


技术领域technical field
本发明涉及一种混合动力电动汽车制动控制方法,属于电动汽车制动技术领域。The invention relates to a hybrid electric vehicle braking control method, which belongs to the technical field of electric vehicle braking.
背景技术Background technique
制动距离是与行驶安全直接有关的一项制动效能指标。参照附图1,制动过程按时间分一般由驾驶员接到制动停车信号后的反应时间T0,踏板切换和克服系统滞后的时间T1、制动器作用时间T2和持续制动时间T3组成。在城市中心行驶时,车与车之间的距离较短,经常需要频繁地制动减速,驾驶员反应稍慢则容易出现诸如追尾等事故,频繁制动操作容易使驾驶员疲劳。Braking distance is a braking performance index directly related to driving safety. Referring to attached
由DE1 0 2004 030 464公知一种用于电子制动调节的方法,其依据加速踏板的复位速度,操纵伺服液压制动装置的一个预填充装置来消除车轮制动器的空隙,通过消除空隙可以减少在操纵制动踏板时的车轮制动器的动作时间,由此可以缩短制动距离。由CN 101096206A及CN 101134458A公知,对所述伺服液压制动装置的驱动方法被扩展至更多的汽车运行状态,不再局限于加速踏板的复位速度。然而,在现有技术中,缩短汽车制动距离的制动装置及控制方法是在伺服液压制动装置中得以实现;对于未安装该伺服液压制动装置或类似的电控制动系统的车辆,需要寻找其他方式来缩短汽车制动距离。A method for electronic brake regulation is known from
混合动力电动汽车的驱动轮全部由电机驱动,或者是部分由电机驱动;利用电机进行制动能量回收成为混合动力提高燃油经济性的重要途径。已开发的制动能量回馈系统,参见发明专利200610113586.8“电动汽车混合制动系统”,在某型HCNG串联混合动力城市客车和某型燃料电池城市客车上得到了成功应用。同时,缓速器装置在客车和货车上被广泛的使用,利用缓速器装置进行制动能够提高整车制动系统的寿命,提高制动安全性。The driving wheels of hybrid electric vehicles are all driven by motors, or partly driven by motors; using motors to recover braking energy has become an important way for hybrid vehicles to improve fuel economy. The developed braking energy feedback system, see invention patent 200610113586.8 "electric vehicle hybrid braking system", has been successfully applied in a certain type of HCNG series hybrid city bus and a certain type of fuel cell city bus. At the same time, the retarder device is widely used on passenger cars and trucks, and the use of the retarder device for braking can increase the life of the vehicle's braking system and improve braking safety.
目前还没有在操作制动踏板之前利用电动汽车的驱动电机或汽车的缓速器装置进行主动制动从而缩短制动系统的反应时间、缩短制动距离的技术;目前没有根据城市驾驶工况电动汽车的驱动电机或汽车的缓速器装置主动进行主动制动从而缓解驾驶员疲劳的技术。At present, there is no technology to use the driving motor of the electric vehicle or the retarder device of the vehicle to perform active braking before operating the brake pedal, thereby shortening the reaction time of the braking system and shortening the braking distance; The technology that the drive motor of the car or the retarder device of the car actively performs active braking to relieve driver fatigue.
发明内容Contents of the invention
本发明的目的是提供一种混合动力汽车主动制动控制方法,用于解决在汽车紧急制动和拥堵路况制动时,制动系统的响应时间慢和驾驶员反应慢导致的制动距离变长,以及驾驶员频繁操作引起的疲劳;本发明通过在驾驶员操作制动踏板之前,控制电动汽车的驱动电机主动进行回收制动,从而缩短制动系统的响应时间、缩短制动距离,缓解驾驶员疲劳;同时在操作制动踏板前进行回收制动,增加了回收制动的比率。The object of the present invention is to provide an active braking control method for a hybrid electric vehicle, which is used to solve the slow braking distance caused by the slow response time of the braking system and the slow response of the driver when the vehicle is braked in an emergency or in congested road conditions. long, and fatigue caused by the driver’s frequent operation; the present invention controls the drive motor of the electric vehicle to actively perform regenerative braking before the driver operates the brake pedal, thereby shortening the response time of the braking system, shortening the braking distance, and alleviating the Driver fatigue; at the same time regenerative braking is performed before operating the brake pedal, increasing the rate of regenerative braking.
本发明的技术方案是这样实现的:一种混合动力汽车主动制动控制方法,该汽车主动制动控制方法是通过由轮速传感器1或电机转速传感器,制动控制器2,车轮摩擦制动器3,半轴4,电机控制器5,电机6,主减速器7,制动气压传感器8,制动气压调节阀9,气瓶10,制动踏板位置传感器11,双腔式串列制动阀12,加速踏板位置传感器13组成的混合制动系统实现的,其特征在于该方法是将汽车制动控制分为“主动制动驾驶模式”和“非主动制动驾驶模式”,其中紧急制动和拥堵路况制动控制时使用“主动制动驾驶模式”,普通制动控制时使用“非主动制动驾驶模式”,该模式由制动控制器的计算决定,其具体控制步骤如下:The technical solution of the present invention is achieved in the following way: a method for active braking control of a hybrid electric vehicle. ,
a.计算紧急制动指数E:通过制动控制器采集加速踏板复位速度a与设定值a0比较确定,若a≥a0,则E=E0,其中E0为常数,若a<a0,则E=0;其中设定值a0定义为加速踏板复位速度参考值,在标定阶段,根据多次采集加速踏板复位速度a经过统计得到,用于区分司机是否将要进行紧急制动;其中加速踏板复位速度a由制动控制器采集加速踏板位置传感器的信号A,经计算求导数得到a=ΔA/Δt,用来表征撤销驱动力的速度;a. Calculation of emergency braking index E: Accelerator pedal reset speed a collected by the brake controller is determined by comparing with the set value a0 , if a≥a0 , then E=E0 , where E0 is a constant, if a< a0 , then E=0; where the set value a0 is defined as the accelerator pedal reset speed reference value. In the calibration stage, the accelerator pedal reset speed a is obtained through statistics based on multiple acquisitions, and is used to distinguish whether the driver is about to perform emergency braking ; Wherein the acceleration pedal reset speed a is collected by the brake controller from the signal A of the accelerator pedal position sensor, and the derivative is calculated to obtain a=ΔA/Δt, which is used to represent the speed of canceling the driving force;
b.计算总制动频率指数B:通过制动控制器采集n个单位时间段内的有效制动次数经计算得到,其中B为n个单位时间段内的制动频率的平均值,用于判断汽车是否行驶在拥堵路况,其中n为5~20之间的整数,单位时间段为0.5~5分钟;总制动频率指数B每单位时间更新一次,新的总制动频率指数B=(n-1)/n*B’+1/n*b,B被限制在[0,10],其中B’是更新前的总制动频率指数;其中制动频率指数b为单位时间段内的有效制动的次数,由制动控制器采集制动踏板位置传感器的信号,经过计算得到;其中有效制动定义为,在汽车行驶过程中混合制动装置施加制动力的一个完整过程为一次有效制动;B0为总制动频率指数B的一个特定值,作为判断汽车是否行驶在拥堵路况的门限值,在标定阶段,根据多次采集汽车运行道路工况的车速,经过统计得到,并且定义E0>B0;b. Calculation of the total braking frequency index B: obtained by calculating the effective braking times in n unit time periods collected by the brake controller, where B is the average value of the braking frequency in n unit time periods, used for Judging whether the car is driving in congested road conditions, where n is an integer between 5 and 20, and the unit time period is 0.5 to 5 minutes; the total braking frequency index B is updated once per unit time, and the new total braking frequency index B=( n-1)/n*
c.根据上述的E和B计算出制动指数C,其中C=E+B;c. Calculate the braking index C according to the above E and B, where C=E+B;
d.判断制动指数C与设定值C0的关系,其中C0=B0,如果C≤C0,则判断为“非主动制动驾驶模式”,不进行主动制动,整车制动采用普通制动模式;d. Judging the relationship between the braking index C and the set value C0 , where C0 =B0 , if C ≤ C0 , it is judged as "non-active braking driving mode", no active braking is performed, and the whole vehicle system Use normal braking mode when moving;
e.如果C>C0,则判断为“主动制动驾驶模式”,制动控制器2获取加速踏板位置传感器的信号A,比较A与设定值A0的大小,如果A<A0,则进行主动制动,制动控制器2向电机控制器5发出电机回馈制动转矩命令,电机控制器5接受回馈制动转矩命令并控制电机6制动,发出制动力矩,制动力矩通过电机6的输出轴传递至减速器7的输入轴,通过主减速器7的两端传递至半轴4,通过半轴传递至车轮,车轮与地面产生阻碍车辆前进的制动力,从而使车辆减速,完成一次主动制动后返回起始点;其中A0设定值为加速踏板位置传感器的信号A的特定值,由标定过程测量得到,区分加速踏板空行程与加速踏板有效行程;如果A≥A0则不进行主动制动,然后重复步骤a、b、c、d和e。e. If C>C0 , it is judged as "active braking driving mode", the
上述技术方案中,步骤b中所述的n为10,单位时间段为1分钟。In the above technical solution, n in step b is 10, and the unit time period is 1 minute.
提出的汽车主动制动控制方法,其优点是利用汽车的驱动电机在“主动制动驾驶模式”下进行主动制动,从而缩短制动系统的响应时间、缩短制动距离,缓解驾驶员疲劳;可提前进行回收制动,增加了回收制动的比率,改善经济性;设定了“主动制动驾驶模式”和“非主动制动驾驶模式”,在保证车辆传统的驾驶习惯的同时在特定情形下实施新功能。The proposed vehicle active braking control method has the advantage of using the driving motor of the vehicle to perform active braking in the "active braking driving mode", thereby shortening the response time of the braking system, shortening the braking distance, and alleviating driver fatigue; Regenerative braking can be performed in advance, increasing the ratio of regenerative braking and improving economy; "active braking driving mode" and "non-active braking driving mode" are set to ensure the traditional driving habits of the vehicle at the same time Implement new features in the context.
附图说明Description of drawings
图1是紧急制动过程中,汽车减速度的时间历程示意图。Figure 1 is a schematic diagram of the time course of the deceleration of the vehicle during the emergency braking process.
图2是电动车电—气混合制动系统的示意图。Figure 2 is a schematic diagram of an electric-pneumatic hybrid braking system for an electric vehicle.
图3是按照本发明的一个实施例的流程图。Figure 3 is a flow chart according to one embodiment of the present invention.
具体实施方式Detailed ways
图2是电动车电—气混合制动系统的结构示意图。该系统包括轮速传感器1(电机转速传感器),制动控制器2,车轮摩擦制动器3,半轴4,电机控制器5,电机6,主减速器7,制动气压传感器8,制动气压调节阀9,气瓶10,制动踏板位置传感器11和双腔式串列制动阀12。制动控制器2与轮速传感器1、电机控制器5、制动气压传感器8、制动气压调节阀9、制动踏板位置传感器11有信号电路连接。气路自气瓶10,首先通过双腔式串列制动阀12,之后通过制动气压调节阀9、制动气压传感器8,最后接入车轮摩擦制动器3。电机6与电机控制器5由大功率电路连接,电机6的输出轴联接主减速器7的输入轴,主减速器7的两端接半轴4,半轴则与车轮相连。Fig. 2 is a schematic structural diagram of the electric-pneumatic hybrid braking system of an electric vehicle. The system includes wheel speed sensor 1 (motor speed sensor),
制动控制器2,接收来自气压传感器8的制动气压信号、来自制动踏板位置传感器11的驾驶员制动意图信号和来自电机控制器5的回馈制动转矩限制信号,向制动气压调节阀9发出摩擦制动气压调节命令、向电机控制器5发出电机回馈制动转矩命令。The
制动气压受到双腔式串列制动阀12和制动气压调节阀9的双重控制,用于驱动车轮摩擦制动器3产生制动转矩。双腔式串列制动阀12直接受驾驶员制动踏板操作的控制,制动气压调节阀9则在驾驶员制动意图的基础上,根据制动控制器的命令进一步控制制动气压。制动气压调节阀9分别调节双腔式串列制动阀下游的制动气压。The brake air pressure is double-controlled by the dual-cavity
此外,所述车辆还包括至少一个加速踏板位置传感器13,借助于该传感器可以计算获得驾驶员对加速踏板的操作信息,包括踏板的位置以及复位踏板的速度等。In addition, the vehicle also includes at least one accelerator
图3是按照本发明的一个实施例的流程图。驱动电机的功能是帮助驾驶员在紧急制动驾驶模式和/或“主动制动驾驶模式”下在驾驶员操作制动踏板之前至少部分地在一个或多个车轴上施加制动力。通过主动制动可以提高驾驶员-车辆系统的制动响应,从而缩短制动距离。按照本发明,“主动制动驾驶模式”综合了驾驶员和车辆系统,根据驾驶员的驾驶意图,任何有制动倾向的意图将被识别并被执行。也就是任何有制动意图的司机的油操作,例如在“主动制动驾驶模式”下,司机以正常加速踏板复位速度来复位加速踏板至较小的位置,通常小于A0,此时驱动电机就被激活,驱动电机对车轮施加制动力。Figure 3 is a flow chart according to one embodiment of the present invention. The function of the drive motor is to assist the driver to at least partially apply braking force on one or more axles before the driver operates the brake pedal in emergency braking driving mode and/or "active braking driving mode". Active braking improves the braking response of the driver-vehicle system and reduces braking distances. According to the present invention, the "active braking driving mode" integrates the driver and the vehicle system, and according to the driver's driving intention, any intention with braking tendency will be identified and executed. That is, the oil operation of any driver who has the intention of braking. For example, in the "active braking driving mode", the driver resets the accelerator pedal to a smaller position at the normal accelerator pedal reset speed, usually less than A0 , and drives the motor at this time is activated, the drive motor applies braking force to the wheels.
本发明将汽车制动控制分为“主动制动驾驶模式”和“非主动制动驾驶模式”,其中紧急制动和拥堵路况制动控制时使用“主动制动驾驶模式”,普通制动控制时使用“非主动制动驾驶模式”,该模式由制动控制器的计算决定,其具体控制步骤如下:The present invention divides the automobile braking control into "active braking driving mode" and "non-active braking driving mode". When using the "non-active braking driving mode", this mode is determined by the calculation of the brake controller. The specific control steps are as follows:
a.计算紧急制动指数E:通过制动控制器采集加速踏板复位速度a与设定值a0比较确定,若a≥a0,则E=E0,其中E0为常数,若a<a0,则E=0;其中设定值a0定义为加速踏板复位速度参考值,在标定阶段,根据多次采集加速踏板复位速度a经过统计得到,用于区分司机是否将要进行紧急制动;其中加速踏板复位速度a由制动控制器采集加速踏板位置传感器的信号A,经计算求导数得到a=ΔA/Δt,用来表征撤销驱动力的速度;a. Calculation of emergency braking index E: Accelerator pedal reset speed a collected by the brake controller is determined by comparing with the set value a0 , if a≥a0 , then E=E0 , where E0 is a constant, if a< a0 , then E=0; where the set value a0 is defined as the accelerator pedal reset speed reference value. In the calibration stage, the accelerator pedal reset speed a is obtained through statistics based on multiple acquisitions, and is used to distinguish whether the driver is about to perform emergency braking ; Wherein the acceleration pedal reset speed a is collected by the brake controller from the signal A of the accelerator pedal position sensor, and the derivative is calculated to obtain a=ΔA/Δt, which is used to represent the speed of canceling the driving force;
b.计算总制动频率指数B:通过制动控制器采集n个单位时间段内的有效制动次数经计算得到,其中B为n个单位时间段内的制动频率的平均值,用于判断汽车是否行驶在拥堵路况,其中n为5~20之间的整数,单位时间段为0.5~5分钟;总制动频率指数B每单位时间更新一次,新的总制动频率指数B=(n-1)/n*B’+1/n*b,B被限制在[0,10],其中B’是更新前的总制动频率指数;其中制动频率指数b为单位时间段内的有效制动的次数,由制动控制器采集制动踏板位置传感器的信号,经过计算得到;其中有效制动定义为,在汽车行驶过程中混合制动装置施加制动力的一个完整过程为一次有效制动;B0为总制动频率指数B的一个特定值,作为判断汽车是否行驶在拥堵路况的门限值,在标定阶段,根据多次采集汽车运行道路工况的车速,经过统计得到,并且定义E0>B0;b. Calculation of the total braking frequency index B: obtained by calculating the effective braking times in n unit time periods collected by the brake controller, where B is the average value of the braking frequency in n unit time periods, used for Judging whether the car is driving in congested road conditions, where n is an integer between 5 and 20, and the unit time period is 0.5 to 5 minutes; the total braking frequency index B is updated once per unit time, and the new total braking frequency index B=( n-1)/n*
c.根据上述的E和B计算出制动指数C,其中C=E+B;c. Calculate the braking index C according to the above E and B, where C=E+B;
d.判断制动指数C与设定值C0的关系,其中C0=B0,如果C≤C0,则判断为“非主动制动驾驶模式”,不进行主动制动,整车制动采用普通制动模式;d. Judging the relationship between the braking index C and the set value C0 , where C0 =B0 , if C ≤ C0 , it is judged as "non-active braking driving mode", no active braking is performed, and the whole vehicle system Use normal braking mode when moving;
e.如果C>C0,则判断为“主动制动驾驶模式”,制动控制器2获取加速踏板位置传感器的信号A,比较A与设定值A0的大小,如果A<A0,则进行主动制动,制动控制器2向电机控制器5发出电机回馈制动转矩命令,电机控制器5接受回馈制动转矩命令并控制电机6制动,发出制动力矩,制动力矩通过电机6的输出轴传递至减速器7的输入轴,通过主减速器7的两端传递至半轴4,通过半轴传递至车轮,车轮与地面产生阻碍车辆前进的制动力,从而使车辆减速,完成一次主动制动后返回起始点;其中A0设定值为加速踏板位置传感器的信号A的特定值,由标定过程测量得到,区分加速踏板空行程与加速踏板有效行程;如果A≥A0则不进行主动制动,然后重复步骤a、b、c、d和e。e. If C>C0 , it is judged as "active braking driving mode", the
n以及单位时间的选择需要根据不同的车型来设定,从而达到最佳的效果,针对本实施例的上述技术方案中,步骤b中所述的n为10,单位时间段为1分钟。The selection of n and the unit time needs to be set according to different vehicle models, so as to achieve the best effect. In the above technical solution of this embodiment, n described in step b is 10, and the unit time period is 1 minute.
更具体的,主动制动在两种条件下发生,其一为汽车行驶过程中驾驶员快速复位加速踏板,其二为车辆行驶在拥堵路况中复位加速踏板,上述两种条件有部分重叠,满足上述两种条件中的一种即进行主动制动。本发明在判定进入“主动制动驾驶模式”之后将通过驱动电机至少在一个或多个车轴上施加制动力进行必要的主动制动从而进一步缩短制动距离。同时,本发明还设有程序用于判定并退出“主动制动驾驶模式”,恢复到原有的不需要主动制动的“非主动制动驾驶模式”。More specifically, active braking occurs under two conditions. One is that the driver quickly resets the accelerator pedal while the vehicle is running, and the other is that the vehicle resets the accelerator pedal in congested road conditions. The above two conditions partially overlap, satisfying One of the above two conditions is active braking. After the present invention determines to enter the "active braking driving mode", the driving motor will at least apply braking force on one or more axles to perform necessary active braking, thereby further shortening the braking distance. At the same time, the present invention also has a program for judging and exiting the "active braking driving mode" and returning to the original "non-active braking driving mode" that does not require active braking.
本发明不限制于上述典型实施例,本发明同样适用前轴、两轴或多轴驱动的电动车辆,特别适用由液压或其他类型的制动系统与回馈制动系统组成的混合制动系统;本发明同样适用前轴、两轴或多轴驱动的带有液力或电涡流缓速器装置的车辆,特别适用由液压或其他类型的制动系统与液力或电涡流缓速器装置组成的混合制动系统。The present invention is not limited to the above-mentioned typical embodiments, and the present invention is also applicable to electric vehicles driven by front axles, two axles or multiple axles, and is especially suitable for hybrid braking systems composed of hydraulic or other types of braking systems and regenerative braking systems; The present invention is also applicable to vehicles with hydraulic or electric eddy current retarder devices driven by the front axle, two axles or multiple axles, especially suitable for vehicles composed of hydraulic or other types of braking systems and hydraulic or electric eddy current retarder devices hybrid braking system.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009100772006ACN101474965B (en) | 2009-01-20 | 2009-01-20 | Active brake control method of hybrid power electric automobile |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2009100772006ACN101474965B (en) | 2009-01-20 | 2009-01-20 | Active brake control method of hybrid power electric automobile |
| Publication Number | Publication Date |
|---|---|
| CN101474965Atrue CN101474965A (en) | 2009-07-08 |
| CN101474965B CN101474965B (en) | 2010-11-10 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2009100772006AActiveCN101474965B (en) | 2009-01-20 | 2009-01-20 | Active brake control method of hybrid power electric automobile |
| Country | Link |
|---|---|
| CN (1) | CN101474965B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102189985A (en)* | 2010-02-16 | 2011-09-21 | 马格纳斯泰尔汽车技术两合公司 | Method and control/regulation system for braking a vehicle, and vehicle |
| CN104442410A (en)* | 2014-11-20 | 2015-03-25 | 北京新能源汽车股份有限公司 | Emergency braking system for electric automobile and control method thereof |
| CN108045362A (en)* | 2017-12-08 | 2018-05-18 | 毕作亮 | The pre-heated braking method of brake disc |
| WO2018214588A1 (en)* | 2017-05-26 | 2018-11-29 | 华为技术有限公司 | Brake energy recovery method and electric vehicle |
| CN110696830A (en)* | 2018-12-27 | 2020-01-17 | 长城汽车股份有限公司 | Vehicle driving mode control method and system |
| CN111601731A (en)* | 2018-01-15 | 2020-08-28 | 日立汽车系统株式会社 | Control device for electric vehicle, control system for electric vehicle, and control method for electric vehicle |
| CN112789202A (en)* | 2018-09-25 | 2021-05-11 | 标致雪铁龙汽车股份有限公司 | Management method for managing a powertrain of a motor vehicle |
| CN113734161A (en)* | 2021-09-15 | 2021-12-03 | 浙江吉利控股集团有限公司 | Vehicle brake control method, device, apparatus, medium, and program product |
| CN115489327A (en)* | 2021-06-18 | 2022-12-20 | 比亚迪股份有限公司 | Vehicle brake control method, device, medium and equipment |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5411322A (en)* | 1993-08-31 | 1995-05-02 | Eaton Corporation | Method and apparatus for maximizing vehicle braking effectiveness and control |
| DE102004030464A1 (en)* | 2004-06-24 | 2006-01-19 | Adam Opel Ag | Brake system with EBS and "prefill" function and method for electronic brake control |
| DE102006029979A1 (en)* | 2006-06-29 | 2008-01-03 | Robert Bosch Gmbh | Hydraulic brake system operating method for motor vehicle, involves determining gradient depending on dynamics and/or threshold values of actuation of control devices in operating mode |
| DE102006041194A1 (en)* | 2006-09-01 | 2008-03-06 | Robert Bosch Gmbh | Method for operating a brake system of a motor vehicle |
| CN100491153C (en)* | 2006-10-08 | 2009-05-27 | 清华大学 | Electric Vehicle Hybrid Braking System |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102189985B (en)* | 2010-02-16 | 2015-12-16 | 麦格纳电动汽车系统公司 | For the method for brake motor-car and controller/regulating control and self-propelled vehicle |
| CN102189985A (en)* | 2010-02-16 | 2011-09-21 | 马格纳斯泰尔汽车技术两合公司 | Method and control/regulation system for braking a vehicle, and vehicle |
| CN104442410A (en)* | 2014-11-20 | 2015-03-25 | 北京新能源汽车股份有限公司 | Emergency braking system for electric automobile and control method thereof |
| WO2018214588A1 (en)* | 2017-05-26 | 2018-11-29 | 华为技术有限公司 | Brake energy recovery method and electric vehicle |
| CN108045362B (en)* | 2017-12-08 | 2020-05-12 | 毕作亮 | Brake disc preheating type braking method |
| CN108045362A (en)* | 2017-12-08 | 2018-05-18 | 毕作亮 | The pre-heated braking method of brake disc |
| CN111601731A (en)* | 2018-01-15 | 2020-08-28 | 日立汽车系统株式会社 | Control device for electric vehicle, control system for electric vehicle, and control method for electric vehicle |
| CN111601731B (en)* | 2018-01-15 | 2023-12-01 | 日立安斯泰莫株式会社 | Control device, control system and control method for electric vehicle |
| CN112789202A (en)* | 2018-09-25 | 2021-05-11 | 标致雪铁龙汽车股份有限公司 | Management method for managing a powertrain of a motor vehicle |
| CN110696830A (en)* | 2018-12-27 | 2020-01-17 | 长城汽车股份有限公司 | Vehicle driving mode control method and system |
| CN115489327A (en)* | 2021-06-18 | 2022-12-20 | 比亚迪股份有限公司 | Vehicle brake control method, device, medium and equipment |
| CN115489327B (en)* | 2021-06-18 | 2024-10-11 | 比亚迪股份有限公司 | Vehicle brake control method, device, medium and equipment |
| CN113734161A (en)* | 2021-09-15 | 2021-12-03 | 浙江吉利控股集团有限公司 | Vehicle brake control method, device, apparatus, medium, and program product |
| CN113734161B (en)* | 2021-09-15 | 2023-12-26 | 浙江吉利控股集团有限公司 | Vehicle brake control method, device, equipment, medium and program product |
| Publication number | Publication date |
|---|---|
| CN101474965B (en) | 2010-11-10 |
| Publication | Publication Date | Title |
|---|---|---|
| CN101474965A (en) | Active brake control method of hybrid power electric automobile | |
| US10576950B2 (en) | Method and a system for controlling vehicle speed | |
| CN105644560B (en) | Self-adaptive cruise control system and method for four-wheel hub motor electric vehicle | |
| CN102101472B (en) | Braking control apparatus for electric vehicle | |
| US10647320B2 (en) | Method and a system for controlling vehicle speed | |
| CN102269658B (en) | Electro-hydraulic combined brake experiment vehicle | |
| CN103935264B (en) | A method for calculating driver demand torque of electric vehicle | |
| CN107009914B (en) | Auxiliary braking system and control method of electric automobile and electric automobile | |
| CN109131306B (en) | Brake control method and brake control system of electric automobile and automobile | |
| CN109017736B (en) | Electric brake compensation control method and device and automobile | |
| CN112896127B (en) | Vehicle deceleration control method based on electro-hydraulic brake system | |
| CN101407179A (en) | Composite braking system having anti-locking brake function and control method | |
| JP6898843B2 (en) | Electric vehicle controls, control methods and control systems | |
| CN105620474A (en) | Active obstacle avoiding method for four-wheel hub drive electric automobile with multiple modes | |
| CN107433947A (en) | Control method, vehicle control system and vehicle during vehicle flat tire | |
| CN114148324B (en) | Cruise control method and device for vehicle, vehicle and storage medium | |
| CN105431337A (en) | Vehicle control device | |
| CN117341645A (en) | Composite braking hysteresis compensation method of range-extended electric drive axle semitrailer | |
| CN101570184B (en) | Method and apparatus for controlling vehicle | |
| CN110979326A (en) | Intelligent network-connected electric vehicle output torque calculation method | |
| CN116278809B (en) | Dynamic parking torque control method and system, electric automobile and storage medium | |
| CN115257681A (en) | A kind of control method and system of automobile braking deceleration response | |
| JP5217834B2 (en) | Traction drive vehicle with different braking assistance when towing and when not towing | |
| US20250304070A1 (en) | Method, Device, Controller, and Computer Program Product for Comfortable Braking | |
| EP4342748B1 (en) | Method for controlling braking of vehicle |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |