







一、技术领域1. Technical field
本发明涉及一种结构强度测试系统,尤其涉及一种基于智能无线传感网络技术的结构强度多点测试系统,同时涉及对该系统进行可视化的方法。The invention relates to a structural strength testing system, in particular to a structural strength multi-point testing system based on intelligent wireless sensor network technology, and at the same time relates to a method for visualizing the system.
二、背景技术2. Background technology
结构强度试验是研究工程结构强度的重要手段。结构的静力/疲劳实验通过有计划地对结构受载后的性能进行观测和对测量参数如压力、位移、振幅、振频、疲劳寿命等进行分析,对结构的工作性能和承载能力做出正确的评价和估计,并为验证和发展结构的计算理论提供可靠的依据。以飞机结构为例,机身结构疲劳、腐蚀和磨损是引起飞机事故的三种主要模式。据国外资料统计,飞机由结构引发的故障,80%以上是由疲劳失效引起的。因此,结构强度试验对于提高工程结构的安全性、延长结构寿命、降低结构维护费用具有重要的意义。Structural strength test is an important means to study the strength of engineering structures. The static/fatigue test of the structure is to observe the performance of the structure under load in a planned way and analyze the measured parameters such as pressure, displacement, amplitude, vibration frequency, fatigue life, etc., to make a conclusion on the working performance and bearing capacity of the structure. Correct evaluation and estimation, and provide a reliable basis for verifying and developing computational theory of structures. Taking aircraft structure as an example, fatigue, corrosion and wear of fuselage structure are the three main modes that cause aircraft accidents. According to statistics from foreign countries, more than 80% of aircraft failures caused by structures are caused by fatigue failures. Therefore, the structural strength test is of great significance to improve the safety of engineering structures, prolong the life of structures and reduce the maintenance costs of structures.
目前针对航空结构和其他大型工程结构的静力/疲劳实验普遍存在测量点多、规模大等特点,如一次全机结构静力/疲劳试验往往需要几百甚至几千个测试点和传感器布置,因此造成了引线复杂、测试设备附加重量大等问题;此外,试验系统整体的智能化、网络化程度不高,使得静力疲劳试验的测试及其维护效率不高,测量精度有待改进,费用有待降低,因此迫切需要降低附加重量、提高系统运行速度及精度的有效方法。At present, static/fatigue tests for aeronautical structures and other large-scale engineering structures generally have the characteristics of many measurement points and large scales. For example, a static/fatigue test of a full-machine structure often requires hundreds or even thousands of test points and sensor arrangements. Therefore, problems such as complicated lead wires and heavy additional weight of test equipment are caused; in addition, the overall intelligence and network level of the test system are not high, so that the test and maintenance efficiency of the static fatigue test is not high, the measurement accuracy needs to be improved, and the cost needs to be improved. Therefore, there is an urgent need for an effective method to reduce the additional weight and improve the speed and accuracy of the system.
智能无线传感网络是由大量依据特定的通讯协议,可进行相互通信的智能无线传感器节点组成的网络。这些智能传感器节点包含了传感、计算和通信模块,能够互相协同自组织形成网络,并且通过特定的网络技术将采集的信息进行处理与融合后发送给用户。智能无线传感网络技术的发展主要得益于当前的微机械系统、无线通信技术和数字电子技术的发展。这些技术的进展使得低成本、低功耗、多功能、小尺寸的传感器节点的开发及其网络协议的实现成为可能。The intelligent wireless sensor network is a network composed of a large number of intelligent wireless sensor nodes that can communicate with each other according to a specific communication protocol. These smart sensor nodes include sensing, computing and communication modules, which can cooperate and self-organize to form a network, and process and fuse the collected information through specific network technology and send it to the user. The development of intelligent wireless sensor network technology mainly benefits from the current development of micro-mechanical systems, wireless communication technology and digital electronic technology. The development of these technologies makes it possible to develop low-cost, low-power, multi-functional, and small-sized sensor nodes and implement network protocols.
智能无线传感网络为实现高效率、高精度、低重量、智能化的结构静力/疲劳试验系统提供了很好的手段。采用无线传感器网络将大大减少器件引线数量,从而大大降低由于增加测试系统所导致的结构重量的增加;无线传感器可方便地安装于结构形状比较复杂,不便于引线的部位;由于无线传感器网络节点具有局域信号处理功能,很多信号信息处理工作可在传感节点附近局部完成,将大大减少所需传输的信息量,并将原来由中央处理器实现的串行处理、集中决策的系统,变为一种并行的分布式信息处理系统,将大大提高试验测试系统的运行速度及决策的可靠性和灵活性。The intelligent wireless sensor network provides a good means for realizing high efficiency, high precision, low weight and intelligent structural static/fatigue test system. The use of wireless sensor networks will greatly reduce the number of device leads, thereby greatly reducing the increase in structural weight due to the increase in test systems; wireless sensors can be easily installed in places where the structure is complex and inconvenient to lead; because wireless sensor network nodes have Local signal processing function, a lot of signal information processing work can be completed locally near the sensor node, which will greatly reduce the amount of information to be transmitted, and change the original serial processing and centralized decision-making system implemented by the central processor into A parallel distributed information processing system will greatly improve the running speed of the experimental test system and the reliability and flexibility of decision-making.
目前没有能够满足结构强度试验测试系统实时、同步和多测试点智能监测要求的无线传感网络技术的相关专利。本发明将智能无线传感网络用于大型工程结构的静力/疲劳试验,克服了目前试验测试系统引线复杂、附加重量大,智能化、网络化程度不高等问题,提供了一种基于智能无线传感网络的结构强度多点测试系统,能够有效地减少静力/疲劳试验系统中的引线数量、提高测试精度,实现结构试验数据的实时、同步的采集、传输、显示和存储,具有智能化、高效率和低费用的特点,可同时监测多达65535个网络节点。At present, there is no patent related to the wireless sensor network technology that can meet the real-time, synchronous and multi-test point intelligent monitoring requirements of the structural strength test system. The invention uses the intelligent wireless sensor network for the static/fatigue test of large-scale engineering structures, overcomes the problems of the current test and test system, such as complex lead wires, large additional weight, low intelligence, and low degree of networking, and provides an intelligent wireless sensor network. The structural strength multi-point test system of the sensor network can effectively reduce the number of leads in the static/fatigue test system, improve test accuracy, and realize real-time and synchronous collection, transmission, display and storage of structural test data, with intelligent , high efficiency and low cost, it can monitor up to 65535 network nodes at the same time.
三、发明内容3. Contents of the invention
1、技术问题:本发明要解决的问题是提供一种基于智能无线传感网络的结构强度多点测试系统,该系统不需要事先布置网络基础设施,满足多点、实时和同步的测试要求,测试过程完全由用户控制,并同步配合结构加载系统使用。同时提供该测试系统在应用中进行可视化的方法。1. Technical problem: the problem to be solved in the present invention is to provide a multi-point test system for structural strength based on an intelligent wireless sensor network. The testing process is fully controlled by the user and is used simultaneously with the structural loading system. At the same time, the method of visualizing the test system in the application is provided.
2、技术方案:为了解决上述的技术问题,本发明的基于智能无线传感网络的结构强度多点测试系统包括监控终端和布置在待测试结构中的强度测试传感器阵列,还包括无线传感终端节点、无线路由节点和无线基站节点,其中,无线传感终端节点采集传感器阵列经外界结构强度试验加载系统驱动而产生的结构响应信号并依次经无线路由节点和无线基站节点传输至监控终端。2. Technical solution: In order to solve the above-mentioned technical problems, the structural strength multi-point testing system based on the intelligent wireless sensor network of the present invention includes a monitoring terminal and a strength testing sensor array arranged in the structure to be tested, and also includes a wireless sensor terminal Node, wireless routing node and wireless base station node, wherein the wireless sensing terminal node collects the structural response signal generated by the sensor array driven by the external structural strength test loading system and transmits it to the monitoring terminal through the wireless routing node and wireless base station node in turn.
所述的无线传感终端节点包括无线应变、位移传感终端节点和无线加速度传感终端节点。The wireless sensing terminal nodes include wireless strain and displacement sensing terminal nodes and wireless acceleration sensing terminal nodes.
无线传感终端节点与充当协调器的无线路由节点以星型拓扑结构组成同步簇,同步簇与无线路由节点、无线基站节点和监控终端构成低延时星簇型无线试验网络;采用基于时隙的免冲突载波多路接入方式的网络通信协议,通过信标方式和保证时隙完成低延时星簇型无线试验网络中星型簇的时间同步。The wireless sensor terminal node and the wireless routing node acting as the coordinator form a synchronous cluster in a star topology, and the synchronous cluster forms a low-latency star-cluster wireless experimental network with wireless routing nodes, wireless base station nodes, and monitoring terminals; The network communication protocol of the conflict-free carrier multiple access mode, through the beacon mode and guaranteed time slots, completes the time synchronization of the star cluster in the low-latency star cluster wireless test network.
无线传感终端节点、无线路由节点、无线基站节点和监控终端共同组成的低延时星簇型无线试验网络即Low-latency Cluster-star Wireless Testing Network,简称为LCWTN;监控终端与结构强度试验加载系统同步并由结构强度试验加载系统启动;无线传感终端节点采集每个加载级别下的强度测试传感器阵列的结构响应输出并通过无线网络传输至监控终端;Low-latency Cluster-star Wireless Testing Network, or LCWTN for short, is a low-latency cluster-star wireless testing network composed of wireless sensor terminal nodes, wireless routing nodes, wireless base station nodes and monitoring terminals; monitoring terminals and structural strength test loading The system is synchronized and started by the structural strength test loading system; the wireless sensing terminal node collects the structural response output of the strength test sensor array under each loading level and transmits it to the monitoring terminal through the wireless network;
实践中,待测试结构体积很大,需要被划分为至少两个测试结构单元,每个测试结构单元对应的一组无线传感终端节点和单一的协调器节点以星型拓扑结构组成一个同步簇,所有的监测结构对应的网络簇、无线路由节点、无线基站节点和监控终端构成低延时星簇型试验网络;In practice, the structure to be tested is very large and needs to be divided into at least two test structure units. Each test structure unit corresponds to a group of wireless sensor terminal nodes and a single coordinator node to form a synchronous cluster in a star topology. , all the network clusters, wireless routing nodes, wireless base station nodes and monitoring terminals corresponding to the monitoring structure constitute a low-latency star cluster test network;
其中,传感器阵列由设置在待监测结构中的温度、加速度、应力、应变和位移等传感器组成;Among them, the sensor array is composed of temperature, acceleration, stress, strain and displacement sensors arranged in the structure to be monitored;
所述的无线应变传感终端节点包括低功耗应变、位移信号调零放大模块、多路信号扫查与ADC模块、微处理单元、无线通信单元和电源管理单元,低功耗应变、位移信号调零放大模块、多路信号扫查与ADC模块、微处理单元、无线通信单元和电源管理单元通过内部总线相互连接进行通讯;The wireless strain sensing terminal node includes a low-power strain and displacement signal zeroing amplification module, a multi-channel signal scanning and ADC module, a micro-processing unit, a wireless communication unit and a power management unit, and the low-power strain and displacement signal The zero-adjustment amplification module, multi-channel signal scanning and ADC module, micro-processing unit, wireless communication unit and power management unit are connected to each other through the internal bus for communication;
无线应变、位移传感终端节点属于低速传感器,应变、位移信号调零放大模块部分通过精密电源供电的桥路将应变和位移转换为电压信号输出,经过桥路调零放大输出到多路扫查与ADC模块;The terminal nodes of wireless strain and displacement sensing belong to low-speed sensors. The strain and displacement signal zeroing amplification module converts strain and displacement into voltage signal output through the bridge circuit powered by precision power supply, and outputs to multi-channel scanning through bridge circuit zeroing and amplification with the ADC module;
所述的无线加速度传感终端节点包括低功耗加速度信号电荷放大模块、多路信号扫查与ADC模块、微处理单元、无线通信单元和电源管理单元,低功耗加速度信号电荷放大模块、多路信号扫查与ADC模块、微处理单元、无线通信单元和电源管理单元通过内部总线相互连接进行通讯。The wireless acceleration sensing terminal node includes a low-power acceleration signal charge amplification module, a multi-channel signal scan and ADC module, a micro-processing unit, a wireless communication unit and a power management unit, a low-power acceleration signal charge amplification module, The channel signal scanning and ADC module, the micro-processing unit, the wireless communication unit and the power management unit are connected to each other through the internal bus for communication.
无线加速度传感终端节点属于高速传感器,对加速度信号的处理采用高速电荷放大器。高精度加速度传感器基于压电效应,一般工作在高频状态(几百千赫兹以上),因此其信号调理部分主要由微型高速电荷放大器组成,将加速度传感器的电荷输出转化为电压量;在其高频工作状态下,由于电磁耦合效益,容易造成微型加速度节点上密集布置的电路之间发生相互干扰耦合,造成监测信号的畸变,因此本发明采用高速放大器芯片和多层板抗干扰设计,使得高速加速度传感节点的频带达到为1.6KHz-5.3MHz。The wireless acceleration sensing terminal node is a high-speed sensor, and a high-speed charge amplifier is used to process the acceleration signal. High-precision acceleration sensors are based on the piezoelectric effect and generally work at high frequency (above hundreds of kilohertz), so the signal conditioning part is mainly composed of a micro high-speed charge amplifier, which converts the charge output of the acceleration sensor into a voltage; Under high-frequency working conditions, due to the benefit of electromagnetic coupling, it is easy to cause mutual interference coupling between the densely arranged circuits on the micro-acceleration nodes, resulting in distortion of the monitoring signal. The frequency band of the acceleration sensing node reaches 1.6KHz-5.3MHz.
各无线传感终端节点中,微处理单元由单一的微控制器、存储器及其外围电路模块组成,用于分时处理操作请求和通信协议,微控制器、存储器及其外围电路模块均采用现有的低功耗集成芯片设计。无线通信单元由低功耗无线收发模块组成,根据系统任务状态实现全功能、简化功能和低功耗模式的快速转换,本发明采用Zigbee技术,基于标准的IEEE 802.15.4协议设计无线通信模块,采用现有的支持Zigbee标准的芯片设计。此外,各无线终端传感节点由电池供电,由电源管理模块负责监测电池电压和低功耗模式管理等,采用现有的低功耗电源管理模块芯片设计。In each wireless sensor terminal node, the micro-processing unit is composed of a single microcontroller, memory and its peripheral circuit modules, which are used for time-sharing processing of operation requests and communication protocols. Some low-power integrated chip designs. The wireless communication unit is composed of a low-power wireless transceiver module, which realizes full-function, simplified function and fast conversion of low-power mode according to the system task state. The present invention adopts Zigbee technology and designs a wireless communication module based on the standard IEEE 802.15.4 protocol. Adopt the existing chip design supporting Zigbee standard. In addition, each wireless terminal sensor node is powered by a battery, and the power management module is responsible for monitoring the battery voltage and low-power mode management, etc., and adopts the existing low-power power management module chip design.
无线路由节点包括无线路由微处理单元、无线路由无线通信单元和无线路由电源管理单元,无线路由微处理单元、无线路由无线通信单元通过无线路由内部总线相互连接进行通讯。无线路由节点实现传感数据融合、处理和转发等功能,其任务是发布结构强度测试任务、转发各无线传感终端节点的测试数据。The wireless routing node includes a wireless routing micro-processing unit, a wireless routing wireless communication unit and a wireless routing power management unit. The wireless routing micro-processing unit and the wireless routing wireless communication unit are connected to each other through the wireless routing internal bus for communication. The wireless routing node realizes the functions of sensing data fusion, processing and forwarding, and its task is to release the structural strength test task and forward the test data of each wireless sensing terminal node.
无线基站节点包括无线基站接口转换单元、无线基站微处理单元、无线基站无线通信单元和无线基站电源管理单元,其中,无线基站接口转换单元、无线基站微处理单元、无线基站无线通信单元通过无线基站内部总线相互连接进行通讯。无线基站节点实现与用户监控和加载控制系统集成、网络数据存储和网络监控,发布网络同步任务、结构强度测试任务、集中和存储各无线传感终端节点的测试数据。The wireless base station node includes a wireless base station interface conversion unit, a wireless base station micro-processing unit, a wireless base station wireless communication unit, and a wireless base station power management unit, wherein the wireless base station interface conversion unit, the wireless base station micro-processing unit, and the wireless base station wireless communication unit pass through the wireless base station The internal buses are interconnected for communication. The wireless base station node realizes integration with user monitoring and loading control system, network data storage and network monitoring, releases network synchronization tasks, structural strength test tasks, and centralizes and stores test data of each wireless sensor terminal node.
无线传感终端节点、无线路由节点、无线基站节点的子模块都采用现有的集成低功耗芯片。Sub-modules of wireless sensor terminal nodes, wireless routing nodes, and wireless base station nodes all use existing integrated low-power chips.
本发明的基于智能无线传感网络的结构强度多点测试系统在工作时需要进行智能无线传感网络的实时通信和数据采集,其以结构强度试验中网络实时性和时间同步为目标,以标准的IEEE 802.15.4协议建立星型网络拓扑;为避免多个无线传感节点向主设备节点发送数据可能导致的网络拥塞,网络布置和初始化结束后采用有时隙的免冲突载波多路接入(CSMA-CA)方式设计网络通信过程,将Zigbee信道划分为时间帧和时隙,在星型网络中以主协调器为信标节点,使得各传感节点在满足时间同步的同时能够互不干扰的将试验数据发送到主设备节点即无线基站节点。具体包括下列步骤:The structural strength multi-point test system based on the intelligent wireless sensor network of the present invention needs to carry out real-time communication and data collection of the intelligent wireless sensor network when it is working. The IEEE 802.15.4 protocol establishes a star network topology; in order to avoid network congestion that may be caused by multiple wireless sensor nodes sending data to the main device node, a conflict-free carrier multiple access with slots is used after the network layout and initialization are completed ( CSMA-CA) design the network communication process, divide the Zigbee channel into time frames and time slots, and use the main coordinator as the beacon node in the star network, so that each sensor node can not interfere with each other while satisfying time synchronization The test data is sent to the main device node, that is, the wireless base station node. Specifically include the following steps:
第一步骤:根据智能无线传感网络实时性和时间同步的目标进行基于低延时星簇型无线试验网络的试验结构划分,确定需要建立的同步星型簇的个数;The first step: divide the test structure based on the low-latency star cluster wireless test network according to the real-time and time synchronization goals of the intelligent wireless sensor network, and determine the number of synchronous star clusters that need to be established;
第二步骤:进行低延时星簇型无线试验网络布置及初始化;The second step: deploy and initialize the low-latency star-cluster wireless test network;
第三步骤:采用有时隙的免冲突载波多路接入方式设计网络通信过程,将信道划分为时间帧和时隙,采用信标方式和保证时隙完成低延时星簇型无线试验网络中星型簇的时间同步;The third step: design the network communication process by adopting the conflict-free carrier multi-access method with time slots, divide the channel into time frames and time slots, and complete the low-latency star-cluster wireless test network by using the beacon method and guaranteed time slots Time synchronization of star clusters;
第四步骤:以第二步骤布置的低延时星簇型无线试验网络中的协调器节点为信标节点;所述的协调器节点进行低延时星簇型无线试验网络的时间同步、测试任务发布和测试数据转发,包括无线路由微处理单元、无线路由无线通信单元和无线路由电源管理单元,无线路由微处理单元、无线路由无线通信单元通过无线路由内部总线相互连接进行通讯;The fourth step: using the coordinator node in the low-latency star-cluster wireless test network arranged in the second step as a beacon node; the coordinator node performs time synchronization and testing of the low-latency star-cluster wireless test network Task release and test data forwarding, including wireless routing micro-processing unit, wireless routing wireless communication unit and wireless routing power management unit, wireless routing micro-processing unit, wireless routing wireless communication unit are connected to each other through the wireless routing internal bus for communication;
第五步骤:智能无线传感网络中的无线传感终端节点将采集的数据通过第四步骤中设立的信标节点在满足时间同步的同时发送至主设备节点即无线基站节点;The fifth step: the wireless sensor terminal node in the intelligent wireless sensor network sends the collected data to the main device node, that is, the wireless base station node, while meeting the time synchronization through the beacon node set up in the fourth step;
第六步骤:与无线基站节点相连接的监控终端实时完成数据有效性判别、存储和显示,完成网络的通信和数据采集。Step 6: The monitoring terminal connected to the wireless base station node completes data validity judgment, storage and display in real time, and completes network communication and data collection.
具体应用时,首先针对结构进行智能无线传感网格的布置和初始化,主要包括下列内容:In the specific application, the layout and initialization of the intelligent wireless sensor grid is firstly carried out for the structure, which mainly includes the following contents:
第一步骤:将无线路由节点布置在待测试结构附近,设置成为一个协调器节点,并自身设置为一个簇标识符为i(i=0...n)的簇头;The first step: arrange the wireless routing node near the structure to be tested, set it as a coordinator node, and set itself as a cluster head whose cluster identifier is i (i=0...n);
第二步骤:无线路由节点向邻近的用于监测结构响应的无线传感终端节点以广播的方式发送信标帧,形成主要的同步星型簇;The second step: the wireless routing node broadcasts the beacon frame to the adjacent wireless sensor terminal node for monitoring the structural response, forming a main synchronous star cluster;
第三步骤:当无线传感终端节点接受到信标帧后以最小的信号发射功率发送加入星型簇请求;Step 3: After receiving the beacon frame, the wireless sensor terminal node sends a request to join the star cluster with the minimum signal transmission power;
第四步骤:如果没有信号返回则增加发射功率直至得到允许加入星型簇的请求;Step 4: If there is no signal return, increase the transmit power until a request for permission to join the star cluster is obtained;
第五步骤:重复进行第二步骤至第四步骤,所有的无线传感终端节点接受到信标帧后按照分配的时隙先后进行请求并加入该网络中;The fifth step: repeat the second step to the fourth step, and after receiving the beacon frame, all wireless sensor terminal nodes make requests according to the allocated time slots and join the network;
第六步骤:作为协调器节点的从设备,各无线传感终端节点将其作为父节点加入到各自的网络邻近表中;Step 6: As a slave device of the coordinator node, each wireless sensor terminal node adds it as a parent node to its respective network proximity table;
第七步骤:根据确定的同步星型簇的个数,重复第一步骤至第六步骤,建立其他同步星型簇(簇标识符为i+1,(i=0...n));最后按照强度试验结构和试验系统用户控制端的距离布置尽可能少的无线路由节点以多跳的方式转发试验数据。The seventh step: according to the determined number of synchronous star clusters, repeat the first step to the sixth step to establish other synchronous star clusters (cluster identifier is i+1, (i=0...n)); Finally, according to the strength test structure and the distance from the user control end of the test system, as few wireless routing nodes as possible are arranged to forward the test data in a multi-hop manner.
本发明的基于智能无线传感网络的结构强度测试系统的可视化方法包括下列步骤:The visualization method of the structural strength testing system based on the intelligent wireless sensor network of the present invention comprises the following steps:
第一步骤:进行网络布置和初始化;The first step: network layout and initialization;
第二步骤:启动监控进程,即向智能无线传感网络发送读取网络邻近表操作,读取网络通过智能无线传感网络中的无线基站节点向主机发送的网络邻近表;The second step: start the monitoring process, that is, send the operation of reading the network proximity table to the intelligent wireless sensor network, and read the network proximity table sent by the network to the host through the wireless base station node in the intelligent wireless sensor network;
第三步骤:监控进程根据网络邻近表信息可视化显示智能无线传感网络中各网络节点的分布、网络拓扑;The third step: the monitoring process visually displays the distribution and network topology of each network node in the intelligent wireless sensor network according to the network proximity table information;
第四步骤:结构强度试验加载系统启动试验控制进程和试验加载命令,基于智能无线传感网络的结构强度测试系统通过无线基站节点向智能无线传感网络发布试验数据采集和传输命令;The fourth step: the structural strength test loading system starts the test control process and test loading command, and the structural strength test system based on the intelligent wireless sensor network issues test data collection and transmission commands to the intelligent wireless sensor network through the wireless base station node;
第五步骤:监控终端读取无线基站节点的数据,并绘制结构参数随时间变化的二维分布图,同时完成数据转换,实时显示结构性能数据随结构加载的变化,并自动实现记录试验数据的数据库的实时更新。The fifth step: the monitoring terminal reads the data of the wireless base station nodes, and draws the two-dimensional distribution diagram of the structural parameters changing with time, completes the data conversion at the same time, displays the changes of the structural performance data with the structural loading in real time, and automatically realizes the recording of the test data Real-time updates of the database.
3、有益效果:3. Beneficial effects:
本发明将智能无线传感网络用于大型结构的静力/疲劳试验,提供了于智能无线传感网络的结构强度测试系统,能够有效地减少静力/疲劳试验系统中的引线数量、提高测试精度,实现结构试验数据的实时、同步的采集、传输、显示和存储,并具有智能化、高效率和低费用的特点。克服了原有结构强度试验系统引线复杂、附加重量大,智能化、网络化程度不高等问题,可同时监测多达65535个网络节点,实现用于大型结构的多点结构强度测试,并且可以在此基础上继续扩展。The invention uses the intelligent wireless sensor network for the static force/fatigue test of large structures, and provides a structural strength test system for the intelligent wireless sensor network, which can effectively reduce the number of lead wires in the static force/fatigue test system and improve the test performance. Accuracy, real-time and synchronous collection, transmission, display and storage of structural test data, and has the characteristics of intelligence, high efficiency and low cost. It overcomes the problems of the original structural strength test system, such as complex leads, heavy additional weight, intelligence, and low degree of networking, and can monitor up to 65,535 network nodes at the same time, realizing multi-point structural strength testing for large structures, and can be used in Continue to expand on this basis.
四、附图说明4. Description of drawings
图1是无线结构强度试验系统的网络拓扑和功能结构图示;Figure 1 is a diagram of the network topology and functional structure of the wireless structural strength test system;
图2是用于结构强度试验的无线应变、位移传感节点原理框图;Figure 2 is a block diagram of wireless strain and displacement sensing nodes used for structural strength tests;
图3是用于结构强度试验的无线加速度传感节点原理框图;Fig. 3 is a schematic block diagram of wireless acceleration sensor nodes for structural strength tests;
图4是用于结构强度试验的无线路由节点原理框图;Fig. 4 is a schematic block diagram of a wireless routing node for a structural strength test;
图5是用于结构强度试验的无线基站节点原理框图;Fig. 5 is a schematic block diagram of a wireless base station node used for a structural strength test;
图6是无线结构强度试验系统的网络布置和初始化流程图;Fig. 6 is a flow chart of network layout and initialization of the wireless structural strength test system;
图7是基于时隙CSMA-CA方式的网络通信顺序图示;Fig. 7 is a network communication sequence diagram based on the time slot CSMA-CA mode;
图8是无线结构强度试验系统的工作流程及可视化设计图。Figure 8 is the workflow and visual design diagram of the wireless structural strength test system.
五、具体实施方式5. Specific implementation
实施例一:Embodiment one:
如图1所示,本实施例涉及一种基于智能无线传感网络的结构强度测试系统,包括监控终端和布置在待测试结构中的传感器阵列,还包括由无线传感终端节点、无线路由节点、无线基站节点和监控终端组成的低延时星簇型无线试验网络(以下简称为LCWTN);本实施例的测试结构分为两个测试结构单元,其中每个测试结构对应的无线传感终端节点和单一的协调器节点以星型拓扑结构组成一个同步簇,所有的监测结构对应的网络簇、无线路由节点和监控终端构成低延时星簇型试验网络;监控终端与外界结构强度试验加载系统同步,并由结构强度试验加载系统启动;结构强度试验加载系统启动后,基于智能无线传感网络的结构强度测试系统被激活,无线传感终端节点采集每个加载级别下的强度测试传感器阵列的结构响应输出并通过无线网络传输,依次经无线路由节点、无线基站节点传输至监控终端。监控终端读取无线基站节点的数据,并绘制应变、位移与加速度等结构强度测试参数随时间变化的二维分布图,同时完成数据转换,实时显示结构性能数据随结构加载的变化,并自动实现记录试验数据的数据库的实时更新。结构强度试验中要求在试验结构加载的同时监测和存储同时刻的结构性能及参数,所以网络的实时性和时间同步是的最主要的系统指标。因为目前的IEEE802.15.4标准协议能够在星型网络拓扑和信标模式下支持网络的时间同步,因此本实施例涉及的网络结构以星型网络拓扑为基础建立。As shown in Figure 1, this embodiment relates to a structural strength testing system based on an intelligent wireless sensor network, including a monitoring terminal and a sensor array arranged in the structure to be tested, and also includes a wireless sensor terminal node, a wireless routing node , a low-latency star-cluster wireless test network (hereinafter referred to as LCWTN) composed of wireless base station nodes and monitoring terminals; the test structure of this embodiment is divided into two test structure units, wherein each test structure corresponds to a wireless sensor terminal Nodes and a single coordinator node form a synchronous cluster in a star topology, and all the network clusters, wireless routing nodes, and monitoring terminals corresponding to the monitoring structure form a low-latency star cluster test network; the monitoring terminal and the external structure strength test load The system is synchronized and started by the structural strength test loading system; after the structural strength test loading system is started, the structural strength test system based on the intelligent wireless sensor network is activated, and the wireless sensing terminal node collects the strength test sensor array at each loading level The structure response is output and transmitted through the wireless network, and then transmitted to the monitoring terminal through the wireless routing node and the wireless base station node in turn. The monitoring terminal reads the data of the wireless base station nodes, and draws the two-dimensional distribution diagram of the structural strength test parameters such as strain, displacement and acceleration over time, and completes the data conversion at the same time, and displays the change of the structural performance data with the structural loading in real time, and automatically realizes Real-time update of the database recording test data. In the structural strength test, it is required to monitor and store the structural performance and parameters at the same time when the test structure is loaded, so the real-time and time synchronization of the network are the most important system indicators. Because the current IEEE802.15.4 standard protocol can support network time synchronization in star network topology and beacon mode, the network structure involved in this embodiment is established based on star network topology.
如图2所示,本实施例的基于智能无线传感网络的结构强度测试系统中,无线传感终端节点包括无线应变、位移传感终端节点,其包括低功耗应变、位移信号调零放大模块、多路信号扫查与ADC模块、微处理单元、无线通信单元和电源管理单元,低功耗应变信号调零放大模块、多路信号扫查与ADC模块、微处理单元、无线通信单元和电源管理单元通过内部总线相互连接进行通讯。无线应变与位移传感终端节点可以直接配接应变传感器和位移传感器。应变、位移信号调理部分通过精密电源供电的桥路将应变转换为电压信号输出,经过桥路调零放大输出到多路扫查和ADC模块。As shown in Figure 2, in the structural strength test system based on the intelligent wireless sensor network of this embodiment, the wireless sensing terminal nodes include wireless strain and displacement sensing terminal nodes, which include low power consumption strain, displacement signal zeroing and amplification module, multi-channel signal scanning and ADC module, micro-processing unit, wireless communication unit and power management unit, low-power strain signal zeroing amplification module, multi-channel signal scanning and ADC module, micro-processing unit, wireless communication unit and The power management units communicate with each other through an internal bus. The wireless strain and displacement sensing terminal nodes can be directly connected with strain sensors and displacement sensors. The strain and displacement signal conditioning part converts the strain into a voltage signal output through a bridge powered by a precision power supply, and then amplifies and outputs it to the multi-channel scan and ADC module through the bridge zero adjustment.
如图3所示,本实施例的基于智能无线传感网络的结构强度测试系统中,无线传感终端节点还包括无线加速度传感终端节点,其信号调理部分主要由微型高速电荷放大器组成,将加速度传感器的电荷输出转化为电压量,本实施例采用高速放大器芯片和多层板抗干扰设计,使得高速加速度传感节点的频带达到为1.6KHz-5.3MHz;As shown in Figure 3, in the structural strength test system based on the intelligent wireless sensor network of this embodiment, the wireless sensor terminal node also includes a wireless acceleration sensor terminal node, and its signal conditioning part is mainly composed of a miniature high-speed charge amplifier. The charge output of the acceleration sensor is converted into a voltage. This embodiment adopts a high-speed amplifier chip and a multi-layer board anti-interference design, so that the frequency band of the high-speed acceleration sensor node reaches 1.6KHz-5.3MHz;
本实施例的无线应变与位移传感终端节点和无线加速度传感终端节点中,微处理单元由单一的MCU、存储器及其外围电路模块组成,用于分时处理操作请求和通信协议。无线通信单元由低功耗无线收发模块组成,根据系统任务状态实现全功能、简化功能和低功耗模式的快速转换,本发明采用被认为是用于无线传感网络的最有前景的短距离无线通信技术-Zigbee技术,因为其物理层和MAC层必须采用标准的IEEE 802.15.4协议,所以无线通信模块的设计需要满足该协议标准。另外无线终端传感节点由电池供电,因此还包括电源管理模块,负责监测电池电压和低功耗模式管理等。In the wireless strain and displacement sensing terminal node and the wireless acceleration sensing terminal node of this embodiment, the microprocessing unit is composed of a single MCU, memory and its peripheral circuit modules, and is used for time-sharing processing of operation requests and communication protocols. The wireless communication unit is composed of a low-power wireless transceiver module, which realizes full-function, simplified function and fast conversion of low-power mode according to the system task state. The present invention adopts the most promising short-distance Wireless communication technology - Zigbee technology, because its physical layer and MAC layer must adopt the standard IEEE 802.15.4 protocol, so the design of the wireless communication module needs to meet the protocol standard. In addition, the wireless terminal sensor node is powered by a battery, so it also includes a power management module, which is responsible for monitoring battery voltage and low power consumption mode management.
如图4所示,本实施例的无线路由节点包括无线路由微处理单元、无线路由无线通信单元和无线路由电源管理单元,无线路由微处理单元、无线路由无线通信单元通过无线路由内部总线相互连接进行通讯。其实现传感数据融合、处理和转发等功能。As shown in Figure 4, the wireless routing node of this embodiment includes a wireless routing micro-processing unit, a wireless routing wireless communication unit, and a wireless routing power management unit, and the wireless routing micro-processing unit and the wireless routing wireless communication unit are connected to each other through the wireless routing internal bus to communicate. It realizes the functions of sensing data fusion, processing and forwarding.
如图5所示,无线基站节点包括无线基站接口转换单元、无线基站微处理单元、无线基站无线通信单元和无线基站电源管理单元,其中,无线基站接口转换单元、无线基站微处理单元、无线基站无线通信单元通过无线基站内部总线相互连接进行通讯。无线基站节点负责与用户监控和加载控制系统集成、网络数据存储和网络监控等。As shown in Figure 5, the wireless base station node includes a wireless base station interface conversion unit, a wireless base station micro-processing unit, a wireless base station wireless communication unit, and a wireless base station power management unit, wherein the wireless base station interface conversion unit, the wireless base station micro-processing unit, the wireless base station The wireless communication units communicate with each other through the internal bus of the wireless base station. The wireless base station node is responsible for integration with user monitoring and loading control systems, network data storage and network monitoring, etc.
本实施例的试验系统工作时,需要进行智能无线传感网络的实时通信和数据采集,是一种对结构强度进行多点测试的智能无线传感网络通信方法,包括下列步骤:When the test system of this embodiment is working, real-time communication and data collection of the intelligent wireless sensor network are required. It is a communication method for the intelligent wireless sensor network that performs multi-point testing of the structural strength, including the following steps:
第一步骤:根据智能无线传感网络实时性和时间同步的目标进行基于LCWTN网络的试验结构划分,确定需要建立的同步星型簇的个数;The first step: divide the test structure based on the LCWTN network according to the real-time and time synchronization goals of the intelligent wireless sensor network, and determine the number of synchronous star clusters that need to be established;
第二步骤:进行智能LCWTN网络的布置及初始化;The second step: carry out the layout and initialization of the intelligent LCWTN network;
第三步骤:采用有时隙的免冲突载波多路接入协议设计LCWTN网络通信过程,将信道划分为时间帧和时隙;采用信标方式和保证时隙完成LCWTN网络中星型簇的时间同步;The third step: Design the communication process of LCWTN network by using the conflict-free carrier multi-access protocol with time slots, divide the channel into time frames and time slots; use the beacon method and guaranteed time slots to complete the time synchronization of the star cluster in the LCWTN network ;
第四步骤:以第二步骤建立的智能LCWTN网络中的协调器节点为信标节点;所述的协调器节点进行LCWTN网络的时间同步、测试任务发布和测试数据转发,包括无线路由微处理单元、无线路由无线通信单元和无线路由电源管理单元,无线路由微处理单元、无线路由无线通信单元通过无线路由内部总线相互连接进行通讯;The fourth step: the coordinator node in the intelligent LCWTN network set up in the second step is a beacon node; the coordinator node carries out time synchronization of the LCWTN network, test task release and test data forwarding, including a wireless routing microprocessing unit , the wireless router wireless communication unit and the wireless router power management unit, the wireless router micro-processing unit, and the wireless router wireless communication unit are connected to each other through the wireless router internal bus for communication;
第五步骤:智能无线传感网络中的无线传感终端节点将采集的数据通过第四步骤中设立的信标节点在满足时间同步的同时发送至主设备节点即无线基站节点;The fifth step: the wireless sensor terminal node in the intelligent wireless sensor network sends the collected data to the main device node, that is, the wireless base station node, while meeting the time synchronization through the beacon node set up in the fourth step;
第六步骤:与无线基站节点相连接的监控终端实时完成数据有效性判别、存储和显示,完成网络的通信和数据采集。Step 6: The monitoring terminal connected to the wireless base station node completes data validity judgment, storage and display in real time, and completes network communication and data collection.
如图6所示,是无线结构强度试验系统的网络布置和初始化流程图。网络布置和初始化流程为:采用上述的无线路由节点布置在试验结构附近,设置成为一个主协调节点,并自身设置为一个簇标识符为0的簇头;然后向邻近的用于监测结构响应的传感节点以广播的方式发送信标帧,以形成主要的星型网络;当传感节点接受到信标帧后以最小的信号发射功率发送加入网络请求,如果没有信号返回则增加发射功率直至得到允许加入网络的请求;所有其他的传感节点都按照同样的方式请求加入该网络中,作为主协调节点的从设备,各传感节点将其作为父节点加入到各自的邻近表中。最后按照强度试验结构和试验系统用户控制端的距离布置尽可能少的无线路由节点以多跳的方式转发试验数据,跳数越多网络延时越长,以大型飞机结构试验为例,通常试验系统控制端距离试验结构小于100米,因此仅仅需要布置1至2个无线路由节点,甚至不用布置路由节点,直接将数据发送到无线基站节点,这样的网络实时性能最优。As shown in Figure 6, it is the network layout and initialization flow chart of the wireless structure strength test system. The network layout and initialization process is as follows: use the above-mentioned wireless routing node to arrange near the test structure, set it as a master coordinating node, and set itself as a cluster head with a cluster identifier of 0; The sensor nodes broadcast beacon frames to form the main star network; when the sensor nodes receive the beacon frames, they send a request to join the network with the minimum signal transmission power, and if no signal returns, increase the transmission power until Get permission to join the network request; all other sensor nodes request to join the network in the same way, as the slave device of the master coordinating node, each sensor node will add it as a parent node to its neighbor list. Finally, arrange as few wireless routing nodes as possible according to the distance between the strength test structure and the user control terminal of the test system to forward the test data in a multi-hop manner. The distance from the control terminal to the test structure is less than 100 meters, so only 1 to 2 wireless routing nodes need to be arranged, or even no routing nodes are needed to directly send data to the wireless base station nodes. This kind of network has the best real-time performance.
图7是基于有时隙的免冲突载波多路接入(CSMA-CA)方式的网络通信顺序图示。为避免多个无线传感节点向主设备节点发送数据可能导致的网络拥塞,本实施例采用的网络通信过程采用时隙CSMA-CA方式,将Zigbee信道划分为时间帧和时隙,在星型网络中以主协调器为信标节点,使得各传感节点在满足时间同步的同时能够互不干扰的将试验数据发送到主设备节点。FIG. 7 is a schematic diagram of a network communication sequence based on a slotted collision-free carrier multiple access (CSMA-CA) method. In order to avoid network congestion that may be caused by multiple wireless sensor nodes sending data to the master device node, the network communication process adopted in this embodiment adopts the time slot CSMA-CA method, and the Zigbee channel is divided into time frames and time slots. The main coordinator is used as the beacon node in the network, so that each sensor node can send test data to the main device node without interfering with each other while meeting the time synchronization.
实施例二:Embodiment two:
如图1和图8所示,本实施例涉及一种基于智能无线传感网络的结构强度测试系统的可视化方法,包括下列步骤:As shown in Figures 1 and 8, this embodiment relates to a visualization method for a structural strength testing system based on an intelligent wireless sensor network, including the following steps:
第一步骤:网络布置和初始化后,启动监控进程,即向智能无线传感网络发送读取网络邻近表操作,读取网络通过无线基站节点向主机发送的网络邻近表;The first step: After the network layout and initialization, start the monitoring process, that is, send the operation of reading the network proximity table to the intelligent wireless sensor network, and read the network proximity table sent by the network to the host through the wireless base station node;
第二步骤:监控进程根据网络邻近表信息可视化显示各网络节点的分布、网络拓扑;The second step: the monitoring process visually displays the distribution and network topology of each network node according to the network proximity table information;
第三步骤:结构强度试验加载系统启动试验控制进程和试验加载命令,基于智能无线传感网络的结构强度测试系统通过无线基站节点向智能无线传感网络发布试验数据采集和传输命令;The third step: the structural strength test loading system starts the test control process and test loading command, and the structural strength test system based on the intelligent wireless sensor network issues test data collection and transmission commands to the intelligent wireless sensor network through the wireless base station node;
第四步骤:监控终端读取无线基站节点的数据,并绘制应变、位移与加速度等结构参数随时间变化的二维分布图,同时完成数据转换,实时显示结构性能数据随结构加载的变化,并自动实现记录试验数据的数据库的实时更新。The fourth step: the monitoring terminal reads the data of the wireless base station nodes, and draws the two-dimensional distribution diagram of the structural parameters such as strain, displacement and acceleration over time, and completes the data conversion at the same time, and displays the structural performance data in real time. Automatically realize the real-time update of the database recording the test data.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200810024292ACN100596243C (en) | 2008-06-02 | 2008-06-02 | Structural strength test system and its visualization method based on intelligent wireless sensor network |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200810024292ACN100596243C (en) | 2008-06-02 | 2008-06-02 | Structural strength test system and its visualization method based on intelligent wireless sensor network |
| Publication Number | Publication Date |
|---|---|
| CN101286907Atrue CN101286907A (en) | 2008-10-15 |
| CN100596243C CN100596243C (en) | 2010-03-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200810024292AExpired - Fee RelatedCN100596243C (en) | 2008-06-02 | 2008-06-02 | Structural strength test system and its visualization method based on intelligent wireless sensor network |
| Country | Link |
|---|---|
| CN (1) | CN100596243C (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102095631A (en)* | 2011-01-10 | 2011-06-15 | 华心 | System for monitoring fatigue test and method thereof |
| CN102362508A (en)* | 2009-02-16 | 2012-02-22 | 空中客车营运有限公司 | Sensor and sensor network for an aircraft |
| CN103994878A (en)* | 2014-04-17 | 2014-08-20 | 中国航空工业集团公司沈阳飞机设计研究所 | Integration test verification method of airplane movable wing surface |
| CN104748960B (en)* | 2015-04-15 | 2017-07-11 | 武汉理工大学 | A system and method for on-line stress monitoring and fault diagnosis of driving beam |
| CN108605006A (en)* | 2016-08-05 | 2018-09-28 | 富士电机株式会社 | Control network system and its node apparatus |
| CN109598914A (en)* | 2018-11-14 | 2019-04-09 | 中国空空导弹研究院 | A kind of no cable connection sensor data transmission system |
| CN111586711A (en)* | 2019-02-15 | 2020-08-25 | 华为技术有限公司 | Communication method and communication device in multi-air-interface connection |
| CN111787505A (en)* | 2020-07-06 | 2020-10-16 | 北京理工大学 | A modular and reconfigurable wireless network test node system and working method |
| CN112242053A (en)* | 2020-10-16 | 2021-01-19 | 中国飞机强度研究所 | Multi-type test data optimized transmission system and method |
| CN112988198A (en)* | 2021-04-15 | 2021-06-18 | 深圳市共进电子股份有限公司 | mesh equipment multi-machine upgrading method and device and mesh equipment |
| CN114923527A (en)* | 2022-06-17 | 2022-08-19 | 北京继祥科技发展有限公司 | A metal roof online monitoring and health management system and method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1458528A (en)* | 2003-05-07 | 2003-11-26 | 天津大学 | New enginering structure and material deformation measuring technology |
| CN1322303C (en)* | 2003-10-30 | 2007-06-20 | 黄树红 | Metod for monitoring safety of architecture of circular arch net rack |
| CN2914066Y (en)* | 2006-03-03 | 2007-06-20 | 山东博润化工有限公司 | Air abrasion monitoring instrument |
| CN100469031C (en)* | 2006-08-07 | 2009-03-11 | 南京航空航天大学 | Intelligent Wireless Sensor Network Nodes for Health Monitoring of Engineering Structures |
| CN101183061B (en)* | 2006-11-14 | 2012-03-14 | 东芝电梯株式会社 | Wire rope end connector fatigue strength test apparatus |
| CN100573132C (en)* | 2007-08-17 | 2009-12-23 | 中国人民解放军装甲兵工程学院 | Utilize the method for variated magnetic signal monitoring ferromagnetic material fatigue crack expansion |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102362508A (en)* | 2009-02-16 | 2012-02-22 | 空中客车营运有限公司 | Sensor and sensor network for an aircraft |
| CN102362508B (en)* | 2009-02-16 | 2014-11-05 | 空中客车营运有限公司 | Sensor and sensor network for an aircraft |
| US8982784B2 (en) | 2009-02-16 | 2015-03-17 | Airbus Operations Gmbh | Sensor and sensor network for an aircraft |
| CN102095631A (en)* | 2011-01-10 | 2011-06-15 | 华心 | System for monitoring fatigue test and method thereof |
| CN103994878A (en)* | 2014-04-17 | 2014-08-20 | 中国航空工业集团公司沈阳飞机设计研究所 | Integration test verification method of airplane movable wing surface |
| CN104748960B (en)* | 2015-04-15 | 2017-07-11 | 武汉理工大学 | A system and method for on-line stress monitoring and fault diagnosis of driving beam |
| CN108605006B (en)* | 2016-08-05 | 2021-03-12 | 富士电机株式会社 | Control network system and node device thereof |
| CN108605006A (en)* | 2016-08-05 | 2018-09-28 | 富士电机株式会社 | Control network system and its node apparatus |
| CN109598914A (en)* | 2018-11-14 | 2019-04-09 | 中国空空导弹研究院 | A kind of no cable connection sensor data transmission system |
| CN111586711A (en)* | 2019-02-15 | 2020-08-25 | 华为技术有限公司 | Communication method and communication device in multi-air-interface connection |
| CN111586711B (en)* | 2019-02-15 | 2022-04-12 | 华为技术有限公司 | Communication method and communication device in multi-air-interface connection |
| CN111787505A (en)* | 2020-07-06 | 2020-10-16 | 北京理工大学 | A modular and reconfigurable wireless network test node system and working method |
| CN112242053A (en)* | 2020-10-16 | 2021-01-19 | 中国飞机强度研究所 | Multi-type test data optimized transmission system and method |
| CN112988198A (en)* | 2021-04-15 | 2021-06-18 | 深圳市共进电子股份有限公司 | mesh equipment multi-machine upgrading method and device and mesh equipment |
| CN112988198B (en)* | 2021-04-15 | 2023-12-08 | 深圳市共进电子股份有限公司 | Multi-machine upgrading method and device for mesh equipment and mesh equipment |
| CN114923527A (en)* | 2022-06-17 | 2022-08-19 | 北京继祥科技发展有限公司 | A metal roof online monitoring and health management system and method |
| Publication number | Publication date |
|---|---|
| CN100596243C (en) | 2010-03-24 |
| Publication | Publication Date | Title |
|---|---|---|
| CN101286907A (en) | Structural strength test system and its visualization method based on intelligent wireless sensor network | |
| CN105427566B (en) | Wind power plant remote real time monitoring system and method based on wireless sensor network | |
| CN102348996B (en) | Aircraft's sensors for locating equipment | |
| Wu et al. | Multi-agent system design and evaluation for collaborative wireless sensor network in large structure health monitoring | |
| US20080228331A1 (en) | System and method for measuring parameters at aircraft loci | |
| CN110138624A (en) | Vehicle-mounted ethernet test equipment, system and test method | |
| CN106100956A (en) | Double radio communication photovoltaic plant long distance control systems of RS485 bus architecture | |
| CN105424169A (en) | Vibration monitoring system based on wireless sensor network | |
| CN101697502A (en) | Method for precisely synchronizing wireless sensor network under coal mine | |
| CN101158616A (en) | Belt sensor array for aircraft aerodynamic parameter test | |
| CN101211498A (en) | Temperature and humidity acquisition communication system for greenhouse based on wireless sensor network | |
| Wu et al. | A wireless sensor network node designed for exploring a structural health monitoringapplication | |
| CN102624758A (en) | A monitoring information aggregation method for power distribution and transformation equipment under smart grid | |
| CN101178837A (en) | A wireless sensor network controller | |
| CN104574897B (en) | A kind of wireless vibration test system and its method for testing vibration | |
| Ou et al. | Wireless sensor information fusion for structural health monitoring | |
| CN104267634A (en) | Wireless synchronous collecting system | |
| CN102095890A (en) | Ultrasonic wave wind speed and wind direction measuring device of wind generating set | |
| CN202565473U (en) | Monitoring system based on wireless sensor network | |
| CN103973793A (en) | Distributed aviation electronic testing system | |
| CN108923878A (en) | Based on the wireless sensor node synchronous with GPS time service of WiFi | |
| Yan et al. | Edge computing based data center monitoring | |
| CN204598329U (en) | Sensor network data gathering-device and system | |
| CN206993423U (en) | An Airborne Wireless Acquisition and Transmission Network System | |
| CN115372717A (en) | A distributed electromagnetic field detection method and device |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20100324 Termination date:20160602 |