






















技术领域technical field
本发明涉及通信技术领域,特别是指多媒体广播/组播业务数据发送的方法、装置、用户面实体和系统。The present invention relates to the technical field of communication, in particular to a method, a device, a user plane entity and a system for transmitting multimedia broadcast/multicast service data.
背景技术Background technique
采用正交频分复用技术(OFDM,Orthogonal Frequency DivisionMultiplexing)的多载波技术来实现多媒体广播/组播业务(MBMS,Multimedia Broadcast/Multicast Service)是长期演进(LTE,Long TimeEvolution)系统中一项重要的业务。实现MBMS时,网络把相同的多媒体数据发送至网络中的多个接收者。当前,用户对移动通信的需求已不再满足于电话和消息业务,随着因特网(Internet)的迅猛发展,大量移动多媒体业务涌现出来。其中一些移动多媒体业务要求多个用户能同时接收相同数据,例如视频点播、电视广播、视频会议、网上教育、互动游戏等。这些移动多媒体业务与一般的数据业务相比,具有数据量大、持续时间长、时延敏感等特点。目前的多媒体数据主要是一些流业务或背景类(Background)业务。Using multi-carrier technology of Orthogonal Frequency Division Multiplexing (OFDM, Orthogonal Frequency Division Multiplexing) to realize Multimedia Broadcast/Multicast Service (MBMS, Multimedia Broadcast/Multicast Service) is an important aspect in the long-term evolution (LTE, Long TimeEvolution) system. Business. When implementing MBMS, the network sends the same multimedia data to multiple recipients in the network. At present, users' requirements for mobile communication are no longer satisfied with telephone and message services. With the rapid development of the Internet (Internet), a large number of mobile multimedia services emerge. Some of these mobile multimedia services require multiple users to receive the same data at the same time, such as video on demand, TV broadcasting, video conferencing, online education, and interactive games. Compared with general data services, these mobile multimedia services have the characteristics of large data volume, long duration, and delay sensitivity. The current multimedia data is mainly some streaming services or background services.
一种实现单独下行广播/组播业务的系统方案充分地利用不对称的频谱资源,并受到运营商的认可。这种实现单独下行广播/组播业务系统的特点是只有下行信道,没有上行信道。这种方案一方面能够充分利用不对称的频频资源,另一方面使网络建设方案大大减少,且能够提供灵活的广播/组播业务。这种网络又称为单频网(SFN,SingleFrequency Network)网络。单频网要求各个基站同步的发送数据,因此如何在网络构架中优化MBMS数据同步方案成为最近研究的热点。A system solution for realizing separate downlink broadcast/multicast services makes full use of asymmetric spectrum resources and is recognized by operators. The characteristic of this system for realizing separate downlink broadcast/multicast services is that there are only downlink channels and no uplink channels. On the one hand, this scheme can make full use of asymmetric frequency resources, on the other hand, it can greatly reduce the network construction scheme, and can provide flexible broadcast/multicast services. This kind of network is also called Single Frequency Network (SFN, Single Frequency Network) network. The single frequency network requires each base station to send data synchronously, so how to optimize the MBMS data synchronization scheme in the network architecture has become a recent research focus.
目前在标准中,MBMS数据同步方案有两类:传输信道级别的内容同步和系统架构演进(SAE,System Architecture Evolution)承载级别的内容同步。其中SAE承载级别的内容同步方案又有两种可选方案:基于MBMS用户面实体(mUPE,MBMS User Plane Entity)执行分割级连的内容同步方案和基于增强广播/组播业务中心(eBM-SC,enhance Broadcast Multicast Service Center)辅助性的内容同步方案。下面是以SAE承载级别的内容同步方案为例说明现有技术在实现发送MBMS数据的过程:Currently in the standard, there are two types of MBMS data synchronization schemes: content synchronization at the transmission channel level and content synchronization at the System Architecture Evolution (SAE, System Architecture Evolution) bearer level. Among them, there are two optional schemes for the content synchronization scheme at the SAE bearer level: the content synchronization scheme based on MBMS User Plane Entity (mUPE, MBMS User Plane Entity) to perform segmentation and cascading, and the scheme based on the enhanced broadcast/multicast service center (eBM-SC , enhance Broadcast Multicast Service Center) auxiliary content synchronization solution. The following uses the content synchronization solution at the SAE bearer level as an example to illustrate the process of sending MBMS data in the prior art:
以SAE承载级别的内容同步中基于mUPE执行分割级连的内容同步方案为例,参见图1,图1所示的是一种基于mUPE分割级连的同步构架方案。在这种方案中,mUPE接收到来自eBM-SC的等间隔、不等大小的数据包A、B、C、D、E、F,如图2a所示。mUPE中有单独的MBMS分段子层(m-sgm,MBMS-Segment)对数据包进行分割级连,分割级连后的数据包进入同步(SYNC)子层后被标记序列号(SN),以及为第一个数据包加时间标识,即Time stamp,该时间标识为第一个数据包在空中接口时间。Take the mUPE-based content synchronization solution for segmented and concatenated content synchronization at the SAE bearer level as an example, see Figure 1. Figure 1 shows a synchronization architecture solution based on mUPE-based segmented and concatenated. In this scheme, mUPE receives data packets A, B, C, D, E, F with equal intervals and different sizes from eBM-SC, as shown in Fig. 2a. There is a separate MBMS segmentation sublayer (m-sgm, MBMS-Segment) in mUPE to segment and concatenate data packets, and the data packets after segmentation and concatenation enter the synchronization (SYNC) sublayer and are marked with sequence numbers (SN), and Add a time stamp to the first data packet, that is, Time stamp, which is the time when the first data packet is on the air interface.
mUPE将数据包发送到各个eNodeB,在eNodeB以及用户面实体mUPE中增加一个单独的SYNC,mUPE中的SYNC对发送的MBMS数据包执行以下操作:1.为每个数据包加SN,2.为所发送的第一个数据帧加时间标识。数据包汇聚层(PDCP,Packet Data ConvergenceProtocol)接收到来自eBM-SC发送的数据包,所接收的数据包如图2a所示,并将这些数据包发送至m-Sgm子层,经过m-sgm子层分割级连后大小相等的数据包,如,A数据包被分割为两个数据包A,B数据包被分割为两个数据包B,数据包C、D、E、F不变。将一个数据包A和一个数据包B级连,另一个数据包B与数据包C级连,数据包D和E级连,数据包F后加冗余比特(Pad)构成与其它级连后数据包相同大小的数据包。mUPE中的SYNC子层将在第一个数据包前加上时间标识,即Time stamp,得到的数据包如图2b所示,mUPE将加上时间标识和SN的数据包发送至各个eNodeB。The mUPE sends data packets to each eNodeB, and adds a separate SYNC in the eNodeB and the user plane entity mUPE. The SYNC in the mUPE performs the following operations on the sent MBMS data packets: 1. Add SN to each data packet, 2. The first data frame sent is time stamped. The data packet convergence layer (PDCP, Packet Data Convergence Protocol) receives the data packets sent from the eBM-SC, and the received data packets are shown in Figure 2a, and sends these data packets to the m-Sgm sublayer, through the m-sgm Packets of equal size after sub-layer segmentation and concatenation, for example, A data packet is divided into two data packets A, B data packet is divided into two data packets B, and data packets C, D, E, and F remain unchanged. A data packet A is cascaded with a data packet B, another data packet B is cascaded with a data packet C, a data packet D is cascaded with E, and a redundant bit (Pad) is added after the data packet F to form a concatenation with other cascades. A packet of the same size as the packet. The SYNC sublayer in mUPE will add a time stamp, that is, Time stamp, before the first data packet. The resulting data packet is shown in Figure 2b. mUPE will send the data packet with time stamp and SN to each eNodeB.
mUPE将带有时间标识和SN的数据包发送到各个增强节点(eNodeB,enhance NodeB)的SYNC子层,所发送的数据包如图2b所示。各个eNodeB根据第一个数据包的时间标识得到该数据包的空中接口发送时间,并得到各个数据包序号SN。各个eNodeB以第一个数据包的空中接口时间同时发送数据包,并根据第一个数据包的时间标识所得到的时间、和根据后续各个数据包的长度所占用的发送时间得到后续数据包在空中接口时间。The mUPE sends the data packet with the time stamp and SN to the SYNC sublayer of each enhanced node (eNodeB, enhance NodeB), and the sent data packet is shown in Figure 2b. Each eNodeB obtains the air interface sending time of the data packet according to the time identifier of the first data packet, and obtains the serial number SN of each data packet. Each eNodeB sends data packets at the same time with the air interface time of the first data packet, and obtains the time of subsequent data packets according to the time stamp of the first data packet and the sending time occupied by the length of each subsequent data packet. Air interface time.
上述的分割级连过程,如果mUPE中的m-sgm子层在进行分割级连时,根据物理层(PHY)的传输块(TB,transfer block)大小来进行分割级连,那么eNodeB中的无线链路控制层(RLC)就不需要再对数据包进行分割级连,对分割级连后的数据帧加上媒体接入控制(MAC)地址封装后下发。In the above split and concatenation process, if the m-sgm sublayer in the mUPE performs split and concatenation according to the size of the physical layer (PHY) transfer block (TB, transfer block), then the radio in the eNodeB The link control layer (RLC) does not need to divide and concatenate the data packets any more, and encapsulates the divided and concatenated data frames with a Media Access Control (MAC) address before sending them out.
采用现有技术实现MBMS数据发送主要存在以下问题:Adopt existing technology to realize MBMS data transmission and mainly have the following problems:
1、各个eNodeB由于根据第一个数据包的时间标识获取发送时间,并以此为时间基准,计算出后面数据包的发送时间,如果eNodeB在SFN网络运行过程中重启或其它原因重新加入SFN网络,由于新加入的eNodeB无法获得第一个带有时间标识的数据包,以致无法计算出后续数据包的发送时间,因此,新加入的eNodeB无法和其它基站保持同步;并且如果第一个到达的数据帧丢失,eNodeB都将因无法获得第一个数据包的发送时间而无法计算出后续数据包的发送时间,各个eNodeB之间发送数据包时将无法同步;1. Each eNodeB obtains the sending time according to the time stamp of the first data packet, and uses this as the time reference to calculate the sending time of the subsequent data packets. If the eNodeB restarts during the operation of the SFN network or rejoins the SFN network for other reasons , because the newly joined eNodeB cannot obtain the first data packet with a time stamp, so that it cannot calculate the sending time of subsequent data packets, therefore, the newly joined eNodeB cannot keep synchronization with other base stations; and if the first arriving eNodeB If the data frame is lost, eNodeB will not be able to calculate the sending time of subsequent data packets because it cannot obtain the sending time of the first data packet, and the sending of data packets between eNodeBs will not be synchronized;
在通常情况下,eNodeB发送MBMS数据在一定时间内的发送速率是恒定的,而业务数据具有突发特性,即业务数据的速率不是恒定的,且由于eNodeB发送MBMS数据的速度大于mUPE向eNodeB发送MBMS数据的速度,因此,长时间低速率的数据可能导致eNodeB无数据可发送的情况,这种现象被称之为空闲间隔现象。空闲间隔的出现会导致各个eNode B再接收到数据包后,无法获取该数据包的发送时间,出现发送数据包时失去同步的现象。Under normal circumstances, the sending rate of MBMS data sent by eNodeB is constant within a certain period of time, while the service data has a burst characteristic, that is, the rate of service data is not constant, and because the speed of eNodeB sending MBMS data is faster than mUPE sending to eNodeB The speed of MBMS data, therefore, long-term low-rate data may cause the eNodeB to have no data to send, and this phenomenon is called the idle interval phenomenon. The occurrence of the idle interval will cause each eNode B to fail to obtain the sending time of the data packet after receiving the data packet, and the phenomenon of losing synchronization when sending the data packet will occur.
2、由于,eNodeB、mUPE、eBM-SC等各个网络实体的传输网络层(TNL)之间在传输上的有时延抖动问题,在eNodeB和mUPE之间、mUPE和eBM-SC之间的两级抖动会导致各个数据包到达eNodeB的时间不相等,各个eNodeB无法同步发送MBMS业务数据。2. Due to the delay and jitter in transmission between the transport network layer (TNL) of each network entity such as eNodeB, mUPE, and eBM-SC, the two levels between eNodeB and mUPE, and between mUPE and eBM-SC The jitter will lead to unequal arrival time of each data packet at the eNodeB, and each eNodeB cannot send MBMS service data synchronously.
发明内容Contents of the invention
本发明实施例在于提供一种多媒体广播/组播数据发送技术,以使各个eNodeB同步发送MBMS业务数据。The embodiment of the present invention provides a multimedia broadcast/multicast data sending technology, so that each eNodeB can send MBMS service data synchronously.
本发明的实施例提供一种多媒体广播/组播业务数据发送的方法,Embodiments of the present invention provide a method for sending multimedia broadcast/multicast service data,
将初始数据包分割级连为预定长度,和,以预定的时间间隔循环加入时间标识的数据包;Segmenting and concatenating the initial data packet into a predetermined length, and cyclically adding time-stamped data packets at predetermined time intervals;
通过所述时间标识获取数据包的空中接口时间,按照所述空中接口时间发送数据包。The air interface time of the data packet is acquired through the time stamp, and the data packet is sent according to the air interface time.
本发明的实施例提供一种多媒体广播/组播业务数据发送的装置,包括:An embodiment of the present invention provides a device for sending multimedia broadcast/multicast service data, including:
接收单元,用于接收来自多媒体广播/组播用户面实体mUPE的数据包,所述数据包为以预定的时间间隔循环加入时间标识的数据包;The receiving unit is configured to receive a data packet from the multimedia broadcast/multicast user plane entity mUPE, where the data packet is a data packet that is cyclically added with a time stamp at a predetermined time interval;
运算单元,用于通过时间标识确定数据包的空中接口时间;an arithmetic unit, configured to determine the air interface time of the data packet through the time stamp;
发送单元,用于按照运算单元确定的的空中接口时间发送数据包。The sending unit is configured to send the data packet according to the air interface time determined by the computing unit.
本发明的实施例提供一种多媒体广播/组播用户面实体,包括:An embodiment of the present invention provides a multimedia broadcast/multicast user plane entity, including:
接收单元,用于接收来自增强广播/组播业务中心的数据包;The receiving unit is used to receive data packets from the enhanced broadcast/multicast service center;
时间标识单元,用于对接收单元所接收的数据包以预定的时间间隔循环加入时间标识;A time stamp unit, configured to cyclically add a time stamp to the data packets received by the receiving unit at predetermined time intervals;
发送单元,用于将时间标识单元加入时间标识后的数据包发送。The sending unit is used for sending the data packet after adding the time stamp unit to the time stamp.
本发明的实施例提供一种多媒体广播/组播业务数据发送的系统,包括mUPE、增强节点eNodeB,An embodiment of the present invention provides a system for sending multimedia broadcast/multicast service data, including mUPE, enhanced node eNodeB,
mUPE,用于将接收到的初始数据包分割级连为预定长度的数据包,并且将分割级连后的数据包以预定的时间间隔循环加入时间标识;mUPE is used to divide and concatenate the received initial data packets into data packets of a predetermined length, and add time stamps to the divided and concatenated data packets cyclically at predetermined time intervals;
eNodeB,用于接收到来自mUPE的数据包后,通过所述时间标识获取数据包的空中接口时间,按照所述空中接口时间发送数据包。The eNodeB is configured to obtain the air interface time of the data packet through the time identifier after receiving the data packet from the mUPE, and send the data packet according to the air interface time.
本发明的实施例提供一种多媒体广播/组播业务数据发送的系统,包括mUPE、eNodeB,An embodiment of the present invention provides a system for sending multimedia broadcast/multicast service data, including mUPE, eNodeB,
mUPE,用于将接收到的初始数据包以预定的时间间隔循环加入时间标识发送至eNodeB;mUPE is used to send the received initial data packet to the eNodeB at a predetermined time interval and cyclically add a time stamp;
eNodeB,用于将接收到的数据包分割级连为预定长度的数据包,并且通过分割级连后的数据包上的时间标识获取数据包的空中接口时间,按照所述空中接口时间发送数据包。The eNodeB is configured to divide and concatenate the received data packets into data packets of a predetermined length, obtain the air interface time of the data packets through the time stamp on the divided and concatenated data packets, and send the data packets according to the air interface time .
本发明的实施例提供一种多媒体广播/组播业务数据发送的系统,包括增强广播/组播业务中心eBM-SC、mUPE、eNodeB,An embodiment of the present invention provides a system for transmitting multimedia broadcast/multicast service data, including an enhanced broadcast/multicast service center eBM-SC, mUPE, eNodeB,
eBM-SC,用于将初始数据包以预定的时间间隔循环加入时间标识发送至mUPE;eBM-SC is used to send the initial data packet to the mUPE at a predetermined time interval and cyclically add a time stamp;
mUPE,用于将接收到的数据包分割级连为预定长度的数据包;mUPE is used to segment and concatenate received data packets into data packets of predetermined length;
eNodeB,用于接收到来自mUPE的数据包后,通过数据包上的时间标识获取数据包的空中接口时间,按照所述空中接口时间发送数据包。The eNodeB is configured to obtain the air interface time of the data packet through the time identifier on the data packet after receiving the data packet from the mUPE, and send the data packet according to the air interface time.
本发明的实施例提供一种多媒体广播/组播业务数据发送的系统,包括eBM-SC,mUPE,eNodeB,An embodiment of the present invention provides a system for sending multimedia broadcast/multicast service data, including eBM-SC, mUPE, eNodeB,
eBM-SC,用于将初始数据包以预定的时间间隔循环加入时间标识发送至mUPE;eBM-SC is used to send the initial data packet to the mUPE at a predetermined time interval and cyclically add a time stamp;
mUPE,用于将所接收到的数据包发送至eNodeB;mUPE, used to send the received data packet to eNodeB;
eNodeB,用于将接收到的数据包分割级连为预定长度的数据包,并且通过所述时间标识获取数据包的空中接口时间,按照所述空中接口时间发送数据包。The eNodeB is configured to divide and concatenate the received data packets into data packets of a predetermined length, obtain the air interface time of the data packets through the time identifier, and send the data packets according to the air interface time.
本发明的实施例提供一种多媒体广播/组播业务数据发送的方法,包括:Embodiments of the present invention provide a method for sending multimedia broadcast/multicast service data, including:
预先确定出现空闲间隔后将要发送的首个数据包,并在该数据包上添加时间标识;Predetermine the first data packet to be sent after an idle interval occurs, and add a timestamp to the data packet;
在发送数据包时,出现所述空闲间隔后,按所述首个数据包上的时间标识发送该首个数据包。When sending a data packet, after the idle interval occurs, the first data packet is sent according to the time stamp on the first data packet.
本发明的实施例提供一种多媒体广播/组播业务数据发送的装置,包括:An embodiment of the present invention provides a device for sending multimedia broadcast/multicast service data, including:
接收单元,用于在空间间隔之后,接收来自多媒体广播/组播用户面实体的首个数据包;该数据包添加有时间标识;The receiving unit is configured to receive the first data packet from the multimedia broadcast/multicast user plane entity after the space interval; the data packet is added with a time stamp;
运算单元,用于通过所述数据包上的时间标识,获取该数据包的空中接口时间;A computing unit, configured to obtain the air interface time of the data packet through the time stamp on the data packet;
发送单元,用于按照运算单元确定的空中接口时间发送数据包。The sending unit is configured to send the data packet according to the air interface time determined by the computing unit.
本发明的实施例提供一种多媒体广播/组播用户面实体,包括:An embodiment of the present invention provides a multimedia broadcast/multicast user plane entity, including:
标识单元,用于根据核心网的数据包发送速度和空中接口的数据包发送速度确定eNodeB在空间间隔后将要发送的首个数据包,并对该数据包加入时间标识;The identification unit is used to determine the first data packet to be sent by the eNodeB after the space interval according to the data packet transmission speed of the core network and the data packet transmission speed of the air interface, and add a time stamp to the data packet;
发送单元,用于将标识单元加入时间标识后的数据包发送给eNodeB。The sending unit is configured to send the data packet to which the identification unit adds the time stamp to the eNodeB.
本发明的实施例提供一种多媒体广播/组播业务数据发送的方法,Embodiments of the present invention provide a method for sending multimedia broadcast/multicast service data,
mUPE接收到eBM-SC发送的MBMS数据包先进行缓存,然后发送给eNodeB。The mUPE buffers the MBMS data packet sent by the eBM-SC after receiving it, and then sends it to the eNodeB.
本发明实施例的方法、装置和系统,通过循环添加的时间标识,在各个eNodeB发送数据包时,如果各个eNodeB出现故障重启或新加入到网络中,通过获取时间标识,可以保证各个eNodeB的同步发送数据包;对于因出现空闲间隔导致发送数据包失去同步的问题,通过数据包的发送速度,预先在出现空闲间隔时所发送的首个数据包添加时间标识,在出现空闲间隔后,发送首个数据包时,按照该数据包上的时间标识发送该数据包,实现发送数据包的同步;对于网络中各个实体之间通过传输网传输数据包时,由于网络时延抖动产生的各个eNodeB无法同步发送数据包的情况,本发明的实施例通过添加缓存器,将接收到的数据包先缓存后再发送,克服了抖动现象,保证各个eNodeB能够同步发送数据包。In the method, device and system of the embodiment of the present invention, through the time stamp added cyclically, when each eNodeB sends a data packet, if each eNodeB fails and restarts or newly joins the network, by obtaining the time stamp, the synchronization of each eNodeB can be guaranteed Sending data packets; for the problem of sending data packets out of synchronization due to the occurrence of idle intervals, through the sending speed of data packets, add a time stamp to the first data packet sent in advance when an idle interval occurs, and send the first packet after an idle interval occurs. When a data packet is transmitted, the data packet is sent according to the time stamp on the data packet to realize the synchronization of sending data packets; when data packets are transmitted between entities in the network through the transmission network, each eNodeB cannot be generated due to network delay jitter In the case of sending data packets synchronously, the embodiment of the present invention buffers the received data packets before sending them by adding a buffer, which overcomes the jitter phenomenon and ensures that each eNodeB can send data packets synchronously.
附图说明Description of drawings
图1是现有技术中基于mUPE分割级连的同步构架方案示意图;FIG. 1 is a schematic diagram of a synchronization architecture scheme based on mUPE split cascading in the prior art;
图2a是现有技术中mUPE所接收到的数据包;Figure 2a is a data packet received by mUPE in the prior art;
图2b是现有技术中经过SYNC层处理后的数据包;Figure 2b is a data packet processed by the SYNC layer in the prior art;
图3是本发明实施例一的基于mUPE分割级连的网络示意图;FIG. 3 is a schematic diagram of a network based on mUPE segmentation and cascading in
图4是本发明实施例一的流程图;Fig. 4 is a flowchart of
图5a本发明是实施例一中eBM-SC所发送的数据包示意图;Fig. 5a of the present invention is a schematic diagram of data packets sent by eBM-SC in
图5b本发明是实施例一中经过分割级连后添加时间标识后的数据包示意图;Fig. 5b of the present invention is a schematic diagram of a data packet after division and cascading and adding a time stamp in
图6是本发明实施例二中基于eNodeB分割级连的网络示意图;FIG. 6 is a schematic diagram of a network based on eNodeB segmentation and cascading in
图7是本发明实施例二的流程图;FIG. 7 is a flowchart of
图8a是本发明实施例二中分割级连过程中出现的数据包示意图;Fig. 8a is a schematic diagram of data packets appearing in the splitting and cascading process in
图8b是本发明实施例二中分割级连过程后的数据包示意图;Fig. 8b is a schematic diagram of data packets after the splitting and cascading process in
图9是本发明实施例三中基于eBM-SC辅助性的内容同步的网络示意图;FIG. 9 is a schematic network diagram of content synchronization based on eBM-SC assistance in
图10是本发明实施例三的流程图;Fig. 10 is a flowchart of
图11是本发明实施例四中基于eBM-SC辅助性的内容同步的网络示意图;FIG. 11 is a schematic network diagram of content synchronization based on eBM-SC assistance in
图12是本发明实施例四的流程图;Fig. 12 is a flowchart of
图13a是本发明实施例五中基于mUPE执行分割级连后发送数据包的示意图;FIG. 13a is a schematic diagram of sending data packets after splitting and cascading based on mUPE in
图13b是本发明实施例五中基于mUPE执行分割级连后出现空闲间隔时发送数据包的示意图;FIG. 13b is a schematic diagram of sending data packets when an idle interval occurs after mUPE-based segmentation and concatenation in
图14a是本发明实施例五中基于eNodeB执行分割级连后发送数据包的示意图;Fig. 14a is a schematic diagram of sending data packets after splitting and concatenating based on eNodeB in
图14b是本发明实施例五中基于eNodeB执行分割级连后出现空闲间隔时发送数据包的示意图;FIG. 14b is a schematic diagram of sending data packets when an idle interval occurs after eNodeB-based splitting and cascading in
图15a是本发明实施例六中基于mUPE执行分割级连丢失数据包的示意图;Fig. 15a is a schematic diagram of segmenting and concatenating lost data packets based on mUPE in Embodiment 6 of the present invention;
图15b是本发明实施例六中基于mUPE执行分割级连发送数据包的示意图;FIG. 15b is a schematic diagram of sending data packets based on mUPE in the sixth embodiment of the present invention;
图16a是本发明实施例六中基于eNodeB执行分割级连丢失数据包的示意图;Fig. 16a is a schematic diagram of splitting and cascading lost data packets based on eNodeB in Embodiment 6 of the present invention;
图16b是本发明实施例六中基于eNodeB执行分割级连发送数据包的示意图;FIG. 16b is a schematic diagram of sending data packets based on eNodeB-based segmentation and concatenation in Embodiment 6 of the present invention;
图17是本发明实施例七的装置示意图;Fig. 17 is a schematic diagram of the device of Embodiment 7 of the present invention;
图18是本发明实施例八的装置示意图;Fig. 18 is a schematic diagram of a device according to Embodiment 8 of the present invention;
图19是本发明实施例九的装置示意图;Fig. 19 is a schematic diagram of a device according to Embodiment 9 of the present invention;
图20是本发明实施例十的装置示意图。Fig. 20 is a schematic diagram of the device of Embodiment 10 of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术策略和优点更加清楚,下面将结合附图对本发明的实施例做进一步的详细描述。In order to make the purpose, technical strategy and advantages of the present invention clearer, the embodiments of the present invention will be further described in detail below in conjunction with the accompanying drawings.
下面结合附图说明实施例一,参见图3,图3是基于mUPE分割级连的增强性同步架构的网络示意图。在该网络架构下,结合图4说明发送MBMS数据的流程。
步骤S401:eBM-SC将各类MBMS的初始数据包发送至mUPE;Step S401: eBM-SC sends initial data packets of various MBMS to mUPE;
所发送的数据包参见图5a。包括A至F共6个数据包。The data packets sent are shown in Figure 5a. Including A to F a total of 6 data packets.
步骤S402:mUPE将所接收到的数据包缓存;Step S402: mUPE buffers the received data packets;
在mUPE中,可以设置有内容缓存器(Content buffer),用于缓存mUPE所接收到的初始数据包,为后续的分割级连做准备,并克服mUPE与eBM-SC之间经过传输网的时延抖动。In the mUPE, a content buffer (Content buffer) can be set to buffer the initial data packet received by the mUPE, prepare for the subsequent split cascading, and overcome the time delay between the mUPE and eBM-SC through the transmission network. delay jitter.
步骤S403:m-Sgm子层将缓存后的初始数据包进行分割级连;Step S403: the m-Sgm sublayer divides and concatenates the cached initial data packets;
m-Sgm在分割级连的过程中,依据高层的配置参数,将缓存后的初始数据包分割级连为预定长度的数据包。In the process of splitting and concatenating, the m-Sgm divides and concatenates the cached initial data packets into data packets of predetermined length according to the configuration parameters of the upper layers.
步骤S404:SYNC子层将数据包前加上时间标识和SN;Step S404: the SYNC sublayer adds a time stamp and SN before the data packet;
SYNC子层以预定的时间间隔循环在分割级连后的数据包前添加时间标识。其中,可以通过高层的配置参数、系统的性能来设定时间间隔,时间间隔可以是任意整数个数据包的发送时间,如果设定为1个数据包的发送时间,则在每个数据包前添加一个时间标识。这时,各个eNodeB无论何时接收到数据包,都能够取得发送的同步。但是,这样会造成系统负担过重。因此,通常会设大于1个数据包的发送的时间。The SYNC sublayer cyclically adds time stamps before splitting and cascading data packets at predetermined time intervals. Among them, the time interval can be set through high-level configuration parameters and system performance. The time interval can be the sending time of any integer number of data packets. If it is set as the sending time of 1 data packet, the time interval before each data packet Add a timestamp. At this time, whenever each eNodeB receives a data packet, it can synchronize transmission. However, this can overload the system. Therefore, the sending time of more than one data packet is usually set.
此时间标识可以是物理层(PHY)帧号、或子帧号、或空中接口时间、或所发送数据包序列中第一个数据包的空中接口时间。This timestamp may be a physical layer (PHY) frame number, or a subframe number, or an air interface time, or the air interface time of the first packet in a sequence of transmitted packets.
该步骤执行完成后的数据包参见图5b。A数据包被分割为两个数据包1,B数据包被分割为两个数据包2;数据包C、D、E、F不变,将一个数据包A和一个数据包B级连,另一个数据包B与数据包C级连,数据包D和E级连,数据包F后加冗余比特(Pad)构成与其它级连后数据包相同大小的数据包。在最后的数据包F上添加结束标识(E,End),表示该数据包是此次业务数据中最后一个数据包。The data packet after this step is executed is shown in Fig. 5b. The A data packet is divided into two
步骤S405:mUPE将处理后的数据包发送至各个eNodeB;Step S405: mUPE sends the processed data packet to each eNodeB;
步骤S406:eNodeB将所接收到的数据包发送至用户终端UE;Step S406: the eNodeB sends the received data packet to the user terminal UE;
eNodeB中可以设置有抖动缓存器(Jitter buffer),用于将所接收到数据包缓存,克服eNodeB与mUPE之间传输过程中所带来的时延抖动。较优的,抖动缓存器的容量小于内容缓存器,eNodeB将经过缓存后的数据包按时间标识的时间发送。当时间标识是物理层帧号或子帧号时,通过物理层帧号、或子帧号计算得到相应的空中接口时间。例如:如果第一个数据包的物理层帧号为1,eNodeB的传输速度为300bps,物理层一帧如果为1s,那么一帧能传输的比特数为150kb,如果第一个包长为600kb,即占了4帧,那么第二个数据包所加的物理层帧号就应该为5。通过物理层的帧号就可得到相应在空中接口的发送时间,由于物理层帧号与子帧号存在对应关系,因此,采用子帧号时,计算过程是相同的。当时间标识是所发送数据包序列中第一个数据包的空中接口时间时,将第一个数据包的空中接口时间、和之前已经发送的数据包长度所占用的发送时间相加,得到该数据包的空中接口时间。例如,第一个数据包的发送时间为T,通过当前发送数据包的SN号,计算出已经发送的数据包个数,再通过每个数据包的发送时间得到总共已经发送数据包的发送时间,从而得到当前所发送的数据包的发送时间。A jitter buffer (Jitter buffer) may be set in the eNodeB for buffering received data packets to overcome delay jitter during transmission between the eNodeB and the mUPE. Preferably, the capacity of the jitter buffer is smaller than that of the content buffer, and the eNodeB sends the buffered data packets according to the time marked by the time. When the time identifier is a physical layer frame number or a subframe number, the corresponding air interface time is obtained by calculating the physical layer frame number or subframe number. For example: if the physical layer frame number of the first data packet is 1, the transmission speed of eNodeB is 300bps, if the physical layer frame is 1s, then the number of bits that can be transmitted in one frame is 150kb, if the first packet length is 600kb , which occupies 4 frames, then the physical layer frame number added to the second data packet should be 5. The corresponding transmission time on the air interface can be obtained through the frame number of the physical layer. Since there is a corresponding relationship between the frame number of the physical layer and the subframe number, the calculation process is the same when the subframe number is used. When the time stamp is the air interface time of the first data packet in the sent data packet sequence, add the air interface time of the first data packet and the sending time occupied by the previously sent data packet length to obtain the The air interface time of the packet. For example, the sending time of the first data packet is T, the number of data packets that have been sent is calculated by the SN number of the currently sent data packet, and then the sending time of the total sent data packets is obtained by the sending time of each data packet , so as to obtain the sending time of the currently sent data packet.
通过数据包上的时间标识能够得到该数据包的空中接口时间,通过后续数据包长度所占的发送时间能够得到后续没有时间标识的数据包空中接口时间。按照空中接口时间将数据包发送至各个用户设备(UE,UserEquipment)。The air interface time of the data packet can be obtained through the time stamp on the data packet, and the air interface time of the subsequent data packet without the time stamp can be obtained through the sending time occupied by the length of the subsequent data packet. The data packet is sent to each user equipment (UE, UserEquipment) according to the air interface time.
对于基于mUPE分割级连的发送MBMS数据包的方案不止实施例一的这一种情况,还可以将分割级连的过程由eNodeB中的RLC来执行,如图6和图7所示,下面通过实施例二来说明。参见图7,The solution for sending MBMS data packets based on mUPE segmented concatenation is not limited to the case of
步骤S701:eBM-SC将各类MBMS的初始数据包发送至mUPE;Step S701: eBM-SC sends initial data packets of various MBMS to mUPE;
步骤S702:mUPE将接收到的初始数据包添加时间标识和SN后转发至eNodeB;其中,对该数据包加的时间标识可以为该数据包在空中接口的发送时间,也可以为物理层的发送帧号,也可以为子帧号,还可以为该数据包所在序列的第一个数据包的空口时间。Step S702: mUPE forwards the received initial data packet to the eNodeB after adding a time stamp and SN; wherein, the time stamp added to the data packet can be the sending time of the data packet on the air interface, or the sending time of the physical layer The frame number can also be the subframe number, and can also be the air interface time of the first data packet in the sequence where the data packet is located.
在mUPE中可以设置有抖动缓存器,用于克服数据包经过传输网络传输后的时延抖动。mUPE中的SYNC子层将以预定的时间间隔循环在数据包中添加时间标识后转发至各个eNodeB。其中,预定的时间间隔是依据高层的配置参数进行设置。A jitter buffer can be set in the mUPE to overcome the delay jitter after the data packets are transmitted through the transmission network. The SYNC sublayer in the mUPE will cyclically add a time stamp in the data packet at a predetermined time interval and forward it to each eNodeB. Wherein, the predetermined time interval is set according to configuration parameters of a high layer.
步骤S703:eNodeB将所接收到的数据包进行分割级连;Step S703: the eNodeB divides and concatenates the received data packets;
在eNodeB中可以设置有内容缓存器,用于将数据包缓存以克服数据包经过传输后的时延抖动,并为RLC进行分割级连做好准备。RLC依据高层的配置参数,将缓存后的数据包分割级连为预定长度的数据包。也可以不设置内容缓存器,而是将eNodeB中RLC的内部缓存器作改动,使其具有缓存分割级连前的数据、以及克服抖动、保证数据同步的功能。A content buffer may be set in the eNodeB for buffering the data packets to overcome the delay jitter after the data packets are transmitted, and prepare for the split and cascaded connection of the RLC. The RLC divides and concatenates the buffered data packets into data packets of a predetermined length according to the configuration parameters of the high layer. It is also possible not to set a content buffer, but to modify the internal buffer of the RLC in the eNodeB, so that it has the functions of caching data before division and cascading, overcoming jitter, and ensuring data synchronization.
在分割级连的过程中,由于所接收到的数据包已经加入时间标识,因此可能会出现级连后的两个数据包之间包含有时间标识的情形,例如,如图8a所示,在数据包2和数据包3级连后,将原先数据包3前的时间标识级连在一起。则此时将带有时间标识的数据包3分割级连为一个新的数据包,将数据包2加入冗余比特(Pad)作为一个数据包。如图8b所示。In the process of splitting and concatenating, since the received data packets have been added with time stamps, there may be a situation where time stamps are included between the two data packets after concatenation, for example, as shown in Figure 8a, in After the
步骤S704:eNodeB将分割级连后的数据包按照时间标识发送至各个UE。Step S704: the eNodeB sends the divided and concatenated data packets to each UE according to the time stamp.
对于上述实施例一和实施例二的数据包发送过程,能够保证与mUPE相连接各个eNodeB同步发送MBMS数据包。For the data packet sending process of the first and second embodiments above, it can be ensured that each eNodeB connected to the mUPE sends MBMS data packets synchronously.
对于eBM-SC辅助性的内容同步方案,其实现过程与实施例一和二也是相类似的,但是eBM-SC中存在有SYNC子层,并且SYNC子层对所发送数据包以预定的时间间隔加入时间标识,保证与eBM-SC相连接的各个mUPE能够同步下发MBMS数据包,对于这种发送方式,下面给出相应的实施例三和实施例四,并结合附图详细说明这两个实施例。For the eBM-SC assisted content synchronization solution, its implementation process is similar to that of
首先描述实施例三,参见图9,在此实施例中,数据包的发送过程基于mUPE执行分割级连操作。下面说明MBMS数据包的发送过程,参见图10,Firstly, the third embodiment is described, referring to FIG. 9 , in this embodiment, the sending process of the data packet is based on mUPE to perform division and concatenation operations. The following describes the sending process of the MBMS data packet, see Figure 10,
步骤S1001:eBM-SC将各类MBMS业务的初始数据包加入时间标识后发送至mUPE;Step S1001: eBM-SC sends the initial data packets of various MBMS services to mUPE after adding time stamps;
eBM-SC以预定的时间间隔循环在数据包上添加时间标识和SN后,发送至mUPE。其中,预定的时间间隔是依据高层的配置参数进行设置。The eBM-SC cyclically adds the time stamp and SN to the data packet at a predetermined time interval, and then sends it to the mUPE. Wherein, the predetermined time interval is set according to configuration parameters of a high layer.
步骤S1002:mUPE将所接收到的数据包缓存;Step S1002: mUPE caches the received data packets;
在mUPE中,可以设置有内容缓存器(Content buffer),用于缓存mUPE所接收到的数据包,为后续的分割级连做准备,并克服mUPE与eBM-SC之间经过传输网的时延抖动。In the mUPE, a content buffer (Content buffer) can be set to buffer the data packets received by the mUPE, prepare for the subsequent split cascading, and overcome the delay between the mUPE and the eBM-SC through the transmission network shake.
步骤S1003:m-Sgm子层将缓存后的数据包进行分割级连;Step S1003: the m-Sgm sublayer divides and concatenates the buffered data packets;
在进行分割级连时,依据高层的配置参数,将缓存后的数据包分割级连为预定长度的数据包。When splitting and concatenating, the cached data packets are split and concatenated into data packets of a predetermined length according to the configuration parameters of the upper layers.
m-Sgm将已经加入时间标识的数据包进行分割级连,由于所接收到的数据包已经加入时间标识,在分割级连的过程中,如果级连后的两个数据包之间包含有时间标识,则将级连前带有时间标识的数据包取出做为一个新的分割级连包,将级连前没有时间标识的数据包添加冗余比特(Pad)构成一个新的与其它分割级连包等大小的包。m-Sgm splits and concatenates the data packets that have been added with time stamps. Since the received data packets have been added with time stamps, during the process of splitting and concatenating, if there is a time stamp between the two concatenated data packets mark, then take out the data packet with the time stamp before the concatenation as a new split cascading packet, add redundant bits (Pad) to the data packet without the time stamp before the concatenation to form a new split level Even bags of equal size.
步骤S1004:mUPE将处理后的数据包发送至各个eNodeB;Step S1004: mUPE sends the processed data packet to each eNodeB;
步骤S1005:eNodeB将所接收到的数据包发送至UE;Step S1005: eNodeB sends the received data packet to UE;
eNodeB中可以设置有抖动缓存器(Jitter buffer)用于将所接收到数据包缓存,克服eNodeB与mUPE之间传输过程中所带来的时延抖动。抖动缓存器的容量最好小于内容缓存器。也可以不设置抖动缓存器,而是将eNodeB中RLC的内部缓存器作改动,使其具有克服抖动和保证数据同步的功能。A jitter buffer (Jitter buffer) may be set in the eNodeB for buffering received data packets to overcome delay jitter caused during transmission between the eNodeB and the mUPE. The size of the jitter buffer is preferably smaller than that of the content buffer. It is also possible not to set a jitter buffer, but to modify the internal buffer of the RLC in the eNodeB so that it has the function of overcoming jitter and ensuring data synchronization.
eNodeB将经过缓存后的数据包按时间标识的时间发送。按照空中接口的发送时间发送至各个UE。The eNodeB sends the cached data packet according to the time marked by the time. It is sent to each UE according to the sending time of the air interface.
对于基于eBM-SC辅助性的内容同步方案,在发送MBMS数据包时,也可以基于eNodeB中RLC执行数据包的分割级连,下面给出实施例四详细说明。网络的示意图参见图11,具体流程参见图12:For the eBM-SC-assisted content synchronization solution, when sending MBMS data packets, data packet segmentation and concatenation may also be performed based on RLC in the eNodeB. The fourth embodiment is described in detail below. See Figure 11 for the schematic diagram of the network, and Figure 12 for the specific process:
步骤S1201:eBM-SC将各类MBMS业务的初始数据包加入时间标识后发送至mUPE;Step S1201: The eBM-SC sends the initial data packets of various MBMS services to the mUPE after adding the time stamp;
eBM-SC以预定的时间间隔循环在数据包上添加时间标识和SN后,发送至mUPE。其中,预定的时间间隔是依据高层的配置参数进行设置。The eBM-SC cyclically adds the time stamp and SN to the data packet at a predetermined time interval, and then sends it to the mUPE. Wherein, the predetermined time interval is set according to configuration parameters of a high layer.
步骤S1202:mUPE将接收到的数据包转发至各个eNodeB;Step S1202: mUPE forwards the received data packet to each eNodeB;
在mUPE的SYNC子层中可以设置有抖动缓存器,用于克服数据包经过传输网络传输后的时延抖动。A jitter buffer may be set in the SYNC sublayer of the mUPE to overcome the delay jitter after the data packets are transmitted through the transmission network.
步骤S1203:eNodeB将所接收到的数据包进行分割级连;Step S1203: the eNodeB divides and concatenates the received data packets;
在进行分割级连时,依据高层的配置参数,将缓存后的数据包分割级连为预定长度的数据包。When splitting and concatenating, the cached data packets are split and concatenated into data packets of a predetermined length according to the configuration parameters of the upper layer.
在eNodeB中可以设置有内容缓存器,用于将数据包缓存以克服数据包经过网络传输后的时延抖动,并为RLC进行分割级连做好准备。RLC将缓存后的数据包进行分割级连。由于分割级连过程中的数据包已经有数据标识,因此,分割级连的过程与实施例二中步骤S703的过程相同,在此不再重复。A content buffer can be set in the eNodeB, which is used to buffer the data packets to overcome the delay jitter after the data packets are transmitted through the network, and prepare for the split and cascaded connection of the RLC. The RLC divides and concatenates the cached data packets. Since the data packets in the process of splitting and concatenating already have data identifiers, the process of splitting and concatenating is the same as the process of step S703 in
步骤S1204:eNodeB将分割级连后的数据包按照时间标识同步发送至各个UE。Step S1204: the eNodeB synchronously sends the divided and concatenated data packets to each UE according to the time stamp.
在上述四个实施例中,无论由哪个实体执行分割级连操作,在执行分割级连的过程中,都是将数据包以物理层的TB块的大小分割级连成大小、间隔相等的数据包,eNodeB按照所添加的时间标识同步在相应的空中接口时间发送。In the above four embodiments, no matter which entity performs the division and concatenation operation, in the process of performing the division and concatenation, the data packet is divided and concatenated into data of equal size and interval by the size of the TB block of the physical layer The eNodeB sends the packet at the corresponding air interface time synchronously according to the added time identifier.
在上述四个实施例中,都采用了在mUPE和eNodeB中都设置缓存器(内容缓存器或抖动缓存器)的方法来克服数据包经过网络传输后的时延抖动。实际上,也可以只在mUPE或者eNodeB中设置内容缓存器或抖动缓存器,也可以在很大程度上克服数据包经过网络传输后的时延抖动。当然,缓存器不必一定要设置在SYNC子层,也可设置在mUPE或eNodeB中的其它位置。另外,上述四个实施例都是对循环加入了时间标识的数据包进行缓存,也可以对现有技术下的数据包进行缓存,也就是说,所缓存的数据包中,仅仅第一个数据包加入了时间标识,还可以对其他标记方式的数据包进行缓存,以克服数据包经过网络传输后的时延抖动。In the above four embodiments, the method of setting buffers (content buffers or jitter buffers) in both the mUPE and the eNodeB is adopted to overcome the delay jitter after the data packets are transmitted through the network. In fact, it is also possible to only set a content buffer or a jitter buffer in the mUPE or eNodeB, and also overcome the delay jitter after the data packets are transmitted through the network to a large extent. Of course, the buffer does not have to be set in the SYNC sublayer, and can also be set in other positions in the mUPE or eNodeB. In addition, the above-mentioned four embodiments all cache the data packets with time stamps added in a loop, and can also cache the data packets in the prior art, that is to say, among the cached data packets, only the first data The time stamp is added to the packet, and other marked data packets can also be cached to overcome the delay jitter after the data packet is transmitted through the network.
在通常情况下,eNodeB配置物理层发送MBMS数据在一定时间内的发送速率是恒定的,如:2s的周期中,发送速率是300KBps,而业务数据具有突发特性,即业务数据的速率不是恒定的,长时间低速率的数据可能导致eNodeB无数据可发送的情况,这种现象被称之为空闲间隔现象。空闲间隔的出现会导致各个eNodeB发送数据包出现失去同步步现象,通过实施例来详细说明解决过程。Under normal circumstances, eNodeB configures the physical layer to send MBMS data at a constant sending rate within a certain period of time, for example: in a 2s period, the sending rate is 300KBps, and the service data has a burst characteristic, that is, the service data rate is not constant Yes, long-term low-rate data may cause the eNodeB to have no data to send. This phenomenon is called the idle interval phenomenon. Occurrence of idle intervals will cause each eNodeB to send data packets out of synchronization, and the solution process will be described in detail through an embodiment.
基于mUPE或eNodeB执行分割级连时,如果添加时间标识的间隔大于1个数据包的发送时间,发生空闲间隔现象后,则会导致各个eNodeB发送数据包时出现失去同步的现象。本实施例五详细说明解决过程。When performing split cascading based on mUPE or eNodeB, if the interval of adding time stamps is greater than the sending time of one data packet, after the phenomenon of idle interval occurs, each eNodeB will lose synchronization when sending data packets. The fifth embodiment describes the solution process in detail.
参见图13a,mUPE将数据包分割级连后,并添加上时间标识,发送至eNodeB,由eNodeB发送至UE。eNodeB在发送过程中,由于eNodeB的发送速度较快,在发送完SN等于1的数据包时,eNodeB的缓存中出现无数据发送的现象,一段空闲间隔后,SN为2的数据包到达eNodeB后,由于空闲间隔导致各eNodeB无法计算SN为2的发送时间。Referring to Fig. 13a, the mUPE divides and concatenates the data packets, adds a time stamp, and sends them to the eNodeB, and then the eNodeB sends them to the UE. During the sending process of the eNodeB, due to the fast sending speed of the eNodeB, when the data packet with SN equal to 1 is sent, there is no data sending phenomenon in the cache of eNodeB. After a period of idle interval, the data packet with SN of 2 arrives at the eNodeB , each eNodeB cannot calculate the sending time when SN is 2 due to the idle interval.
解决方法为:,mUPE或eBM-SC在添加时间标识时,根据核心网的数据包的发送速度和空中接口的数据包发送速度,来获取空闲间隔的时间值以及确定出现空闲间隔后eNodeB将会发送的首个数据包,并在该数据包上添加时间标识。其中核心网的数据包的发送速度是指核心网中的设备自身发送数据包的速度,如mUPE或eBM-SC发送数据包的速度,空中接口的数据包发送速度是指eNodeB的数据包发送速度。在该实施例中,如图13b所示,确定出空闲间隔后将发送SN等于2的数据包,并计算出在SN等于2的数据包和SN等于1的数据包的空闲间隔的值,然后根据空闲间隔的值、SN为1的数据包发送时间和长度计算出SN为2的数据包的发送时间。其中,计算过程为:如果第一个包长为150kb,物理层一帧为1s,假设SN等于1的数据包打的时间标识为T,mUPE发送数据给eNodeB的速度为150kbps,eNodeB发送数据包的速度为300kbps,由于mUPE发送数据包的速度小于eNodeB会导致空闲间隔,在第一秒内到达了一个150kb的数据包,物理层发送了150kb,而由于物理层的发送速度为300kbps,所以到SN=2的数据包到来之前空闲间隔为0.5s,所以SN为2的数据包的发送时间为T的时间长度加上0.5秒。因此,eNodeB收到SN等于2的数据包数据包时,eNodeB根据该包的时间标识来同步发送数据。The solution is: when mUPE or eBM-SC adds the time stamp, according to the sending speed of the data packets of the core network and the data packet sending speed of the air interface, obtain the time value of the idle interval and determine that the eNodeB will The first data packet sent, and add a timestamp to the data packet. The data packet sending speed of the core network refers to the speed at which the devices in the core network send data packets themselves, such as the speed at which mUPE or eBM-SC send data packets, and the data packet sending speed of the air interface refers to the data packet sending speed of the eNodeB . In this embodiment, as shown in Figure 13b, after the idle interval is determined, the data packet with SN equal to 2 will be sent, and the value of the idle interval between the data packet with SN equal to 2 and the data packet with SN equal to 1 is calculated, and then Calculate the sending time of the data packet whose SN is 2 according to the value of the idle interval, the sending time and the length of the data packet whose SN is 1. Among them, the calculation process is: if the length of the first packet is 150kb, and the physical layer frame is 1s, assuming that the time mark of the data packet with SN equal to 1 is T, the speed at which mUPE sends data to eNodeB is 150kbps, and eNodeB sends the data packet The speed of the mUPE is 300kbps, because the speed of the mUPE sending data packets is lower than that of the eNodeB will cause an idle interval, a 150kb data packet arrives in the first second, the physical layer sends 150kb, and because the sending speed of the physical layer is 300kbps, so to The idle interval before the arrival of the data packet with SN=2 is 0.5s, so the sending time of the data packet with SN=2 is the time length of T plus 0.5 seconds. Therefore, when the eNodeB receives the data packet whose SN is equal to 2, the eNodeB synchronously sends the data according to the time stamp of the packet.
上述所描述的情况是基于mUPE执行分割级连时出现空闲间隔的处理过程。对于eNodeB进行分割级连的情形,克服因出现空闲间隔而产生失去同步的现象的原理是相同的。下面进行具体描述。The situation described above is based on the processing process of idle intervals when the mUPE performs split cascading. For the situation where the eNodeBs are split and cascaded, the principle of overcoming the phenomenon of out-of-synchronization due to idle intervals is the same. A detailed description is given below.
eNodeB发送的数据包示意图参见图14a,eNodeB将数据包分割级连后发送。由于eNodeB的发送速度较快,在发送完SN等于1的数据包时,eNodeB的缓存中出现无数据发送的现象,一段空闲间隔后,SN为2的数据包到达eNodeB后,各个eNodeB无法获取SN为2的发送时间。因此,mUPE或eBM-SC在添加时间标识时,根据自身的数据包的发送速度和eNodeB的发送速度,来获取出现空闲间隔后eNodeB将会发送的首个数据包,并在该数据包上添加时间标识。在该实施例中,参见图14b,mUPE或eBM-SC计算出在SN等于2的数据包和SN等于1的数据包的空闲间隔,并根据SN为1的数据包的发送时间和数据包长度计算出SN为2的数据包的发送时间。在SN等于2的数据包上添加时间标识,各个eNodeB收到SN等于2的数据包数据包时,各个eNodeB根据该SN等于2的数据包的时间标识来同步发送数据。Refer to Figure 14a for a schematic diagram of a data packet sent by the eNodeB. The eNodeB divides and concatenates the data packet before sending it. Due to the fast sending speed of the eNodeB, when the data packet with SN equal to 1 is sent, there is no data transmission phenomenon in the eNodeB cache. After a period of idle interval, after the data packet with SN of 2 arrives at the eNodeB, each eNodeB cannot obtain the SN The sending time is 2. Therefore, when mUPE or eBM-SC adds the time stamp, according to the sending speed of its own data packets and the sending speed of eNodeB, it obtains the first data packet that will be sent by eNodeB after the idle interval occurs, and adds time stamp. In this embodiment, referring to Figure 14b, mUPE or eBM-SC calculates the idle interval between packets with SN equal to 2 and packets with SN equal to 1, and according to the sending time and packet length of packets with SN equal to 1 Calculate the sending time of the data packet whose SN is 2. A time stamp is added to the data packet with SN equal to 2. When each eNodeB receives the data packet with SN equal to 2, each eNodeB synchronously sends data according to the time stamp of the data packet with SN equal to 2.
因此,无论添加时间标识的执行者是mUPE还是eBM-SC,都是根据与其相连接的广播/组播控制实体(MCE)来获取eNodeB的发送速度,通过自身的发送速度和eNodeB的速度,预先得到出现空闲间隔时eNodeB所要发送的数据包,并预先在该数据包上添加时间标识,如上述基于mUPE和基于eNodeB执行分割级连的两种情形,在添加时间标识时,均是将SN等于2的数据包添加时间标识,以调整所发送数据包的同步。对于上述实施例中,为克服空闲间隔而加入的时间标识的方法,可以在任何数据包的发送方法中得到应用,无论是基于循环加入时间标识并按时间标识发送数据包的发送方法还是基于现有技术中所提到的发送方法,均可通过上述实施例中加入时间标识的方法来克服出现空闲间隔后、无法同步发送数据包的问题。Therefore, regardless of whether the executor who adds the time stamp is mUPE or eBM-SC, the transmission speed of eNodeB is obtained according to the broadcast/multicast control entity (MCE) connected to it, and the transmission speed of eNodeB is obtained in advance through its own transmission speed and the speed of eNodeB. Obtain the data packet to be sent by the eNodeB when there is an idle interval, and add a time stamp on the data packet in advance, such as the above-mentioned two situations based on mUPE and eNodeB-based split concatenation, when adding the time stamp, SN is equal to 2 data packets to add time stamps to adjust the synchronization of the transmitted data packets. For the above-mentioned embodiment, the method of adding the time stamp to overcome the idle interval can be applied in any data packet sending method, whether it is based on the sending method of adding the time stamp and sending the data packet according to the time stamp or based on the current The sending methods mentioned in the prior art can overcome the problem of not being able to send data packets synchronously after an idle interval occurs by adding a time stamp in the above embodiments.
对基于mUPE或eNodeB执行分割级连后,将数据发送过程中,可能会出现丢失数据包的现象,对于这种情况,通过实施例六详细描述解决的过程。After splitting and concatenating the mUPE or eNodeB, data packets may be lost during the data transmission process. For this situation, the sixth embodiment describes the solution in detail.
以mUPE执行分割级连为例,参见图15a,在mUPE在执行分割级连后,如果在SN等于4的位置出出现了丢包,则eNodeB发送数据包时,在SN等于4的位置处不发送任何数据,如图15b所示。Take mUPE as an example to perform split concatenation, see Figure 15a. After mUPE executes split concatenation, if packet loss occurs at the position where SN is equal to 4, when the eNodeB sends a data packet, there is no error at the position where SN is equal to 4. Send any data as shown in Figure 15b.
eNodeB执行分割级连为例,参见图16a,eNodeB在执行分割级连后,如果在SN等于4的位置出出现了丢包,则eNodeB在发送数据包的过程中,在丢失数据包的位置处,不发送任何数据。如图16b所示,在SN等于4的位置处不发送任何数据。The eNodeB performs split cascading as an example. See Figure 16a. After the eNodeB executes split cascading, if packet loss occurs at the position where SN is equal to 4, the , no data is sent. As shown in Figure 16b, no data is sent at the position where SN is equal to 4.
本发明还提供一种多媒体广播/组播业务数据发送的装置,下面给出实施例七,详细说明本发明的装置,参见图17,在实施例七中,该装置包括:接收单元1701、运算单元1702、发送单元1703。The present invention also provides a device for transmitting multimedia broadcast/multicast service data. Embodiment 7 is given below to describe the device of the present invention in detail. Referring to FIG. 17 , in Embodiment 7, the device includes: receiving
接收单元1701,用于接收来自多媒体广播/组播用户面实体mUPE的数据包,所述数据包为以预定的时间间隔循环加入时间标识数据包;The receiving
运算单元1702,用于通过时间标识确定数据包的空中接口时间,并将该空中接口时间通知发送单元1703;The
发送单元1703,用于将接收单元1701中数据包上的时间标识通过运算单元1702进行处理,并接收运算单元1702的通知,按照运算单元1702确定的的空中接口时间发送数据包。The sending
在该实施例中,还可包括分割级连调整单元1704,与所述接收单元1701相连,用于将接收到的数据包进行分割级连后,再由接收单元1701发送至发送单元1703;In this embodiment, a division and cascading
在分割级连过程中,当在一个数据包级连另一个带有时间标识的数据包时,将所述带有时间标识的数据包分割级连为一个新的数据包,将没有时间标识的数据包添加冗余比特级连成一个新的数据包。In the process of dividing and concatenating, when a data packet is concatenated with another data packet with a time stamp, the data packet with the time stamp is divided and concatenated into a new data packet, and the data packet without the time stamp will be Packets are added with redundant bits level concatenated into a new packet.
在该实施例中,也可以由分割级连单元1704将处理后的数据包直接发送给运算单元1702,再由运算单元1702处理后由发送单元1703发送。In this embodiment, the segmented and concatenated
在该实施例中,时间标识可以为物理层帧号,可以为子帧号,可以为空中接口时间,还可以为所发送数据包序列中第一个数据包的空中接口时间。In this embodiment, the time identifier may be a physical layer frame number, a subframe number, an air interface time, or an air interface time of the first data packet in the sent data packet sequence.
在该实施例中,运算单元1702,用于通过物理层帧号、或子帧号计算获得空中接口时间、或直接获得空中接口时间、或通过第一个数据包的空中接口时间计算获得空中接口时间。In this embodiment, the
在该实施例中,还可以包括缓存器1705,放置于接收单元1701中,用于缓存接收单元1701所接收到的数据包;缓存器1705也可以位于接收单元之外。In this embodiment, a
该装置可以应用到各个网络中的基站系统当中,如在3G系统中的NodeB,LTE系统中的eNodeB等等。The device can be applied to base station systems in various networks, such as NodeB in a 3G system, eNodeB in an LTE system, and the like.
上述实施例中的装置是实现发送数据包的一种实现形式。当然,还可以在mUPE中实现对数据包添加时间标识,并在添加时间标识后,再发送至eNodeB。The apparatus in the foregoing embodiments is an implementation form for sending data packets. Of course, it is also possible to add a time stamp to the data packet in the mUPE, and after adding the time stamp, send it to the eNodeB.
下面通过实施例八说明本发明中的一种mUPE的组成,参见图18,该mUPE包括:接收单元1801、时间标识单元1802、发送单元1803,The following describes the composition of a mUPE in the present invention through Embodiment 8. Referring to FIG. 18, the mUPE includes: a receiving
接收单元1801,用于接收来自增强广播/组播业务中心eBM-SC的数据包;The receiving
时间标识单元1802,用于对接收单元1801所接收的数据包以预定的时间间隔循环加入时间标识;A
发送单元1803,用于将时间标识单元1802加入时间标识后的数据包发送。The sending
在该实施八例中,mUPE将加入时间标识的数据包发送至各个eNodeB。In the eighth embodiment, the mUPE sends the data packet with the time stamp added to each eNodeB.
在该实施例八中,mUPE还可以添加分割级连单元1804,用于将接收单元1801接收到的初始数据包分割级连为预定长度的数据包后,再由时间标识单元1802添加时间标识。In the eighth embodiment, the mUPE can also add a segmentation and
在该实施例八中,接收单元1801中还可以添加缓存器1805,用于在接收单元1801接收到数据包之后、时间标识单元1802对数据包循环加入时间标识之前,将所接收到的数据包进行缓存;缓存器1805也可以位于接收单元1801之外。In the eighth embodiment, a
在该实施例中,时间标识为物理层帧号、或子帧号、或空中接口时间、或所发送数据包序列中第一个数据包的空中接口时间。In this embodiment, the time identifier is the physical layer frame number, or the subframe number, or the air interface time, or the air interface time of the first data packet in the sent data packet sequence.
对于上述各个实施例中的装置,都是采用循环加入时间标识的方法来解决数据包在发送过程中出现的失去同步的问题。对于出现空闲间隔现象时所出现失去同步的问题,本发明提供一种多媒体广播/组播业务数据发送的装置,下面通过实施例九说明,参见图19,该装置包括:For the devices in each of the above embodiments, the method of cyclically adding time stamps is adopted to solve the problem of out-of-synchronization during the sending of data packets. For the problem of out-of-synchronization when there is an idle interval phenomenon, the present invention provides a device for transmitting multimedia broadcast/multicast service data, which will be described through Embodiment 9 below, referring to FIG. 19 , the device includes:
接收单元1901,用于在空间间隔之后,接收来自多媒体广播/组播用户面实体的首个数据包并发送至发送单元1903;该数据包添加有时间标识;The receiving
运算单元1902,用于通过所述数据包上的时间标识,获取该数据包的空中接口时间,并将该空中接口时间通知发送单元1903;The
发送单元1903,用于将接收到的数据包上的时间标识发送至运算单元1902,并接收运算单元1902的通知,按照运算单元1902确定的空中接口时间发送数据包。The sending
在该实施例中,也可以由接收单元1901将接收到的数据包发送至运算单元1902处理,由运算单元1902处理后再通过发送单元1903发送。In this embodiment, the receiving
在该实施例九中,时间标识为物理层帧号、或子帧号、或空中接口时间、或所发送数据包序列中第一个数据包的空中接口时间;In the ninth embodiment, the time identifier is the physical layer frame number, or the subframe number, or the air interface time, or the air interface time of the first data packet in the sent data packet sequence;
在该实施例九中,运算单元1902,用于通过物理层帧号、或子帧号计算获得空中接口时间、或直接获得空中接口时间、或通过第一个数据包的空中接口时间计算获得空中接口时间。In the ninth embodiment, the
在该实施例九中,接收单元1901中还包括缓存器1904,用于缓存所接收到数据包;缓存器1904也可以位于接收单元1901之外。In the ninth embodiment, the receiving
上述实施例九的装置可以应用到各个网络中的基站系统当中,如在3G系统中的NodeB,LTE系统中的eNodeB等等。The apparatus of the ninth embodiment above can be applied to base station systems in various networks, such as NodeB in a 3G system, eNodeB in an LTE system, and so on.
对于克服空闲间隔添加时间标识的情况,在添加时间标识时,可以由mUPE来添加或由eBM-SC来添加,下面给出实施例十,参见图20,该实施例是一种多媒体广播/组播用户面实体mUPE,该mUPE包括:For overcoming the situation of adding time stamps in idle intervals, when adding time stamps, it can be added by mUPE or by eBM-SC. Embodiment 10 is given below, see Figure 20. This embodiment is a multimedia broadcast/group Broadcast user plane entity mUPE, the mUPE includes:
标识单元2001,用于根据核心网的数据包发送速度和空中接口的数据包发送速度确定eNodeB在空间间隔后将要发送的首个数据包,并对该数据包加入时间标识;The
发送单元2002,用于将标识单元2001加入时间标识后的数据包发送给eNodeB。The sending
实施例十中的两个单元也可以用于eBM-SC,由eBM-SC来添加时间标识的情形,和实施例十是相同的,不同的是发送单元将标识单元加入时间标识后的数据包发送给mUPE。The two units in Embodiment 10 can also be used in eBM-SC. The situation where the time stamp is added by eBM-SC is the same as Embodiment 10, except that the sending unit adds the identification unit to the data packet after the time stamp Send to mUPE.
上面详细描述各个装置的实施例,下面说明本发明所提供的多媒体广播/组播业务数据发送的系统,下面给出本发明系统的四个实施例。下面结合图3说明系统实施例十一,The embodiments of each device are described in detail above, the system for transmitting multimedia broadcast/multicast service data provided by the present invention is described below, and four embodiments of the system of the present invention are given below. The eleventh embodiment of the system is described below in conjunction with FIG. 3 ,
该系统包括mUPE、eNodeB,The system includes mUPE, eNodeB,
mUPE中包括m-Sgm,用于将接收到的初始数据包分割级连为等大小的数据包;mUPE includes m-Sgm, which is used to divide and concatenate the received initial data packets into data packets of equal size;
SYNC,用于将m-Sgm分割级连后的数据包以预定的时间间隔循环加入时间标识;SYNC, for adding the time stamp to the data packets after m-Sgm segmentation and concatenation at predetermined time intervals;
eNodeB中包括PHY,用于接收到来自mUPE的数据包后,通过数据包上的时间标识获取该数据包的空中接口时间,按照所述空中接口时间发送数据包。The eNodeB includes a PHY, which is used to obtain the air interface time of the data packet through the time mark on the data packet after receiving the data packet from the mUPE, and send the data packet according to the air interface time.
该系统中mUPE中还包括缓存器,用于为m-Sgm缓存所接收到的初始数据包;The mUPE in the system also includes a buffer for buffering the received initial data packet for the m-Sgm;
该系统中eNodeB中还包括缓存器,用于为PHY缓存来自mUPE中的数据包。The eNodeB in the system also includes a buffer for buffering data packets from the mUPE for the PHY.
下面结合图6说明系统实施例十二,The twelfth embodiment of the system is described below in conjunction with FIG. 6 ,
该系统包括mUPE、eNodeB,The system includes mUPE, eNodeB,
mUPE中包括SYNC,用于将接收到的初始数据包以预定的时间间隔循环加入时间标识发送至eNodeB;The mUPE includes SYNC, which is used to send the received initial data packet to the eNodeB at a predetermined time interval and cyclically add a time stamp;
eNodeB中包括RLC,用于将接收到的数据包分割级连为等大小的数据包;The eNodeB includes RLC, which is used to divide and concatenate received data packets into data packets of equal size;
eNodeB中包括PHY,用于接收到来自RLC的数据包后,通过数据包上的时间标识获取该数据包的空中接口时间,按照所述空中接口时间发送数据包。The eNodeB includes a PHY, which is used to obtain the air interface time of the data packet through the time mark on the data packet after receiving the data packet from the RLC, and send the data packet according to the air interface time.
该系统的mUPE中还包括缓存器,用于为SYNC缓存所接收到的数据包;The mUPE of the system also includes a buffer for buffering received data packets for SYNC;
该系统的eNodeB中还包括缓存器,用于为RLC缓存来自mUPE中的数据包。The eNodeB of the system also includes a buffer for buffering data packets from the mUPE for the RLC.
下面结合图9说明系统实施例十三,包括eBM-SC、mUPE、eNodeB,The thirteenth embodiment of the system is described below in conjunction with FIG. 9, including eBM-SC, mUPE, eNodeB,
eBM-SC中包括SYNC,用于将初始数据包以预定的时间间隔循环加入时间标识发送至mUPE;The eBM-SC includes SYNC, which is used to send the initial data packet to the mUPE at a predetermined time interval and add a time stamp;
mUPE中包括m-Sgm,用于将接收到的初始数据包分割级连为等大小的数据包,在分割级连的过程中,当在一个数据包级连另一个带有时间标识的数据包时,将所述带有时间标识的数据包分割级连为一个新的数据包,将没有时间标识的数据包添加冗余比特级连成一个新的数据包;mUPE includes m-Sgm, which is used to divide and concatenate the received initial data packets into data packets of equal size. , the data packet with the time stamp is segmented and concatenated into a new data packet, and the data packet without the time stamp is added with redundant bits and concatenated into a new data packet;
eNodeB中包括PHY,用于接收到来自mUPE的数据包后,通过数据包上的时间标识获取该数据包的空中接口时间,按照所述空中接口时间发送数据包。The eNodeB includes a PHY, which is used to obtain the air interface time of the data packet through the time mark on the data packet after receiving the data packet from the mUPE, and send the data packet according to the air interface time.
该系统中mUPE中还包括缓存器,用于为m-Sgm缓存所接收到的数据包;The mUPE in the system also includes a buffer for buffering the received data packets for the m-Sgm;
该系统中eNodeB中还包括缓存器,用于为PHY缓存来自mUPE中的数据包。The eNodeB in the system also includes a buffer for buffering data packets from the mUPE for the PHY.
下面结合图11说明系统实施例十四,包括eBM-SC,mUPE,eNodeB,The fourteenth embodiment of the system is described below with reference to Figure 11, including eBM-SC, mUPE, eNodeB,
eBM-SC中包括SYNC,用于将初始数据包以预定的时间间隔循环加入时间标识发送至mUPE;The eBM-SC includes SYNC, which is used to send the initial data packet to the mUPE at a predetermined time interval and add a time stamp;
mUPE,用于将所接收到的数据包发送至eNodeB;mUPE, used to send the received data packet to eNodeB;
eNodeB中包括RLC,用于将接收到的数据包分割级连为等大小的数据包,在分割级连的过程中,当在一个数据包级连另一个带有时间标识的数据包时,将所述带有时间标识的数据包分割级连为一个新的数据包,将没有时间标识的数据包添加冗余比特级连成一个新的数据包;The eNodeB includes RLC, which is used to divide and concatenate received data packets into data packets of equal size. During the process of dividing and concatenating, when one data packet is concatenated with another data packet with a time stamp, the The data packet with the time stamp is segmented and concatenated into a new data packet, and the data packet without the time stamp is added with redundant bits and concatenated into a new data packet;
eNodeB中包括PHY,用于接收到来自RLC的数据包后,通过数据包上的时间标识获取该数据包的空中接口时间,按照所述空中接口时间发送数据包。The eNodeB includes a PHY, which is used to obtain the air interface time of the data packet through the time mark on the data packet after receiving the data packet from the RLC, and send the data packet according to the air interface time.
该系统中的mUPE中还包括缓存器,用于缓存所接收到的数据包;The mUPE in the system also includes a buffer for buffering received data packets;
该系统中的eNodeB中还包括缓存器,用于为RLC缓存来自mUPE中的数据包。The eNodeB in the system also includes a buffer for buffering data packets from the mUPE for the RLC.
在本发明的各个实施例中,无论是内容缓存器,还是时延缓存器,缓存器的容量越大,出现空闲间隔的可能性越小。当然,添加各个缓存器来发送数据包不必要与添加时间标识的方法结合起来,也可以在网络中的各个实体中利用放置的缓存器来克服网络传输中的时延和抖动。缓存器在各个网路实体中并不仅仅限于SYNC子层,可以在网络实体中的任意位置。In each embodiment of the present invention, whether it is a content buffer or a delay buffer, the larger the capacity of the buffer, the smaller the possibility of an idle interval. Of course, adding each buffer to send data packets does not need to be combined with the method of adding a time stamp, and buffers placed in each entity in the network can also be used to overcome time delay and jitter in network transmission. The cache is not limited to the SYNC sublayer in each network entity, but can be located anywhere in the network entity.
对于本发明的方法、装置和系统,通过在数据包中以预定的时间间隔循环添加时间标识,能够使各个eNodeB出现故障重启或新加入到网络中时,通过获取时间标识,保证同步发送数据包;对于eNodeB出现数据进发现象,产生时间间隔后所发送的首个数据包的时间点,预先在该时间点所对应的数据包添加时间标识,以保证同步发送数据包;在网络实体中添加缓存器,解决数据包由于网络传输所带来的时延和抖动。For the method, device and system of the present invention, by cyclically adding time stamps in the data packets at predetermined time intervals, each eNodeB can be restarted in case of failure or newly added to the network, by obtaining the time stamps to ensure that the data packets are sent synchronously ;For the eNodeB's data ingress phenomenon, the time point of the first data packet sent after the time interval is generated, add a time stamp to the data packet corresponding to the time point in advance to ensure that the data packet is sent synchronously; add a cache to the network entity The device solves the delay and jitter caused by network transmission of data packets.
对于上述实施例中所阐述本发明方法的各个实施例,均可在本发明的装置和系统中实现,限于篇幅限制,不一一重复,对于本发明的方法、装置和系统,凡在本发明的精神和原则之内,对本发明所作任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。For the various embodiments of the method of the present invention described in the above-mentioned embodiments, all can be implemented in the device and system of the present invention, limited by the space limit, not repeated one by one, for the method, device and system of the present invention, all in the present invention Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNA2007100031423ACN101237384A (en) | 2007-01-31 | 2007-01-31 | Method, device, user plane entity and system for transmitting multimedia broadcast/multicast service data |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNA2007100031423ACN101237384A (en) | 2007-01-31 | 2007-01-31 | Method, device, user plane entity and system for transmitting multimedia broadcast/multicast service data |
| Publication Number | Publication Date |
|---|---|
| CN101237384Atrue CN101237384A (en) | 2008-08-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNA2007100031423APendingCN101237384A (en) | 2007-01-31 | 2007-01-31 | Method, device, user plane entity and system for transmitting multimedia broadcast/multicast service data |
| Country | Link |
|---|---|
| CN (1) | CN101237384A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010127639A1 (en)* | 2009-05-08 | 2010-11-11 | Huawei Technologies Co., Ltd. | System and method for redirecting messages to an active interface of a multiple-interface device |
| WO2013097754A1 (en)* | 2011-12-29 | 2013-07-04 | 华为技术有限公司 | Method and apparatus for synchronization processing of air-interface data |
| CN103516492A (en)* | 2012-06-18 | 2014-01-15 | 中兴通讯股份有限公司 | Data caching method and device |
| CN107274646A (en)* | 2016-04-07 | 2017-10-20 | 司文奎 | The signal acquisition and transmission of carsickness-proof, reception and processing method and transmitting terminal, terminal |
| JP2018529259A (en)* | 2015-08-27 | 2018-10-04 | クアルコム,インコーポレイテッド | MBMS architecture with CDN caching in eNB |
| CN109199354A (en)* | 2018-09-17 | 2019-01-15 | 山东思迈教育科技有限公司 | A kind of heart rate data acquisition method and heart rate measuring device |
| CN112379656A (en)* | 2020-10-09 | 2021-02-19 | 爱普(福建)科技有限公司 | Processing method, device, equipment and medium for detecting abnormal data of industrial system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2010127639A1 (en)* | 2009-05-08 | 2010-11-11 | Huawei Technologies Co., Ltd. | System and method for redirecting messages to an active interface of a multiple-interface device |
| CN102232283A (en)* | 2009-05-08 | 2011-11-02 | 华为技术有限公司 | System and method for redirecting messages to an active interface of a multiple-interface device |
| US8730911B2 (en) | 2009-05-08 | 2014-05-20 | Futurewei Technologies, Inc. | System and method for redirecting messages to an active interface of a multiple-interface device |
| WO2013097754A1 (en)* | 2011-12-29 | 2013-07-04 | 华为技术有限公司 | Method and apparatus for synchronization processing of air-interface data |
| CN103516492A (en)* | 2012-06-18 | 2014-01-15 | 中兴通讯股份有限公司 | Data caching method and device |
| CN103516492B (en)* | 2012-06-18 | 2017-11-14 | 中兴通讯股份有限公司 | Data cache method and device |
| JP2018529259A (en)* | 2015-08-27 | 2018-10-04 | クアルコム,インコーポレイテッド | MBMS architecture with CDN caching in eNB |
| US11159917B2 (en) | 2015-08-27 | 2021-10-26 | Qualcomm Incorporated | MBMS architecture with CDN caching in ENB |
| CN107274646A (en)* | 2016-04-07 | 2017-10-20 | 司文奎 | The signal acquisition and transmission of carsickness-proof, reception and processing method and transmitting terminal, terminal |
| CN109199354A (en)* | 2018-09-17 | 2019-01-15 | 山东思迈教育科技有限公司 | A kind of heart rate data acquisition method and heart rate measuring device |
| CN109199354B (en)* | 2018-09-17 | 2021-06-25 | 山东思迈教育科技有限公司 | Heart rate data acquisition method and heart rate measuring equipment |
| CN112379656A (en)* | 2020-10-09 | 2021-02-19 | 爱普(福建)科技有限公司 | Processing method, device, equipment and medium for detecting abnormal data of industrial system |
| Publication | Publication Date | Title |
|---|---|---|
| KR101030678B1 (en) | Method for Synchronizing Delivery of Broadcast Data in Single Frequency Mobile Communication Network | |
| CN101741701B (en) | Synchronous dispatching method and synchronous dispatching device | |
| TWI429221B (en) | Distribution of broadcast/multicast data in telecommunications systems | |
| CA2691154C (en) | A method for providing a plurality of services | |
| CN101981874B (en) | Method for synchronizing between gateway and base station and corresponding base station | |
| US20080101270A1 (en) | Enhanced multicast broadcast multimedia service | |
| EP2203990B1 (en) | Method of providing circuit switched (cs) service using high-speed downlink packet access (hsdpa) or high-speed uplink packet access (hsupa) | |
| KR20050073353A (en) | Radio communication system providing voip service | |
| KR20050027176A (en) | Method for synchronizing of broadcast service stream in a mobile communication system | |
| CN101237384A (en) | Method, device, user plane entity and system for transmitting multimedia broadcast/multicast service data | |
| CN101741538A (en) | Synchronous dispatching method | |
| CN101394338A (en) | A data scheduling method, system and device | |
| CN104684030B (en) | The method that security parameter synchronizes is realized in a kind of group system | |
| US9386598B2 (en) | Method and apparatus for synchronization processing | |
| CN101931881A (en) | Method, device and system for synchronizing business content | |
| JP2012531135A (en) | Logical channel identifier transmission method and system in MBMS | |
| EP2180651B1 (en) | A method for the synchronization of the multimedia broadcast/multicast | |
| CN101166143A (en) | Method and system for receiving multicast broadcast service | |
| CN101047437B (en) | Method for controlling serial number synchronization for radio link and radio network controller | |
| CN101051864B (en) | Synchronizing method for realizing RLC sequence number between RNC for MBMS service | |
| CN101051889B (en) | Method and system for realizing service data consistence between network controllers | |
| CN101888662A (en) | Message transmission method and system | |
| AU2012201114B2 (en) | A method for providing a plurality of services | |
| CN120512710A (en) | Data packet transmission method, apparatus, device, storage medium and computer program product |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication | Open date:20080806 |