技术领域technical field
在工业设备中,将控制系统用于监视和控制工业以及化学过程的进展等。一般情况下,控制系统使用分布在工业过程的关键位置的现场设备来实现这些功能,所述现场设备是通过程控制回路耦合到控制室的控制电路的。现场设备指的是在分布式控制或过程监视系统中可以完成一项功能的任何设备,其中包括用来测量、控制,以及监视工业过程的所有设备。In industrial plants, control systems are used to monitor and control the progress of industrial and chemical processes, etc. Typically, control systems implement these functions using field devices distributed at key locations in the industrial process that are coupled to control circuits in the control room through process control loops. A field device refers to any device that can perform a function in a distributed control or process monitoring system, including all devices used to measure, control, and monitor industrial processes.
背景技术Background technique
出于各种不同的目的,过程控制和测量工业使用现场设备。通常,这样的设备具有坚硬的现场封闭外壳,因此,可以把它们户外安装在相对来说恶劣的环境里,它们能够忍受温度、湿度、振动、机械冲击等极端气候条件。一般情况下,这些设备还能够在相当低的功率下工作。例如,从公知的4-20毫安回路接受全部操作功率的现场设备,目前都是可以使用的。The process control and measurement industries use field devices for a variety of purposes. Typically, such devices have hard field-enclosed housings, so they can be installed outdoors in relatively harsh environments, and they can withstand extreme climatic conditions such as temperature, humidity, vibration, mechanical shock, etc. In general, these devices are also able to operate on relatively low power. For example, field devices that receive full operating power from well-known 4-20 mA loops are currently available.
一些现场设备包括一个传感器。传感器应理解为可以根据物理输入产生输出的设备,或者可以根据输入信号产生物理输出的设备。在一般情况下,传感器将输出转换成具有不同模式的输出。传感器的类型包括:各种不同的分析设备、压力传感器、热敏电阻、温差电偶、应力计、流量传感器、定位器、传动装置、螺旋管、指示灯及其它。Some field devices include a sensor. A sensor is to be understood as a device that can produce an output from a physical input, or a device that can produce a physical output from an input signal. In general, sensors convert the output into outputs with different patterns. Types of sensors include: various analytical devices, pressure sensors, thermistors, thermocouples, strain gauges, flow sensors, positioners, actuators, solenoids, indicator lights and others.
在一般情况下,每种现场设备在过程控制回路上还包括用于与过程控制室进行通信联系的通信电路或其它电路。在有些设备中,所述过程控制回路还用于将规则的电流和/或电压传递给现场设备,以便为现场设备供电。In general, each field device also includes communication or other circuitry on the process control loop for communicating with the process control room. In some devices, the process control loop is also used to deliver regular current and/or voltage to the field devices to power the field devices.
按照传统方式,随着每个设备通过单个双线控制回路连接到控制室,模拟式现场设备通过双线的过程控制电流回路连接到控制室。一般情况下,在两根线之间维持一个电压的差动,其范围对于模拟方式为12-45伏,而对于数字方式为9-50伏。一些模拟式现场设备,通过把电流回路中流动的电流调制到与检测到的过程变量成正比的电流而发送信号。另外的模拟式现场设备,可以在控制室的控制下通过控制流过回路的电流的大小来完成动作。除此之外,或者是按照可供选择的方式,所述过程控制回路可以携带数字信号,用于与现场设备进行通信。数字式通信与模拟式通信相比,允许具有大得多的联通程度。而且,数字式设备还不需要用于每个现场设备的单独连线。数字式通信的现场设备可以与控制室和/或其它现场设备进行选择性的响应和联通。此外,这样的设备还可以提供附加的信号,比如对话和/或报警。Traditionally, analog field devices are connected to the control room through a two-wire process control current loop, with each device connected to the control room through a single two-wire control loop. Typically, a voltage differential is maintained between the two wires in the range of 12-45 volts for analog and 9-50 volts for digital. Some analog field devices send signals by modulating the current flowing in the current loop to a current proportional to the sensed process variable. Other analog field devices can complete actions by controlling the magnitude of the current flowing through the loop under the control of the control room. Additionally, or alternatively, the process control loop may carry digital signals for communication with field devices. Digital communication allows a much greater degree of connectivity than analog communication. Furthermore, digital devices do not require separate wiring for each field device. Digitally communicating field devices can selectively respond and communicate with the control room and/or other field devices. Furthermore, such devices can also provide additional signals, such as dialogue and/or alarms.
在有些设备中,无线技术已经开始用于与现场设备的联通。无线操作减化了现场设备的连线和建立过程。在当前使用的无线设备中,将现场设备制造成包括可由太阳能电池充电的内部电池或储电池。由于太阳能板的电压变化范围很宽,所以产生一种复杂问题,即耦合到光电太阳能板的充电电路。在低光强(小于5000勒克斯)条件下,小型的太阳能板只能提供1到20毫瓦。相反,在全日照条件下,同一个太阳能板可输出1到2瓦特。当太阳能板充电系统的安装位置可以使其受到阳光的直射时,现有的太阳能板充电系统的设计还是可以优化功率输出的。如果太阳能板的定位区域必须在接受不到日光直射的位置,则这些现有的系统就不能有效地操作,并必须大幅度地增加太阳能板的尺寸和成本以产生有效的功率。提供可以有效地储存来自能量变化范围很宽的发生器(如太阳能板)的无线现场设备的充电电路,有可能将标准化的太阳能板或发生器用于大量的太阳能应用场合。In some devices, wireless technology has begun to be used to communicate with field devices. Wireless operation simplifies the wiring and setup of field devices. In currently used wireless devices, the field device is manufactured to include an internal battery or storage battery that can be charged by a solar cell. Due to the wide range of voltage variations of the solar panel, a complication arises that is coupled to the charging circuit of the photovoltaic solar panel. Under low light intensity (less than 5000 lux) conditions, small solar panels can only provide 1 to 20 milliwatts. Conversely, the same solar panel can output 1 to 2 watts in full sun. Existing solar panel charging systems are designed to optimize power output when the solar panel charging system is installed in such a location that it is exposed to direct sunlight. If the solar panels had to be positioned in a location that did not receive direct sunlight, these existing systems could not operate efficiently and the size and cost of the solar panels had to be greatly increased to generate effective power. Providing a charging circuit for a wireless field device that can efficiently store energy from a generator that varies widely, such as a solar panel, makes it possible to use a standardized solar panel or generator for a large number of solar applications.
发明内容Contents of the invention
本发明公开了一种用于现场设备的充电电路,所述充电电路具有至少三种工作模式,并能根据发生器的电压,在所述模式之间自动地切换。按照第一种模式,充电电路提供电压调节。按照第二种模式,充电电路将发生器直接耦合到能量存储装置,按照第三种模式,充电电路使发生器与能量存储装置脱开。本发明还公开一种利用这种充电电路的现场设备。The invention discloses a charging circuit for field equipment. The charging circuit has at least three working modes and can automatically switch between the modes according to the voltage of a generator. In the first mode, the charging circuit provides voltage regulation. In a second mode, the charging circuit couples the generator directly to the energy storage device, and in a third mode, the charging circuit decouples the generator from the energy storage device. The invention also discloses a field device using the charging circuit.
附图说明Description of drawings
图1和图2是本发明所用实施例的典型现场设备的示意图和方块图;Figures 1 and 2 are schematic and block diagrams of typical field devices of embodiments used in the present invention;
图3是本发明所用实施例的无线现场设备的方块图;3 is a block diagram of a wireless field device according to an embodiment of the present invention;
图4是本发明一种实施例的功率模块的转换示意图;Fig. 4 is a schematic conversion diagram of a power module according to an embodiment of the present invention;
图5是表示本发明各种实施例可以使用的用来产生电的各种不同选项的发生器示意图;Figure 5 is a schematic diagram of a generator showing various options for generating electricity that may be used by various embodiments of the present invention;
图6是本发明一种实施例充电电路的更为详细的方块图;Fig. 6 is a more detailed block diagram of a charging circuit of an embodiment of the present invention;
图7是说明本发明各实施例的各种不同充电电路模式发生器的电压对时间关系的示意图,;7 is a schematic diagram illustrating the relationship between voltage and time of various charging circuit pattern generators according to various embodiments of the present invention;
图8表示本发明另一个实施例的能量转换模块38。FIG. 8 shows an
具体实施方式Detailed ways
虽然本文参照无线通信的现场设备对本发明的实施例进行一般的描述,但本领域的普通技术人员应类理解,可以利用希望得到更多的附加电能的任何现场设备,实现本发明的具体实施方式。无线现场设备可能需要从太阳能板或者其它形式的发生器导出所有的它的工作功率,并因此而能够从本发明的各实施例获得显著效益。然而,即使是有线的现场设备,如果需要通过它的有线连接获得比它所能得到的更多功率,也可以通过本发明的实施例得到附加的功率。Although the embodiments of the present invention are generally described herein with reference to field devices for wireless communication, those of ordinary skill in the art should understand that any field device desiring to obtain more additional power can be used to implement the specific embodiments of the present invention . A wireless field device may need to derive all of its operating power from a solar panel or other form of generator, and thus can derive significant benefits from embodiments of the present invention. However, even a wired field device that needs more power than it can get through its wired connection can get additional power through embodiments of the present invention.
图1和2是本发明常用实施例的典型的有线现场设备的示意图和方块图。过程控制或监视系统10包括:控制室或控制系统12,所述控制室或控制系统12在双线过程控制回路16上与一个或多个现场设备14耦合。所述过程控制回路16的实例包括:模拟4-20毫安通信;包括模拟和数字通信二者在内的综合协议,如HART(Highway Addressable Remote Transducer)标准;以及全数字协议,如FOUNDATIONTM现场总线标准。一般情况下,所述过程控制回路协议可以负责给现场设备供电,以及在现场设备和其它设备之间进行通信联系这样两项任务。1 and 2 are schematic and block diagrams of typical wired field devices of a general embodiment of the present invention. Process control or
此例中的现场设备14包括电路18,电路18经外壳23中的终端板21耦合到执行机构/传感器20。图中将现场设备14表示为可变过程(PV)发生器,其中,发生器一个过程相联系,并且检测过程的一个方面,比如过程的温度、压力、PH、流量,如此等等,并过程它们的指示值。现场设备的其它举例包括阀门、执行机构、控制器,以及显示器。
一般情况下,所述现场设备的特征在于:现场设备能够在使它们暴露于环境应力(如温度、湿度和压力)的“现场”工作。除环境应力之外,现场设备还必须经常承受腐蚀、伤害和/或甚至爆炸的氛围。进而,这样的现场设备还必须能够在存在振动和/或电磁干扰的情况下工作。In general, the field devices are characterized by their ability to operate "in the field" which exposes them to environmental stresses such as temperature, humidity and pressure. In addition to environmental stress, field devices must often withstand corrosive, damaging and/or even explosive atmospheres. Furthermore, such field devices must also be able to operate in the presence of vibration and/or electromagnetic interference.
图3是对于本发明实施例特别有用的无线现场设备的方块图。现场设备34包括功率转换模块38、控制器35、无线通信模块32,以及执行机构/传感器20。功率转换模块38可以是任何能够把潜在可能的能量转换为电能的设备。因此,功率转换模块38可以包括光电太阳能板和耦合到能量存储装置(如蓄电池)的相关充电电路。功率转换模块38可以是任何装置,已知的或者近来新开发的,它能够将潜在可能的能量转化成现场设备34所用的电能。比如,所述模块38可以利用公知技术从潜在可能的热能、风能、压缩气体,或者其它形式的可能能量产生电能。功率转换模块38可以为无线通信模块32单独提供能量,为现场设备34的其它部分提供能量,或者可以为整个现场设备34供电。Figure 3 is a block diagram of a wireless field device that is particularly useful for embodiments of the present invention.
无线通信模块32耦合到控制器35,并根据来自控制器35的命令和/或数据,经天线26与外部通信设备进行通信连接。无线通信模块32可以联通与过程相关的信息以及与设备相关的信息。根据应用,可以使无线通信模块32适于可按照任何合适的无线通信协议进行通信流联系,所述无线通信协议包括(但不限于):无线联网技术(如IEEE802.11b无线接入点和由Linksys of Irvine,California建立的无线联网设备)、蜂窝式或数字联网技术(如California,San Jose的Aeris通信公司的Microburst)、超宽带、自由空间光学、用于移动通信的全球系统(GSM)、通用包无线电服务(GPRS)、码分多址(CDMA)、扩展的频谱技术、红外通信技术、SMS(短信息服务/文本信息)、按照IEEE802.15.4的无线联网技术或者任何其它合适的无线技术。进而,可以使用公知的数据碰撞技术,以使多个单元可以共处在彼此的无线操作范围内。这种防止碰撞技术可以包括使用一系列不同的射频信道和/或扩展频谱技术。The
无线通信模块32还可以包括用于多种无线通信方法的收发器。比如,可以使用相当长距离的通信方法(如GSM或GPRS)实行主要的无线通信,而对于技术人员或单元附近的操作人员,比如使用IEEE802.11b或蓝牙协议,就可以提供次要的或者附加的通信方法。The
图4是本发明一种实施例转换模块38的示意图。转换模块38包括电能发生器100,电能发生器100耦合到充电电路102,充电电路102又耦合到能量存储装置104。充电电路102提供由现场设备使用的功率输出106。如图5所示的电能发生器100,它可以包括一个或多个单个的发生器模块。例如,电能发生器100可以包括光电板110、以风为基础的发生器112、以压缩空气为基础的发生器114、热力发生器116、以振动为基础的发生器117,或者它们的任意组合。转换模块38可以在现场设备内部实施,或者设置在现场设备的外部,并且与现场设备电连接,以便向现场设备提供能量。耦合到充电电路102的能量存储装置104可以是能够存储电能,并历时任何可用时间周期的任何合适的装置。例如,能量存储装置104可以是可重复充电电池,如胶质单元铅酸蓄电池,或者任何合适类型的电容器,如超级电容器。FIG. 4 is a schematic diagram of a
图6是本发明一种实施例充电电路102更为详细的方块图。充电电路102包括多个导体120,它们耦合到发生器模块100。充电电路102包括测量模块122,测量模块122耦合到导体120,并适于提供导体120两端存在的电压是否超过第一和/或第二电压阈值的指示。测量电路122可以是任何合适的装置,只要能够响应导体120两端测量的电压幅度,而提供一个信号即可。测量模块122可以包括模拟-数字转换器、比较器电路、一个或多个参考电位源,或者是它们的任意组合。测量模块122为充电电路102的工作提供至少三种模式。在第一种模式下,测量模块122将两个输出端124和126设置成低的或者说是断开状态。因此,无论是旁路分支128,还是断路器130都不接通。相应地,来自发生器100的能量穿过导体120流入电压调节器132,这样就对能量存储装置104提供线性电压调节。当测量电路122确定导体120两端的电压下降而小于第一阈值(旁路阈值)时,测量电路122耦接旁路分支128,使导体120有效地耦合至能量存储装置104,而不通过电压调节器132。按照这种模式,把整个充电电路102设计成消耗小于200毫瓦。这样,就在发生器的电输出减小的条件下,例如,在背荫时工作的太阳能电池板或光电池条件下,给出非常有效的工作。FIG. 6 is a more detailed block diagram of the charging
当通过测量电路122在导体120两端测得的电压下降而低于较低的第二阈值(断路阈值)时,测量电路122通过引线124识别旁路分支128,并代之以通过引线126耦接断路器130,从而以多元方式使能量存储装置104与充电电路断开。按照这种模式,比如,当太阳能板夜间工作时,电路102的作用是防止能量存储装置104通过发生器100反方向放电。When the voltage measured across
图7是发生器电压对于时间的示意图,说明本发明实施例的各种不同的充电电路模式。在时间t0,发生器电压是Vinitial,由于Vinitial超过旁路阈值140,所以充电电路按线性模式工作。在这种模式下,充电电路向能量存储装置提供经调节的电压输出。在时间t1,来自发生器的电压跨过旁路阈值140,充电电路102进入“直接”模式。在这种模式下,充电电路使发生器与能量存储装置直接耦合,同时充电电路以尽可能小的能量进行工作。例如,将充电电路102的电路设计成,使其在这种模式下消耗小于200毫瓦。最后,在时间t2,发生器的电压跨过截止阈值142,充电电路102进入断开模式。在这种模式下,能量存储装置与发生器完全断开。这就能够保证能量存储装置不会通过发生器反方向放电。Figure 7 is a graph of generator voltage versus time illustrating various charging circuit modes of an embodiment of the present invention. At time t0 , the generator voltage is Vinitial , and since Vinitial exceeds the
图8表示的是本发明另一实施例的能量转换模块38。图8中表示的实施例特别适合于能量存储装置104是胶质单元铅酸蓄电池的情况。这样的电池可能会受到过充电的损伤。为了解决这个潜在可能的问题,将温度传感器146热耦接到电池104。温度传感器146电连接到充电电路102,以使充电电路102能够把充电电压限制到与环境温度无关的安全浮动值。图8还表示出在充电电路102内的可选的电池保护电路148(用虚线表示)。电池保护电路148可以包括任何有助于延长电池寿命和/或诊断电池148中任何故障的电路。例如,如果电池遇到短路,或者如果使电池电压下降得太多,都可能会缩短电池的寿命。因此,电池保护电路148可以包括在电池电压有可能下降太低时能够检测,并禁止从电池进一步取出电能的电路。此外,电池保护电路148可以包括电流限制电路,或者能够测量从电池104取出的电流量,并且一旦变得过大则禁止或减少这种电流的电路。FIG. 8 shows an
虽然参照优选实施例描述了本发明,但本领域的普通技术人员应能理解,在不偏离本发明的构思和范围的条件下,在形式上和细节上可以进行许多变化。Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that many changes may be made in form and detail without departing from the spirit and scope of the invention.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67564705P | 2005-04-28 | 2005-04-28 | |
US60/675,647 | 2005-04-28 | ||
PCT/US2006/016322WO2006116709A1 (en) | 2005-04-28 | 2006-04-28 | Charging system for field devices |
Publication Number | Publication Date |
---|---|
CN101156294A CN101156294A (en) | 2008-04-02 |
CN101156294Btrue CN101156294B (en) | 2010-12-29 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006800109258AActiveCN101156294B (en) | 2005-04-28 | 2006-04-28 | Charging system for field devices |
Country | Link |
---|---|
US (1) | US7560907B2 (en) |
EP (1) | EP1875584B1 (en) |
JP (1) | JP5328346B2 (en) |
CN (1) | CN101156294B (en) |
CA (1) | CA2597145C (en) |
RU (1) | RU2378753C2 (en) |
WO (1) | WO2006116709A1 (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8538560B2 (en)* | 2004-04-29 | 2013-09-17 | Rosemount Inc. | Wireless power and communication unit for process field devices |
US8145180B2 (en) | 2004-05-21 | 2012-03-27 | Rosemount Inc. | Power generation for process devices |
US8112565B2 (en) | 2005-06-08 | 2012-02-07 | Fisher-Rosemount Systems, Inc. | Multi-protocol field device interface with automatic bus detection |
JP5171939B2 (en)* | 2007-05-02 | 2013-03-27 | ローズマウント インコーポレイテッド | Industrial process field device with improved battery assembly |
US8264373B2 (en)* | 2008-01-04 | 2012-09-11 | Rosemount Tank Radar Ab | Gauging system having wireless capability |
US7812466B2 (en)* | 2008-02-06 | 2010-10-12 | Rosemount Inc. | Adjustable resonance frequency vibration power harvester |
CA2726601C (en) | 2008-06-17 | 2016-08-09 | Rosemount Inc. | Rf adapter for field device with variable voltage drop |
US8694060B2 (en) | 2008-06-17 | 2014-04-08 | Rosemount Inc. | Form factor and electromagnetic interference protection for process device wireless adapters |
US8929948B2 (en) | 2008-06-17 | 2015-01-06 | Rosemount Inc. | Wireless communication adapter for field devices |
JP5554328B2 (en) | 2008-06-17 | 2014-07-23 | ローズマウント インコーポレイテッド | RF adapter for field devices with intrinsically safe low voltage clamp circuit |
CA2726534C (en)* | 2008-06-17 | 2016-03-22 | Rosemount Inc. | Rf adapter for field device with loop current bypass |
US8390150B2 (en)* | 2008-07-15 | 2013-03-05 | Fisher-Rosemount Systems, Inc. | Field device interface with network protection mechanism |
US8467907B2 (en)* | 2009-01-17 | 2013-06-18 | Certus Process Solutions | Automated valve with self-contained valve actuator system |
US8626087B2 (en) | 2009-06-16 | 2014-01-07 | Rosemount Inc. | Wire harness for field devices used in a hazardous locations |
US9674976B2 (en) | 2009-06-16 | 2017-06-06 | Rosemount Inc. | Wireless process communication adapter with improved encapsulation |
US10992142B2 (en) | 2010-07-26 | 2021-04-27 | Robert M. Schwartz | Current sensing circuit disconnect device and method |
US10050459B2 (en) | 2010-07-26 | 2018-08-14 | Robert M. Schwartz | Current sensing circuit disconnect device and method |
US9627903B2 (en) | 2009-07-24 | 2017-04-18 | Robert M. Schwartz | Current sensing circuit disconnect device and method |
US20110095728A1 (en) | 2009-10-28 | 2011-04-28 | Superior Communications, Inc. | Method and apparatus for recharging batteries in a more efficient manner |
US10761524B2 (en) | 2010-08-12 | 2020-09-01 | Rosemount Inc. | Wireless adapter with process diagnostics |
DE102011003308B4 (en) | 2011-01-28 | 2014-06-05 | Micropelt Gmbh | Monitoring arrangement and method for monitoring an electrical line |
JP5408162B2 (en)* | 2011-03-15 | 2014-02-05 | オムロン株式会社 | Charge control device and drive load module |
DE102011076706A1 (en)* | 2011-05-30 | 2012-12-06 | Endress + Hauser Process Solutions Ag | Electrical and / or electronic power supply circuit and method for providing a supply voltage |
US9310794B2 (en) | 2011-10-27 | 2016-04-12 | Rosemount Inc. | Power supply for industrial process field device |
JP5854211B2 (en)* | 2011-12-07 | 2016-02-09 | 横河電機株式会社 | Secondary battery charger |
KR101882800B1 (en) | 2012-02-28 | 2018-08-01 | 삼성전자주식회사 | Wireless power receiver and method for controlling thereof |
JP6323727B2 (en)* | 2013-06-18 | 2018-05-16 | パナソニックIpマネジメント株式会社 | Solar cell power feeder and solar cell system |
US20150008867A1 (en)* | 2013-07-03 | 2015-01-08 | At&T Intellectual Property I, L.P. | Charge pump battery charging |
US9601938B2 (en)* | 2014-05-15 | 2017-03-21 | Intel Corporation | Battery charger for different power sources |
DE102014011723B4 (en)* | 2014-08-06 | 2017-11-23 | Abb Schweiz Ag | Device for the intrinsically safe, redundant power supply of field devices |
US9893527B2 (en) | 2014-12-18 | 2018-02-13 | Fujikura Ltd. | Power storage system and power storage method |
US10333339B2 (en)* | 2016-04-12 | 2019-06-25 | Rai Strategic Holdings, Inc. | Charger for an aerosol delivery device |
CN107024270B (en)* | 2016-12-05 | 2019-08-23 | 陈山鹏 | Radio detection, the method for diagnosing building or equipment status parameter |
RU2711962C1 (en)* | 2018-10-03 | 2020-01-23 | Алексей Федорович Хорошев | Electronic calculation providing device, electronic calculation optimizing device and such electronic calculation method |
RU2711950C1 (en)* | 2018-10-03 | 2020-01-23 | Алексей Федорович Хорошев | Crypto currency mining providing device, crypto currency mining optimizing device and method of such crypto currency mining |
US11476685B2 (en) | 2019-09-09 | 2022-10-18 | General Electric Company | System and method for detecting battery faults in a pitch system of a wind turbine |
US11855470B2 (en)* | 2021-09-23 | 2023-12-26 | Fluidity Power LLC | Mobile generator charging system and method |
US12021404B2 (en)* | 2021-09-23 | 2024-06-25 | Der-X Energy Llc | Mobile generator charging system and method |
CN114294065B (en)* | 2021-12-30 | 2024-02-27 | 中控技术股份有限公司 | Pneumatic explosion-proof power supply device and implementation method thereof |
DE102022120434A1 (en)* | 2022-08-12 | 2024-02-15 | Vega Grieshaber Kg | Method for charging an energy storage device of a field device and field device for carrying out the method |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4383211A (en)* | 1981-01-02 | 1983-05-10 | Atlantic Richfield Company | Electrical charging and discharging control apparatus and method, and solar to electrical energy conversion apparatus incorporating such apparatus |
CN1152963A (en)* | 1994-07-13 | 1997-06-25 | 罗斯蒙德公司 | Power supply for field mounted transmitter |
DE20107116U1 (en)* | 2001-04-25 | 2001-07-05 | Abb Patent Gmbh, 68309 Mannheim | Device for supplying energy to field devices |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1392096A (en)* | 1920-01-10 | 1921-09-27 | Nicholas J Wagner | Roof-truss |
US2976473A (en)* | 1959-06-17 | 1961-03-21 | Crane Co | Voltage regulator for generators |
US3911350A (en)* | 1973-04-09 | 1975-10-07 | Union Carbide Corp | Dual battery charging rate device |
US4233553A (en)* | 1978-05-10 | 1980-11-11 | Ault, Inc. | Automatic dual mode battery charger |
JPS5537881A (en)* | 1978-09-08 | 1980-03-17 | Nippon Denso Co | Automotive generator voltage controller |
FR2438934A1 (en)* | 1978-10-09 | 1980-05-09 | Accumulateurs Fixes | DEVICE FOR REGULATING THE CHARGE OF A BATTERY |
US4315163A (en)* | 1980-09-16 | 1982-02-09 | Frank Bienville | Multipower electrical system for supplying electrical energy to a house or the like |
US4433277A (en)* | 1982-06-21 | 1984-02-21 | Rockwell International Corporation | Battery charging system |
US4636706A (en)* | 1985-09-12 | 1987-01-13 | General Motors Corporation | Generator voltage regulating system |
US5028859A (en)* | 1989-06-05 | 1991-07-02 | Motorola, Inc. | Multiple battery, multiple rate battery charger |
US5121047A (en)* | 1990-06-01 | 1992-06-09 | Motorola, Inc. | Battery charging system |
US5229705A (en)* | 1990-07-31 | 1993-07-20 | Nippon Densan Corporation | Method and apparatus for charging a nickel-cadmium battery |
US5166595A (en)* | 1990-09-17 | 1992-11-24 | Circom Inc. | Switch mode battery charging system |
US5304917A (en)* | 1990-11-30 | 1994-04-19 | Burr-Brown Corporation | Compact low noise low power dual mode battery charging circuit |
US5111131A (en)* | 1990-11-30 | 1992-05-05 | Burr-Brown Corporation | Compact low noise low power dual mode battery charging circuit |
US5122722A (en)* | 1991-01-17 | 1992-06-16 | Motorola, Inc. | Battery charging system |
US5198698A (en)* | 1991-02-11 | 1993-03-30 | Best Power Technology, Inc. | Auxiliary power supply system for providing dc power on demand |
US5270636A (en)* | 1992-02-18 | 1993-12-14 | Lafferty Donald L | Regulating control circuit for photovoltaic source employing switches, energy storage, and pulse width modulation controller |
FR2689333B1 (en) | 1992-03-30 | 1995-02-24 | Transenergie | Regulator and recorder assembly for electrical energy production and storage installation. |
US5311112A (en)* | 1993-02-26 | 1994-05-10 | Kussmaul Electronics Company Inc. | Automatic battery charging system |
US5710506A (en)* | 1995-02-07 | 1998-01-20 | Benchmarq Microelectronics, Inc. | Lead acid charger |
KR0163571B1 (en)* | 1995-10-30 | 1999-04-15 | 김광호 | Dual battery charging apparatus |
RU2101831C1 (en)* | 1995-11-27 | 1998-01-10 | Государственное научно-производственное предприятие "Полюс" | Power system using optimizing power control of photovoltaic battery |
US6495992B1 (en)* | 1996-03-26 | 2002-12-17 | Norvik Traction Inc. | Method and apparatus for charging batteries utilizing heterogeneous reaction kinetics |
JP3428820B2 (en)* | 1996-06-11 | 2003-07-22 | キヤノン株式会社 | Charging device |
US5929538A (en)* | 1997-06-27 | 1999-07-27 | Abacus Controls Inc. | Multimode power processor |
JPH1146457A (en)* | 1997-07-25 | 1999-02-16 | Tdk Corp | Charging device utilizing solar cell |
US5955867A (en)* | 1997-07-29 | 1999-09-21 | Dell Usa L.P. | Dual battery pack charging in a computer system |
US5949216A (en)* | 1997-08-27 | 1999-09-07 | Ericsson Inc. | Dual mode battery chargers for portable electronic devices and related methods |
US6057666A (en)* | 1997-09-17 | 2000-05-02 | Johnson Controls Technology Company | Method and circuit for controlling charging in a dual battery electrical system |
US6979507B2 (en)* | 2000-07-26 | 2005-12-27 | Idatech, Llc | Fuel cell system controller |
US6194877B1 (en)* | 1999-08-02 | 2001-02-27 | Visteon Global Technologies, Inc. | Fault detection in a motor vehicle charging system |
AU766750B2 (en)* | 1999-12-02 | 2003-10-23 | Snap-On Technologies, Inc. | Charge maintenance system for lead-acid battery |
DE10015619A1 (en)* | 2000-03-29 | 2001-10-04 | Endress Hauser Gmbh Co | Programmable field device |
US6835481B2 (en)* | 2000-03-29 | 2004-12-28 | Idatech, Llc | Fuel cell system with load management |
US6515456B1 (en)* | 2000-04-13 | 2003-02-04 | Mixon, Inc. | Battery charger apparatus |
US6353306B1 (en)* | 2000-04-13 | 2002-03-05 | Mixon, Inc. | Battery charger apparatus |
JP2002062942A (en)* | 2000-08-22 | 2002-02-28 | Sanyo Electric Industries Co Ltd | Control device for independent power source by wind power generator |
US6476509B1 (en)* | 2001-04-19 | 2002-11-05 | Unit Parts Company | Mobile AC power system |
US6414465B1 (en)* | 2001-06-22 | 2002-07-02 | France/Scott Fetzer Company | Method and apparatus for charging a lead acid battery |
US6877948B2 (en)* | 2001-07-10 | 2005-04-12 | Alan B. Cutcher | Wind turbine generator |
US6690140B2 (en)* | 2001-08-30 | 2004-02-10 | International Truck Intellectual Property Company, Llc | Vehicle electrical system |
US20030057919A1 (en)* | 2001-09-27 | 2003-03-27 | Tai-Her Yang | Storage/discharging device charging circuit of multi-differential source |
JP2003111301A (en)* | 2001-09-28 | 2003-04-11 | Sanyo Electric Co Ltd | Power unit for solar battery |
US6707278B2 (en)* | 2002-04-22 | 2004-03-16 | Delphi Technologies, Inc. | Transition voltage start regulator |
US6885233B2 (en)* | 2002-05-02 | 2005-04-26 | Intel Corporation | Altering operating frequency and voltage set point of a circuit in response to the operating temperature and instantaneous operating voltage of the circuit |
US20030224833A1 (en)* | 2002-05-29 | 2003-12-04 | Thomas Egan | Cellular base station power generator having remote monitoring and control |
JP3926699B2 (en)* | 2002-07-30 | 2007-06-06 | 株式会社リコー | Secondary battery charging device and charging method thereof |
US6930402B1 (en)* | 2003-05-15 | 2005-08-16 | Sprint Communications Company L.P. | Power system for a telecommunication facility |
US7245032B2 (en)* | 2002-11-15 | 2007-07-17 | Sprint Communications Company L.P. | Mobile-power system utilizing propane generator, fuel cell and super capacitors |
US6888337B2 (en)* | 2003-03-04 | 2005-05-03 | Hewlett-Packard Development Company, L.P. | Power system and method |
JP2004280449A (en)* | 2003-03-14 | 2004-10-07 | Toshiba Corp | Data measurement device |
JP4355160B2 (en)* | 2003-04-16 | 2009-10-28 | 理研計器株式会社 | Gas detector |
US7250231B2 (en)* | 2003-06-09 | 2007-07-31 | Idatech, Llc | Auxiliary fuel cell system |
US6975043B2 (en)* | 2003-12-22 | 2005-12-13 | Rosemount, Inc. | Pressurized gas to electrical energy conversion for low-power field devices |
US7116079B2 (en)* | 2004-02-27 | 2006-10-03 | Research In Motion Limited | Methods and apparatus for simultaneously charging multiple rechargable batteries |
US8538560B2 (en)* | 2004-04-29 | 2013-09-17 | Rosemount Inc. | Wireless power and communication unit for process field devices |
US7081687B2 (en)* | 2004-07-22 | 2006-07-25 | Sprint Communications Company L.P. | Power system for a telecommunications facility |
US7274975B2 (en)* | 2005-06-06 | 2007-09-25 | Gridpoint, Inc. | Optimized energy management system |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4383211A (en)* | 1981-01-02 | 1983-05-10 | Atlantic Richfield Company | Electrical charging and discharging control apparatus and method, and solar to electrical energy conversion apparatus incorporating such apparatus |
CN1152963A (en)* | 1994-07-13 | 1997-06-25 | 罗斯蒙德公司 | Power supply for field mounted transmitter |
DE20107116U1 (en)* | 2001-04-25 | 2001-07-05 | Abb Patent Gmbh, 68309 Mannheim | Device for supplying energy to field devices |
Title |
---|
P.Singh等.Micropower supply for sensors.PROCEEDINGS OF IEEE SENSORS 2003.2ND.2.2003,2第600-605页.* |
Publication number | Publication date |
---|---|
CN101156294A (en) | 2008-04-02 |
JP2008539561A (en) | 2008-11-13 |
EP1875584A1 (en) | 2008-01-09 |
WO2006116709A1 (en) | 2006-11-02 |
US20060244424A1 (en) | 2006-11-02 |
JP5328346B2 (en) | 2013-10-30 |
EP1875584B1 (en) | 2020-09-02 |
US7560907B2 (en) | 2009-07-14 |
RU2007144064A (en) | 2009-06-10 |
CA2597145C (en) | 2015-03-03 |
CA2597145A1 (en) | 2006-11-02 |
RU2378753C2 (en) | 2010-01-10 |
Publication | Publication Date | Title |
---|---|---|
CN101156294B (en) | Charging system for field devices | |
RU2534016C2 (en) | Power supply and wireless communication unit for process field devices | |
CA2552615C (en) | Process device with improved power generation | |
EP1929386B1 (en) | Improved power generation for process devices | |
JP2011524716A (en) | RF adapter for field devices with intrinsically safe low voltage clamp circuit | |
JP2008504790A (en) | Process field device with radio frequency communication | |
JP5827755B2 (en) | Process control field device with circuit protection |
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |