技术领域technical field
本发明涉及医疗卫生器材领域,尤其是,涉及外用和埋入传感器系统,其用于检测生理(例如,肌肉骨骼)系统的具体参数并且确定活动的精确解剖位置,以及涉及用于检测解剖位置参数的方法的领域。The present invention relates to the field of medical and health devices, and in particular, to external and embedded sensor systems for detecting specific parameters of physiological (e.g., musculoskeletal) systems and determining the precise anatomical location of activity, and field of methods.
背景技术Background technique
在美国专利No.6,621,278、No.6,856,141、和No.6,984,993(Ariav的专利并且转让给Nexense公司,即“Nexense的专利”)中公开了传感器技术。Sensor technology is disclosed in US Patent Nos. 6,621,278, 6,856,141, and 6,984,993 (Ariav's patents and assigned to Nexense Corporation, "Nexense's Patents").
有益的是,将现有的传感器技术应用于生物测定数据传感应用,这样卫生保健人员可以确定解剖位置的特征。It would be beneficial to adapt existing sensor technologies to biometric data sensing applications so that health care personnel can characterize anatomical locations.
发明内容Contents of the invention
因此,本发明的目的在于提供一种传感器系统,其能够检测具体参数(例如,肌肉骨骼系统的参数),并且确定活动的精确解剖位置,以及提供用于检测解剖位置的参数的方法,本发明克服了前述的迄今为止公开的设备和这种通常类型的方法的缺点,并且本发明提供了外部应用和/或埋入传感器,以向卫生保健供应者提供关于他们的病人的实时的信息。这些信息可以包括病理处理和与外科程序和植入设备相关的信息。这些传感器可以通过内部或外部机构启动,并且这些信息通过无线路径传播。所述传感器系统将允许植入系统的早期介入或修正,并且可以使用现有的传感器。例如,可以使用在Nexense专利中公开的传感器。Therefore, it is an object of the present invention to provide a sensor system capable of detecting specific parameters (for example, parameters of the musculoskeletal system) and to determine the precise anatomical location of the activity, and to provide a method for detecting parameters of the anatomical location, the present invention The foregoing shortcomings of hitherto disclosed devices and methods of this general type are overcome, and the present invention provides externally applied and/or embedded sensors to provide healthcare providers with real-time information about their patients. Such information may include pathological treatments and information related to surgical procedures and implanted devices. These sensors can be activated by internal or external mechanisms, and this information is transmitted through wireless paths. The sensor system will allow early intervention or revision of implanted systems and existing sensors can be used. For example, the sensors disclosed in the Nexense patent can be used.
被认作是本发明的特征的其它技术特征可以在从属权利要求中提出。Other technical features which are considered as characteristic of the invention may be set forth in the dependent claims.
尽管本发明在此示出和描述为在可以检测具体身体参数并且确定活动的精确解剖位置的传感器系统中具体实施,以及为用于检测的方法,然而这并不意味着限于示出的细节,这是因为在不脱离本发明的精神的情况下,以及在权利要求书的等价范围和区域内,可以进行各种改型和结构变化。While the invention is shown and described herein as embodied in a sensor system that can detect specific body parameters and determine the precise anatomical location of an activity, and as a method for detection, this is not meant to be limited to the details shown, This is because various modifications and structural changes can be made without departing from the spirit of the present invention, and within the scope and range of equivalents of the claims.
然而,当结合附图阅读时,本发明的构造和操作方法及其附加的目的和优点将一起通过以下对具体实施例的说明而得到更好的理解。However, the construction and method of operation of this invention, together with additional objects and advantages thereof, will be better understood from the following description of specific embodiments when read in conjunction with the accompanying drawings.
附图说明Description of drawings
具体实施本发明的优点将通过本发明优选实施例的以下详细说明而变得显而易见,这种说明应当结合附图进行考虑,其中:The advantages of specific embodiments of the invention will become apparent from the following detailed description of the preferred embodiment of the invention, which description should be considered in conjunction with the accompanying drawings, in which:
图1为脊柱的一部分的示意性局部侧视图,其中具有根据本发明的未执行一体化的脊柱和传感器;FIG. 1 is a schematic partial side view of a portion of a spine with the spine and sensors not performing integration according to the present invention;
图2为图1的脊柱部分的示意性局部前后视图;Figure 2 is a schematic partial anteroposterior view of the spine portion of Figure 1;
图3为脊柱的一部分的示意性局部侧视图,其中具有根据本发明的椎间骨架和传感器;Figure 3 is a schematic partial side view of a portion of the spine with an intervertebral framework and transducers according to the present invention;
图4为图1的脊柱部分的示意性局部前后视图,其中在椎弓根螺钉中具有根据本发明的传感器;Figure 4 is a schematic partial anteroposterior view of the spinal column portion of Figure 1 with a sensor in accordance with the present invention in a pedicle screw;
图5为脊柱的一部分的示意性局部侧视图,其中具有根据本发明的椎间盘植入物和传感器;Figure 5 is a schematic partial side view of a portion of the spine with a disc implant and sensor according to the present invention;
图6为根据本发明的传感器插入工具的示意性局部放大剖面图;6 is a schematic partial enlarged cross-sectional view of a sensor insertion tool according to the present invention;
图7为通过图6的工具植入的、根据本发明的具有传感器的上股骨的示意性局部剖面图;7 is a schematic partial cross-sectional view of an upper femur with sensors according to the present invention implanted by the tool of FIG. 6;
图8为通过图6的工具植入的、根据本发明的具有传感器的椎骨的示意性局部剖面图;Figure 8 is a schematic partial cross-sectional view of a vertebra with a sensor according to the present invention implanted by the tool of Figure 6;
图9为根据本发明的在螺钉中的具有传感器的椎骨的示意性局部剖视图;Figure 9 is a schematic partial cross-sectional view of a vertebra with a sensor in a screw according to the present invention;
图10为根据本发明的具有植入的传感器的股骨的示意性局部剖面图;10 is a schematic partial cross-sectional view of a femur with implanted sensors according to the present invention;
图11为根据本发明的具有传感器的椎骨的示意性局部剖面图;11 is a schematic partial cross-sectional view of a vertebra with a sensor according to the present invention;
图12为根据本发明的具有传感器的膝关节的示意性局部前后剖面图;Figure 12 is a schematic partial front and rear cross-sectional view of a knee joint with sensors according to the present invention;
图13为根据本发明的具有传感器的膝关节的示意性局部侧向剖面图;13 is a schematic partial side sectional view of a knee joint with sensors according to the present invention;
图14为根据本发明的具有传感器的髋关节的示意性局部剖面图;14 is a schematic partial cross-sectional view of a hip joint with sensors according to the present invention;
图15为根据本发明的具有传感器的椎骨的示意性局部侧向剖面图;Figure 15 is a schematic partial side cross-sectional view of a vertebra with a sensor according to the present invention;
图16为根据本发明的具有传感器的椎骨的示意性局部轴向剖面图;Figure 16 is a schematic partial axial cross-sectional view of a vertebra with a sensor according to the present invention;
图17为根据本发明的具有超声波有源传感器的膝关节的示意性局部剖面图;17 is a schematic partial cross-sectional view of a knee joint with ultrasonic active sensors according to the present invention;
图18为超声波发射器和示出了膝关节的计算机屏幕的示意图,其中膝关节具有根据本发明处理的超声波有源传感器;Figure 18 is a schematic diagram of an ultrasound emitter and a computer screen showing a knee joint with an ultrasound active sensor processed in accordance with the present invention;
图19为根据本发明的连结至可植入传感器体的手柄的示意性放大剖面图;Figure 19 is a schematic enlarged cross-sectional view of a handle attached to an implantable sensor body in accordance with the present invention;
图20为与传感器体分离的图19的手柄的示意性放大剖面图;Figure 20 is a schematic enlarged cross-sectional view of the handle of Figure 19 detached from the sensor body;
图21为红外可视系统的示意图;Fig. 21 is a schematic diagram of an infrared visual system;
图22为电磁可视系统的示意图;Fig. 22 is a schematic diagram of an electromagnetic visualization system;
图23为膝关节的局部部分隐藏的前视图;Fig. 23 is the front view of partial partial concealment of knee joint;
图24为膝关节的局部部分隐藏的侧视图;Fig. 24 is a side view partially hidden of the knee joint;
图25为韧带的局部侧视图;Figure 25 is a partial side view of the ligament;
图26为图25的韧带的局部侧视图,其中具有根据本发明的韧带传感器夹具;Figure 26 is a partial side view of the ligament of Figure 25 with a ligament sensor clip in accordance with the present invention;
图27为图26的韧带和韧带传感器夹具的局部侧视图;Figure 27 is a partial side view of the ligament and the ligament sensor clip of Figure 26;
图28为图25的韧带的局部侧视图,其中附连有根据本发明的传感器;Figure 28 is a partial side view of the ligament of Figure 25 with a sensor according to the present invention attached;
图29为根据本发明的超声波套管系统的一部分的局部剖面图;29 is a partial cross-sectional view of a portion of an ultrasonic cannula system according to the present invention;
图30为根据本发明的单个传感器套管布置设备的一部分的局部剖面图;Figure 30 is a partial cross-sectional view of a portion of a single sensor sleeve deployment apparatus according to the present invention;
图31为图30的套管布置设备的一部分的局部剖面图,其中具有多个传感器;31 is a partial cross-sectional view of a portion of the cannula deployment apparatus of FIG. 30 with a plurality of sensors therein;
图32为根据本发明的多个传感器套管布置设备的一部分的局部剖面图;Figure 32 is a partial cross-sectional view of a portion of a multiple sensor sleeve deployment apparatus according to the present invention;
图33为开膝外科手术的局部侧视图,其中除去了软组织和软骨,并且骨头通过根据本发明布置的传感器切割;Figure 33 is a partial side view of an open knee surgery in which soft tissue and cartilage are removed and bone is cut through a sensor arranged in accordance with the present invention;
图34为根据本发明的套管针针尖的局部剖面图,其中容纳传感器元件;Figure 34 is a partial cross-sectional view of a trocar tip according to the present invention, housing a sensor element therein;
图35为用于一组传感器的插入物的局部剖面图;Figure 35 is a partial cross-sectional view of an insert for a set of sensors;
图36为根据本发明的容纳一组传感器的切割器的示意性侧视图;Figure 36 is a schematic side view of a cutter housing a set of sensors according to the present invention;
图37为骨头钻孔器的示意性侧视图;Figure 37 is a schematic side view of a bone drill;
图38为根据本发明植入髋部中的传感器系统的局部剖面图;38 is a partial cross-sectional view of a sensor system implanted in the hip according to the present invention;
图39为根据本发明植入股骨中的传感器系统的局部剖面图;39 is a partial cross-sectional view of a sensor system implanted in a femur according to the present invention;
图40为根据本发明用于布置多个传感器的骨臼传感器插入物的局部剖面图;40 is a partial cross-sectional view of a socket sensor insert for deploying multiple sensors in accordance with the present invention;
图41为根据本发明的具有传感器植入系统的两个脊柱节段的局部剖面侧视图;以及FIG. 41 is a partial cross-sectional side view of two spinal segments with a sensor implant system in accordance with the present invention; and
图42为具有植入穿过椎弓根的传感器的椎节的局部轴向剖面图。42 is a partial axial cross-sectional view of a vertebral level with a sensor implanted through the pedicle.
具体实施方式Detailed ways
本发明的多个方面在下面的说明中公开并且涉及针对本发明的具体实施例的附图。可以设计出不脱离本发明的精神或范围的替代实施例。此外,本发明的示例性实施例的公知元件将不被详细描述或将被省略,以免导致本发明的相应细节不清楚。Aspects of the invention are disclosed in the following description and refer to the drawings directed to specific embodiments of the invention. Alternative embodiments may be devised without departing from the spirit or scope of the invention. Furthermore, well-known elements of exemplary embodiments of the invention will not be described in detail or will be omitted so as not to obscure the corresponding details of the invention.
在公开和描述本发明之前,应当理解在此使用的术语仅仅是为了描述特殊的实施例的目的,而不是为了进行限制。必须注意到,如在说明书和所附权利要求书中所使用的,单数形式“一”、“一个”和“所述”包括复数含义,除非上下文中明确指出不包含。Before the present invention is disclosed and described, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. It must be noted that, as used in the specification and the appended claims, the singular forms "a", "an" and "the" include plural referents unless the context clearly dictates otherwise.
尽管说明书以限定本发明的被认为新颖的特征的权利要求书进行了总结,然而,可以相信,本发明将通过结合附图对以下说明的考察得到更好的理解,在附图中,类似的附图标记在下面的附图中继续使用。附图中的图形未按比例绘示。Although the specification concludes with claims defining the features of the invention which are believed to be novel, it is believed, however, that the invention will be better understood from a consideration of the following description in conjunction with the accompanying drawings, in which similar The reference numbers are continued in the following figures. The figures in the accompanying drawings are not drawn to scale.
根据本发明的外用传感器系统可以用于评估皮肤完整性和病理压力,病理压力可能导致皮肤局部缺血和最终皮肤衰弱(褥疮)。重要的是检测某些可能导致皮肤衰弱的参数。诸如压力、时间、切变、和脉管流量之类的要素例如为检测的重点。需要具体的解剖位置。The externally applied sensor system according to the present invention can be used to assess skin integrity and pathological stress which may lead to skin ischemia and eventually skin debilitation (bedsores). It is important to detect certain parameters that may lead to skin weakening. Elements such as pressure, time, shear, and vascular flow, for example, are the focus of detection. A specific anatomical location is required.
本发明的传感器系统可以埋入到薄的、具有粘性的、相容材料中,所述材料被应用至具体关注区域中。示例性区域包括跟骨、髋部、骶骨、以及其它风险区域。这些传感器制定解剖区域。如果超过极限参数,则传感器通知遥测接收器,从而向护士或其它卫生保健专业人员启动报警。在一个具体应用中,这种信息用于控制患者躺靠的床,以释放关注区域。特别是,调节床垫中的气囊,这可以卸载受伤的关注区域。The sensor system of the present invention can be embedded in a thin, adhesive, compatible material that is applied to a specific area of interest. Exemplary areas include the calcaneus, hip, sacrum, and other risk areas. These sensors map anatomical regions. If limit parameters are exceeded, the sensor notifies the telemetry receiver, thereby activating an alarm to a nurse or other healthcare professional. In one specific application, this information is used to control the bed on which the patient rests to release areas of concern. In particular, adjust the air cells in the mattress, which can offload injuries to the area of concern.
外部传感器系统可以以多种方式构造。在示例性实施例中,传感器设置在薄的、可相容粘合剂中,所述粘合剂直接涂敷到患者的身体上,并且通过薄锂电池供电。这种传感器提供特殊参数例如压力、时间、剪切力和血管流动。这种传感器遥测地通知接收单元,并且如果超过某些既定程序参数,则设置报警。在一个实施例中,提供视觉辅助工具(例如显示患者的身体外形的计算机屏幕),则精确的关注区域可以更加显著,并且从而使得卫生保健专业人员可视。The external sensor system can be configured in various ways. In an exemplary embodiment, the sensors are provided in a thin, compatible adhesive that is applied directly to the patient's body and powered by a thin lithium battery. Such sensors provide specific parameters such as pressure, time, shear and vascular flow. This sensor notifies the receiving unit telemetrically and sets an alarm if certain established program parameters are exceeded. In one embodiment, providing a visual aid, such as a computer screen showing the outline of the patient's body, the precise area of interest can be more prominent and thus made visible to the health care professional.
埋入的传感器需要检测不能直接由人眼观察到的某些内部参数。这些传感器将被用在特定的部位以检测特定的参数。Embedded sensors need to detect certain internal parameters that cannot be directly observed by the human eye. These sensors will be used at specific locations to detect specific parameters.
埋入传感器的一种方式是通过切开外科手术程序,在这种外科程序中,传感器通过外科医生直接埋入到骨头或软组织中,或者直接附连至固定的植入物(例如,假体(髋部、膝盖))上。在外科手术程序中使用传感器系统以通知外科医生植入物以及软组织平衡和/或对准的位置和/或功能。传感器直接埋入有穿透工具,以将传感器释放在预定的深度。传感器通过特殊锁止系统或粘合剂附连至固定的植入物。传感器在闭合之前启动,以使传感器生效。One way to embed the sensor is through an open surgical procedure, in which the sensor is embedded by the surgeon directly into bone or soft tissue, or attached directly to a fixed implant (e.g., a prosthetic (hips, knees)) on. The sensor system is used during surgical procedures to inform the surgeon of the position and/or function of implants and soft tissue balance and/or alignment. The sensor is directly embedded with a penetrating tool to release the sensor at a predetermined depth. The sensor is attached to a fixed implant by a special locking system or adhesive. The sensor is activated before closing to enable the sensor.
埋入传感器的另一种方式是通过经皮程序。将传感器植入特定位置中的能力对评估内部系统非常重要。可以可将变直径传感器植入到骨头、软组织和/或植入物中。这个程序在例如由荧光透视法、超声波成像、和CAT扫描提供的可视的情况下应用。这种程序可以在局部或区域麻醉情况下执行。这些评估的参数如在此所描述的。经皮系统包括具有尖锐的套管针的薄型工具,其刺入必要的组织平面,并且通过布置臂将传感器释放在预定的深度处。这种工具也可以容纳必要的导航系统来确定所需具体解剖位置。Another way to embed sensors is through a transcutaneous procedure. The ability to implant sensors in specific locations is very important for evaluating internal systems. Variable diameter sensors may be implanted in bone, soft tissue and/or implants. This procedure is applied in situations of visualization such as provided by fluoroscopy, ultrasound imaging, and CAT scanning. This procedure can be performed under local or regional anesthesia. The parameters for these evaluations are as described herein. The percutaneous system consists of a thin tool with a sharp trocar that penetrates the necessary tissue plane and releases the sensor at a predetermined depth by deploying an arm. This tool can also accommodate the necessary navigation system to determine the specific anatomical location required.
待评估的参数和时间因素确定埋入传感器所需的能量源。短期限(不超过5年)允许使用电池。长期限需要建议使用外部有源系统或外部动力系统,或者使用患者的动能以向传感器系统提供能量。这些有源系统目前可以被使用。传感器也可以在预定的时间启动,以监控植入物循环、异常移动和植入物磨损阈值。The parameters to be evaluated and the time factor determine the energy source required to embed the sensor. Batteries are permitted for short periods (not exceeding 5 years). Long term needs suggest the use of external active or external powered systems, or use of the patient's kinetic energy to power the sensor system. These active systems are currently available. Sensors can also be activated at predetermined times to monitor implant circulation, abnormal movement, and implant wear thresholds.
信息被遥测接收。在一个示例性实施例中,如果超过特定阈值,则传感器被预编程为“启动”,并且发送所需的信息。传感器也能够被启动和使用以将信息再传播至外部接收器。进一步的应用允许将“智能植入物”重新调节以释放特定药物、生物或其它物质,或者重新调节植入物对准或模块化。Information is received by telemetry. In one exemplary embodiment, if a certain threshold is exceeded, the sensor is pre-programmed to "activate" and transmit the required information. Sensors can also be activated and used to relay information to external receivers. Further applications allow "smart implants" to be retuned to release specific drugs, biological or other substances, or to readjust implant alignment or modularity.
传感器系统初始被启动并且在医生的办公室中被读取,并且可以在患者的房间内进一步启动,并且患者具有通过互联网应用例如向医生发送信息的能力。The sensor system is initially activated and read in the doctor's office and can be further activated in the patient's room and the patient has the ability to send information eg to the doctor via an internet application.
软件将被编程为接收信息、处理信息、并且随后将信息传播至卫生保健提供者。The software will be programmed to receive the information, process the information, and then disseminate the information to the health care provider.
本发明的传感器系统具有许多不同的应用。例如,可以用于治疗骨质疏松症。骨质疏松症为骨头的病理状况,其特征在于减少骨量从而增加骨折的风险。公认的是,骨矿含量和骨矿密度与骨强度相关。The sensor system of the present invention has many different applications. For example, it can be used to treat osteoporosis. Osteoporosis is a pathological condition of the bones characterized by reduced bone mass thereby increasing the risk of fractures. It is well established that bone mineral content and bone mineral density correlate with bone strength.
骨密度是待评估的肌肉骨骼系统的非常重要的参数。骨密度测量用于量化人骨头强度并且最终预示与骨质疏松相关的增加的风险。骨质丢失导致骨折、脊柱压缩、和植入物松动。目前,医生采用诸如专用X射线之类的外部方法。Bone density is a very important parameter of the musculoskeletal system to be assessed. Bone density measurements are used to quantify human bone strength and ultimately predict increased risk associated with osteoporosis. Bone loss leads to fractures, spinal compression, and loosening of implants. Currently, doctors resort to external methods such as specialized X-rays.
用于骨密度测定法的测量单位为以克表示的骨矿含量。在骨折疏松症、骨愈合、以及由应力防护的植入物松动的评估中,骨密度变化是非常重要的。另一重要的评估涉及骨质溶解。骨质溶解可以以默示的方式破坏骨头。这是受植入者对诸如聚乙烯之类的支承配件的病理反应。聚乙烯粒子激活免疫肉芽瘤响应,其起初影响植入物周围的骨头。在内囊变化之前将产生骨密度改变,这导致严重的骨质丢失和植入物失效。The unit of measurement used for bone densitometry is bone mineral content expressed in grams. Changes in bone density are important in the assessment of osteoporosis, bone healing, and loosening of stress-protected implants. Another important assessment involves osteolysis. Osteolysis can break down bones in a tacit way. This is the recipient's pathological reaction to support fittings such as polyethylene. The polyethylene particles activate the immune granulomatous response, which initially affects the bone surrounding the implant. Changes in bone density are preceded by changes in the internal capsule, which lead to severe bone loss and implant failure.
存在可以评估骨密度的多种外部系统。这些系统所遇到的问题与各种系统本身相关,然而也与将患者带入办公室以评估无痛疾病的社会经济约束相关,以及加上收紧的付款方式导致评估之间的间隔加长。There are various external systems that can assess bone density. The problems encountered with these systems are related to the systems themselves, but also to the socioeconomic constraints of bringing patients into the office for assessment of painless diseases, coupled with tightened payment regimes leading to longer intervals between assessments.
根据本发明使用的传感器允许评估骨密度方面的变化,从而能够使卫生保健提供者获得实时的内部数据。应用传感器可以评定骨质溶解及其等级和/或响应处理。通过评估骨密度的变化,传感器早期提供涉及骨折愈合的信息和早期提供涉及骨质溶解的变化(涉及植入物中聚乙烯磨损的骨头变化)。The sensors used according to the invention allow assessment of changes in bone density, thereby enabling real-time internal data for healthcare providers. Osteolysis and its grade and/or responsive treatment can be assessed using sensors. By assessing changes in bone density, the sensor provides early information related to fracture healing and early changes related to osteolysis (bone changes involving wear of polyethylene in implants).
然而,具有多种不同形式的装置在穿过骨头和软组织时,均记录一束能量的衰减。结果的比较必须限于相同形状的骨头,其假定骨头厚度和被扫描的区域之间恒定的关系。此外,测量为精确的骨架位置确定,由此,只有在研究骨架中的相同位置时,才可以进行个体的比较。However, devices that come in many different forms all register the attenuation of a beam of energy as it passes through bone and soft tissue. Comparison of results must be limited to bones of the same shape, which assumes a constant relationship between bone thickness and the area scanned. Furthermore, the measurements are determined for precise skeleton positions, whereby individual comparisons can only be made if the same position in the skeleton is studied.
双能x射线吸收测量法可以用于在多个解剖位置检测骨矿含量的少量变化。技术的主要缺点在于其不能使检查者区分皮质的骨和有小梁的骨。定量的超声波与仅仅测量骨矿含量的其它骨密度测量方法相比,可以测量诸如机械完整性之类的额外的骨头的特性。超声波的通过骨头的传播受到骨量、骨头结构和加载方向性的影响。作为用于评定骨头的强度和硬度的测量的定量的超声波测量基于所接收的超声波信号的处理。一定速度的声音和超声波传播穿过骨头和软组织。假体松动或下沉,和股骨/胫骨/髋臼或假体的骨折与骨质丢失相关。因此,假体周围的骨矿含量的渐进的可计量变化的精确评定可以帮助正在治疗的外科医生确定何时插入,以保持修正关节形成术的骨发育(bone stock)。这种信息帮助用于骨质疏松的骨头的植入物的发展,并且有助于骨质疏松症的医疗以及不同植入物涂层的效果的评估。Dual energy x-ray absorptiometry can be used to detect small changes in bone mineral content at multiple anatomical locations. The main disadvantage of the technique is that it does not allow the examiner to differentiate between cortical and trabecular bone. Quantitative ultrasound can measure additional bone properties such as mechanical integrity compared to other bone density measurement methods that only measure bone mineral content. Ultrasound transmission through bone is affected by bone mass, bone structure, and loading directionality. Quantitative ultrasound measurements as a measure for assessing the strength and stiffness of bones are based on the processing of received ultrasound signals. Sound and ultrasonic waves travel at a certain speed through bone and soft tissue. Loosening or subsidence of the prosthesis, and fractures of the femur/tibia/acetabulum or the prosthesis are associated with bone loss. Thus, accurate assessment of progressive quantifiable changes in bone mineral content around the prosthesis can help the treating surgeon determine when to insert to preserve bone stock for revision arthroplasty. This information aids in the development of implants for osteoporotic bone and in the treatment of osteoporosis and the evaluation of the effects of different implant coatings.
本发明的传感器系统可以用于评估内部植入物的功能。实际植入物功能的当前经验是非常少的。医生连续地使用外部方法,包括X射线、骨扫描、和患者评估。然而,医生典型地仅仅保留通过切开外科手术探察来进行实际功能调查。利用根据本发明的传感器容许植入物的早期故障以及即将发生大的故障的检测。这样,可以进行早期介入。从而降低患者的发病率;降低进一步的医疗保健成本;以及提高患者的生活质量。The sensor system of the present invention can be used to assess the function of internal implants. Current experience with actual implant function is very little. Physicians sequentially use external methods, including x-rays, bone scans, and patient assessments. Physicians, however, typically reserve actual functional investigations only through open surgical exploration. Utilizing a sensor according to the invention allows detection of early failures of implants as well as impending major failures. In this way, early intervention is possible. Thereby reducing morbidity for patients; reducing further healthcare costs; and improving quality of life for patients.
传感器可以直接附连至植入物的表面(预先实施和/或在内实施)和/或直接附连至植入骨头的内表面。传感器可以被植入到骨头和软组织中。在这种应用中,医生能够评估植入受植入者系统的重要参数。可以测量的示例性参数包括:植入物稳定性、植入物移动、植入物磨损、植入物循环时间、植入物识别、植入物压力/加载、植入物一体性、关节液分析、关节表面信息、韧带功能、以及其它更多。The sensors may be attached directly to the surface of the implant (pre-implemented and/or implemented in-side) and/or directly to the inner surface of the implanted bone. Sensors can be implanted in bone and soft tissue. In this application, physicians are able to assess important parameters of the system implanted in the recipient. Exemplary parameters that may be measured include: implant stability, implant movement, implant wear, implant cycle time, implant recognition, implant pressure/loading, implant integrity, joint fluid analysis, joint surface information, ligament function, and more.
根据本发明的传感器的应用允许人们确定植入物是否不稳定和/或是否发生过度移动或下沉。在示例性应用中,传感器可以构造为从有源的植入的模块中释放正常生物制剂(orthobiologic),以增加一体性。可选的是和/或此外,具有传感器的植入系统可以用于调节角/偏移/软组织应变,以在必要时稳定植入物。The use of the sensor according to the invention allows one to determine if the implant is unstable and/or if excessive movement or subsidence occurs. In an exemplary application, the sensor may be configured to release normal orthobiologics from an active implanted module for increased integrity. Alternatively and/or in addition, an implant system with sensors may be used to adjust angle/offset/soft tissue strain to stabilize the implant if necessary.
传感器可以用于检测植入物支承件是否磨损坏。可检测的支承件参数包括早期磨损、增加的摩擦等。来自传感器的警告的早期报警能够先于大的故障早期更换支承件。Sensors may be used to detect wear of the implant support. Detectable bearing parameters include premature wear, increased friction, and the like. Early warning of warnings from sensors enables early replacement of bearings before major failures.
关节植入物传感器可以检测热量、酸度、或其它物理特性的增加。这种认识将向医生提供早期感染警告。在示例性感染治疗应用中,传感器可以启动释放抗生素的埋入模块。Joint implant sensors can detect increases in heat, acidity, or other physical properties. This awareness will provide doctors with early warnings of infection. In an exemplary infection treatment application, a sensor can activate an embedded module that releases antibiotics.
传感器可以用于分析膝外科手术。这种传感器可以随后被设置在膝部中,以评估脉管流量、压力、和/或节律。内部脉管监控器可以为植入物的一部分,并且包括释放抗高血压药物或抗心律不齐药物(anti-arrthymic)模块的设备,以在需要时修改脉管的变化。Sensors can be used to analyze knee surgery. Such sensors can then be placed in the knee to assess vascular flow, pressure, and/or rhythm. Internal vascular monitors may be part of the implant and include devices that release antihypertensive or anti-arrthymic modules to modify vascular changes when required.
在一个实施例中,内部矫形植入物本身为本发明的传感器。在外伤状态下,例如,螺旋还原反应器可以被用作植入物和传感器。这种螺旋反应器可以在骨折位置处检测异常移动并且确定密度的增加(即,愈合)。这种应用允许成骨形态形成蛋白(BMP)的经皮植入,以有助于愈合或硬件的经皮调节。In one embodiment, the internal orthopedic implant itself is a sensor of the present invention. In traumatic conditions, for example, helical reduction reactors can be used as implants and sensors. This helical reactor can detect abnormal movement and determine an increase in density (ie, healing) at the fracture site. This application allows the percutaneous implantation of osteogenic morphogenetic proteins (BMPs) to aid in healing or percutaneous modulation of hardware.
本发明的传感器可以用于脊骨植入。位于脊骨/椎骨中的传感器可以检测在并合位置处的异常移动。传感器评估相邻椎骨节段处的脊骨植入一体性和/或检测相邻椎骨节段的不稳定性。植入的传感器可以启动过渡稳定系统或植入物,并且确定过度移动的区域,以能够通过硬件或正常生物制剂获得经皮稳定性。现将详细参考附图中的图示,首先,特别参考附图中的图1,其中示出了脊柱的一部分的并合的局部侧视图。上椎骨10通过椎间盘30与下椎骨20分开。骨移植片40首先由下关节面50覆盖,并且随后由上关节面60覆盖。图2为图1的脊柱部分的前后视图,其中骨移植片40示出在椎间盘30的任一侧,并且具有相对的横突70。根据本发明的传感器1可以检测并传递关于移动和椎骨10、20的载荷的信息,并且被植入各种脊柱要素中。所述要素可以包括脊柱椎弓根80、横突70、关节面等。The sensor of the present invention may be used in spinal implants. Sensors located in the spine/vertebrae can detect abnormal movement at the merging site. The sensors assess spinal implant integrity at adjacent vertebral levels and/or detect instability at adjacent vertebral levels. Implanted sensors can activate transitional stabilization systems or implants and identify areas of excess movement to enable percutaneous stabilization via hardware or normal biologics. Reference will now be made in detail to the illustrations in the drawings, first, in particular to Figure 1 of the drawings, which shows a merged partial side view of a portion of a spinal column. The
图1和图2绘示了本发明的传感器1如何可以用于无测量仪表的并合的脊柱中。传感器1在外科手术之后的周期内以可变的次数启动。例如,围绕并合“块”的异常移动或过度移动有助于检测未结合。Figures 1 and 2 illustrate how the
图3绘示了本发明的传感器1如何可以用于有测量仪表的脊柱的并合。更特别的,传感器1并入“骨架”检测仪表130,所述检测仪表130位于下椎骨板110和上椎骨板120之间。这种传感器1检测移动和载荷,并且在外科手术之后的周期内启动以传递信息,从而帮助确定并合块是否坚固。Figure 3 illustrates how the
图4绘示了本发明的传感器如何可以用于椎弓根螺钉130中。更特别的是,传感器1并入椎弓根螺钉130中以帮助检测在并合块中椎骨之间的任何异常移动。FIG. 4 illustrates how the sensor of the present invention may be used in a
图5绘示了本发明的传感器1如何可以用在无椎骨椎间盘植入物(置换品)中。更特别的是,例如,人造椎间盘置换品140具有设置在金属-骨头界面上的传感器1。这些传感器1检测载荷和移动,以在外科手术其间帮助置换椎间盘140,并且在外科手术之后,确定椎间盘-骨头界面的稳定的一体性。内部传感器2检测关节间盘内界面之间的“正常”移动,以在外科手术之后帮助确定椎间盘置换品运行,并且最优化可变载荷和脊柱移动的级别。Figure 5 illustrates how the
图6绘示了传感器布置装置150,其被绘示为具有手柄151和柱塞152。手柄151和柱塞152允许为套管针153的一部分A的传感器3的插入。套管针153可以刺入皮质,并且传感器3可以被布置。图7绘示了传感器3在股骨中的插入,并且图8绘示了传感器3在椎骨中的插入。随后,传感器3可以例如通过旋松螺钉操作或退旋操作与结合结构154分离。这些身体部位被用作实例是由于它们是与骨质疏松症相关的最常见的受疾病侵袭部位,以及为与骨质疏松相关的外伤。传感器3的尺寸可以在数毫米至超过1厘米之间变化。传感器3可以被经皮植入或者以切开的外科手术的方式植入。FIG. 6 depicts a
传感器3可以为在髋部和/或脊柱中使用的硬件的一部分。传感器3可以被设置为各种深度,以允许对皮质和骨小梁进行评估。通过布置两个传感器3,传感器3之间的距离可以由关注的区域以及可以产生的功率场确定。能量场可以为诸如超声波、射频和/或电磁场之类的标准能量源。能量波的随着时间的偏转例如将允许检测待评估的所需参数的变化。The
根据图6至图8的示例性外部监控传感器系统能够接触式地每夜读取骨矿含量和密度。传感器系统也能够以振动模式传递能量波,所述能量波可以模拟加载于骨头上,并且致使骨矿含量和密度得以改善。传感器还可以通过或超过植入物来发送能量波以由此帮助骨折的愈合。The exemplary external monitoring sensor system according to FIGS. 6-8 enables tactile nightly readings of bone mineral content and density. The sensor system is also capable of delivering energy waves in vibrational modes that can simulate loading on bone and result in improved bone mineral content and density. The sensors can also send energy waves through or beyond the implant to thereby aid in the healing of the fracture.
髋部的骨折和脊柱椎骨是骨质疏松症和外伤中常见的。图9绘示了将螺钉4用作内部传感器。骨折部160由加压螺钉4跨越,并且传感器4被埋入到螺钉4中。螺钉4中的传感器4可以发送能量穿过骨折位置以获得基准密度读取,并且随着时间监控密度的变化,以确认愈合。传感器4也可以被外部致动,发送能量波到骨折部,以有助于愈合。传感器4也可以检测骨折位置处的移动的变化,以及螺钉和骨头之间移动的变化。这种信息有助于监控愈合,并且给出卫生保健提供者根据指示调节重量负荷的能力。当骨折愈合时,在图10和图11中示出的在大转子中的传感器4现在可以启动,以发送能量波至其它两个传感器4。这样将能够连续地评估骨密度。例如,当患者入睡时,传感器4可以通过传感器床系统启动。能量源和接收器例如能够附连至床下面。所接收的信息必要时可以在每夜进行评估,并且由标准电测量器发送至医生。在通过各种药物治疗骨质疏松症的过程中,在夜晚传感器的启动将能够特定间隔开地读取。Fractures of the hip and vertebrae of the spine are common in osteoporosis and trauma. Figure 9 depicts the use of a
根据本发明通过传感器发送的外部和内部能量波可以用在治疗骨折和脊柱并合的过程中。The external and internal energy waves sent through the transducers according to the present invention can be used in the treatment of fractures and spinal fusions.
已经研究了超声波、脉冲电磁场、结合磁场、电容耦合、以及直流电流的使用对生长因子的增性调节的影响。已经示出用脉冲超声波激发“整联蛋白”(其是细胞表面上的受体),当激发时,产生细胞内信号通路。现将描述涉及炎症、血管生成和骨头愈合的蛋白质。这些蛋白质包括成骨形态形成蛋白(BMP)-7,碱性磷酸酶、脉管内皮生长因子和胰岛素生长因子(IGF)-1。脉冲电磁场的使用显示出增加动物骨头的愈合次数。各种波形以不同的方式影响骨头。The effects of ultrasound, pulsed electromagnetic fields, combined magnetic fields, capacitive coupling, and the use of direct current on the growth factor regulation have been studied. It has been shown that pulsed ultrasound excites "integrins", which are receptors on the cell surface, which, when excited, generate intracellular signaling pathways. Proteins involved in inflammation, angiogenesis and bone healing will now be described. These proteins include osteogenic morphogenetic protein (BMP)-7, alkaline phosphatase, vascular endothelial growth factor and insulin growth factor (IGF)-1. The use of PEMFs has been shown to increase the number of healing times in animals' bones. Various waveforms affect bones in different ways.
利用定量的超声波的传感器系统可以用于外部评估跟骨密度。根据本发明的系统附连至患者的床上,并且通过使用如图10和图11中示出的形式的外部超声波,可以评估骨密度。已经显示出使用能量场能够刺激骨头愈合进程。可以通过外部测量来影响刺激,然而使用内部传感器系统可以改变波形,并产生可以有效地“加载”骨头的振动信号。通过多种矫形法则可知这种影响能够增强骨头皮质以及有效地用在骨折和骨质疏松症的治疗中,如在图10中所示。在图10中的传感器位于皮质或导管中。能量波形彼此发送。能量波形可以被外部系统激发和接收,或者为传感器本身的一部分。类似地,图11绘示了椎骨节段,在椎骨节段中传感器4彼此发送能量波形,并且发送至外部接收器。这种系统/治疗可以用于处理骨折和骨质疏松症。A sensor system utilizing quantitative ultrasound can be used to externally assess calcaneal density. The system according to the invention is attached to the patient's bed and by using external ultrasound in the form shown in Figures 10 and 11 bone density can be assessed. The use of energy fields has been shown to stimulate the bone healing process. Stimulation can be affected by external measurements, however using an internal sensor system can change the waveform and produce a vibration signal that can effectively "load" the bone. This effect is known to enhance cortical bone and is effectively used in the treatment of fractures and osteoporosis through various orthopedic laws, as shown in FIG. 10 . In Figure 10 the sensor is located in the cortex or in the catheter. Energy waves are sent to each other. The energy waveform can be excited and received by an external system, or be part of the sensor itself. Similarly, Figure 11 depicts vertebral segments in which the
根据本发明的传感器系统主要绘示了髋部和脊柱,然而本发明可以用于身体的所有骨骼部位。图12至图18绘示了根据本发明的传感器的各种取向,以治疗膝部、髋部、和椎骨。The sensor system according to the invention mainly depicts the hip and spine, however the invention can be used for all skeletal parts of the body. Figures 12-18 illustrate various orientations of sensors according to the present invention to treat the knee, hip, and vertebrae.
图19和图20绘示了手柄170的一个示例性实施例,手柄170可拆卸地连接至可植入传感器本体5。在本实施例中,手柄具有外螺纹,其旋拧入本体5的相应的内螺纹孔中。19 and 20 illustrate an exemplary embodiment of a
根据本发明的传感器用在多种矫形应用中,包括在外科手术中关节植入物对准。可以使用的传感器和监控设备/系统包括任何在现有技术中公知的、例如在Nexense专利中描述的传感器和设备/系统。计算机辅助外科手术也是常见的。Sensors according to the invention are used in a variety of orthopedic applications, including alignment of joint implants in surgery. Sensors and monitoring devices/systems that may be used include any known in the art, such as those described in the Nexense patent. Computer-assisted surgery is also common.
目前,在股骨和胫骨中使用销以允许销阵列附连至骨头。这种附连有助于在手术的过程中膝部/髋部关节的空间取向。这些阵列由红外光学识别或由电磁设备识别(参见图21和图22),以将信息重新输入认可的软件系统中,这样允许外科医生以三维的方式观察到关节,同时将选择的植入物覆盖在骨头上。通过应用这种销将产生许多问题:Currently, pins are used in the femur and tibia to allow the attachment of pin arrays to the bone. This attachment aids in the spatial orientation of the knee/hip joint during surgery. These arrays are identified by infrared optics or by electromagnetic devices (see Figures 21 and 22) to re-enter the information into approved software systems, which allow the surgeon to visualize the joint in three dimensions while simultaneously placing the selected implant Cover the bones. By applying such a pin many problems will arise:
需要在外科手术部位外侧刺入骨头;在销位置产生外科手术后疼痛和引流;Requires bone penetration outside surgical site; creates post-surgical pain and drainage at pin site;
在外科手术的过程中可能出现销松动,同时模块化阵列和红外光;Pin loosening may occur during surgical procedures while modular array and infrared light;
所述销要求外科医生在手术过程中改变当前定位,这是比较困难的;以及The pins require the surgeon to change the current positioning during the procedure, which is difficult; and
在外科手术中使用的各种金属和工具可能会影响电磁场。Various metals and tools used in surgery can affect electromagnetic fields.
插入销、锁止阵列、记录关节局部解剖所需的时间显著地延长了手术过程。并且仍然需要独立地触动股骨和胫骨上的多个点以允许计算机使得能够观察到膝部的局部解剖。用于将信息从传感器传递至接收器的时间也导致潜在的延迟。因此,期望能够减小或消除这些问题中的每一个。The time required to insert the pins, lock the array, and document the joint topography significantly prolongs the surgical procedure. And multiple points on the femur and tibia still need to be touched independently to allow the computer to visualize the topographical anatomy of the knee. The time it takes to transfer information from sensor to receiver also introduces potential delays. Accordingly, it would be desirable to reduce or eliminate each of these problems.
根据本发明的方法包括将传感器植入到外科手术部位中,在外科手术过程中利用所述传感器,并且在外科手术之后利用所植入的传感器来评估各种所需参数。The method according to the present invention includes implanting sensors into a surgical site, utilizing the sensors during the surgical procedure, and evaluating various desired parameters using the implanted sensors after the surgical procedure.
图23示出了在股骨和胫骨中埋入的传感器6,并且图24示出了髌骨中的传感器6。所示出的韧带包括内侧副韧带、外侧副韧带、前十字韧带、以及后十字韧带。传感器6通过切开外科手术先于经皮手术和/或关节镜下手术被植入或在外科手术操作中植入。图25绘示了韧带或腱;图26绘示了具有加压和释放手柄的传感器夹具;图27绘示了传感器的布置;以及图28显示了在韧带中布置的传感器。如在图25至图28绘示的步骤中所示,传感器通过提供传感器夹具(图26)可以埋入到韧带(图25示出了示例性的韧带)中,其中所述传感器夹具设置在韧带周围(图27),并且将传感器固定在韧带上,如图28中所示。传感器也可以被埋入到骨头中,如随后在图33中所示。标准射线照相技术能够用于引导布置角度和深度。Figure 23 shows the sensor 6 embedded in the femur and tibia, and Figure 24 shows the sensor 6 in the patella. The ligaments shown include the medial collateral ligament, lateral collateral ligament, anterior cruciate ligament, and posterior cruciate ligament. The sensor 6 is implanted by open surgery prior to percutaneous and/or arthroscopic surgery or during a surgical procedure. Figure 25 depicts a ligament or tendon; Figure 26 depicts a sensor clamp with a compression and release handle; Figure 27 depicts sensor placement; and Figure 28 shows a sensor deployed in a ligament. As shown in the steps depicted in FIGS. 25 to 28 , the sensor can be embedded in the ligament ( FIG. 25 shows an exemplary ligament) by providing a sensor clip ( FIG. 26 ) that is placed in the ligament around (Fig. 27), and fix the sensor on the ligament as shown in Fig. 28. Sensors may also be embedded in bone, as shown subsequently in FIG. 33 . Standard radiographic techniques can be used to guide placement angle and depth.
超声波套管系统180允许传感器置放的外部非辐射性可视,如图29中所示。套管181容纳发射器182和接收器183。随后,布置传感器184优选地设置以用于插入。随后,超声波臂能够用于获得关节表面和深度的快速局部解剖。超声波插入物将能量波发送至多个埋入的多个传感器7中,所述传感器7彼此反射,并且返回至超声波换能器,如图17中所示。图17绘示了超声波传感器7,其利用声波的反射技术。声波反射出骨头的端部和埋入的传感器7,返回至超声波插入物中的接收器。接收器检测反射的声波并启动传感器输出至计算机屏幕以可视化,如图18中所示。The
超声波还向胫骨发出穿透射束。在此,发射器将超声波播送至分离的接收器190。股骨/胫骨偏转触发接收器输出的射束。埋入传感器7的连续地将超声波射束反射至传感器7的网络的附加能力允许精确的三维信息。传感器7被编程为补偿不规则的表面和可变表面温度。骨头的测量基于所接收的超声波信号的处理。声音速度和超声波速度均基于超声波传播通过骨头和软组织的速度快慢提供测量。这些测量特征容许快速的三维几何图形的形成,其信息可以从外部发送至计算机系统,这将允许假体的一体化,如图18中所示。The ultrasound also sends a penetrating beam to the tibia. Here, the transmitter broadcasts the ultrasonic waves to a
为了使得传感器系统获得与关节的空间三维局部解剖相关的所需信息,最小的三个传感器需要被植入到为关节的一体的部分的各块骨头中。可以通过具有一个或多个传感器(图31)的单个套管(图30)布置传感器,或者通过多个传感器布置套管布置传感器(图32)。传感器将具有带刻度的套管针,套管针将刺入皮肤、肌肉、韧带、腱、软骨和骨头。图33绘示了在开膝外科手术中传感器的布置,其中去除了软组织,并且软骨和骨头已经被切割。手柄190容纳控制传感器布置的深度的柱塞191。参见图34至图37。最小深度由待切割以植入假体和植入物的软骨和骨头的数量确定。例如,在骨骼和胫骨中,最小切割10毫米至15毫米。传感器被布置的深度与切割相对应,这样在外科手术过程中不会移动,并且能够用在外科手术之后的周期中。套管针针尖将容纳传感器的要件(图34),并且在到达布置的所需深度时,传感器8通过释放锁止机构(图19)而被插入,锁止机构可以为螺钉、或者旋转-解锁连接器、断裂构件、或任何其它解除结合机构。In order for the sensor system to obtain the required information about the spatial three-dimensional topography of the joint, a minimum of three sensors needs to be implanted in each bone that is an integral part of the joint. Sensors may be arranged through a single cannula (Fig. 30) with one or more sensors (Fig. 31), or through multiple sensor arrangement cannulas (Fig. 32). The sensor will have a graduated trocar that will penetrate skin, muscle, ligaments, tendons, cartilage, and bone. Figure 33 depicts sensor placement in open knee surgery where soft tissue has been removed and cartilage and bone have been cut. The handle 190 houses a
当传感器系统被插入时,将使用的外部能量波可以为超声波或电磁波。从而可以避免使用光学阵列方法。能量通过各种介质(软骨和骨头)和能量波的时间要素的偏转通过传感器8接收和/或反射回到外部接收器。通过具有多种传感器8,示出了三维模型。这样使得外科医生能够包埋传感器(图33),在外科手术其间使用传感器(图18、图22),以及在外科手术之后使传感器被植入以进行利用(图12和图13)。相应地,信息传播的速度将极大地增加和被处理。The external energy waves to be used when the sensor system is inserted can be ultrasonic or electromagnetic waves. Thereby the use of optical array methods can be avoided. Energy is passed through various media (cartilage and bone) and the deflection of the time element of the energy wave is received by the
图23和图24绘示了膝关节软组织的一些要素。在外科手术的过程中,ACL、PCL、内侧副韧带、以及外侧副韧带对膝关节的平衡非常重要。传感器通过夹具机构(参见图25至图28)埋入到腱的韧带中。信息通过软件系统接收和处理,所述软件系统并入计算机辅助关节外科手术设备中,并且表示外科手术过程中关节的视觉模拟(图22)。评估韧带张力、压力、切变等。软组织配平格栅(balancing grid)有助于外科医生实现相关的软组织释放和部件旋转。Figures 23 and 24 depict some elements of the knee soft tissue. During surgery, the ACL, PCL, medial collateral ligament, and lateral collateral ligament are very important to the balance of the knee joint. The sensor is embedded in the ligament of the tendon by a clamp mechanism (see Figures 25-28). The information is received and processed by a software system that is incorporated into the computer assisted joint surgery equipment and represents a visual simulation of the joint during the surgical procedure (Fig. 22). Assess ligament tension, compression, shear, etc. A soft tissue balancing grid assists the surgeon in achieving relative soft tissue release and component rotation.
图38绘示了髋部中的类似的传感器系统。插入物类似于在图38中示出的单个传感器插入物,或者可以修改为如图38中所示。插入物构造为套管插入的髋臼钻孔器,其用在标准的髋部外科手术中。手柄200使构造稳定,并且传感器8通过压下手柄200中的柱塞进行布置。图40绘示了臼杯传感器插入物。套管插入的孔允许传感器9的布置。所述构造可以修改为类似于图29的构造,以包括超声波部件,从而有助于使解剖可视。Figure 38 depicts a similar sensor system in the hip. The insert is similar to the single sensor insert shown in FIG. 38 or can be modified as shown in FIG. 38 . The insert is configured as a cannulated acetabular drill, which is used in standard hip surgery. The
图34至图37绘示了“智能”插入物和“智能”工具的发展。插入物/工具的手柄210容纳一阵列的传感器8,以帮助精确地切割骨头(图36)以及假体和传感器的插入(图35和图37)。这些传感器8由超声波/电磁波换能器和接收器空间识别,以允许确认植入物/骨头界面进行了适当的准备,以及确认植入物以适当的深度和角度插入。随后能够进行胶结部件或压配合部件的稳定性的测试。在外科手术时或者在外科手术之前植入在假体上的传感器还允许假体的精确插入和取向。在外科手术之后,还执行植入评估。Figures 34-37 illustrate the development of "smart" inserts and "smart" tools. The
图39绘示了传感器8插入到股骨中。传感器8可以从内向外布置、从外向内布置,或者并入到假体的远端定心器和/或导管限制器。Figure 39 shows the insertion of the
图41绘示了两个脊骨节段的侧视图。传感器插入物示出为以经皮的方式将传感器布置入椎骨体中。图42绘示了一个椎序的轴向视图。传感器9被植入穿过准备检测的椎弓根。Figure 41 depicts a side view of two spinal segments. The sensor insert is shown percutaneously deploying the sensor into the vertebral body. Figure 42 depicts an axial view of a vertebral sequence. The
跟随假体插入的植入的传感器系统在图12中绘示,图12为假体的前视图,并且示出了膝关节、股骨和胫骨假体、聚乙烯植入物、以及埋入的传感器。图13绘示了具有植入有传感器系统的假体的膝关节的侧视图。图14绘示了具有埋入的传感器系统整个髋部假体。图15绘示了在椎骨的两个节段和植入物中埋入的传感器的侧视图。图16通过假体/植入物的上部(轴向)视图绘示了在椎骨体中的传感器系统。The implanted sensor system following prosthetic insertion is depicted in Figure 12, which is an anterior view of the prosthesis and shows the knee joint, femoral and tibial prostheses, polyethylene implants, and embedded sensors . Figure 13 depicts a side view of a knee joint with a prosthesis implanted with a sensor system. Figure 14 depicts the entire hip prosthesis with embedded sensor system. Figure 15 depicts a side view of a sensor embedded in two levels of a vertebra and an implant. Figure 16 depicts the sensor system in the vertebral body through a superior (axial) view of the prosthesis/implant.
本发明的传感器系统可以用在外科手术之前,以跟踪关节病理的进展以及不同的治疗干涉。所述系统可以用在外科手术中以帮助假体/检测仪表/硬件的植入。在脊柱中,可以评估对神经元的影响,以及在外科手术(尤其是矫正外科手术)中脉管的变化。随后,这些传感器可以被用在外科手术之后,以评估随着时间的变化和动力学变化而发生的变化。传感器在外科手术中被启动,并且存储参数的读数。紧接着外科手术之后,传感器被启动并且获知基线。The sensor system of the present invention can be used prior to surgery to track the progression of joint pathology as well as different therapeutic interventions. The system can be used in surgery to aid in the implantation of prostheses/instruments/hardware. In the spine, effects on neurons can be assessed, as well as vascular changes during surgery, especially corrective surgery. These sensors can then be used after surgery to assess changes over time and kinetics. The sensors are activated during the surgery and store the readings of the parameters. Immediately after surgery, the sensors are activated and a baseline is acquired.
传感器系统允许对受植入者的骨头和相关组织进行评估,然而不限于骨密度、血流粘度、温度、应变、压力、角畸变、振动、脉管/静脉/淋巴管流量、载荷、扭矩、距离、倾斜、形状、弹性、移动、以及其它。由于传感器跨越关节空间,因此可以检测植入物功能的变化。植入物功能的实例包括承受磨损、下沉、骨头一体化、常规和异常移动、热度、粘度的变化、颗粒物质、运动学特性等等。The sensor system allows assessment of the recipient's bone and associated tissues, however not limited to bone density, blood viscosity, temperature, strain, pressure, angular distortion, vibration, vascular/venous/lymphatic flow, load, torque, Distance, slope, shape, elasticity, movement, and others. Because the sensors span the joint space, changes in implant function can be detected. Examples of implant functions include withstanding wear, subsidence, bone integration, routine and abnormal movement, heat, changes in viscosity, particulate matter, kinematic properties, and the like.
传感器可以通过内部电池或者外部措施供电。患者可以在夜晚通过非接触式致动系统在床上进行评估,所述非接触式致动系统可以使用射频或电磁/超声波能量。传感器系统的能量信号能够穿透床,启动传感器,并且传递至同样可以附连至床上的接收器。传感器可以随着时间“加固”(例如,通过适当的软件增进),以评估各种参数。传感器可以通过外部设备进行修改,诸如闪存设备。例如,一组埋入的传感器可以监控被检测的脊柱并合的进展。当给出的参数被确定时,相同的传感器可以被重新编程,以监控相邻的脊柱节段,以预报增加的应力,以及最终相邻椎序的半脱位。The sensor can be powered by an internal battery or by external means. Patients can be evaluated in bed at night with a non-contact actuation system that can use radio frequency or electromagnetic/ultrasonic energy. The sensor system's energy signal can penetrate the bed, activate the sensor, and pass to a receiver that can also be attached to the bed. Sensors can be "hardened" (eg, enhanced with appropriate software) over time to assess various parameters. Sensors can be modified by external devices, such as flash memory devices. For example, a set of embedded sensors can monitor the progress of the detected spinal fusion. When given parameters are determined, the same sensors can be reprogrammed to monitor adjacent spinal segments to predict increased stress and eventually subluxation of adjacent vertebral sequences.
传感器系统的另一特征为在评估其间,传感器系统可以通过一系列传感器参数循环。这种循环的实例可以在患者睡觉时评估骨密度,并且此后,评估脉管结合流粘度、以及支承表面。这种评估可以在具有特定时间间隔或根据需要随机的固定时序发生。信息可以通过目前的电话设备遥测地发送至卫生保健提供者。类似地,患者可以通过外部传感器致动器在医生的办公室中进行评估。随后,患者可以通过允许医生评估植入物功能(包括诸如载荷、力矩、移动、稳定性等的参数)的一系列动作被仔细检查。Another feature of the sensor system is that the sensor system can cycle through a series of sensor parameters during evaluation. An example of such a cycle would be to assess bone density while the patient is sleeping, and thereafter, assess vascular junctional fluid viscosity, and bearing surfaces. This evaluation can occur in a fixed sequence with specific time intervals or randomly as desired. Information can be sent telemetrically to a health care provider through current telephone equipment. Similarly, patients can be assessed in a doctor's office via external sensor actuators. The patient can then be scrutinized through a series of actions that allow the physician to assess implant function, including parameters such as load, moment, movement, stability, and the like.
软件系统容纳允许间隔对比的格栅中的传感器信息。随后,医生评估数据和功能,其中落入标准偏差外的被突出显示,这些参数被进一步评估。The software system accommodates the sensor information in a grid that allows for interval comparison. Subsequently, the physician evaluates the data and functions, where those falling outside the standard deviation are highlighted, and these parameters are further evaluated.
尽管这些传感器系统在此主要讨论为与膝部、髋部、和脊柱相关,然而这些系统可以用于身体中的任何骨骼系统。Although these sensor systems are primarily discussed here in relation to the knee, hip, and spine, these systems can be used with any skeletal system in the body.
所述系统的使用已经在用于肌肉骨骼传感器系统的本发明的说明书中进行了解释。然而,应当注意,本发明并不限于此。根据本发明的设备和方法可以根据任何需要来使用。The use of said system has been explained in the description of the present invention for a musculoskeletal sensor system. It should be noted, however, that the present invention is not limited thereto. The devices and methods according to the invention can be used according to any need.
前述的说明书和附图示出了本发明的原理、优选实施例和操作模式。然而,本发明不应被理解为限于上述的特定实施例。本领域的技术人员应会理解上述实施例的其它改型。The foregoing description and drawings illustrate the principles, preferred embodiment and mode of operation of the invention. However, the invention should not be construed as limited to the particular embodiments described above. Other modifications to the above-described embodiments will be appreciated by those skilled in the art.
因此,上述实施例应当被认作是示例性的而不是限制性的。相应地,应当理解这些实施例的改型可以由本领域的技术人员实施,而不脱离如随后的权利要求书限定的本发明的范围。Therefore, the above-described embodiments should be considered as illustrative rather than restrictive. Accordingly, it should be understood that modifications to these embodiments may be made by those skilled in the art without departing from the scope of the invention as defined in the following claims.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510178035.9ACN104887235B (en) | 2005-03-29 | 2006-03-29 | Body parameter detection sensor and method for detecting body parameter |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66579705P | 2005-03-29 | 2005-03-29 | |
US60/665,797 | 2005-03-29 | ||
US60/763,761 | 2006-02-01 | ||
US60/763,869 | 2006-02-01 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510178035.9ADivisionCN104887235B (en) | 2005-03-29 | 2006-03-29 | Body parameter detection sensor and method for detecting body parameter |
Publication Number | Publication Date |
---|---|
CN101287408Atrue CN101287408A (en) | 2008-10-15 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2006800144919APendingCN101287408A (en) | 2005-03-29 | 2006-03-29 | Body parameter detection sensor and method for detecting body parameter |
Country | Link |
---|---|
CN (1) | CN101287408A (en) |
ZA (1) | ZA200708433B (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102740771A (en)* | 2009-11-13 | 2012-10-17 | 皮埃尔和玛利居里大学(巴黎第六大学) | Device for measuring the activity of the spinal cord of a vertebra |
CN103140168A (en)* | 2010-05-25 | 2013-06-05 | 药物代谢动力公司 | Methods and apparatus for an inertial-based implantable sensing system for in vivo detection of spinal pseudarthrosis and adjacent segment motion in real time |
CN103458830A (en)* | 2011-03-07 | 2013-12-18 | 莱普医疗公司 | Device for monitoring a medical prosthesis and the human body |
CN105451690A (en)* | 2013-06-23 | 2016-03-30 | 威廉·L·亨特 | Devices, systems and methods for monitoring knee replacements |
CN108135638A (en)* | 2015-09-30 | 2018-06-08 | 皇家飞利浦有限公司 | For being implanted into the system of bone tissue |
CN110882094A (en)* | 2013-03-15 | 2020-03-17 | 威廉·L·亨特 | Devices, systems and methods for monitoring hip replacements |
CN111449810A (en)* | 2020-04-30 | 2020-07-28 | 四川大学华西医院 | An intelligent orthopaedic implant for reconstruction after vertebral body resection |
CN111700715A (en)* | 2020-04-30 | 2020-09-25 | 四川大学华西医院 | An intelligent interbody cage |
CN113423324A (en)* | 2018-10-05 | 2021-09-21 | 奥索传感器公司 | Measurement system configured to support installation of a ball and socket joint and method thereof |
EP4104895A1 (en) | 2021-06-14 | 2022-12-21 | Instituto Politécnico De Leiria | Intelligent biomimetic biodevice and use thereof |
CN116236266A (en)* | 2023-02-09 | 2023-06-09 | 上海康定医疗器械有限公司 | Remote automatic six-shaft collar type bracket system and bone orthopedic treatment device |
US11779273B2 (en) | 2016-03-23 | 2023-10-10 | Canary Medical Inc. | Implantable reporting processor for an alert implant |
US11786126B2 (en) | 2014-09-17 | 2023-10-17 | Canary Medical Inc. | Devices, systems and methods for using and monitoring medical devices |
CN117643496A (en)* | 2024-01-30 | 2024-03-05 | 中国人民解放军西部战区总医院 | Thoracolumbar spine individual nail placement device and use method thereof |
US12138181B2 (en) | 2019-06-06 | 2024-11-12 | Canary Medical Inc. | Intelligent joint prosthesis |
US12142376B2 (en) | 2019-06-06 | 2024-11-12 | Canary Medical Inc. | Intelligent joint prosthesis |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5456724A (en)* | 1993-12-15 | 1995-10-10 | Industrial Technology Research Institute | Load sensor for bone graft |
WO2001037733A2 (en)* | 1999-11-23 | 2001-05-31 | Noveon Ip Holdings Corp. | Implant loosening and fracture healing evaluation apparatus and method |
US6447448B1 (en)* | 1998-12-31 | 2002-09-10 | Ball Semiconductor, Inc. | Miniature implanted orthopedic sensors |
CN1420753A (en)* | 1999-12-29 | 2003-05-28 | 希尔-罗姆服务股份有限公司 | Hospital bed |
US20050010301A1 (en)* | 2003-07-11 | 2005-01-13 | Disilvestro Mark R. | In vivo joint space measurement device and method |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5456724A (en)* | 1993-12-15 | 1995-10-10 | Industrial Technology Research Institute | Load sensor for bone graft |
US6447448B1 (en)* | 1998-12-31 | 2002-09-10 | Ball Semiconductor, Inc. | Miniature implanted orthopedic sensors |
WO2001037733A2 (en)* | 1999-11-23 | 2001-05-31 | Noveon Ip Holdings Corp. | Implant loosening and fracture healing evaluation apparatus and method |
CN1420753A (en)* | 1999-12-29 | 2003-05-28 | 希尔-罗姆服务股份有限公司 | Hospital bed |
US20050010301A1 (en)* | 2003-07-11 | 2005-01-13 | Disilvestro Mark R. | In vivo joint space measurement device and method |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102740771A (en)* | 2009-11-13 | 2012-10-17 | 皮埃尔和玛利居里大学(巴黎第六大学) | Device for measuring the activity of the spinal cord of a vertebra |
CN103140168A (en)* | 2010-05-25 | 2013-06-05 | 药物代谢动力公司 | Methods and apparatus for an inertial-based implantable sensing system for in vivo detection of spinal pseudarthrosis and adjacent segment motion in real time |
CN103458830B (en)* | 2011-03-07 | 2016-08-10 | 莱普医疗公司 | For monitoring the equipment of medical prosthetic and human body |
CN103458830A (en)* | 2011-03-07 | 2013-12-18 | 莱普医疗公司 | Device for monitoring a medical prosthesis and the human body |
US11998349B2 (en) | 2013-03-15 | 2024-06-04 | Canary Medical Inc. | Devices, systems and methods for monitoring hip replacements |
CN110882094A (en)* | 2013-03-15 | 2020-03-17 | 威廉·L·亨特 | Devices, systems and methods for monitoring hip replacements |
CN113274173A (en)* | 2013-06-23 | 2021-08-20 | 卡纳里医疗公司 | Devices, systems, and methods for monitoring knee replacements |
CN110731838A (en)* | 2013-06-23 | 2020-01-31 | 威廉·L·亨特 | Devices, systems and methods for monitoring knee replacements |
CN105451690A (en)* | 2013-06-23 | 2016-03-30 | 威廉·L·亨特 | Devices, systems and methods for monitoring knee replacements |
US12097044B2 (en) | 2013-06-23 | 2024-09-24 | Canary Medical Inc. | Devices, systems and methods for monitoring knee replacements |
CN113208784A (en)* | 2013-06-23 | 2021-08-06 | 卡纳里医疗公司 | Devices, systems, and methods for monitoring knee replacements |
CN113208568A (en)* | 2013-06-23 | 2021-08-06 | 卡纳里医疗公司 | Devices, systems, and methods for monitoring knee replacements |
US12285234B2 (en) | 2014-09-17 | 2025-04-29 | Canary Medical Inc. | Devices, systems and methods for using and monitoring medical devices |
US11786126B2 (en) | 2014-09-17 | 2023-10-17 | Canary Medical Inc. | Devices, systems and methods for using and monitoring medical devices |
CN108135638A (en)* | 2015-09-30 | 2018-06-08 | 皇家飞利浦有限公司 | For being implanted into the system of bone tissue |
US12226228B2 (en) | 2016-03-23 | 2025-02-18 | Canary Medical Inc. | Implantable reporting processor for an alert implant |
US12285267B2 (en) | 2016-03-23 | 2025-04-29 | Canary Medical Inc. | Implantable reporting processor for an alert implant |
US11779273B2 (en) | 2016-03-23 | 2023-10-10 | Canary Medical Inc. | Implantable reporting processor for an alert implant |
US11896391B2 (en) | 2016-03-23 | 2024-02-13 | Canary Medical Inc. | Implantable reporting processor for an alert implant |
CN113423324A (en)* | 2018-10-05 | 2021-09-21 | 奥索传感器公司 | Measurement system configured to support installation of a ball and socket joint and method thereof |
US12239552B2 (en) | 2019-06-06 | 2025-03-04 | Canary Medical Inc. | Intelligent joint prosthesis |
US12232985B2 (en) | 2019-06-06 | 2025-02-25 | Canary Medical Inc. | Intelligent joint prosthesis |
US12293828B2 (en) | 2019-06-06 | 2025-05-06 | Canary Medical Inc. | Intelligent joint prosthesis |
US12138181B2 (en) | 2019-06-06 | 2024-11-12 | Canary Medical Inc. | Intelligent joint prosthesis |
US12142376B2 (en) | 2019-06-06 | 2024-11-12 | Canary Medical Inc. | Intelligent joint prosthesis |
US12159714B2 (en) | 2019-06-06 | 2024-12-03 | Canary Medical Inc. | Intelligent joint prosthesis |
US12176104B2 (en) | 2019-06-06 | 2024-12-24 | Canary Medical Inc. | Intelligent joint prosthesis |
US12232984B2 (en) | 2019-06-06 | 2025-02-25 | Canary Medical Inc. | Intelligent joint prosthesis |
CN111449810A (en)* | 2020-04-30 | 2020-07-28 | 四川大学华西医院 | An intelligent orthopaedic implant for reconstruction after vertebral body resection |
CN111700715A (en)* | 2020-04-30 | 2020-09-25 | 四川大学华西医院 | An intelligent interbody cage |
EP4104895A1 (en) | 2021-06-14 | 2022-12-21 | Instituto Politécnico De Leiria | Intelligent biomimetic biodevice and use thereof |
CN116236266B (en)* | 2023-02-09 | 2023-08-18 | 上海康定医疗器械有限公司 | Remote automatic six-shaft collar type bracket system and bone orthopedic treatment device |
CN116236266A (en)* | 2023-02-09 | 2023-06-09 | 上海康定医疗器械有限公司 | Remote automatic six-shaft collar type bracket system and bone orthopedic treatment device |
CN117643496A (en)* | 2024-01-30 | 2024-03-05 | 中国人民解放军西部战区总医院 | Thoracolumbar spine individual nail placement device and use method thereof |
Publication number | Publication date |
---|---|
ZA200708433B (en) | 2008-10-29 |
Publication | Publication Date | Title |
---|---|---|
US8761859B2 (en) | Method for detecting body parameters | |
CN101287408A (en) | Body parameter detection sensor and method for detecting body parameter | |
US12226184B2 (en) | Method for detecting body parameters | |
US20220409055A1 (en) | Method for detecting body parameters | |
AU2012216813B2 (en) | Body parameter detecting sensor and method for detecting body parameters | |
AU2012203891B2 (en) | Body parameter detecting sensor and method for detecting body parameters | |
RU2444287C2 (en) | Method and identification device for measurement of biometrical parameters of body | |
HK1125279A (en) | Body parameter detecting sensor and method for detecting body parameters |
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code | Ref country code:HK Ref legal event code:DE Ref document number:1125279 Country of ref document:HK | |
REG | Reference to a national code | Ref country code:HK Ref legal event code:WD Ref document number:1125279 Country of ref document:HK | |
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication | Application publication date:20081015 |