孔材料(例如粉末压实物、泡沫),而第二部分可以包括具有与第一密度不同的第二密度的有孔材料。In several of the embodiments described herein, the first portion and the second portion may be described as being formed of different materials to achieve different characteristics and properties. It should be understood that, for any of the embodiments described herein, the first portion and the second portion may also be formed from substantially the same material. Where the first portion and the second portion may be formed from the same material, the first portion and the second portion may optionally have at least one different characteristic, such as size, thickness, porosity, etc., which may produce a difference causing differential strain Automatic intercalation, deintercalation, alloying, oxidation, reduction or plating. For example, the first part and the second part may comprise the same material, but may have different porosities, which achieves a porosity gradient along the first and second parts. In some cases, the first portion may comprise a porous material having a first density (eg, powder compact, foam) and the second portion may comprise a porous material having a second density different from the first density.
如这里所述,本发明的一些实施例涉及到物质与一个或者多个电极的反应。例如,物质嵌入可以一个或者多个电极。在一些实施例中,在激励器系统或者设备的操作期间,一个电极可以获得物质在空间上变化的浓度,这引起差动应变从而产生系统或者设备至少一部分的移位。也就是说,物质例如嵌入到电极的一个部分中的程度可以大于嵌入到电极的第二部分中的程度,这实现了差动应变。As described herein, some embodiments of the invention involve the reaction of substances with one or more electrodes. For example, substance embedding may be one or more electrodes. In some embodiments, during operation of the actuator system or device, one electrode may acquire a spatially varying concentration of species that induces a differential strain that produces displacement of at least a portion of the system or device. That is, a substance may be embedded, for example, in one portion of the electrode to a greater extent than in a second portion of the electrode, which achieves a differential strain.
本发明的激励器或者其一部分(例如电极),尤其是至少包括可以以与第二部分不同的程度嵌入、脱嵌、合金化于、氧化、还原或者镀覆物质的第一部分的那些部分,可以具有诸如板、片、条、折叠片或者条、束、杯、杆、管、圆柱等任何适当形状,只要它可以从第一定向移位到第二定向即可,这样可以用于实现所需功能。在一些情况下,激励器的至少一部分可以被穿孔和/或可以具有多个“腿”或者“臂”或者支路。在一些情况下,正电极和/或负电极为非平面的。例如,正电极和/或负电极可以是板或者丸或者其它非平面形状。在一些实施例中,正电极和/或负电极可以具有任何形状并且可以包括至少一个槽,其中一个或者多个槽可以有助于和/或引导激励器系统或者其一部分的移位。例如,电极可以有槽或者凸起以便有助于、引导或者指引电极从第一定向移动至第二定向的方式。在一些情况下,电极可以在激励时沿着至少一个槽来折叠。The actuator of the present invention, or a portion thereof (such as an electrode), particularly at least those portions that include a first portion that can intercalate, deintercalate, alloy with, oxidize, reduce, or plate a species to a different extent than a second portion, can Having any suitable shape such as a plate, sheet, strip, folded sheet or strip, bundle, cup, rod, tube, cylinder, etc., as long as it can be displaced from a first orientation to a second orientation, this can be used to achieve all required function. In some cases, at least a portion of the actuator may be perforated and/or may have multiple "legs" or "arms" or branches. In some cases, the positive and/or negative electrodes are non-planar. For example, the positive and/or negative electrodes may be plates or pellets or other non-planar shapes. In some embodiments, the positive and/or negative electrodes may have any shape and may include at least one groove, wherein one or more grooves may facilitate and/or guide displacement of the actuator system or a portion thereof. For example, the electrodes may have grooves or protrusions to facilitate, guide or direct the manner in which the electrodes move from a first orientation to a second orientation. In some cases, the electrodes can fold along at least one slot when activated.
本发明的激励器在尺寸范围上可以从纳米级到微米并且到肉眼可见的级别。例如在一些实施例中,激励器系统110可以具有少于或者等于1米、少于或者等于10厘米、少于或者等于1厘米、少于或者等于1毫米、少于或者等于100微米、少于或者等于10微米、少于或者等于1微米、少于或者等于100纳米或者少于或者等于10纳米的至少一个尺寸。Actuators of the present invention may range in size from nanometers to micrometers and to the naked eye. For example, in some embodiments, the actuator system 110 may have a thickness of less than or equal to 1 meter, less than or equal to 10 centimeters, less than or equal to 1 centimeter, less than or equal to 1 millimeter, less than or equal to 100 microns, less than or equal to Or at least one dimension equal to 10 microns, less than or equal to 1 micron, less than or equal to 100 nanometers, or less than or equal to 10 nanometers.
激励器的电极也可以在尺寸范围上从纳米级到微米级并且到肉眼可见的级别。例如在一些实施例中,电极114可以具有少于或者等于1米、少于或者等于10厘米、少于或者等于1厘米、少于或者等于1毫米、少于或者等于100微米、少于或者等于10微米、少于或者等于1微米、少于或者等于100纳米或者少于或者等于10纳米的至少一个尺寸。The electrodes of the actuator can also range in size from nanoscale to microscale and to the scale visible to the naked eye. For example, in some embodiments, electrodes 114 may have a thickness of less than or equal to 1 meter, less than or equal to 10 centimeters, less than or equal to 1 centimeter, less than or equal to 1 millimeter, less than or equal to 100 microns, less than or equal to At least one dimension of 10 microns, less than or equal to 1 micron, less than or equal to 100 nanometers, or less than or equal to 10 nanometers.
包括可以以与第二部分不同的程度嵌入、脱嵌、合金化、氧化、还原或者镀覆物质的第一部分的激励器(包括电极)可以由允许与所述物质反应的任何适当形式的任何适当材料(例如在尺寸活性材料)形成。在一些实施例中,第一部分由在离子交换时改变尺寸的有孔材料形成。如这里所述,尺寸变化可以是相对均匀的体积膨胀或者收缩,或者可以是由于引入差动应变而实现的挠曲或者弯曲或者挤压变形模式。有孔材料可以是压制粉末致密物或者金属泡沫或者在尺寸活性材料的复合物。第二部分可以由在尺寸无活性材料形成。第一部分和第二部分可以可选地包括诸如粘合剂的添加剂或者诸如碳或者金属的传导添加剂。在尺寸活性材料可以例如包括以下物质中的一个或者多个:Al、Au、Ag、Ga、Si、Ge、Ti、Sn、Sb、Pb、Zn、碳、石墨、硬碳、介孔碳(mesoporous carbon)、氧化物、嵌入氧化物、层状氧化物、粘土矿物、硫化物、层状硫化物、TiS2、MoS2和WS2。应当理解本发明的激励器也可以包括其它金属、包含金属的化合物、无机材料等。Actuators (including electrodes) comprising a first part which may intercalate, deintercalate, alloy, oxidize, reduce or plate a substance to a different extent than a second part may be made of any suitable form allowing reaction with said substance. material (eg in dimension active material) is formed. In some embodiments, the first portion is formed from a porous material that changes size upon ion exchange. As described herein, the dimensional change may be a relatively uniform volumetric expansion or contraction, or it may be a mode of deflection or bending or extrusion due to the introduction of differential strain. The porous material can be a pressed powder compact or a metal foam or a composite of active materials in size. The second portion may be formed from a dimensionally inactive material. The first and second parts may optionally include additives such as binders or conductive additives such as carbon or metals. The size active material may, for example, include one or more of the following: Al, Au, Ag, Ga, Si, Ge, Ti, Sn, Sb, Pb, Zn, carbon, graphite, hard carbon, mesoporous carbon (mesoporous carbon), oxides, intercalated oxides, layered oxides, clay minerals, sulfides, layered sulfides, TiS2 , MoS2 and WS2 . It should be understood that the actuators of the present invention may also include other metals, metal-containing compounds, inorganic materials, and the like.
在一些情况下,本发明的激励器可以经历由在离子交换时改变尺寸的有孔电极所提供的尺寸变化。在一些情况下,有孔电极在充电或者放电时经历包括弯曲、挠曲或者挤压的尺寸变化。在一些实施例中,有孔电极可以包括孔隙度梯度,其中有孔电极的第一部分具有与有孔电极的第二部分的孔隙度不同的孔隙度。在一些情况下,有孔电极还包括与有孔电极接触的表面层,其中表面层以比(下层)有孔电极更大的程度被嵌入、脱嵌、合金化、氧化、还原或者镀覆。表面层可以部分地或者基本上覆盖或者封装有孔电极的外表面,从而表面层可以主要地和/或直接地暴露于系统的其它部件。在一些情况下,表面层可以以比下层有孔电极更大的程度被嵌入或者合金化。在一些情况下,表面层可以具有比下层有孔电极更高的密度。In some cases, the actuators of the present invention may undergo a change in size provided by a porous electrode that changes size upon ion exchange. In some cases, the apertured electrode undergoes dimensional changes including bending, flexing, or crushing when charged or discharged. In some embodiments, the apertured electrode can include a porosity gradient, wherein a first portion of the apertured electrode has a different porosity than a porosity of a second portion of the apertured electrode. In some cases, the apertured electrode further comprises a surface layer in contact with the apertured electrode, wherein the surface layer is intercalated, deintercalated, alloyed, oxidized, reduced, or plated to a greater extent than the (underlying) apertured electrode. The surface layer may partially or substantially cover or encapsulate the outer surface of the apertured electrode such that the surface layer may be primarily and/or directly exposed to other components of the system. In some cases, the surface layer may be embedded or alloyed to a greater extent than the underlying porous electrode. In some cases, the surface layer may have a higher density than the underlying porous electrode.
在一些情况下,可以嵌入、脱嵌、合金化于、氧化、还原或者镀覆激励器至少一部分(例如电极的一部分)的物质可以是离子形式。离子的非限制例子包括质子、氢氧根离子、硫酸根离子、氯酸根离子、磷酸根离子和硝酸根离子。在其它情况下,物质可以包括碱金属或者碱土金属。在某些实施例中,物质是可以造成表面至少一部分氧化或者还原的电子。在其它实施例中,物质是可以以与第二部分不同的程度在第一部分电化学沉积的镀覆物质。在一些情况下,物质可以选自质子、碱金属离子、锂、离子络合物、氢氧根离子、碳酸根离子、氯酸根离子、硫酸根离子、磷酸根离子、其它多原子离子络合物等。在一些情况下,物质选自质子、碱金属离子、离子络合物、氢氧根离子、碳酸根离子、氯酸根离子、硫酸根离子和磷酸根离子。在一些情况下,物质是质子。In some cases, a species that can intercalate, deintercalate, alloy with, oxidize, reduce, or plate at least a portion of an actuator (eg, a portion of an electrode) can be in ionic form. Non-limiting examples of ions include protons, hydroxide ions, sulfate ions, chlorate ions, phosphate ions, and nitrate ions. In other cases, the species may include alkali or alkaline earth metals. In certain embodiments, the species are electrons that can cause oxidation or reduction of at least a portion of the surface. In other embodiments, the species is a plating species that can be electrochemically deposited in the first portion to a different extent than in the second portion. In some cases, species may be selected from protons, alkali metal ions, lithium, ion complexes, hydroxide ions, carbonate ions, chlorate ions, sulfate ions, phosphate ions, other polyatomic ion complexes wait. In some cases, the species is selected from protons, alkali metal ions, ion complexes, hydroxide ions, carbonate ions, chlorate ions, sulfate ions, and phosphate ions. In some cases, the substance is a proton.
物质可以起初以诸如用来形成正或者负电极活性物质的材料的固体形式存在于电化学电池中。在其它情况下,物质可以是层积到电极之一但是并非该电极活性材料一部分的固体形式。在另一实施例中,物质可以是诸如固体电解质的单独固体离子源的形式。在又一实施例中,物质可以例如以作为电介质的液体或者凝胶体的形式存在并且可以在电池的第一次充电/放电之前存在于电化学电池中。在其它实施例中,这些物质可以存在于电化学电池外部的物质中。例如,物质可以存在于使用激励器的环境中。在一个具体实施例中,激励器被设计成浸入包含如下物质的流体中,该物质可以嵌入、合金化于、氧化、还原或者镀覆电化学电池电极的一部分。例如,流体可以是生理流体,而物质可以是存在于生理流体中的离子物质。The species may initially exist in the electrochemical cell in solid form such as the material used to form the positive or negative electrode active species. In other cases, the substance may be in solid form that is laminated to one of the electrodes but is not part of the electrode's active material. In another embodiment, the species may be in the form of a separate solid ion source such as a solid electrolyte. In yet another embodiment, the substance may be present, for example, in the form of a liquid or a gel as the dielectric and may be present in the electrochemical cell prior to the first charge/discharge of the cell. In other embodiments, these substances may be present in substances external to the electrochemical cell. For example, substances may be present in the environment in which the actuator is used. In a specific embodiment, the actuator is designed to be immersed in a fluid containing a substance that can embed, alloy, oxidize, reduce, or plate a portion of an electrode of an electrochemical cell. For example, the fluid may be a physiological fluid and the species may be ionic species present in the physiological fluid.
在一些情况下,本发明的设备可以包括阳极、阴极和作为物质的锂离子。在阳极于阴极之间施加电场时,该设备可以可逆地充电和放电。在一些情况下,在充电时,锂离子电极可以插入到阳极中,从而相对于体积或者尺寸实质上保持不变的阴极而言、阳极经历容积或者尺寸变化。在放电时,锂离子可以从阳极传送到阴极,从而锂离子可以插入到阴极中。结果,阳极可以返回到它在充电之前的体积/形状,而阴极可以经历相对于阳极的容积或者尺寸变化。在一些情况下,阳极和阴极在充电/放电循环时可以同时地或者非同时地经历容积或者尺寸变化。在一些情况下,阳极和阴极中只有一个可以在充电/放电循环时经历容积或者尺寸变化。In some cases, devices of the present invention may include an anode, a cathode, and lithium ions as species. The device can be reversibly charged and discharged when an electric field is applied between the anode and cathode. In some cases, upon charging, a lithium-ion electrode may be inserted into the anode such that the anode undergoes a volume or dimension change relative to the cathode, which remains substantially unchanged in volume or size. Upon discharge, lithium ions can be transported from the anode to the cathode so that lithium ions can be inserted into the cathode. As a result, the anode may return to its volume/shape prior to charging, while the cathode may undergo a change in volume or size relative to the anode. In some cases, the anode and cathode may undergo volume or dimensional changes during charge/discharge cycling, either simultaneously or non-simultaneously. In some cases, only one of the anode and cathode may undergo a volumetric or dimensional change upon charge/discharge cycling.
本发明的激励器可以用于各种应用中。例如,激励器可以用于其中例如可以由激励器执行切换和阀控功能的微流体设备中。在其它情况下,可以使用激励器作为用以造成流体流入通道中或者从孔流出的泵、包括用于控制药物递送的泵。在其它实施例中,激励器可以是外部或者可植入医疗设备的一部分。可以嵌入、脱嵌、氧化、还原或者镀覆激励器的至少一部分(例如电极的一部分)的物质在一些实施例中可以是电化学电池的一部分(例如在使用之前的制造中);然而在其它实施例中可以是使用激励器的环境的组成部分。激励器也可以是其中独立地激励可寻址微型激励器的诸如微镜阵列的微机电系统(MEMS)设备的一部分。在其它情况下,一个或者多个激励器可以被构造和布置成在施加电流或者电压时展开成结构。这样的结构可以例如用作为帐篷或者脚手架。在其它情况下,本发明的激励器可以是可以通过电输入来电膨胀或者收缩的手术工具或者医疗植入物的部件。下文更具体地描述各种应用。The actuators of the present invention can be used in a variety of applications. For example, actuators may be used in microfluidic devices in which, for example, switching and valve control functions may be performed by the actuator. In other cases, the actuator may be used as a pump to cause fluid flow into the channel or out of the aperture, including pumps for controlling drug delivery. In other embodiments, the actuator may be part of an external or implantable medical device. A substance that can intercalate, deintercalate, oxidize, reduce, or plate at least a portion of an actuator (e.g., a portion of an electrode) may in some embodiments be part of an electrochemical cell (e.g., during manufacture prior to use); while in other An embodiment may be an integral part of the environment in which the actuator is used. The actuator may also be part of a microelectromechanical system (MEMS) device, such as a micromirror array, in which addressable micro-actuators are independently actuated. In other cases, one or more actuators may be constructed and arranged to expand into the configuration upon application of a current or voltage. Such structures can be used, for example, as tents or scaffolding. In other cases, the actuators of the present invention may be components of surgical tools or medical implants that can be electrically expanded or contracted by electrical input. Various applications are described in more detail below.
在一些实施例中,本发明的激励器可以用来使与激励器相邻的结构移位或者变形。例如,如图2A中图示的实施例中所示,激励器系统150包括用作从储蓄器172配发流体170的泵的激励器151。该泵可以配发例如大于0.01mL、大于0.01mL、大于1mL、大于5mL、大于10mL、大于100mL、大于1L的不同体积的流体。激励器151可以用与图1中所示激励器110相似的方式操作。简言之,物质可以用相对于部分158不均匀的方式嵌入、脱嵌、合金化于、氧化、还原或者镀覆电极154的第一部分156,从而在第一与第二部分之间引起差动应变。第二部分可以是造成电极154的挠曲或者弯曲并且结果造成激励器151的挠曲或者弯曲的机械约束。与激励器151相邻的储蓄器172可以由可变形材料形成,从而激励器151的挠曲造成储蓄器内部的压力增加,这使得从储蓄器配发流体170,如图2B中所示。在一些实施例中,可以通过激励器从第一位置到第二位置的移位速率/或程度(例如冲程长度)来控制从储蓄器配发或者注入流体170的速率。配发速率可以被控制成恒定或者可变。可以通过如下参数控制激励速率和/或程度,这些参数诸如是施加的电流或者电压(例如在充电或者放电过程中)的幅度和/或持续时间、要嵌入、脱嵌、合金化或者镀覆电化学电池的电极的物质浓度以及用来形成电化学电池的材料的尺寸和材料组成,诸如以不同程度与物质反应的激励器第一部分和第二部分的配置和材料组成。In some embodiments, actuators of the present invention may be used to displace or deform structures adjacent to the actuator. For example, as shown in the embodiment illustrated in FIG. 2A ,
一个或者多个电化学电池可以被布置成可选地与一个或者多个部件组合以实现系统或者系统一部分的移位。在一些情况下,具有不同激励能力的电化学电池可以按图案布置于表面上,其中各电化学电池被独立地控制。可以在本发明中使用例如在基于美国专利申请第11/150,477号的美国专利公开号2006/0102455和基于国际申请第PCT/US/2005/020554号的国际公开号WO2005/124918中所述的其它的电池、部件和/或设备的配置,上述两个申请均通过引用而结合于此。One or more electrochemical cells may be arranged, optionally in combination with one or more components, to effect displacement of the system or a portion of the system. In some cases, electrochemical cells with different excitation capabilities can be arranged in a pattern on the surface, where each electrochemical cell is independently controlled. Others such as described in U.S. Patent Publication No. 2006/0102455 based on U.S. Patent Application No. 11/150,477 and International Publication No. WO2005/124918 based on International Application No. PCT/US/2005/020554 can be used in the present invention. configurations of batteries, components and/or devices, both of which are hereby incorporated by reference.
本发明的激励器可以用不同硬度的材料来制作以允许不同范围的激励速率和冲程长度。例如,冲程长度长的激励器可以由具有相对低硬度的一个或者多个材料形成。在这样的实施例中,短电流脉冲可以造成激励器从第一定向到第二定向的缓慢移位。对照而言,由一个或者多个更硬材料形成的激励器仅当施加电流时才可以移位。在这样的实施例中,激励器在不考虑负载的情况下在一些实例中可以在施加的电流每次递增时从第一定向移位到第二或者第三定向。在一些实施例中,当激励器的硬度与机械系统匹配时最大化从激励器到机械系统的能量传送。因而,可以基于具体应用和/或所需激励模式来进行激励器的材料选择。The actuators of the present invention can be fabricated from materials of different durometers to allow a different range of activation rates and stroke lengths. For example, a long stroke length actuator may be formed from one or more materials having a relatively low durometer. In such an embodiment, a short current pulse may cause a slow displacement of the actuator from the first orientation to the second orientation. In contrast, actuators formed from one or more harder materials can only displace when an electric current is applied. In such embodiments, the exciter may, in some instances, shift from a first orientation to a second or third orientation with each increment of applied current regardless of load. In some embodiments, energy transfer from the actuator to the mechanical system is maximized when the stiffness of the actuator is matched to the mechanical system. Thus, the choice of material for the actuator can be made based on the particular application and/or desired excitation mode.
图3A-C示出了激励器的硬度如何可以影响激励器的移位速率和冲程长度的例子。在图3A中图示的实施例中,激励器180包括可以以与第二部分不同的程度嵌入、脱嵌、合金化、氧化、还原或者镀覆物质的第一部分。激励器的端部181可以在激励器处于第一位置a的情况下位置固定在某一位置。激励器可以与活塞190和包含流体194的储蓄器192相邻。在物质(例如相对于激励器的第二部分而言与第一部分)的非均匀嵌入、脱嵌、合金化、氧化、还原或者镀覆时,激励器180可以从位置a移位到位置c,如图3C中所示。激励器180可以由具有低硬度的一种或者多种材料形成以实现长冲程长度“ac”。这可以例如通过将短电流脉冲施加到激励器使得激励器移位来实现,这可以造成活塞190的移位以从储蓄器配发流体。短电流脉冲可以从储蓄器缓慢地推出流体直至激励器松弛到它的新均衡位置c。对照而言,图3B示出了在第一定向中由高硬度材料形成的激励器182,其中激励器的端部在位置b。在施加量值和持续时间与向激励器180施加的电流相同的电流时,激励器182可以从位置b移位到位置c,如图3C中所示,激励器182的冲程长度“bc”由于用来形成激励器180和182的材料的不同硬度而短于激励器180的冲程长度“ac”。在一些实施例中,激励器可以例如并行或者串行堆叠以增加向结构所施加的负载或者力。3A-C show examples of how the stiffness of the actuator can affect the displacement rate and stroke length of the actuator. In the embodiment illustrated in FIG. 3A, the
以下例子进一步说明可以用于实施本发明激励器的不同配置和方式。The following examples further illustrate the different configurations and ways in which the actuators of the present invention can be implemented.
在图4中图示的实施例中,激励器系统200包括激励器210,该激励器包括正电极212、负电极214和电解质层216,该电解质层包括可以嵌入、脱嵌、合金化、氧化、还原或者镀覆正或者负电极的物质218。物质在施加的电压220之下经过电解质层的传送可以用来在箭头222和224的方向中向上或者向下移位激励器210。这一移位可以实现例如可以用来开启或者闭合阀、移位镜、泵、流体等的激励器。如上文讨论的那样,用来形成正电极和负电极的材料组合可以变化。例如,适当材料可以包括锂离子或者镍-金属氢化物电池中的活性材料。如这一实施例中所示,激励器系统210在一端固定于衬底228。该衬底可以充当机械约束,从而激励器的部分230经历最少或者没有移位。由于激励器的部分232没有固定,所以这一部分经历实现弯曲的移位。In the embodiment illustrated in FIG. 4, the
在另一实施例中,可以嵌入、合金化于、氧化、还原或者镀覆激励器的一部分的物质可以被定位成使得激励器的一部分优先地暴露于物质而激励器的不同部分未暴露于或者以更少程度暴露于物质。例如在图5中图示的实施例中,激励器系统250包括激励器252,该激励器包括部分254和部分256。部分256可以以比部分254更大的程度暴露于浸入在物质262(例如电解质)中的物质260。活塞254和衬底264可以传导并且作为正电极和负电极来工作。部分256可以通过绝缘体266与衬底264绝缘。在衬底(或者远处对立电极)与部分254之间施加电势差时,物质260可以以比部分254更大的程度嵌入、脱嵌、合金化于、氧化、还原或者镀覆部分256。部分254和/或256与物质260的作用类型例如依赖于物质的具体类型和用来形成部分254和256的材料。由于在部分254与256之间的差动应变,这一作用可以造成激励器252的挠曲。In another embodiment, a substance that can embed, alloy, oxidize, reduce, or plate a portion of an actuator can be positioned such that a portion of the actuator is preferentially exposed to the substance while a different portion of the actuator is not exposed to or Exposure to substances to a lesser extent. For example, in the embodiment illustrated in FIG. 5 ,
可以通过包括MEMS制作、各种薄膜结构沉积方法、厚膜涂覆技术、电极沉积方法以及物理组装和层积的多种方法来制作诸如激励器系统200和250的结构。其它制作方法也可以是适当的并且为本领域普通技术人员所知。Structures such as
如图6中图示的实施例中所示,激励器系统270包括与激励器276电连通的电极272,激励器276可以一体地连接(或者非一体地连接)到衬底274。激励器276可以是组成均匀的;然而,部分280可以以比激励器的部分284更大的程度暴露于物质282。向物质的不同暴露(例如不同的暴露面积)可以造成以与部分284不同的程度与部分280的嵌入、脱嵌、合金化、氧化、还原或者镀覆。这可以造成激励器例如在箭头222和224的方向上的激励。As shown in the embodiment illustrated in FIG. 6 , actuator system 270 includes
在一些实施例中,本发明的激励器可以被构造和布置成使用于生理设施中、诸如身体内。例如,本发明的一些实施例提供用于将药物施用到身体中的电化学激励器,如这里所述,这些激励器包括至少一个负电极、至少一个正电极和物质,其中电化学激励器可以受到施加的电压或者电流,由此电压或者电流的施加或者其停止包括物质在电化学激励器的至少一个电极中的嵌入,这实现电化学激励器的容积或者尺寸变化。在一些情况下,容积或者尺寸变化可以在例如经由如这里所述的分配或者注入方法和其它方法将药物施用到身体中或者将包括药物的流体施用到身体中时是有用的。In some embodiments, the stimulators of the present invention may be constructed and arranged for use in a physiological facility, such as within the body. For example, some embodiments of the invention provide electrochemical activators for administering drugs into the body, as described herein, comprising at least one negative electrode, at least one positive electrode, and a substance, wherein the electrochemical activators can Subjecting to an applied voltage or current, whereby the application of the voltage or current or its cessation involves the intercalation of a substance in at least one electrode of the electrochemical actuator, results in a volumetric or dimensional change of the electrochemical actuator. In some instances, the volume or size change may be useful in administering a drug or a fluid comprising a drug into the body, eg, via dispensing or infusing methods as described herein and other methods.
在一些实例中,激励器被浸入包括可以嵌入激励器电极的一部分的物质的生理流体(例如血、尿、汗等)。在嵌入时,电极可以经历从第一定向到第二定向的移位。在其它实施例中,物质可以在暴露于生理流体时从电极的一部分脱嵌到身体中。或者在其它实施例中,物质可以在暴露于生理流体时氧化或者还原电极的一部分,这可以实现移位。在其它实例中,可以在身体以外使用激励器,例如激励器可以暴露于从身体除去的生理流体。In some examples, the stimulator is immersed in a physiological fluid (eg, blood, urine, sweat, etc.) that includes a substance that may embed a portion of the stimulator's electrodes. Upon embedding, the electrodes may undergo a displacement from a first orientation to a second orientation. In other embodiments, substances can be deintercalated from a portion of the electrode into the body upon exposure to physiological fluids. Or in other embodiments, the substance may oxidize or reduce a portion of the electrode upon exposure to physiological fluids, which may effect displacement. In other examples, the stimulator may be used outside the body, eg, the stimulator may be exposed to physiological fluid removed from the body.
图7是可以在生理设施中使用的激励器的示例离子。激励器290包括正电极292、负电极和定位于两个电极之间的绝缘体296。激励器290可以浸入包括物质299的生理流体298中,该物质可以例如在施加电压或者电流时以比另一电极更大的程度嵌入到一个电极中或者从一个电极脱嵌。这可以造成激励器从第一定向到第二定向的移位。可以根据激励器的机械设计来实现激励器的不同移位模式。例如,激励器可以是束形、摺状、支架(stent)、盘或者多层堆叠结构的形状。也可以用其它激励器形状和设计来引起结构从第一定向到第二定向的膨胀、收缩、折叠、扭曲、弯曲、卷动等。在一些实施例中,激励器可以是医学植入物或者诸植入物部件的形式,如支架、传感器、假体(prosthetic)等Figure 7 is an example of an actuator that may be used in a physiological facility.
在本发明的另一实施例中,激励器系统包括至少一个电化学电池,该电化学电池包括负电极、正电极和可以以与电化学电池的第二部分不同的程度嵌入、脱嵌、合金化于、氧化、还原或者镀覆电化学电池的第一部分的物质。由于物质与第一和/或第二部分的上述作用之一,第一和/或第二部分可以在放电时经历尺寸变化,这造成做机械功的激励器移位。在一些实施例中,电化学电池被构造和布置成在制造时充电而在使用时放电。在一些实施例中,电化学电池被构造和布置成在制造时充电而在使用之后部分地放电或者在首次放电之后没有进一步充电。激励器系统可以被构造和布置成自发地放电。在一些情况下,激励器可以在不同时刻被一次或多次地放电以引起多次激励。在放电(例如部分放电、完全放电)时可以随意处理激励器。这样的配置可以对于诸如某些泵、传感器、植入物和医疗设备的便携设备是有用的。In another embodiment of the invention, the actuator system includes at least one electrochemical cell comprising a negative electrode, a positive electrode, and an intercalation, deintercalation, alloying, etc. Substances that oxidize, oxidize, reduce, or plate the first part of an electrochemical cell. Due to one of the above-mentioned interactions of the substance with the first and/or second part, the first and/or second part may undergo a dimensional change upon discharge, which causes a displacement of the exciter doing mechanical work. In some embodiments, electrochemical cells are constructed and arranged to be charged during manufacture and discharged during use. In some embodiments, electrochemical cells are constructed and arranged to be charged at the time of manufacture and to be partially discharged after use or not further charged after an initial discharge. The exciter system can be constructed and arranged to spontaneously discharge. In some cases, the exciter may be discharged one or more times at different times to cause multiple excitations. The exciter can be handled as desired during discharge (eg partial discharge, complete discharge). Such configurations may be useful for portable devices such as certain pumps, sensors, implants and medical devices.
本发明的一个实施例包括用于将流体输注到身体中的输注泵。该输注泵包括至少一个电化学电池,该电化学电池包括负电极、正电极和物质,其中负电极和/或正电极在充电和/或放电时经历尺寸变化使得流体输注到身体中。可替选地,输注泵可以在制造时不包括物质,但是在使用过程中在暴露于物质时输注泵可以执行激励并且注入流体。在一些布置中,输注泵被构造和布置成自发地放电。这样的设备是自供动力,这意味着在充电状态下制作设备的电化学电池。该设备可以包括被选择为使得电化学电池在放电时膨胀或者变形的正电极材料和负电极材料。例如,可以使用如硅和锡的低成本材料作为在被锂化时膨胀的材料(例如膨胀多达300%)。One embodiment of the invention includes an infusion pump for infusing fluid into a body. The infusion pump includes at least one electrochemical cell including a negative electrode, a positive electrode and a substance, wherein the negative electrode and/or the positive electrode undergoes a dimensional change upon charging and/or discharging to enable infusion of fluid into the body. Alternatively, the infusion pump may be manufactured without the substance, but may perform actuation and infuse fluid when exposed to the substance during use. In some arrangements, the infusion pump is constructed and arranged to discharge spontaneously. Such devices are self-powered, meaning that the electrochemical cells that make up the device are in a charged state. The device may include positive and negative electrode materials selected such that the electrochemical cell expands or deforms upon discharge. For example, low-cost materials such as silicon and tin can be used as materials that expand when lithiated (eg expand up to 300%).
包括配发的体积量值和配发持续时间在内的抽运速率可以取决于电池膨胀或者变形速率,该电池膨胀或者变形速率又可以通过电化学电池的放电速率来控制。可以通过各种方法来执行放电控制,诸如通过变化用来电池放电的外部电路的电阻。外部控制可以例如包括电阻器,该电阻器包括也作为熔断器来工作的薄金属或者接线。这可以用来通过电阻器或者外部电路允许电化学电池的受控自放电。在一个具体实施例中,可变电阻器实施于包括固态电路的外部电路中以便控制放电速率和抽运速率。通过变化电池的外部电阻,可以控制瞬间放电速率和激励速率。The rate of pumping, including the volumetric magnitude dispensed and the duration of the dispense, may depend on the rate of cell expansion or deformation, which in turn may be controlled by the rate of discharge of the electrochemical cell. Discharge control can be performed by various methods, such as by varying the resistance of an external circuit used to discharge the battery. The external control may, for example, include a resistor comprising thin metal or wire that also works as a fuse. This can be used to allow controlled self-discharge of the electrochemical cell through a resistor or an external circuit. In one specific embodiment, variable resistors are implemented in external circuitry including solid state circuitry to control the discharge rate and pump rate. By changing the external resistance of the battery, the instantaneous discharge rate and excitation rate can be controlled.
在另一实施例中,设备的占空比可以变化以便控制移位或者抽运的限度或者程度。在这一实施例中,用于设备放电或者充电的外部电路可以在断开与闭合电路或者“接通与关断”之间重复地切换。也就是说,可以通过断开和/或闭合与激励器设备关联的外部电路来控制占空比。接通/关断脉冲的频率和持续时间可以提供移位速率和总移位的控制。例如,如果在外部短接电路条件之下的设备在时间t表现完全放电,这实现总应变ε,从而在断开与闭合电路条件之间切换,使得在闭合电路中花费的总时间是与10%占空比对应的t/10,其中净应变为ε/10。在闭合电路脉冲的持续时间恒定的实施例中,可以通过变化脉冲频率来控制变形速率。脉冲频率和持续时间也可以独立地变化以适应设备的移位与时间响应关系中的固有非线性,以便实现想要的激励器或者泵的移位与时间分布的关系。In another embodiment, the duty cycle of the device can be varied to control the extent or degree of displacement or pumping. In this embodiment, the external circuit used to discharge or charge the device can be repeatedly switched between opening and closing the circuit, or "on and off". That is, the duty cycle can be controlled by opening and/or closing external circuitry associated with the exciter device. The frequency and duration of the on/off pulses can provide control of the shift rate and total shift. For example, if a device under an external short circuit condition exhibits a complete discharge at time t, this achieves a total strain ε, thereby switching between open and closed circuit conditions such that the total time spent in the closed circuit is equal to 10 % duty cycle corresponds to t/10, where the net strain is ε/10. In embodiments where the duration of the closed circuit pulse is constant, the rate of deformation can be controlled by varying the frequency of the pulse. Pulse frequency and duration can also be varied independently to accommodate the inherent nonlinearity in the device's displacement versus time response in order to achieve a desired actuator or pump displacement versus time profile.
在其它实施例中,可以将放电速率设计到电池中(例如可以设计自放电速率)。在一个具体实施例中,使用电化学设备或者电池领域中的技术人员已知的方法来设计电池的内部阻抗以便产生所需放电速率。在外部短接电路条件或者电池的外部引线之间的电阻基本上低于电池内部阻抗的那些条件之下,放电速率并且因此激励速率主要地取决于电池的内部阻抗。例如,可以针对使用这里描述的控制方法而引入的某一最大放电速率和更低速率来设计电池,或者可以将电池设计成具有即使在意外短路条件之下仍然提供安全低放电速率的相对高内部阻抗。In other embodiments, the discharge rate can be engineered into the battery (eg, the self-discharge rate can be engineered). In a specific embodiment, the internal impedance of the battery is engineered to produce the desired rate of discharge using methods known to those skilled in the art of electrochemical devices or batteries. Under external short circuit conditions or those conditions where the resistance between the external leads of the battery is substantially lower than the internal impedance of the battery, the rate of discharge, and thus the rate of excitation, depends primarily on the internal impedance of the battery. For example, batteries can be designed for a certain maximum discharge rate and lower rates introduced using the control methods described here, or batteries can be designed with relatively high internal discharge rates that provide a safe low discharge rate even under accidental short circuit conditions. impedance.
可以将设备变形速率和/或数量(以及由这样的设备控制的泵的对应抽运速率和/或数量)构建到设备中,从而例如一次性使用的可丢弃设备在预定设置速率和时间和/或体积抽运。可替选地或者除此之外,可以利用控制来构造设备使得可以在设备的使用过程中变化或者在使用设备之前在数个不同设置之一之中设置放电/抽运速率和/或程度。在一些实例中,当可以多次使用设备时,可以在使用之间、在使用过程中等变化放电/抽运速率和/或数量。通过数字或模拟电路或组合,本领域技术人员能够设计任何这些特征的设备中的系统。A device deformation rate and/or amount (and a corresponding pumping rate and/or amount of a pump controlled by such a device) may be built into the device such that, for example, a single-use disposable device operates at a predetermined set rate and time and/or or volumetric pumping. Alternatively or in addition, the device may be configured with controls such that the rate and/or degree of discharge/pumping may be varied during use of the device or set in one of several different settings prior to use of the device. In some instances, when the device may be used multiple times, the rate and/or amount of discharge/pumping may be varied between uses, during use, etc. A person skilled in the art will be able to design a system in a device of any of these features through digital or analog circuits or combinations.
通过这些和/或其它手段,可以通过控制电化学电池的放电速率来广泛地变化抽运速率。在一些实施例中,可以远程地控制、例如通过向控制占空比或者外部负载电阻的控制电路发送的传输信号来无线地控制放电速率。如果需要则泵可以配发例如大于0.01mL、大于0.1mL、大于1mL、大于5mL、大于10mL或者大于50mL的不同体积的流体。By these and/or other means, the pumping rate can be varied widely by controlling the discharge rate of the electrochemical cell. In some embodiments, the rate of discharge may be controlled remotely, for example wirelessly via a transmission signal to a control circuit that controls the duty cycle or external load resistance. The pump can dispense different volumes of fluid, eg, greater than 0.01 mL, greater than 0.1 mL, greater than 1 mL, greater than 5 mL, greater than 10 mL, or greater than 50 mL, if desired.
泵形式的本发明激励器的应用可以用于如下应用,这些应用包括但不限于药物或者流体的皮下递送、静脉注射、鞘内注射、向身体递送药物和流体的其它常用方法、空气清新器或者香水喷洒器和可植入的药物递送设备。The application of the stimulator of the present invention in the form of a pump may be used in applications including, but not limited to, subcutaneous delivery of drugs or fluids, intravenous injections, intrathecal injections, other common methods of delivering drugs and fluids to the body, air fresheners or Perfume dispensers and implantable drug delivery devices.
例如,众所周知当双金属耦合浸入电解质中时,双金属对之一是阳极并且优先地没有氧化,而另一个优先地被氧化。一个例子是锌对铁和钢的阳极保护。在一个示例实施例中,图8A示出了第一部分302和第二部分304,第一部分和第二部分由不同材料形成。图8B示出了在浸入水中之后的同一结构。该结构现在包括层306。如果第一部分包括Fe、第二部分包括Zn,则在暴露于水时形成包括Zn(OH)2的部分306。在部分302的反应是2H++2e=H2(g),而在部分306的反应是Zn+2(OH-)=Zn(OH)2+2e。For example, it is well known that when a bimetallic couple is immersed in an electrolyte, one of the bimetallic pair is anodic and preferentially not oxidized, while the other is preferentially oxidized. An example is zinc anodic protection of iron and steel. In an example embodiment, Figure 8A shows a
如图9A-B中所示,激励器310包括第一部分312和第二部分314。如果在薄层中第一部分由Fe形成而第二部分由Zn形成,则在Zn转换成Zn(OH)2时,在Zn(OH)2形成期间(例如Zn+2(OH-)=Zn(OH)2+2e)的体积膨胀将导致自发激励,这造成弯曲形式的移位,如图9B中所示。这一自发激励在本发明的激励器中用来执行机械功。As shown in FIGS. 9A-B , the
如图10A-B中所示,如果第一部分320由Zn形成而第二部分322由Fe形成,则在Zn转换时(例如Zn+2(OH-)=Zn(OH)2+2e),结构318将开启,如图10B中所示。这一类激励将用于诸如支架、用以减轻脊椎之间压缩应力的扩张盘或者其它结构这样的结构。可以使用通过从流体中优先吸收离子或者分子物质来简单地扩张的物质来实现相似类型的激励。As shown in Figures 10A-B, if the
本领域普通人员能够选择适合于在本发明中使用的其它双金属对。One of ordinary skill in the art will be able to select other bimetallic pairs suitable for use in the present invention.
在身体中希望避免明显的气体演变。针对某些应用也希望具有经历持久塑料变形仍有强韧性的材料。在一些实施例中,使用如下激励器可以是有利的,该激励器在正极材料和负极材料相互电短接并且浸入如下电解质中时自发地放电,该电解质包含可以嵌入、脱嵌、合金化于、氧化、还原或者镀覆激励器的至少一部分的物质。In the body it is desirable to avoid significant gas evolution. It is also desirable for certain applications to have materials that are strong and tough despite permanent plastic deformation. In some embodiments, it may be advantageous to use an energizer that spontaneously discharges when the positive and negative electrode materials are electrically shorted to each other and immersed in an electrolyte containing materials that can intercalate, deintercalate, alloy , oxidize, reduce, or plate at least a portion of the actuator.
图11A-B示出了在充电状态下组装的并且在出现于电解质中时经历自发放电的锂离子耦合(例如一个部分包括Li0.5CoO2而另一部分包括LixTi5O12,其中x>4)。(作为锂离子耦合的替选方案,激励器可以是在充电状态下组装的并且在出现于电解质中时经历自发放电的镍金属-氢化物耦合(例如一个部分包括Ni3+OOH而另一部分包括MHx,其中M是金属))。图11A示出了在暴露于电解质之前处于零应变的激励器,而图11B示出了在暴露于电解质之后的激励器。在放电时,激励器的第一部分膨胀成比激励器的第二部分更大的体积,由此造成激励器的弯曲(收缩)。因此,在激励器暴露于电解质时的自发放电可以造成衰减。Figures 11A-B show Li-ion couplings assembled in the charged state and undergoing spontaneous discharge when present in the electrolyte (e.g. one part includes Li0.5 CoO2 and the other part Lix Ti5 O12 , where x > 4). (As an alternative to lithium-ion coupling, the exciter could be a nickel-metal-hydride coupling that assembles in the charged state and undergoes a spontaneous discharge when present in the electrolyte (e.g. one part includes Ni3+ OOH and the other part includes MHx , where M is a metal)). Figure 1 IA shows the actuator at zero strain before exposure to the electrolyte, while Figure 1 IB shows the actuator after exposure to the electrolyte. Upon discharge, the first portion of the stimulator expands to a larger volume than the second portion of the stimulator, thereby causing bending (contraction) of the stimulator. Therefore, spontaneous discharge when the actuator is exposed to electrolyte can cause decay.
图12A-B示出了在充电状态下组装的(图12A)并且在出现于电解质中时经历自发放电(图12B)的锂离子耦合或者镍金属-氢化物耦合。激励器的形状造成它在自发放电时膨胀。Figures 12A-B show lithium ion coupling or nickel metal-hydride coupling assembled in the charged state (Figure 12A) and undergoing spontaneous discharge (Figure 12B) when present in the electrolyte. The shape of the exciter causes it to expand during spontaneous discharge.
可以在本发明的激励器中使用多种类型的材料。例如,当物质为氢时可以使用钛金属作为电极材料,因为钛金属是很好的氢吸收介质。其它适当的氢吸收介质包括贵金属。Pt、Rh、Ir和Au也是可以用作电极材料的韧性和坚固金属。在一个具体实施例中,可以通过将例如水合金属接合到非水合金属来制作自开启的支架(或者其它激励器设计),从而在暴露于电解质中时氢从一个金属到另一金属的传送造成激励器的移位。如半导体器件技术中广泛使用的那样,如图13-14中所示,这一具体方式也可以从在两个金属之间引入扩散阻挡层中受益,从而避免可以造成在暴露于电解质之前激励的氢在两个金属之间扩散。图13示出了(a)在暴露于电解质之前和(b)在暴露于电解质时的包括两个不同部分以及可选地包括定位于各部分之间的扩散阻挡层的激励器系统,其中该系统经历弯曲或者挤压,且每个部分包括不同材料(例如金属)。类似地,图14示出了(a)在暴露于电解质之前和(b)在暴露于电解质时的包括两个不同部分(各自包括不同材料(例如金属))以及可选地包括定位于各部分之间的扩散阻挡层的激励器系统,其中该系统经历结构的弯曲或者开启,且每个部分包括不同材料(例如金属)。在一些实施例中,铱由于它的生物适应性而具有吸引力来作为用于形成激励器的至少一部分的金属。Various types of materials can be used in the actuators of the present invention. For example, titanium metal can be used as an electrode material when the substance is hydrogen, because titanium metal is a good hydrogen absorption medium. Other suitable hydrogen absorbing media include noble metals. Pt, Rh, Ir and Au are also ductile and strong metals that can be used as electrode materials. In a specific embodiment, a self-opening stent (or other activator design) can be made by joining, for example, a hydrated metal to a non-hydrated metal, such that the transfer of hydrogen from one metal to the other upon exposure to the electrolyte results in Displacement of the exciter. As is widely used in semiconductor device technology, as shown in Figures 13-14, this particular approach can also benefit from the introduction of a diffusion barrier between the two metals, thereby avoiding the Hydrogen diffuses between the two metals. Figure 13 shows an actuator system comprising two distinct parts and optionally a diffusion barrier positioned between the parts (a) before and (b) upon exposure to the electrolyte, wherein the The system is subjected to bending or extrusion, and each part comprises a different material (eg metal). Similarly, FIG. 14 shows (a) before exposure to electrolyte and (b) upon exposure to electrolyte comprising two different parts (each comprising a different material (e.g. metal)) and optionally including An actuator system with a diffusion barrier between them, where the system undergoes bending or opening of the structure, and each part comprises a different material (eg metal). In some embodiments, iridium is attractive as a metal for forming at least a portion of the actuator due to its biocompatibility.
在另一实施例中,例如如图15A-B中所示,本发明的激励器可以包括铰接结构。激励器可以包括可以优先地嵌入、脱嵌、合金化于、氧化、还原或者镀覆物质的第一部分342和没有优先地嵌入、脱嵌、合金化、氧化、还原或者镀覆物质的第二部分344。在一些实例中,第二部分346和第三部分348由相同材料形成。在激励器暴露于第一物质时,第一部分可以以与第一和/或第三部分的程度不同的程度嵌入、脱嵌、合金化、氧化、还原或者镀覆物质,这造成激励器的移位(例如膨胀),如图15B中所示。可选地,第二部分346和第三部分348由不同材料形成,并且在暴露于第二物质时,激励器可以从第一定向移位到第二定向。In another embodiment, such as shown in Figures 15A-B, the actuator of the present invention may include a hinged structure. The actuator can include a
可以在各种设置中使用包括第一部分和第二部分的本发明激励器,该激励器在充电和/或放电时物质以与第二部分不同的程度嵌入、脱嵌、合金化于、氧化、还原或者镀覆第一部分,第一部分经历相对于第二部分的所得尺寸变化。因而,本发明的激励器可以具有除了上述配置、形状和/或设计以外的配置、形状和/或设计。这样的配置、形状和/或设计的例子包括在美国专利号6,545,384、5,907,211、5,954,079、5,866,971、5,671,905和5,747,915中描述的配置、形状和/或设计,这些专利均通过引用而结合于此。An actuator of the present invention comprising a first part and a second part, which intercalates, deintercalates, alloys, oxidizes, oxidizes, etc. Reducing or plating the first portion undergoes a resulting dimensional change relative to the second portion. Thus, the actuators of the present invention may have configurations, shapes and/or designs other than those described above. Examples of such configurations, shapes and/or designs include those described in US Patent Nos. 6,545,384, 5,907,211, 5,954,079, 5,866,971, 5,671,905, and 5,747,915, all of which are incorporated herein by reference.
现在描述针对低电压、长寿命电化学激励器设计的考虑。在一些实施例中,低电压、长寿命电化学激励器的设计包括某些操作标准。在一个实施例中,提供一种操作如下电化学电池的方法,该电化学电池包括负电极、正电极、非水电解质和作为物质(例如嵌入物质)的锂。可以操作电化学电池使得正电极在它的使用充电状态中相对于金属锂具有少于约+4V的平均均衡电势(或者开路电压(OCV))。负电极在它的使用充电状态中相对于金属锂具有大于约+0.2V的平均电势。电化学电池可以与可以从第一定向移位到第二定向的部件有操作关系。电化学电池的操作可以造成电化学电池的容积或者尺寸变化。在向电化学电池施加少于约10V的电压时,该部件可以根据电化学电池的容积或者尺寸变化从第一定向移位到第二定向。Considerations for the design of low-voltage, long-life electrochemical actuators are now described. In some embodiments, the design of a low voltage, long life electrochemical actuator includes certain operating criteria. In one embodiment, a method of operating an electrochemical cell comprising a negative electrode, a positive electrode, a nonaqueous electrolyte, and lithium as a species (eg, an intercalation species) is provided. The electrochemical cell can be operated such that the positive electrode has an average equilibrium potential (or open circuit voltage (OCV)) of less than about +4 V versus lithium metal in its use state of charge. The negative electrode has an average potential of greater than about +0.2 V relative to metallic lithium in its in-use state of charge. The electrochemical cell can be in operative relationship with a component that is displaceable from a first orientation to a second orientation. Operation of the electrochemical cell may cause a volumetric or dimensional change of the electrochemical cell. Upon application of a voltage of less than about 10 V to the electrochemical cell, the component is displaceable from the first orientation to the second orientation in response to a volumetric or dimensional change of the electrochemical cell.
如下文更具体所述,在正电极的过高电势可能导致在正电极的集电器和/或活性材料的电化学腐蚀。在一些情况下,高电势也可能造成非水电解质或者盐的降解,这可能导致电解质传导率的损失和/或电池内不希望的副作用。这样,本发明的某些电化学电池可以被操作成在电池的充电状态中具有少于约4V、少于约+3.5V、少于约+3.0V或者少于约+2.5V的平均均衡电势。As described in more detail below, an excessively high potential at the positive electrode may lead to electrochemical corrosion of the current collector and/or active material at the positive electrode. In some cases, the high potential may also cause degradation of the non-aqueous electrolyte or salt, which may lead to loss of electrolyte conductivity and/or undesired side effects within the battery. Thus, certain electrochemical cells of the present invention can be operated to have an average equilibrium potential of less than about 4 V, less than about +3.5 V, less than about +3.0 V, or less than about +2.5 V in the battery's state of charge .
下文也描述了(例如在它的使用充电状态中相对于金属锂的)过低平均均衡电势可能造成负面效应,诸如负电极集电器的电化学腐蚀或者锂金属的沉积。因而,可以操作电化学电池使得负电极具有大于约+0.2V、大于约+0.5V、大于约+1.0V或者大于约+1.5V的平均均衡电势。依赖于具体的电化学电池,可以分别选择正电极和负电极的平均均衡电势的最大值和最小值范围。例如,在一个实施例中,正电极具有少于约+3.5V的平均均衡电势,而负电极具有大于约+0.5V的平均均衡电势。在另一实施例中,正电极具有少于约+3.5V的平均均衡电势,而负电极具有大于约+1.0V的平均均衡电势。在又一实施例中,正电极具有少于约+3.5V的平均均衡电势,而负电极具有大于约+1.5V的平均均衡电势。在又一实施例中,正电极具有少于约+3.0V的平均均衡电势,而负电极具有大于约+0.5V的平均均衡电势。当然,可以选择用于正电极和负电极的其它平均均衡电势范围。It is also described below that too low an average equilibrium potential (eg in its use state of charge relative to metallic lithium) can cause negative effects such as electrochemical corrosion of the negative electrode current collector or deposition of lithium metal. Thus, the electrochemical cell can be operated such that the negative electrode has an average equilibrium potential of greater than about +0.2V, greater than about +0.5V, greater than about +1.0V, or greater than about +1.5V. Depending on the particular electrochemical cell, a range of maximum and minimum values for the average equilibrium potential of the positive and negative electrodes, respectively, can be selected. For example, in one embodiment, the positive electrode has an average equilibrium potential of less than about +3.5V, while the negative electrode has an average equilibrium potential of greater than about +0.5V. In another embodiment, the positive electrode has an average equilibrium potential of less than about +3.5V and the negative electrode has an average equilibrium potential of greater than about +1.0V. In yet another embodiment, the positive electrode has an average equilibrium potential of less than about +3.5V and the negative electrode has an average equilibrium potential of greater than about +1.5V. In yet another embodiment, the positive electrode has an average equilibrium potential of less than about +3.0V and the negative electrode has an average equilibrium potential of greater than about +0.5V. Of course, other average equalization potential ranges for the positive and negative electrodes can be selected.
在某些实施例中,操作电化学电池可以涉及到将少于约10V的电压施加到电化学电池并且根据电化学电池的容积或者尺寸变化将部件从第一定向移位到第二定向。如下文更具体讨论的那样,施加的电压(即操作电压)一般为低以便增加电化学激励器的循环寿命。因而,操作电化学电池可以包括施加少于约10V、少于约8V、少于约7.5V、少于约6V、少于约5V或者少于约4V的电压。然而应当理解,对于在短暂时间的持续时间内要求高功率激励的某些时段,施加的电压可以高于施加的稳态电压。因而,可以用少于约10V、少于约8V、少于约7.5V、少于约6V、少于约5V或者少于约4V的施加电压来操作电化学电池的大于95%的操作寿命。在其它实例中,可以在这样的电压操作电化学电池的大于90%、大于80%、大于70%、大于60%或者大于50%的操作寿命。In certain embodiments, operating the electrochemical cell may involve applying a voltage of less than about 10 V to the electrochemical cell and displacing components from a first orientation to a second orientation based on a volume or dimensional change of the electrochemical cell. As discussed in more detail below, the applied voltage (ie, operating voltage) is generally low in order to increase the cycle life of the electrochemical actuator. Thus, operating the electrochemical cell can include applying a voltage of less than about 10V, less than about 8V, less than about 7.5V, less than about 6V, less than about 5V, or less than about 4V. It should be understood, however, that the applied voltage may be higher than the applied steady state voltage for certain periods of time that require high power excitation for brief durations. Thus, greater than 95% of the operational life of the electrochemical cell can be operated with an applied voltage of less than about 10V, less than about 8V, less than about 7.5V, less than about 6V, less than about 5V, or less than about 4V. In other examples, the electrochemical cell can be operated at such a voltage for greater than 90%, greater than 80%, greater than 70%, greater than 60%, or greater than 50% of its operating life.
以下针对非水电解质锂电化学电池的设计来具体地描述针对低电压、长寿命电化学激励器设计的考虑。然而应当理解这些原理也可以应用于用作激励器的任何电化学电池。The considerations for the design of low-voltage, long-life electrochemical actuators are specifically described below for the design of non-aqueous electrolyte lithium electrochemical cells. It should be understood, however, that these principles can also be applied to any electrochemical cell used as an actuator.
用于在用作激励器的电化学电池中传送包括离子物质在内的物质的驱动力可以是过电势(在充电过程中)或者欠电势(在放电过程中),过电势和欠电势分别为在某一电荷状态时在电池的均衡或者静止或者开路电压(OCV)以上或者以下的施加电压的量值。如果电势与各化合物x(浓度)的关系是已知的并且如果诸如阴极与阳极材料之比和离子物质在循环过程中的不可逆损失程度这样的电池参数是已知的,则本领域普通技术人员可以容易地根据电荷状态确定OCV。例如,LiCoO2-石墨电池可以具有随着电荷状态而在约3.9V与约3V之间连续地变化的OCV,而LiFePO4-石墨电池在大的电荷状态内具有约3.3V的接近恒定的电压。The driving force for transporting species, including ionic species, in an electrochemical cell used as an actuator can be an overpotential (during charging) or an underpotential (during discharging), the overpotential and underpotential being The magnitude of the applied voltage above or below the cell's equilibrium or resting or open circuit voltage (OCV) at a certain state of charge. A person of ordinary skill in the art would be able to do so if the relationship of potential to x (concentration) for each compound x (concentration) is known and if such cell parameters as the ratio of cathode to anode materials and the degree of irreversible loss of ionic species during cycling are known OCV can be easily determined from state of charge. For example, aLiCoO2 -graphite battery can have an OCV that varies continuously with state of charge between about 3.9V and about 3V, while aLiFePO4 -graphite battery has a nearly constant voltage of about 3.3V over a large state of charge .
为求高的激励速率,可能希望在充电状态过程中具有大的过电势而在放电过程中具有大的欠电势。另一方面,这里也认识到向电化学电池施加的电势的范围可能由于若干原因而尤其在许多放电/充电循环中影响电池的性能和寿命。在操作电压范围的高端,认识到过高电势可以造成在正电极的电流集电器(诸如铝)或者活性材料的电化学腐蚀或者非水电解质或者盐的降解。这可能导致电解质传导率的损失或者电池内所不希望的副作用、诸如形成气体。在操作电压的低端,过低电势可以造成负电极集电器(诸如铜)的电化学腐蚀或者锂金属的沉积,如果在负电极的电势达到金属锂稳定时的电势则出现后一情况。因此,为求高的激励速率以及为求用于激励的非水锂电化学电池中的稳定性和长寿命,可能希望具有相对低的OCV使得可以在充电过程中施加高的过电势而没有达到电解质系统或者正集电器的稳定限制。然而,低OCV不应过低;否则,在放电过程中施加的高的欠电势可能达到阳极集电器(诸如铜)溶解时的电势,或者这可以造成金属锂可能被镀覆。对用于满足这些标准的正电极和负电极的活性材料的选择是重要的,因为可能希望在本发明的电化学电池中提供高激励能量和功率。For high drive rates, it may be desirable to have a large overpotential during the charge state and a large underpotential during the discharge process. On the other hand, it is also recognized here that the range of potentials applied to an electrochemical cell can affect the performance and lifetime of the cell for several reasons, especially over many discharge/charge cycles. At the high end of the operating voltage range, it is recognized that too high a potential can cause electrochemical corrosion of the current collector (such as aluminum) or active material at the positive electrode or degradation of the non-aqueous electrolyte or salt. This can lead to a loss of electrolyte conductivity or undesired side effects within the cell, such as gas formation. At the low end of the operating voltage, too low a potential can cause electrochemical corrosion of the negative electrode current collector (such as copper) or deposition of lithium metal, the latter if the potential at the negative electrode reaches the potential at which metallic lithium stabilizes. Therefore, for high actuation rates and for stability and long life in non-aqueous lithium electrochemical cells for actuation, it may be desirable to have a relatively low OCV so that a high overpotential can be applied during charging without reaching the electrolyte The stability limit of the system or positive current collector. However, the low OCV should not be too low; otherwise, the high underpotential applied during discharge could reach the potential at which the anode current collector (such as copper) dissolves, or this could result in possible plating of metallic lithium. The selection of active materials for positive and negative electrodes meeting these criteria is important because it may be desirable to provide high excitation energy and power in the electrochemical cells of the present invention.
在一些实施例中,希望具有如下正电极材料,该正电极材料具有高速率和高应变以及相对于金属锂测量的少于约4V的OCV。在其它实施例中,相对于锂测量的OCV少于约3.5V、少于约3V或者少于约2.5V。这样的正电极材料的非限制离子包括以LiFePO4、TiS2、TaS2及其合金和在组成上有修改的形式为基础的电极化合物。在一些情况下,电化学电池包括如下负电极材料,这些负电极材料具有高功率以及在所用组成范围中相对于金属锂为至少+0.1V的OCV。在其它情况下,OCV为至少+0.5V或者更多。例如,在与正电极材料一起使用时石墨可以是适当材料使得净应变存在。另一适当材料包括在锂化时具有在大的锂组成范围中相对于金属锂约为1.57V的近恒定电势并且具有几乎零体积变化的LixTiO2尖晶石,例如起始组分的Li4Ti5O12。因而,这可以允许在正电极的体积变化用于激励。在一些实施例中,以正电极材料和负电极材料的此类组合为基础的电化学电池具有通常少于约3.5V的电池OCV。当然,有可能具有在电池的充电或者放电时在正值与负值之间变化的电池电压而又始终维持相对于金属锂没有过高的正电极电势和没有过低的负电极电势的上述条件。In some embodiments, it is desirable to have a positive electrode material that has a high rate and high strain and an OCV of less than about 4 V measured versus lithium metal. In other embodiments, the OCV measured against lithium is less than about 3.5 V, less than about 3 V, or less than about 2.5 V. Non-limiting examples of such positive electrode materials include electrode compounds based onLiFePO4 ,TiS2 ,TaS2 and alloys and compositionally modified forms thereof. In some cases, electrochemical cells include negative electrode materials having high power and an OCV of at least +0.1 V versus lithium metal in the range of compositions used. In other cases, OCV is at least +0.5V or more. For example, graphite may be a suitable material when used with a positive electrode material such that a net strain exists. Another suitable material includesLixTiO2 spinel with a near constant potential of about 1.57 V versus metallic lithium in a large lithium composition range and almost zero volume change upon lithiation, such asthe Li4 Ti5 O12 . Thus, this may allow a volume change at the positive electrode for excitation. In some embodiments, electrochemical cells based on such combinations of positive and negative electrode materials have a cell OCV typically less than about 3.5V. Of course, it is possible to have a battery voltage that varies between positive and negative values during charging or discharging of the battery while always maintaining the above-mentioned conditions of not having an excessively high positive electrode potential and not excessively low negative electrode potential relative to metallic lithium .
当这样的电池用于电化学激励时,施加的过电势和欠电势可以实现在电池OCV之上的充电电压和在电池OCV之下的放电电压。然而,电池的操作电压的绝对值一般保持为低。例如,操作电压的绝对值可以少于约10V、少于约7.5V、少于约5V或者少于约3.5V。应当注意,为求在短暂时间持续时间内的高功率激励,施加的电压可以是脉冲性质并且可以安全地明显高于通常将对这样的电池造成电化学损坏的稳态电压。然而,为了在维持电池电压的条件之下的操作电化学电池以获得长寿命,施加的电压可以实现相对于金属锂少于约5V、少于约4.5V或者少于4V的在正电极的电势。可以通过使用基于诸如LiFePO4、LiTiS2和LiTaS2这样的化合物的正电极材料来实现这一点。When such cells are used for electrochemical excitation, the applied overpotentials and underpotentials can achieve charging voltages above the battery OCV and discharging voltages below the battery OCV. However, the absolute value of the operating voltage of the battery is generally kept low. For example, the absolute value of the operating voltage may be less than about 10V, less than about 7.5V, less than about 5V, or less than about 3.5V. It should be noted that for high power excitation for brief time durations, the applied voltage can be pulsed in nature and can be safely significantly higher than the steady state voltage that would normally cause electrochemical damage to such cells. However, in order to operate the electrochemical cell under conditions that maintain the cell voltage for long life, the applied voltage can achieve a potential at the positive electrode of less than about 5 V, less than about 4.5 V, or less than 4 V relative to metallic lithium . This can be achieved by using positive electrode materials based on compounds such asLiFePO4 ,LiTiS2 andLiTaS2 .
现在描述用于高机械能量密度、高功率电化学激励化合物的选择标准。激励化合物的理论机械能量密度由方程1/2 Eε2给定,其中E是弹性模量而ε是在具体操作条件之下可引起的应变。因此,高应变和高弹性模量的材料具有用于在本发明的电化学电池中提供高能量密度的电势。The selection criteria for high mechanical energy density, high power electrochemically actuated compounds are now described. The theoretical mechanical energy density of an excited compound is given by the
关于电化学激励器,这里认识到获得的应变并非需要随着电化学电池中的嵌入或者合金化物质的浓度而呈线性。如在通过引用而结合于此的美国专利申请第11,796,138号中所述,例如在嵌入化合物LixTiS2的应变对比Li浓度x的曲线图中,曲线的斜率在低Li浓度最陡。因而,如果希望为用来操作激励器的给定电能获得最大机械能和/或从激励器获得最高机械功率,则在使用LixTiS2作为电化学激励化合物时希望在x约为0至0.4的范围中操作。后者根据如下考虑:嵌入物质数量x是电流与时间的乘积,从而对于具体操作电流,对于给定x值而言具有更高应变的化合物获得更快激励。With regard to electrochemical actuators, it is recognized here that the obtained strain need not be linear with the concentration of intercalation or alloying species in the electrochemical cell. As described in US Patent Application No. 11,796,138, which is incorporated herein by reference, for example, in a plot of strain versus Li concentration x for the intercalation compoundLixTiS2 , the slope of thecurve is steepest at low Li concentrations. Thus, if it is desired to obtain the maximum mechanical energy for a given electrical energy used tooperate the actuator and/or to obtain the highest mechanical power from the actuator, it is desirable to useLixTiS2 as the electrochemical excitation compound at x around 0 to 0.4 operate within the range. The latter is based on the consideration that the amount of intercalated species x is the product of current and time, so that for a specific operating current, compounds with higher strain for a given value of x obtain faster excitation.
也认识到电化学激励器的机械功率可以视电化学电池的速率能力(例如充电或者放电速率)而定。可以通过选择高离子传导率的电解质和/或设计电池使得离子或者电子扩散长度为短来获得高速率能力。例如对于基于粒子的电极,可以希望是细微粒子尺寸以便减少扩散长度并且相应地减少扩散时间。It is also recognized that the mechanical power of the electrochemical actuator may depend on the rate capability (eg charge or discharge rate) of the electrochemical cell. High rate capability can be achieved by selecting an electrolyte with high ionic conductivity and/or designing the cell such that the ion or electron diffusion length is short. For example for particle based electrodes, a fine particle size may be desired in order to reduce the diffusion length and correspondingly the diffusion time.
材料的传送性质因此也可以是用于设计电化学激励器的重要选择标准。例如,负责体积变化的离子物质的化学扩散系数可以被选择为高。本发明的一个实施例表明了由方程1/2 Eε2D给定的可以作为用于比较不同材料的品质因数的“功率因素”,其中D是感兴趣的材料中的离子物质的化学扩散系数。图4比较不同材料的功率因素与它们的比重。注意高功率因素和低比重ρ的材料作为电化学激励器可以在所有其它条件相等时提供更高功率系数。例如,如TiS2和TaS2的层状二硫属元素化物根据这些标准可以是特别有用的电化学激励化合物。The transport properties of materials may thus also be an important selection criterion for designing electrochemical actuators. For example, the chemical diffusion coefficient of the ionic species responsible for the volume change can be chosen to be high. One embodiment of the present invention shows that a "power factor" given by the
发明人已经认识到激励领域中感兴趣的品质因数也包括作为每单位体积可用机械功率的功率密度和作为每单位质量可用机械功率的功率系数。在多数激励应用中希望使两个值最大。应当注意电化学激励器的功率密度要求考虑离子物质在电化学激励器的操作过程中传送的特征扩散长度。尽管传送长度包括电极之间、经过电极孔隙和跨过隔离器的长度,但是激励速率没有超过扩散传送到材料本身中所必需的时间。因此,粒子尺寸(对于基于粒子的激励器)和化学扩散系数均为重要因素。为了在相等基础上比较材料,假设材料可以加工成具有相似粒子尺寸,功率密度可以被定义为数量1/2(Eε2DLi/x2)而功率系数定义为1/2(Eε2x2ρ/DLi),其中x是粒子尺寸(例如半径或者直径)。图4比较不同材料的功率密度及其比重,而图6比较不同材料的功率密度及其功率系数。根据这些选择标准可以选择用于电化学激励器的适当材料。例如如TiS2和TaS2的层状二硫化物可以是特别有用的电化学激励化合物。The inventors have realized that figures of merit of interest in the field of excitation also include power density as available mechanical power per unit volume and power coefficient as available mechanical power per unit mass. In most stimulus applications it is desirable to maximize both values. It should be noted that the power density of the electrochemical actuator requires consideration of the characteristic diffusion length of the ionic species transported during the operation of the electrochemical actuator. Although the transport length includes the length between the electrodes, through the electrode pores and across the separator, the excitation rate does not exceed the time necessary for diffusive transport into the material itself. Thus, both particle size (for particle-based actuators) and chemical diffusion coefficients are important factors. To compare materials on an equal basis, assuming the materials can be processed to have similar particle sizes, the power density can be defined as the
在一个实施例中,本发明的电化学激励器利用至少两个(例如第一和第二)协同工作的电化学激励器,使得当一个电化学激励器充电(例如为了产生有用机械功)时另一电化学激励器放电或者反之亦然。例如,系统或者设备可以包括在关于彼此的相对布置中配置的第一电化学电池和第二电化学电池,使得第一电池的放电实现第二电池的充电而第二电池的放电实现第一电池的充电。本文也包括被构造和布置成通过第一电化学电池和第二电化学电池中至少一个的充电和/或放电从第一定向移位到第二定向的部件。当然,包括在关于彼此的相对布置中配置的电化学电池的结构可以包括在相对布置中配置的多组这样的电化学电池、例如大于2、大于5、大于10、大于20或者大于50对电化学电池。这样的电池可以相对于彼此串行或者并行操作。虽然先前在有源结构中已经使用成对的相对激励器(因为多数激励器在拉伸时比在压缩时工作更好或者反之亦然),但是在本发明的电化学激励器中使用这样的设计仍然有额外益处。电化学激励器在它们执行机械功的同时存储或者释放电能,并且如果这样的电能耗散(例如以通过电阻器对电能进行耗散的热形式),则激励器或者激励器系统的能量消耗可能为高。然而,通过在激励器之间往返电能使得在一个激励器充电时另一激励器放电来大量地节约电能。定位成使得各电化学激励器可以对另一电化学激励器施加力的相对电化学激励器的另一益处在于可以通过对相对激励器中的一个或者两个进行充电或者放电来控制激励器上设置的应力。例如,这一布置可以允许控制激励器上的预应力以优化激励器的激励力、蠕变(creep)和/或顺应性。又一益处在于当可以对相对激励器独立地充电或者放电时提高激励器的定位准确性。In one embodiment, the electrochemical actuator of the present invention utilizes at least two (e.g., first and second) electrochemical actuators working in tandem such that when one electrochemical actuator is charged (e.g., to produce useful mechanical work) Another electrochemical actuator discharges or vice versa. For example, a system or device may include a first electrochemical cell and a second electrochemical cell configured in a relative arrangement with respect to each other such that discharging of the first battery effects charging of the second battery and discharging of the second battery effects charging of the first battery. charging. Also included herein are components constructed and arranged to be displaced from a first orientation to a second orientation by charging and/or discharging of at least one of the first electrochemical cell and the second electrochemical cell. Of course, structures comprising electrochemical cells arranged in relative arrangements with respect to each other may include groups of such electrochemical cells arranged in opposing arrangements, for example greater than 2, greater than 5, greater than 10, greater than 20, or greater than 50 pairs of electrochemical cells. chemical battery. Such cells can be operated in series or in parallel with respect to each other. While pairs of opposing actuators have previously been used in active structures (since most actuators work better in tension than in compression or vice versa), the use of such an actuator in the electrochemical actuator of the present invention Design still has additional benefits. Electrochemical actuators store or release electrical energy while they perform mechanical work, and if such electrical energy is dissipated (for example in the form of heat that dissipates electrical energy through a resistor), the energy consumption of the actuator or actuator system may for high. However, substantial power savings are achieved by shuttling power between the exciters so that one exciter is charged while the other is discharged. Another benefit of opposing electrochemical actuators positioned so that each electrochemical actuator can exert a force on the other electrochemical actuator is that the energy on the actuator can be controlled by charging or discharging one or both of the opposing electrochemical actuators. Set the stress. For example, this arrangement may allow control of the pre-stress on the actuator to optimize the excitation force, creep and/or compliance of the actuator. Yet another benefit resides in improved actuator positioning accuracy when opposing actuators can be charged or discharged independently.
典型电化学电池包括如下电极(例如阳极),在充电过程中该电极膨胀而另一电极(例如阴极)收缩或者在放电过程中反之亦然以便减少电池中的体积变化量。这对于某些应用可能是有利的,因为小的体积变化可以例如减少电池内某些层的分层。然而在本发明的一些实施例中,两个电极在充电或者放电过程中均膨胀或者一个电极没有收缩而另一电极膨胀是有利的。有利地,这样的配置允许最大能量用于激励而不是在抵消另一电极时浪费掉。A typical electrochemical cell includes an electrode (such as the anode) that expands during charging and the other electrode (such as the cathode) contracts or vice versa during discharging in order to reduce the amount of volume change in the cell. This may be advantageous for certain applications, as small volume changes may, for example, reduce delamination of certain layers within the battery. In some embodiments of the invention, however, it is advantageous that both electrodes expand during charge or discharge or that one electrode does not contract and the other expands. Advantageously, such a configuration allows maximum energy to be used for excitation rather than being wasted in neutralizing another electrode.
因而,另一实施例包括如下电化学电池,该电化学电池包括阳极和阴极,该阳极和阴极被构造和布置成使得在电极之一体积膨胀至少1%的循环过程中另一电极基本上没有收缩。在其它实施例中,电极之一体积膨胀至少0.5%、至少2%或者至少4%而另一电极基本上没有收缩。例如,当阳极或者阴极之一膨胀时,另一个体积可以膨胀或者可以不变。部件可以与这样的电化学电池有操作关系,并且该部件可以通过电化学电池的充电和/或放电从第一定向移位到第二定向。可以通过将适当材料用于阳极和阴极来实施阳极和阴极的这种同时膨胀或者一个电极膨胀而另一电极没有收缩。Thus, another embodiment includes an electrochemical cell comprising an anode and a cathode constructed and arranged such that during a cycle in which one of the electrodes expands in volume by at least 1% the other electrode is substantially free of shrink. In other embodiments, one of the electrodes expands in volume by at least 0.5%, at least 2%, or at least 4% while the other electrode does not substantially shrink. For example, when one of the anode or cathode expands, the volume of the other may expand or may not change. A component may be in operative relationship with such an electrochemical cell, and the component may be displaced from a first orientation to a second orientation by charging and/or discharging of the electrochemical cell. This simultaneous expansion of the anode and cathode or expansion of one electrode without contraction of the other can be carried out by using appropriate materials for the anode and cathode.
在一些情况下,电极可以自发地释放物质(例如锂),这造成电极的膨胀或者收缩和/或设备的一个或者多个部件从第一定向到第二定向的移动。表现自发放电的电极材料在本领域中是已知的并且在希望设备的具体“默认”状态情况下、例如在电化学电池的有意或者意外短路情况下可以是有利的。In some cases, an electrode may spontaneously release a substance (eg, lithium), which causes expansion or contraction of the electrode and/or movement of one or more components of the device from a first orientation to a second orientation. Electrode materials that exhibit spontaneous discharge are known in the art and may be advantageous where a particular "default" state of the device is desired, eg, in the event of an intentional or accidental short circuit of an electrochemical cell.
适合于用作电极的材料包括诸如金属、金属氧化物、金属硫化物、金属氮化物、金属合金、金属间化合物、其它包含金属的化合物、其它无机材料(例如碳)等电活化材料。在一些情况下,电极可以有利地包括具有高弹性模量的材料。在一些情况下,材料可以能够如这里所述在与物质反应时经历体积或者其它尺寸的变化。在一些实施例中,电极可以包括诸如单晶体或者多晶体的包括晶体结构的材料。在一些实施例中,电极可以包括无定形或者无序结构。Materials suitable for use as electrodes include electroactive materials such as metals, metal oxides, metal sulfides, metal nitrides, metal alloys, intermetallic compounds, other metal-containing compounds, other inorganic materials such as carbon, and the like. In some cases, an electrode may advantageously comprise a material with a high modulus of elasticity. In some cases, a material may be capable of undergoing a volume or other dimensional change upon reaction with a substance as described herein. In some embodiments, an electrode may include a material including a crystal structure, such as a single crystal or a polycrystal. In some embodiments, electrodes may include amorphous or disordered structures.
在一些情况下,形成阳极的材料包括铝、银、金、硼、铋、镓、锗、铟、铅、锑、硅、锡中的一个或者多个。在一些实施例中,形成阳极的材料可以包括Li4Ti5O12或者其任何合金或者掺杂组成。可以形成阴极的材料的例子包括LiCoO2、LiFePO4、LiNiO2、LiMnO2、LiMn2O4、Li4Ti5O12、TiSi2、MoSi2、WSi2、TiS2或者TaS2或者其任何合金或者掺杂组成。在一些情况下,形成阴极的材料可以包括TiS2或者TaS2。在其它实施例中,形成阴极的材料可以包括LiMPO4,其中M是一个或者多个首行过渡金属(例如Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu或者Zn)或者其任何合金或者掺杂组成。在一些情况下,阴极包括碳,其中碳可以是石墨、碳纤维结构、玻璃碳结构、高定向热解石墨、无序碳结构或者其组合的形式。包括这样的材料组成的电化学电池可以在例如相对于金属锂的电势小于+4V的上述阴极电势操作。阳极电势可以选自于例如相对于金属锂的电势大于+0.5V的上述电势。In some cases, the material forming the anode includes one or more of aluminum, silver, gold, boron, bismuth, gallium, germanium, indium, lead, antimony, silicon, tin. In some embodiments, the material forming the anode may include Li4 Ti5 O12 or any alloy or doped composition thereof. Examples ofmaterials that can form the cathode include LiCoO2,LiFePO4 ,LiNiO2 ,LiMnO2 ,LiMn2O4 ,Li4Ti5O12 ,TiSi2,MoSi2,WSi2 ,TiS2 orTaS2 or any alloy thereof or doped composition. In some cases, the material forming the cathode may includeTiS2 orTaS2 . In other embodiments, the material forming the cathode may include LiMPO4 , where M is one or more first-row transition metals (such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, or Zn) or other Any alloy or doped composition. In some cases, the cathode includes carbon, where the carbon can be in the form of graphite, carbon fiber structures, glassy carbon structures, highly oriented pyrolytic graphite, disordered carbon structures, or combinations thereof. An electrochemical cell comprising such a material composition can be operated at the aforementioned cathodic potential, eg, less than +4 V versus the potential of metallic lithium. The anode potential can be selected from, for example, the above-mentioned potentials greater than +0.5 V with respect to the potential of metallic lithium.
在一些情况下,形成电极的材料可以包括散布于材料内的物质。例如,电极可以包括一定数量的物质,从而电极可以作为设备内的物质源来工作。在一些实施例中,衬底或者其它支撑材料可以与物质反应以引起容积或者尺寸变化。例如,硅晶片或者其它金属或者包含金属的衬底可以被锂化使得在电化学电池的放电/充电时出现容积或者尺寸变化。In some cases, the material forming the electrode may include a substance dispersed within the material. For example, an electrode may include a quantity of substance such that the electrode can function as a source of substance within the device. In some embodiments, a substrate or other support material can react with a substance to cause a volumetric or dimensional change. For example, a silicon wafer or other metal or metal-containing substrate can be lithiated such that a volumetric or dimensional change occurs upon discharge/charge of the electrochemical cell.
用于在本发明的电极中使用的材料可以被选择成在与物质反应(例如锂化和脱锂)时表现某些性质。例如,材料可以被选择成在使用于如这里所述电化学电池中时表现某一类型或者数量的容积或者尺寸变化(例如激励)。本领域普通技术人员将能够使用简易筛选测试来选择这样的材料。在一些情况下,材料的性质和/或行为可以是已知的,并且本领域普通技术人员将能够例如基于所需容积变化量来选择材料以适合具体应用。如A.Yamada等人在J.Electrochem,Soc.,148,A224(2001)中所述,例如已知的磷-橄榄石Li(Fe,Mn)PO4的可逆锂嵌入基于Fe/Mn的比例产生7.4-10%的体积变化。在一些情况下,可以通过在电化学电池内并入作为电极的材料并且观测材料在电池的充电和放电时的行为来筛选材料。Materials for use in electrodes of the invention may be selected to exhibit certain properties when reacting with species, such as lithiation and delithiation. For example, a material can be selected to exhibit a certain type or amount of volumetric or dimensional change (eg, excitation) when used in an electrochemical cell as described herein. Those of ordinary skill in the art will be able to select such materials using simple screening tests. In some cases, the properties and/or behavior of the material may be known, and one of ordinary skill in the art will be able to select a material to suit a particular application, eg, based on the amount of volume change desired. The known reversible lithium intercalation of for example phospho-olivine Li(Fe,Mn)PO is based on the Fe/Mn ratio as described by A.Yamada et al. in J.Electrochem, Soc., 148,A224 (2001) A volume change of 7.4-10% was produced. In some cases, materials can be screened by incorporating the material as an electrode within an electrochemical cell and observing the behavior of the material when the cell is charged and discharged.
在一些情况下,可以基于材料与物质反应的能力来选择电极材料。例如,当锂是物质时,可以基于材料在充电/放电时迅速地和/或可逆地接收锂粒子(例如锂化)和/或放出锂离子(例如脱锂)的能力来选择材料。也可以通过了解离子传送到材料中的速率来确定物质与材料的可逆反应关联的对应应变。可以在实验上测试或者使用诸如离子扩散系数、离子和电子传导率以及表面反应速率系数这样的性质的列表或者估计值在理论上进行这样的确定。本领域技术人员将能够使用此信息来选择用作电极的适当材料。In some cases, electrode materials may be selected based on their ability to react with species. For example, when lithium is the species, the material can be selected based on its ability to rapidly and/or reversibly accept lithium particles (eg, lithiation) and/or emit lithium ions (eg, delithiation) upon charge/discharge. The corresponding strain associated with a reversible reaction of a species with a material can also be determined by knowing the rate at which ions are transported into the material. Such determinations may be tested experimentally or made theoretically using tabulations or estimates of properties such as ion diffusion coefficients, ionic and electronic conductivities, and surface reaction rate coefficients. Those skilled in the art will be able to use this information to select appropriate materials for use as electrodes.
可以通过本领域中已知的方法来制作电极。在一个实施例中,可以从包含聚合物粘合剂和/或如碳的传导添加剂的基于粉末的悬浮体浇铸电极材料。可以在高压(例如每线性英寸数吨)之下滚压(例如辗轧)悬浮体以形成具有所需活性材料体积百分比的密集紧致层。Electrodes can be fabricated by methods known in the art. In one embodiment, the electrode material may be cast from a powder-based suspension comprising a polymeric binder and/or a conductive additive such as carbon. The suspension can be rolled (eg, milled) under high pressure (eg, tons per linear inch) to form a dense compact layer with the desired volume percentage of active material.
适合于用作电解质的材料包括能够起到用于存储和传送离子的介质并且在一些情况下起到阳极与阴极之间隔离物的作用的材料。可以使用能够存储和传送离子的任何液体、固体或者凝胶体材料,只要材料相对于阳极和阴极没有电化学和化学活性并且材料有助于在阳极与阴极之间传送离子(例如锂离子)。电解质可以不导电以防止阳极与阴极之间短路。Materials suitable for use as electrolytes include materials that can function as a medium for the storage and transport of ions and, in some cases, as a separator between the anode and cathode. Any liquid, solid or gel material capable of storing and transporting ions can be used as long as the material is electrochemically and chemically inactive relative to the anode and cathode and the material facilitates transport of ions (eg lithium ions) between the anode and cathode. The electrolyte may be non-conductive to prevent shorting between the anode and cathode.
电解质可以包括用以提供离子传导率的一个或者多个离子电解质以及包括一个或者多个液体电解质溶剂、凝胶体聚合物材料或者聚合物材料。在一些情况下,电解质可以为非水电解质。合适的非水电解质可以包括有机电解质,这些有机电解质包括液体电解质、凝胶体电解质和固体电解质。例如Dorniney在Lithium Batteries(New Materials,Developmentsand Perspectives,第4章第137-165页,Elsevier,Amsterdam(1994))中以及Alamgir等人在Lithium Batteries(New Materials,Developmentsand Perspectives,第3章第93-136页,Elsevier,Amsterdam(1994))中描述了非水电解质的例子。非水液体电解质溶剂的例子包括但不限于非水有机溶剂,如例如N-甲基乙酰胺、乙腈、缩醛、酮缩醇、酯、碳酸盐、砜、亚硫酸盐、环丁砜、脂族醚、环醚、甘醇二甲醚、聚醚、磷酸酯、硅氧烷、二氧戊环、N-烷基吡咯烷酮、其取代衍生物(例如其卤化衍生物)及其组合。The electrolyte may include one or more ionic electrolytes to provide ionic conductivity and include one or more liquid electrolyte solvents, gel polymeric materials, or polymeric materials. In some cases, the electrolyte can be a non-aqueous electrolyte. Suitable non-aqueous electrolytes may include organic electrolytes including liquid electrolytes, gel electrolytes, and solid electrolytes. For example Dorniney in Lithium Batteries (New Materials, Developments and Perspectives, Chapter 4, pp. 137-165, Elsevier, Amsterdam (1994)) and Alamgir et al. in Lithium Batteries (New Materials, Developments and Perspectives, Chapter 3, pp. 93-136 Examples of non-aqueous electrolytes are described in Page, Elsevier, Amsterdam (1994). Examples of non-aqueous liquid electrolyte solvents include, but are not limited to, non-aqueous organic solvents such as, for example, N-methylacetamide, acetonitrile, acetals, ketals, esters, carbonates, sulfones, sulfites, sulfolane, aliphatic Ethers, cyclic ethers, glymes, polyethers, phosphate esters, siloxanes, dioxolanes, N-alkylpyrrolidones, substituted derivatives thereof (eg, halogenated derivatives thereof), and combinations thereof.
在一些实施例中,电化学电池还可以包括定位于系统或者设备内、例如定位于阴极与阳极之间的阻挡层或者隔离物材料(例如层)。隔离物可以是将阳极和阴极相互隔离或者绝缘从而防止短路并且允许在阳极与阴极之间传送离子的材料。适合于用作隔离物材料的材料包括具有高弹性模量和/或高硬度(例如刚性)的材料、电绝缘的材料和/或具有足以经受高压力、重量和/或应变(例如负载)而不丧失功能的材料。在一些情况下,隔离物层可以是有孔的。隔离物材料的例子包括电绝缘的玻璃、陶瓷、硅酸盐陶瓷、堇青石、氧化铝、铝硅酸盐或者其它混合金属氧化物或者氮化物或者碳化物。在一些情况下,隔离物层可以包括聚合材料。例如包括弹性材料的隔离物层可以在允许一个或者多个部件之间的剪切运动时是有用的。In some embodiments, an electrochemical cell may also include a barrier or separator material (eg, layer) positioned within the system or device, eg, between the cathode and the anode. A separator may be a material that isolates or insulates the anode and cathode from each other, preventing short circuits and allowing transport of ions between the anode and cathode. Materials suitable for use as spacer materials include materials with a high modulus of elasticity and/or high hardness (e.g., rigidity), electrically insulating materials, and/or materials with sufficient Materials that do not lose function. In some cases, the spacer layer can be porous. Examples of spacer materials include electrically insulating glass, ceramic, silicate ceramic, cordierite, alumina, aluminosilicate or other mixed metal oxides or nitrides or carbides. In some cases, the spacer layer can include a polymeric material. For example a spacer layer comprising an elastic material may be useful in allowing shear movement between one or more components.
在一个实施例中,可以使用陶瓷处理或者涂覆技术领域中的普通技术人员已知的如下方法在组装层之前在一个或者两个电极的表面上将有孔隔离物材料浇铸为粒子或者浆层,这些方法诸如是喷涂沉积、刮刀涂覆、丝网印刷、网涂覆、间隔反转(comma-reverse)涂覆或者槽模(slot-die)涂覆。In one embodiment, the porous spacer material may be cast as a particle or slurry layer on the surface of one or both electrodes prior to assembly of the layers using methods known to those of ordinary skill in the art of ceramic processing or coating as follows , such as spray deposition, doctor blade coating, screen printing, screen coating, comma-reverse coating or slot-die coating.
本发明的设备还可以包括用以适合具体应用的附加部件。例如,本发明的设备可以包括电源、集电器(诸如包括传导材料的集电器)、外部封装层、隔离物层等。封装层可以包括电化学绝缘材料或者其它保护材料。The devices of the present invention may also include additional components to suit a particular application. For example, a device of the present invention may include a power source, a current collector (such as a current collector comprising a conductive material), an external encapsulation layer, a spacer layer, and the like. The encapsulation layer may include electrochemically insulating or other protective materials.
在用作激励器之前可选地预处理或者处理该系统或者设备。设备的预处理可以增强设备的机械性能、硬度、激励能量密度、激励应变、可逆性和/或寿命和/或可以减少蠕变变形和应变迟滞。在一些情况下,设备或者其一个或者多个部件可以受到流体静压力和/或单轴应力以加固设备的材料和/或部件和/或减少自由体积量。在一些实施例中,施加的压力可以是10,000psi、20,000psi,30,000psi、45,000psi或者更大。应当理解任何数量的施加压力可以用来预处理设备从而防止设备的内部故障和/或可以实现设备性能的改进。The system or device is optionally preconditioned or treated prior to use as an actuator. Pretreatment of the device can enhance the mechanical properties, stiffness, excitation energy density, excitation strain, reversibility and/or lifetime of the device and/or can reduce creep deformation and strain hysteresis. In some cases, a device or one or more components thereof may be subjected to hydrostatic pressure and/or uniaxial stress to strengthen the material and/or components of the device and/or reduce the amount of free volume. In some embodiments, the applied pressure may be 10,000 psi, 20,000 psi, 30,000 psi, 45,000 psi, or greater. It should be understood that any amount of applied pressure may be used to precondition the device to prevent internal failure of the device and/or may achieve improved performance of the device.
以下例子旨在于说明本发明的某些实施例、但是将不理解为限制本发明的范围也没有例示本发明的完全范围。The following examples are intended to illustrate certain embodiments of the invention, but are not to be construed as limiting nor exemplifying the full scope of the invention.
例1example 1
自供动力式电化学泵self powered electrochemical pump
在这一预示例子中,可以使用本发明的激励器作为用于胰岛素疗法的自供动力式电化学泵。In this prospective example, the stimulator of the present invention can be used as a self-powered electrochemical pump for insulin therapy.
第1类糖尿病临床治疗通常是胰岛素疗法,其中根据定期的血糖测量来组合使用长效和短效胰岛素的注射。治疗可以包括包含连续皮下胰岛素输注(CSII)的胰岛素输注泵疗法,该疗法通过微导管从微型处理器控制的泵配发迅速起效的胰岛素。一些现有泵可以连续地配发迅速起效胰岛素并且可以在餐前或者餐后提供递增剂量。输注设置每三日一变,因而相对于常规的每日多次注射(MDI)治疗法而言、有效注射次数显著地减少。迅速起效胰岛素的独有使用获得了大大改进的剂量可预测性,只要胰岛素长效形式通过在皮肤以下形成贮库来起作用。然而,胰岛素从这样的贮库释放的速率可能视诸如物理活动这样的因素而明显地变化。自供动力式电化学泵可以解决有效注射次数减少和胰岛素释放速率变化的问题。Clinical treatment of
自供动力式电化学泵可以被设计成在72小时的时段中递送2.0mL有效载荷。图16示出了用于自供动力式电化学泵350的示意设计。负电极355提供锂源,而正电极360是膨胀元件。电池是电化学平衡的,从而负电极中的可用锂可以使正电极膨胀。可以设计泵用于正电极的300%体积膨胀,这与活塞一样产生将力递送到激励板的纵向移位,该激励板又将压力施加到包含胰岛素溶液的储蓄器365。正电极的竖直移位可以取决于它的宽度/高度纵横比(这里假设为2∶1)和体积变化。电解质可以是标准非水锂电池电解质。封装可以是与当前用于可再充电锂离子电池的封装相似的聚合物封装。A self powered electrochemical pump can be designed to deliver a 2.0 mL payload over a 72 hour period. FIG. 16 shows a schematic design for a self-powered
有利地,可以通过选择用来形成正电极的适当材料来控制胰岛素溶液的释放速率。例如,对于具有硬度相对低的正电极材料的电化学泵,正电机可以在放电时缓慢地移位到它的新均衡位置。这可以实现向储蓄器缓慢施加力,由此将胰岛素缓慢输注到身体中。Advantageously, the release rate of the insulin solution can be controlled by selecting the appropriate material used to form the positive electrode. For example, for an electrochemical pump with a relatively low stiffness positive electrode material, the positive motor can slowly shift to its new equilibrium position upon discharge. This enables a slow application of force to the reservoir, thereby slowly infusing insulin into the body.
泵可以具有8.6mL的体积,该体积将允许<15mL的总设备体积。14.5g的泵质量应当允许约20g的总设备质量。利用对材料和电解质的适当选择,这一泵设计可以按所需基础速率在72小时期间递送胰岛素。为求与约C/5(即电池的全部容量释放5小时)的电池放电速率对应的药丸速率,可以并入额外的设计改进。除此之外和/或取而代之,泵可以具有与用于现有连续输注泵的规格相似的规格。例如,诸如Lilly产品的迅速起效胰岛素封装成浓度为每毫升100单位的溶液。典型基础胰岛素水平可以在每小时0.5到1.5单位之间调节。餐服药丸剂量可以包括消耗每10g碳水化合物为1单位,因而可能希望餐服最多10单位。迅速起效胰岛素的药效学表明在15分钟内递送该剂量。任何更久的递送可以看到与同一数量皮下注入的一些差异。因此,递送峰值速率是15分钟内0.1mL体积。横截面积为6.5cm2的储蓄器的线性压缩要求15分钟内0.015cm或者每秒0.167微米的最大移位速率。胰岛素溶液的每日总有效载荷必需约为50单位或者0.5mL。因此,三日供应量需要体积为1.5mL的有效载荷。The pump can have a volume of 8.6 mL which will allow a total device volume of <15 mL. A pump mass of 14.5g should allow for a total device mass of about 20g. With proper selection of materials and electrolytes, this pump design can deliver insulin at the desired basal rate over a 72 hour period. Additional design improvements can be incorporated in order to obtain a pill rate corresponding to a battery discharge rate of about C/5 (ie, the full capacity of the battery is released in 5 hours). Additionally and/or instead, the pump may have similar specifications to those used for existing continuous infusion pumps. For example, products such as Lilly Rapid-acting insulin packaged in a solution with a concentration of 100 units per milliliter. Typical basal insulin levels can be adjusted between 0.5 and 1.5 units per hour. A meal pill dosage may include 1 unit per 10 g of carbohydrate consumed, so it may be desirable to take up to 10 units with a meal. The pharmacodynamics of rapid-acting insulin indicate that the dose is delivered within 15 minutes. Any longer delivery could see some difference with the same amount injected subcutaneously. Therefore, the peak rate of delivery is 0.1 mL volume in 15 minutes. Linear compression of a reservoir with a cross-sectional area of 6.5cm2 requires a maximum displacement rate of 0.015 cm or 0.167 microns per second in 15 minutes. The total daily payload of insulin solution must be approximately 50 units or 0.5 mL. Therefore, a three-day supply requires a payload volume of 1.5 mL.
例2Example 2
电化学激励器electrochemical actuator
在这一预示例子中,电化学激励器包括压电双晶片结构,该结构包括粘合到铜层的在尺寸活性锂存储材料层。铜层基本上没有与锂合金化或者嵌入,而在电化学电池的操作电势铜层在电化学上是稳定的。这一压电双晶片结构形成电池的正电极。铜层也可以充当正电极集电器并且可以在最终的密封电池以外延伸以形成接头或者电流引线或者可以接合到在电池以外延伸的接头或者电流引线。负电极是粘合到或者沉积于用作为负集电器的铜层上的锂金属层。定位于两个电极之间的是有孔隔离物膜,例如诸如在锂离子电池的构造中使用的玻璃纤维布或者有孔聚合物隔离物。层状电池中灌注诸如在锂原电池或者可再充电电池技术中常用的电解质的非水锂传导液体电解质或者非水电双层电容器。例子包括如下溶剂,该溶剂包括碳酸亚乙酯和碳酸二亚乙酯体积比为1∶1的混合物,其中已经添入作为锂传导盐的浓度为1M的LiPF6,或者已经添入相同LiPF6盐的作为溶剂的乙腈。In this prospective example, the electrochemical actuator comprises a piezoelectric bimorph structure comprising a layer of in-scale active lithium storage material bonded to a copper layer. The copper layer is substantially not alloyed or intercalated with lithium, and the copper layer is electrochemically stable at the operating potential of the electrochemical cell. This piezoelectric bimorph structure forms the positive electrode of the battery. The copper layer may also act as a positive electrode current collector and may extend beyond the final sealed cell to form a tab or current lead or may be bonded to a tab or current lead extending beyond the cell. The negative electrode is a layer of lithium metal adhered to or deposited on a copper layer that acts as a negative current collector. Positioned between the two electrodes is a porous separator film such as, for example, glass fiber cloth or a porous polymer separator as used in the construction of lithium-ion batteries. Laminar batteries are impregnated with nonaqueous lithium conducting liquid electrolytes such as those commonly used in lithium primary or rechargeable battery technology or nonaqueous double layer capacitors. Examples include solvents comprising a 1:1 volume ratio mixture of ethylene carbonate and diethylene carbonate to whichLiPF6 has been added at a concentration of 1 M as a lithium conducting salt, or to which the sameLiPF6 has been added Acetonitrile as solvent of the salt.
电化学激励器密封于聚合物封装中。在组装时电池处于充电状态,其中锡正电极具有比锂金属负电极更低的锂化学电势。在连接正集电器和负集电器从而电流在两个电极之间流动时,锂离子电流在内部从锂流到锡。锡与锂的合金化实现在锡饱和于锂时可以达到接近300%的体积膨胀。当锡层由于与锂合金化而体积增加时,它粘合到的铜层提供机械约束,并且压电双晶片经历移位(例如弯曲)。在负电极,锂的损失也可能导致小的应力,但是因为锂在室温附近有高韧性,这一应力比正电极的应力小得多。因此,整个电池由于包括正电极的电化学激励器上的锡层体积变化而经历挠曲。电池的挠曲又将压力施加到定位成与激励器相邻的药物储蓄器。药物储蓄器包含包括药物的流体并且由诸如囊状物的可变形装置围绕。施加的压力造成从储蓄器配发药物。The electrochemical actuator is sealed in a polymer package. The battery is in a charged state when assembled, with the tin positive electrode having a lower lithium chemical potential than the lithium metal negative electrode. Upon connecting the positive and negative current collectors so that current flows between the two electrodes, lithium-ion current flows internally from lithium to tin. The alloying of tin and lithium achieves a volume expansion close to 300% when tin is saturated with lithium. When the tin layer increases in volume due to alloying with lithium, the copper layer to which it is bonded provides mechanical constraint, and the piezoelectric bimorph undergoes displacement (eg bending). At the negative electrode, the loss of lithium may also result in a small stress, but this stress is much smaller than that of the positive electrode because of the high ductility of lithium near room temperature. Thus, the entire cell undergoes flexing due to the volume change of the tin layer on the electrochemical stimulator including the positive electrode. The flexing of the battery in turn applies pressure to the drug reservoir positioned adjacent to the activator. The drug reservoir contains a fluid including drug and is surrounded by a deformable device such as a bladder. The applied pressure causes the drug to be dispensed from the reservoir.
例3Example 3
电化学压电双晶片挠曲Electrochemical Piezoelectric Bimorph Flexure
在这一预示例子中,例2的压电双晶片结构被制作成如图3A-C中所示半圆或者“U”形挠曲的形状。该挠曲的一端锚定到配发设备的支撑或者壳,而另一端在压电双晶片经历挠曲时自由移位。在电化学电池放电时,该挠曲向外延伸,并且该挠曲的自由端将力施加到包含药物的囊状物从而经过孔或者阀从囊状物配发药物。In this prospective example, the piezoelectric bimorph structure of Example 2 was fabricated in the shape of a semicircle or "U" flexure as shown in Figures 3A-C. One end of the flexure is anchored to the support or housing of the dispensing device, while the other end is free to displace when the piezoelectric bimorph undergoes flexure. When the electrochemical cell is discharged, the flexure extends outward, and the free end of the flexure applies a force to the drug-containing bladder to dispense the drug from the bladder through the aperture or valve.
例4Example 4
具有内置放大的自供动力式形变激励器Self-powered deformation actuator with built-in amplification
在这一例子中制作电化学电池并且研究它在施加电压或者电流时激励的能力。在750lbf之下在直径为1/2英寸的模具中通过-325网状锡粉末(99.8%[金属基本成分],Alfa Aesar)按压有孔丸。丸重量为0.625g并且被测量成具有0.89mm的厚度。通过在180℃在空气熔炉中将组件加热30分钟、使用BiSnAg焊料(Indium Corporation of America)和助熔剂#5RMA(Indium Corporation of America)将丸焊接到厚度为15微米的铜箔。使用这一电极组件作为电化学电池中的正电极,而使用锂箔(~0.8mm厚度,Aldrich)作为负电极。In this example an electrochemical cell is fabricated and its ability to energize when a voltage or current is applied is studied. The perforated pellets were pressed through -325 reticulated tin powder (99.8% [metal base composition], Alfa Aesar) in a 1/2 inch diameter die at 750 lbf. The pellet weighed 0.625 g and was measured to have a thickness of 0.89 mm. The pellets were soldered to a 15 micron thick copper foil using BiSnAg solder (Indium Corporation of America) and flux #5RMA (Indium Corporation of America) by heating the assembly in an air furnace at 180°C for 30 minutes. This electrode assembly was used as the positive electrode in an electrochemical cell, while lithium foil (~0.8mm thickness, Aldrich) was used as the negative electrode.
两层Celgard 2400隔离物用来隔离锡正电极和锂箔负电极。锂箔电极附接到也由15微米厚的铜箔制成的集电器。使用由在碳酸亚乙酯、碳酸亚丙酯、碳酸二甲酯和碳酸甲乙酯(体积比为4∶1∶3∶2)的混合溶剂中溶解的1.33M LiPF6组成的液体电解质。使用热密封物将电池密封于由聚乙烯装袋材料制成的封套中。在组装时电池的开路电压为2.8-2.9V,这表明它处于充电状态。在放电时电池电压迅速地下降到相对恒定值0.5-0.4V,这是Sn-Li电化学耦合的特征。Two layers of Celgard 2400 separator were used to separate the tin positive electrode and the lithium foil negative electrode. The lithium foil electrodes were attached to current collectors also made of 15 micron thick copper foil. A liquid electrolyte composed of 1.33M LiPF6 dissolved in a mixed solvent of ethylene carbonate, propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate (volume ratio 4:1:3:2) was used. The cells were sealed in an envelope made of polyethylene bagging material using a heat seal. The battery had an open circuit voltage of 2.8-2.9V when assembled, which indicated it was charging. The battery voltage drops rapidly to a relatively constant value of 0.5-0.4V during discharge, which is characteristic of Sn-Li electrochemical coupling.
电池通过连接正集电器和负集电器的1欧姆电阻器而放电。与锡盘和锂箔的平面垂直测量移位,而使用来自Micro-Epsilon的线性可变差分变换器(LVDT)来测量放电的电池。通过与LabView(National Instruments)接口的National Instrument NI-USB 6009数据采集设备来测量读数。图17示出了根据时间的来自这一实验的所得移位的曲线图。The battery was discharged through a 1 ohm resistor connecting the positive and negative current collectors. The displacement was measured perpendicular to the plane of the tin disk and lithium foil, while a linear variable differential transformer (LVDT) from Micro-Epsilon was used to measure the discharged cell. Readings were measured by a National Instrument NI-USB 6009 data acquisition device interfaced with LabView (National Instruments). Figure 17 shows a graph of the resulting shift from this experiment as a function of time.
在LVDT的少量施加力之下产生的由锂和隔离物造成的初始少量压缩之后,激励器在11小时的时段中随着它放电而延伸1.8mm。这一绝对移位按照约为二的因子超过Sn丸的初始厚度。在测试之后对分解的激励器的检验表明已经出现放电,其中锂从负电极腐蚀并且与来自一侧的锡丸合金化。容易地观测到激励器的移位归因于圆柱形锡丸变形成“杯形”形状,其中凸表面为面向隔离物和锂电极的一侧。因此可见锡丸的形状形变归因于丸上产生的差动应变,其中面向锂电极的一侧经历膨胀。在变形之后在与丸的平面垂直的移位方向上的机械负载表明在变形的丸没有破裂的情况下可以支撑多于1kg的负载。因此,激励器基本上具有硬度,与在可以经过一个或者多个针或者微型针配发流体的药物递送应用中一样,这对于诸如填充流体的囊状物的配发或者抽运的应用将是有用的。通过在这样的填充流体的囊状物附近放置这一例子的激励器并且将整体装入刚性容器中,可以实施药物递送设备。After an initial small amount of compression by the lithium and spacer under a small amount of applied force from the LVDT, the actuator extended 1.8 mm as it discharged over a period of 11 hours. This absolute shift exceeds the initial thickness of the Sn pellets by a factor of about two. Examination of the disassembled exciter after testing showed that a discharge had occurred in which the lithium corroded from the negative electrode and alloyed with the tin shot from one side. The displacement of the actuator was easily observed to be due to the deformation of the cylindrical tin pellet into a "cup" shape with the convex surface being the side facing the separator and lithium electrode. It can thus be seen that the shape deformation of the tin shot is attributed to the differential strain generated on the shot, where the side facing the Li electrode undergoes expansion. Mechanical loads in the direction of displacement perpendicular to the plane of the pellet after deformation show that a load of more than 1 kg can be supported without rupture of the deformed pellet. Thus, the activator is substantially rigid, as in drug delivery applications where fluid can be dispensed through one or more needles or microneedles, which would be useful for applications such as dispensing or pumping of fluid-filled bladders. useful. By placing the activator of this example near such a fluid-filled bladder and enclosing the whole in a rigid container, a drug delivery device can be implemented.
这样的药物注射设备例如对于胰岛素的3日(72小时)递送将是适合的。诸如Lilly产品的迅速起效胰岛素一般封装成浓度为每毫升100单位的溶液。胰岛素溶液的每日总负荷可以约为50单位或者0.5mL。因此,具有三日供应量的泵可以容纳~2.0mL的总体积。例如,在这一例子中描述的激励器产生多于1.5mm的移位,该移位在作用于面积为13cm2的储蓄器时可以容易地获得所需2.0mL体积。典型基础胰岛素水平可以在每小时0.5到1.5单位之间调节。餐服药丸剂量可以包括消耗每10gm碳水化合物为1单位,因而可能希望餐服最多10单位。迅速起效胰岛素的药效暗示可以在15分钟内递送该剂量。因此,递送峰值速率可以对应于在15分钟内总体积的5%。进行1.5mm的移位对应于2mL胰岛素负荷的完整递送,在这一例子中的激励器可以容易地满足药丸速率要求。为了减缓速率以满足基础速率要求,可以实施如下文在例7中所述外部负载电阻或者占空比控制的增加。Such a drug injection device would be suitable eg for 3 day (72 hour) delivery of insulin. such as lilly products Rapid-acting insulins are typically packaged in solutions at a concentration of 100 units per milliliter. The total daily load of insulin solution may be approximately 50 units or 0.5 mL. Thus, a pump with a three-day supply can hold a total volume of ~2.0 mL. For example, the actuator described in this example produces a displacement of more than 1.5 mm which, when acting on a reservoir with an area of 13cm2 , can easily achieve the required volume of 2.0 mL. Typical basal insulin levels can be adjusted between 0.5 and 1.5 units per hour. A meal pill dosage may include 1 unit per 10 gm of carbohydrate consumed, so it may be desirable to take up to 10 units with a meal. The efficacy of rapid-acting insulin suggests that this dose can be delivered within 15 minutes. Thus, the peak rate of delivery may correspond to 5% of the total volume within 15 minutes. Making a displacement of 1.5mm corresponds to a complete delivery of a 2mL insulin load, and the activator in this example can easily meet the bolus rate requirement. To slow down the rate to meet the base rate requirement, an external load resistor or an increase in duty cycle control as described below in Example 7 can be implemented.
通过证实由于电极上产生差动应变所致的电化学激励,这一例子可以证实本发明某些实施例中的电化学激励器和药物递送设备。激励器在电池的放电过程中的净体积变化的考虑表明所得移位没有与净体积变化相关并且事实上符号与电池的净体积变化相反。比较各种LixSn合金中锂的部分摩尔体积与纯锂的摩尔体积,观测到纯锂具有更大摩尔体积,因此其中锂为负电极的电池的放电实现净体积减少。例如,Li/Sn化学计量相对低的化合物Li2.5Sn具有38.73cm3mol-1的摩尔体积。由于纯Sn金属具有16.24cm3mol-1的摩尔体积,所以与化合物的差异22.49cm3mol-1是由Li2.5Sn中的2.5Li占据的体积。比较而言,纯Li的摩尔体积是13.10cm3mol-1,从而2.5摩尔锂金属将具有32.75cm3的体积。因此,电池完全放电以在正电极侧上形成Li2.5Sn将实现2.5摩尔锂从Li电极传送到Sn,这实现设备体积的净减少。类似地,化学计量相对高的化合物Li4.4Sn中Li的摩尔体积是42.01cm3mol-1,而4.4摩尔的纯Li金属具有57.62cm3mol-1的体积。同样,这样的电池的放电实现净体积减少。尽管在放电时有负体积变化,但是仍然出现在这一例子的激励器中观测到的向外或者正移位。激励器的挠曲或者“挤压”模式的变形放大由于丸上的差动应变所致的变形。This example demonstrates electrochemical activators and drug delivery devices in certain embodiments of the present invention by demonstrating electrochemical actuation due to differential strain on the electrodes. Consideration of the net volume change of the actuator during discharge of the battery shows that the resulting displacement is not correlated with the net volume change and is in fact opposite in sign to the net volume change of the battery. Comparing the partial molar volumes of lithium in variousLixSn alloys to that of pure lithium, it was observed that pure lithium has a greater molar volume, and therefore discharge of cells in which lithium is the negative electrode achieves a net volume reduction. For example, the compound Li2.5 Sn with a relatively low Li/Sn stoichiometry has a molar volume of 38.73 cm3 mol−1 . Since pure Sn metal has a molar volume of 16.24 cmmol−1 , the difference from the compound 22.49 cm3 mol−1 is the volume occupied by 2.5 Li in Li2.5 Sn. In comparison, the molar volume of pure Li is 13.10 cm3 mol−1 , so 2.5 moles of lithium metal would have a volume of 32.75 cm3 . Thus, fully discharging the cell to formLi2.5Sn on the positive electrode side will achieve 2.5 moles of Li transport from the Li electrode to Sn, which achieves a net reduction in device volume. Similarly, the molar volume of Li in the relatively stoichiometric compound Li4.4 Sn is 42.01 cm3 mol−1 , while 4.4 molar pure Li metal has a volume of 57.62 cm3 mol−1 . Likewise, discharge of such cells achieves a net volume reduction. The outward or positive displacement observed in the exciter of this example occurs despite the negative volume change upon discharge. The deflection of the actuator, or deformation in the "squeeze" mode, amplifies the deformation due to the differential strain on the pellet.
例5Example 5
电化学激励器的恒流放电Constant Current Discharge of Electrochemical Actuator
在以下例子中研究电化学电池的恒流放电。利用在有孔锡丸与铜集电器之间作为接触来使用的传导铜粘合带而不是焊料来制作如例4中所述电化学电池。使用Maccor 4300电池测试器(Maccor)对电池进行恒流放电(恒定放电电流)。锡丸重量为0.628g并且被测量为具有1.06mm的厚度。假设所有锡被锂化成化合物Li4.4Sn,丸的理论容量为624mAh。在组装时电池的开路电压为2.8-2.9V,这表明它处于充电状态。电池在0.88mA放电至0.01V。放电容量为56.22mAh,这表明电池在63.6小时的放电时间内放电至它的理论容量的仅9%。然而,观测到锡丸已经以与例1中的激励器相同的方式挤压成近似相同的变形。这一例子证实如果在外部电路中闭合正引线和负引线则可以自发地放电和激励的电化学激励器的电流受限控制。In the following example the galvanostatic discharge of an electrochemical cell is studied. An electrochemical cell as described in Example 4 was fabricated using a conductive copper adhesive tape instead of solder used as a contact between the perforated tin shot and the copper current collector. The cells were subjected to constant current discharge (constant discharge current) using a Maccor 4300 battery tester (Maccor). The tin shot weighed 0.628 g and was measured to have a thickness of 1.06 mm. Assuming all the tin is lithiated into the compoundLi4.4Sn , the theoretical capacity of the pellet is 624mAh. The battery had an open circuit voltage of 2.8-2.9V when assembled, which indicated it was charging. The battery was discharged to 0.01V at 0.88mA. The discharge capacity was 56.22 mAh, which indicates that the battery was discharged to only 9% of its theoretical capacity in a discharge time of 63.6 hours. However, it was observed that the tin pellets had been extruded in the same manner as the actuator in Example 1 to approximately the same deformation. This example demonstrates the current-limited control of an electrochemical actuator that can discharge and energize spontaneously if the positive and negative leads are closed in an external circuit.
例6Example 6
电化学压电双晶片激励器Electrochemical Piezoelectric Bimorph Actuator
通过用Kapton粘合带掩蔽厚度为50微米和面积为40mm×5mm的铜箔的一侧并且将箔蘸入熔融锡中以用锡层涂覆一侧来制作压电双晶片电极。有望在锡的电化学锂化时由铜箔提供的约束将实现压电双晶片结构的弯曲或者“卷曲”,其中凸起侧为锂化锡。使用这一压电双晶片作为正电极来组装与例4和例5中的电化学电池相似的电化学电池,并利用面向隔离物的锡层和锂箔负电极来组装。在组装时电池的开路电压为2.8-2.9V,这表明电池处于充电状态。电池以0.089mA的电流被恒流放电至0.01V。放电容量为7.7mAh,这代表就约10微米的锡层厚度而言约50%的放电状态并且假设Li4.4Sn的完全锂化组成。在放电之后分解电池并且锡-铜压电双晶片电极在压电双晶片的所有自由边缘基本上表现弯曲,这证实了形状形变。A piezoelectric bimorph electrode was fabricated by masking one side of a copper foil with a thickness of 50 microns and an area of 40 mm x 5 mm with Kapton adhesive tape and dipping the foil into molten tin to coat one side with a tin layer. It is expected that the confinement provided by the copper foil upon electrochemical lithiation of tin will enable the bending, or "curling," of piezoelectric bimorph structures in which the convex side is lithiated tin. Electrochemical cells similar to those in Examples 4 and 5 were assembled using this piezoelectric bimorph as the positive electrode, and with the tin layer facing the separator and the lithium foil negative electrode. The open circuit voltage of the battery when assembled is 2.8-2.9V, which indicates that the battery is in a charged state. The battery was discharged to 0.01V at a constant current of 0.089mA. The discharge capacity was 7.7 mAh, which represents about 50% state-of-discharge for a tin layer thickness of about 10 microns and assuming a fully lithiated composition ofLi4.4Sn . The shape deformation was confirmed by disassembling the cell after discharge and the tin-copper piezoelectric bimorph electrodes exhibited curvature at substantially all free edges of the piezoelectric bimorph.
在其它实验中,厚度为0.05mm(99.999%[金属基本成分],Alfa Aesar)和0.10mm(99.99%[金属基本成分],Alfa Aesar)的锡金属箔样本各自接合到15微米厚的铜箔,这形成面积为20mm×5mm的平坦压电双晶片电极。使用两层Celgard 2400隔离物以隔离锡/铜压电双晶片正电极和0.4mm厚的锂箔(Aldrich)负电极来构造电化学电池。对于各电池,锂箔电极附接到也是由15微米厚的铜箔制成的集电器,并且使用由在碳酸亚乙酯、碳酸亚丙酯、碳酸二甲酯和碳酸甲乙酯(体积比为4∶1∶3∶2)的混合溶剂中溶解的1.33M LiPF6组成的电解质。使用热密封物将各电池密封于由聚乙烯装袋材料制成的封套中。In other experiments, tin metal foil samples of thickness 0.05mm (99.999% [metal base composition], Alfa Aesar) and 0.10mm (99.99% [metal base composition], Alfa Aesar) were each bonded to 15 micron thick copper foil , which forms a flat piezoelectric bimorph electrode with an area of 20 mm x 5 mm. Electrochemical cells were constructed using two layers of Celgard 2400 separator to isolate the tin/copper piezoelectric bimorph positive electrode and a 0.4 mm thick lithium foil (Aldrich) negative electrode. For each cell, lithium foil electrodes were attached to current collectors also made of 15-micron thick copper foil, and a mixture of ethylene carbonate, propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate (volume An electrolyte composed of 1.33M LiPF6 dissolved in a mixed solvent of 4:1:3:2). Each cell was sealed in an envelope made of polyethylene bagging material using a heat seal.
使用Maccor 4300电池测试器(Maccor)对电池进行恒流放电。使用0.10mm厚的锡箔制作的电池在0.4178mA放电至0.01V。放电容量为1.65mAh(理论放电容量的4%)。在图19中示出了用于这一器件的放电分布。在拆卸时观测到压电双晶片电极在所有自由边缘已经“卷曲”,这证实严重形变。The batteries were subjected to a constant current discharge using a Maccor 4300 battery tester (Maccor). A battery made of 0.10mm thick tin foil was discharged to 0.01V at 0.4178mA. The discharge capacity was 1.65 mAh (4% of the theoretical discharge capacity). The discharge profile for this device is shown in FIG. 19 . Upon disassembly it was observed that the piezoelectric bimorph electrode had "curled" at all free edges, confirming severe deformation.
使用0.05mm锡箔制作的电池在0.4076mA放电直至放电容量为1.65mAh(理论容量的4%)。在图20中示出了用于这一设备的放电分布。与0.10mm锡箔压电双晶片相似,这一设备在分解时也在压电双晶片的所有自由边缘表现弯曲。The battery made of 0.05mm tin foil was discharged at 0.4076mA until the discharge capacity was 1.65mAh (4% of theoretical capacity). The discharge profile for this device is shown in FIG. 20 . Similar to the 0.10 mm foil piezo bimorph, this device also exhibited bending at all free edges of the piezo bimorph when disassembled.
这些例子证实本发明的各种电化学压电双晶片激励器。这些结果也表明可以无需将本发明的电化学电池完全地放电以便获得明显形变,而理论电池容量的仅少量百分比放电所实现的差动应变可能足以实现所需激励These examples demonstrate various electrochemical piezoelectric bimorph actuators of the present invention. These results also suggest that it may not be necessary to fully discharge the electrochemical cells of the present invention in order to achieve significant deformation, and that the differential strain achieved by discharging only a small percentage of theoretical cell capacity may be sufficient to achieve the desired excitation.
例7Example 7
电化学激励器的占空比控制Duty Cycle Control of Electrochemical Actuators
设计与例1中所述设计相似的电化学激励器进行占空比受控放电以便获得缓慢变形速率。占空比由电子继电器(Radio Shack)控制,该继电器是通过来自Maccor 4300电池测试器(Maccor)的电流控制来接通和关断的并且在电化学电池的端子与1欧姆外部负载电阻器串联连接。继电器在从电池测试器接收电流之时闭合而在电流中断时断开。配置20%的占空比,其中电流在200ms的总时段之中的50ms内接通。图18示出了用于通过20%的占空比来控制的电化学形变激励器的移位曲线的曲线图。图18中所示设备的所得移位证实激励器在低受控速率的变形。如这里所述,一种获得受控低变形速率的可选方法可以是通过更高电阻的外部负载对图18中的激励器进行放电。An electrochemical actuator similar to that described in Example 1 was designed for duty cycle controlled discharge in order to obtain a slow deformation rate. The duty cycle is controlled by an electronic relay (Radio Shack) that is switched on and off by current control from a Maccor 4300 battery tester (Maccor) and placed in series with a 1 ohm external load resistor at the terminals of the electrochemical cell connect. The relay closes when receiving current from the battery tester and opens when the current is interrupted. A duty cycle of 20% is configured where the current is on for 50ms out of a total period of 200ms. FIG. 18 shows a graph of the displacement curve for an electrochemical deformation actuator controlled with a duty cycle of 20%. The resulting displacement of the device shown in Figure 18 demonstrates deformation of the actuator at a low controlled rate. As described here, an alternative method to obtain a controlled low deformation rate could be to discharge the exciter in Figure 18 through a higher resistance external load.
例8Example 8
具有更大驱动电压的自供动力式电化学激励器Self-powered electrochemical actuator with higher driving voltage
在一些境况之下,即使存在明显电池极化,诸如当需要充足驱动电压时,可能希望比利用锡和锂金属的先前例子的平均放电电压更高的平均放电电压。由于锑比锂金属相对更高的开路电压(~0.95V),锑可以是用于这样的应用的有用形变电极材料。使用-325网状锑粉末(99.5%[金属基本成分],Alfa Aesar)而不是锡粉末如例1中那样制备电化学设备。在直径为1/2英寸的模具中在2250lbf按压锡粉末。所得丸为0.687g和1.31mm厚,这与454mAh的理论容量对应。样本在3.025mA的电流恒流放电至0.01V。放电容量为49.98mAh(理论容量的11%)并且实现锡丸的严重变形。In some circumstances, even in the presence of significant cell polarization, such as when sufficient drive voltage is required, a higher average discharge voltage than that of previous examples utilizing tin and lithium metals may be desired. Antimony may be a useful deformable electrode material for such applications due to its relatively higher open circuit voltage (-0.95 V) than lithium metal. Electrochemical devices were prepared as in Example 1 using -325 reticulated antimony powder (99.5% [metal base composition], Alfa Aesar) instead of tin powder. Tin powder was pressed at 2250 lbf in a 1/2 inch diameter die. The resulting pellet was 0.687 g and 1.31 mm thick, which corresponds to a theoretical capacity of 454 mAh. The sample was discharged to 0.01V at a constant current of 3.025mA. The discharge capacity was 49.98mAh (11% of theoretical capacity) and severe deformation of the tin shot was achieved.
尽管这里已经描述和图示了本发明的数个实施例,但是本领域普通技术人员将容易地设想用于执行这里描述的功能和/或获得这里描述的结果和/或一个或者多个优点的各种其它手段和/或结构,并且各种这样的变化和/或修改视为在本发明的范围内。更一般而言,本领域技术人员将容易地认识到这里描述的所有参数、尺寸、材料和配置是为了举例并且实际参数、尺寸、材料和/或配置将依赖于本发明的教导的所引用的一个或者多个具体应用。本领域技术人员将认识到或者能够仅使用常规实验来确立这里描述的本发明具体实施例的许多等效实施例。因此将理解前述实施例是仅通过例子来呈现的并且在所附权利要求及其等效含义的范围内可以用具体描述和要求保护的方式以外的方式实施本发明。本发明涉及这里描述的各独立特征、系统、产品、材料、工具包和/或方法。此外,如果这样的特征、系统、产品、材料、工具包和/或方法没有互不一致,则两个或者更多这样的特征、系统、产品、材料、工具包和/或方法的任何组合被包括于本发明的范围内。Although several embodiments of the present invention have been described and illustrated herein, those of ordinary skill in the art will readily conceive of methods for performing the functions described herein and/or obtaining the results and/or one or more advantages described herein. Various other means and/or structures, and various such changes and/or modifications are considered to be within the scope of the present invention. More generally, those skilled in the art will readily recognize that all parameters, dimensions, materials, and configurations described herein are by way of example and that actual parameters, dimensions, materials, and/or configurations will depend upon the teachings of the present invention to which reference is made. One or more specific applications. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. It is therefore to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and their equivalents, the invention may be practiced otherwise than as specifically described and claimed. The present invention is directed to each individual feature, system, article of manufacture, material, kit and/or method described herein. Furthermore, any combination of two or more such features, systems, products, materials, kits and/or methods is included if such features, systems, products, materials, kits and/or methods are not mutually inconsistent. within the scope of the present invention.
在说明书中和在权利要求书中不适用数量词时,除非清楚地相反指明否则应当理解为意指“至少一个/一种”。Where a numerical term is not used in the specification and in the claims, it should be understood to mean "at least one" unless clearly indicated to the contrary.
在说明书中和在权利要求书中使用的短语“和/或”应当理解为意指这样结合的元素中的“任一个或者两个”,即在一些情况下共同地存在而在其它情况下分开地存在的元素。除非清楚地相反指明,除了由“和/或”子句具体标识的元素之外可以可选地存在无论与具体标识的那些元素有关还是无关的其它元素。因此作为非限制例子,当与开放式语言如“包括”结合使用时指代“A和/或B”可以在一个实施例中指代A而无B(可选地包括除了B以外的元素)、在另一实施例中指代B而无A(可选地包括除了A以外的元素)、在又一实施例中指代A和B(可选地包括其它元素)等。The phrase "and/or" as used in the specification and in the claims should be understood to mean "either or both" of the elements so conjoined that they exist together in some instances and separately in others. elements that exist. Other elements may optionally be present other than the elements specifically identified by the "and/or" clause, whether related or unrelated to those elements specifically identified unless clearly indicated to the contrary. Thus, as a non-limiting example, reference to "A and/or B" when used in conjunction with open language such as "comprises" may in one embodiment refer to A without B (optionally including elements other than B), In another embodiment B is referenced without A (optionally including elements other than A), in yet another embodiment both A and B are referenced (optionally including other elements), etc.
如在说明书中和在权利要求书中使用的那样,“或者”应当理解为具有与如上文定义的“和/或”相同的含义。例如,当分离列举中的项时,“或者”或者“和/或”应当解释为包括,即包括多个元素或者元素列举中的至少一个也包括多个以及可选地包括额外未列举的项。只有诸如“......中的仅一个”或者“......中的准确一个”或者在权利要求中使用时“由......组成”这样的清楚地相反指明的术语才将指代包括多个元素或者元素列举中的准确一个元素。一般而言,这里使用的术语“或者”在诸如“任一个”、“......之一”、“......中的仅一个”或者“......中的准确一个”这样的排他性术语之前时应当仅解释为表示排他性的可选项(即“一个或者另一个但不是两个”)。“基本上由......组成”在使用于权利要求书中时应当具有它在专利法领域中使用的普通含义。As used in the specification and in the claims, "or" should be understood to have the same meaning as "and/or" as defined above. For example, when separating items in a list, "or" or "and/or" should be interpreted as including, that is, including a plurality of elements or at least one of the listed elements also includes a plurality and optionally includes additional unlisted items . Only expressly stated to the contrary such as "only one of" or "exact one of" or "consisting of" when used in the claims Only the term shall refer to including a plurality of elements or to exactly one element of a list of elements. Generally, the term "or" is used herein in contexts such as "either", "one of", "only one of" or "... Preceding an exclusive term such as "exact one of" should only be construed to denote an exclusive alternative (ie "one or the other but not both"). "Consisting essentially of" when used in a claim shall have its ordinary meaning as used in the field of patent law.
如在说明书中和在权利要求书中使用的那样,短语“至少一个”在指代一个或者多个元素的列举时应当理解为意指从元素列举中的任何一个或者多个元素中选择的至少一个元素、但是并非必然地包括在元素列举中具体列举的每一个元素中的至少一个、也不排除元素列举中的元素的任何组合。这一定义也允许除了短语“至少一个”指代的元素列举内具体标识的元素之外可以可选地存在无论与具体标识的那些元素有关还是无关的元素。因此,作为非限制例子,“A和B中的至少一个”(或者等效为“A或者B中的至少一个”或者等效为“A和/或B中的至少一个”)可以在一个实施例中指代至少一个,可选地包括多个A而无B(以及可选地包括除了B以外的元素);在另一实施例中指代至少一个,可选地包括多个B而无A(以及可选地包括除了A以外的元素);在又一实施例中指代至少一个,可选地包括多个A和至少一个即可选地包括多个B(以及可选地包括其它元素)等。As used in the specification and in the claims, the phrase "at least one" when referring to a list of one or more elements should be understood to mean at least one element selected from any one or more elements in the list of elements. An element, but does not necessarily include at least one of every element specifically listed in the list of elements, nor does it exclude any combination of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase "at least one" refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, "at least one of A and B" (or equivalently "at least one of A or B" or equivalently "at least one of A and/or B") may be used in an implementation An example refers to at least one, optionally including a plurality of A without B (and optionally including elements other than B); in another embodiment refers to at least one, optionally including a plurality of B without A ( and optionally includes elements other than A); in yet another embodiment refers to at least one, optionally includes a plurality of A and at least one, that is, optionally includes a plurality of B (and optionally includes other elements), etc. .
在权利要求书中以及在上述说明书中,诸如“包括”、“携带”、“具有”、“包含”、“涉及到”、“保持”等所有过渡短语理解为开放式、即意指包括但不限于。如在美国专利局专利审查手册第2111.03节中阐述的那样,只有过渡短语“由......组成”和“基本上由......组成”应当分别是闭合或者半闭合短语。In the claims as well as in the foregoing description, all transitional phrases such as "comprises", "carries", "has", "includes", "relates to", "retains", etc. are understood to be open-ended, meaning to include but not limited to. As set forth in USPTO Manual of Patent Examining Section 2111.03, only the transitional phrases "consisting of" and "consisting essentially of" shall be closed or semi-closed phrases, respectively .
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83341206P | 2006-07-26 | 2006-07-26 | |
US60/833,412 | 2006-07-26 | ||
US11/796,138 | 2007-04-26 | ||
US11/796,138US7994686B2 (en) | 2004-06-14 | 2007-04-26 | Electrochemical methods, devices, and structures |
PCT/US2007/016849WO2008094196A2 (en) | 2006-07-26 | 2007-07-26 | Electrochemical actuator |
Publication Number | Publication Date |
---|---|
CN101589230A CN101589230A (en) | 2009-11-25 |
CN101589230Btrue CN101589230B (en) | 2012-02-15 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2007800353514AExpired - Fee RelatedCN101589230B (en) | 2006-07-26 | 2007-07-26 | Electrochemical actuator |
Country | Link |
---|---|
CN (1) | CN101589230B (en) |
ES (1) | ES2358951T3 (en) |
ZA (1) | ZA200900834B (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9687186B2 (en) | 2005-07-21 | 2017-06-27 | Steadymed Ltd. | Drug delivery device |
FR2953824B1 (en)* | 2009-12-11 | 2015-04-24 | Univ Toulouse 3 Paul Sabatier | PIEZOELECTRIC AND / OR PYROELECTRIC COMPOSITE SOLID MATERIAL, PROCESS FOR OBTAINING AND USE OF SUCH MATERIAL |
US9146208B2 (en)* | 2011-09-29 | 2015-09-29 | Brigham Young University | Lead-free oxygen sensor |
US20170324122A1 (en)* | 2016-05-03 | 2017-11-09 | Ford Global Technologies, Llc | Sensitive strain-based soc and soh monitoring of battery cells |
EP3525841A4 (en)* | 2016-10-17 | 2020-04-08 | Micromed Co., Ltd. | Micro delivery device |
CN108214466A (en)* | 2018-02-26 | 2018-06-29 | 孟金来 | Machine caterpillar |
US11117252B2 (en)* | 2018-02-28 | 2021-09-14 | Seiko Epson Corporation | Robot |
CN113573453A (en)* | 2021-08-19 | 2021-10-29 | 大连理工大学 | Device for measuring surface charge of surface dielectric barrier discharge plasma exciter |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1393952A (en)* | 2001-07-04 | 2003-01-29 | 上海神力科技有限公司 | Deionizing system for fuel battery |
US6982514B1 (en)* | 2000-05-22 | 2006-01-03 | Santa Fe Science And Technology, Inc. | Electrochemical devices incorporating high-conductivity conjugated polymers |
EP1621875B1 (en)* | 2004-07-31 | 2007-10-17 | Forschungszentrum Karlsruhe GmbH | Element with two electrodes made of nanoscale porous metals, device comprising a plurality of elements, and their use |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6982514B1 (en)* | 2000-05-22 | 2006-01-03 | Santa Fe Science And Technology, Inc. | Electrochemical devices incorporating high-conductivity conjugated polymers |
CN1393952A (en)* | 2001-07-04 | 2003-01-29 | 上海神力科技有限公司 | Deionizing system for fuel battery |
EP1621875B1 (en)* | 2004-07-31 | 2007-10-17 | Forschungszentrum Karlsruhe GmbH | Element with two electrodes made of nanoscale porous metals, device comprising a plurality of elements, and their use |
Publication number | Publication date |
---|---|
CN101589230A (en) | 2009-11-25 |
ZA200900834B (en) | 2010-05-26 |
ES2358951T3 (en) | 2011-05-17 |
Publication | Publication Date | Title |
---|---|---|
US8378552B2 (en) | Electrochemical actuator | |
US7999435B2 (en) | Electrochemical actuator | |
US8604664B2 (en) | Electrochemical actuator | |
CA2665996C (en) | Electrochemical actuator | |
CN101589230B (en) | Electrochemical actuator | |
Koyama et al. | Harnessing the actuation potential of solid‐state intercalation compounds | |
US8368285B2 (en) | Electrochemical actuators | |
WO2020028485A1 (en) | Multiplexed charge discharge battery management system | |
EP2618411B1 (en) | Thin battery electrode group, thin battery, and electronic device | |
CN105849968A (en) | All climate battery and manufacturing and using same | |
JP6660662B2 (en) | Lithium ion secondary battery | |
Chen et al. | Flash lamp annealing enables thin-film solid-state batteries on aluminum foil | |
Zhang et al. | An electrochemical microactuator based on highly textured LiCoO2 | |
Do et al. | Preparation and characterization of thick-film Ni/MH battery | |
WO2003063320A1 (en) | Formation procedure for alkaline nickel-zinc cells | |
Owens et al. | Batteries for micropower applications | |
Smyrl et al. | 11 Batteries for micropower applications | |
Ehrlich et al. | A lithium ion cell for the EMU battery | |
Wood | A user's view of compact batteries [biomedical applications] |
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20120215 Termination date:20160726 | |
CF01 | Termination of patent right due to non-payment of annual fee |