








相关申请related application
本申请要求2004年12月23日提交的美国临时申请第60/638195号的优选权,其整个内容结合于此作为参考。This application claims priority to US Provisional Application No. 60/638,195, filed December 23, 2004, the entire contents of which are hereby incorporated by reference.
技术领域technical field
本发明总体上涉及将能量传送给一定容量的流体的装置和方法,更具体地涉及线性泵、线性压缩机和其他流体设备的领域。The present invention relates generally to apparatus and methods for transferring energy to a volume of fluid, and more particularly to the field of linear pumps, linear compressors and other fluidic devices.
背景技术Background technique
为了将能量传送到处在一个限定腔室内的流体,现有技术已采用了一些方法,这些方法包括正位移、例如利用机械搅拌或使用行波或驻波搅动、应用离心力和添加热能。凭借这些方法将机械能传输到流体具有广泛的应用,这些应用例如包括压缩、泵送、混合、喷雾、合成喷射、流体计量、取样、生物武器试剂的空气试验、喷墨、过滤、由于化学反应导致的物理变化、或象粉碎或聚结这样的悬浮颗粒的材料变化、或这些方法中的任一方法与列举的一些方法的组合。To transfer energy to a fluid within a defined chamber, methods have been employed in the prior art including positive displacement, eg by mechanical agitation or agitation using traveling or standing waves, application of centrifugal force and addition of thermal energy. The transfer of mechanical energy to fluids by means of these methods has a wide range of applications including, for example, compression, pumping, mixing, spraying, synthetic jetting, fluid metering, sampling, air testing of biological weapons agents, ink jetting, filtration, physical changes of the particles, or material changes of the suspended particles such as pulverization or agglomeration, or a combination of any of these methods and some of the methods listed.
在正位移机器这一类型机器中,膜片被广泛使用。没有摩擦能量损失使得膜片在减小正位移机器的体积同时力争维持高的能量效率方面特别有用。对介观(MESO)和微型机电系统(MEMS)尺寸装置的兴趣已导致更进一步依赖膜片型装置在小型泵内将液压能量传送到流体。这里所用的术语“泵”是指设计用于对液体或气体提供压缩和/或流动的装置。这里所用的术语“流体”应被理解为包括物质的液体和气体状态。In machines of this type, positive displacement machines, diaphragms are widely used. The absence of frictional energy loss makes diaphragms particularly useful in reducing the volume of positive displacement machines while striving to maintain high energy efficiency. Interest in mesoscopic (MESO) and microelectromechanical systems (MEMS) sized devices has led to a further reliance on diaphragm-type devices to transmit hydraulic energy to fluids within small pumps. The term "pump" as used herein refers to a device designed to provide compression and/or flow of a liquid or gas. The term "fluid" as used herein should be understood to include both liquid and gaseous states of matter.
对于MESO或MEMS而言,用于驱动较大隔膜泵的驱动器已证明是有问题的,这是因为当它们的尺寸被按比例缩小时,维持其效率和低成本是困难的。例如与电磁线圈和音圈型驱动器关联的气隙必须按比例缩小,以便维持高的能量转换效率,这增加制造复杂性和成本。同样,当马达按比例缩小同时寻求维持恒定的机械功率输出时,马达层叠导致磁饱和。在可接受的产品成本目标内,公认的是这些转换器的电气-机械效率将随尺寸减小大大地下降。Drivers for driving larger diaphragm pumps have proven problematic for MESOs or MEMSs because maintaining their efficiency and low cost is difficult as they are scaled down in size. Air gaps, such as those associated with electromagnetic coils and voice coil type drivers, must be scaled down in order to maintain high energy conversion efficiency, which increases manufacturing complexity and cost. Likewise, motor stacking leads to magnetic saturation when motors are scaled down while seeking to maintain a constant mechanical power output. Within acceptable product cost targets, it is recognized that the electro-mechanical efficiency of these converters will drop significantly with size reduction.
对于MESO和MEMS应用,和磁驱动器关联的这些尺寸缩小的困难已导致其他技术的广泛使用,例如压电陶瓷和磁致伸缩的驱动器。压电盘自然地将流体膜片和驱动器组合成整体部件。For MESO and MEMS applications, these scaling difficulties associated with magnetic actuators have led to the widespread use of other technologies, such as piezoelectric ceramic and magnetostrictive actuators. Piezoelectric discs naturally combine the fluidic diaphragm and actuator into an integral component.
利用压电盘作为流体膜片的优点由压电盘的固有位移限制抵消。因为陶瓷是相对脆弱的,压电陶瓷膜片/盘只能够提供例如由其他材料例如金属、塑料和弹性体材料所提供的位移的一小部分。一个夹持的圆形压电陶瓷盘在不损坏的情况下能够提供的最大振动位移典型地少于该盘的夹持直径的1%。因为膜片位移直接涉及每个行程传输的流体能量,压电盘对小型流体装置例如MESO泵和压缩机的功率密度和整体性能施加了很大的限制。这些与位移有关的能量限制对于气体是特别明显的。The advantages of using piezoelectric disks as fluidic membranes are offset by the inherent displacement limitations of piezoelectric disks. Because ceramics are relatively fragile, piezoceramic diaphragms/disks are only able to provide a fraction of the displacement provided by, for example, other materials such as metals, plastics and elastomeric materials. The maximum vibrational displacement that a clamped circular piezoelectric ceramic disc can provide without damage is typically less than 1% of the disc's clamping diameter. Because diaphragm displacement is directly related to the fluid energy delivered per stroke, piezoelectric disks impose significant constraints on the power density and overall performance of small fluidic devices such as MESO pumps and compressors. These displacement-dependent energy constraints are particularly pronounced for gases.
取决于压电材料的整体柔性性能的其他类型的压电驱动器通过在很高频率下但在更小行程下工作能够向液体提供高的能量传输。这些小的驱动器行程使得泵的设计是不现实的。而且,高性能泵使用被动阀门,这些阀门开启和关闭每个泵动循环,以提供最佳泵动效率。这些泵阀门可能不提供在千赫-兆赫(KHz-MHz)频率范围内的整体压电(bulk-piezo)驱动器的需要性能。Other types of piezoelectric actuators, which depend on the overall flexible properties of the piezoelectric material, can provide high energy transfer to liquids by operating at very high frequencies but with smaller strokes. These small drive strokes make the pump design impractical. Also, high-performance pumps use passive valves that open and close each pumping cycle to provide optimum pumping efficiency. These pump valves may not provide the required performance of bulk-piezo drives in the kilohertz-megahertz (KHz-MHz) frequency range.
目前,对于更小流体装置需求正在增加,采用目前的压电泵技术,不可能实现这些装置。或者与这些装置的使用功能相一致。例如需要能够在较高压头下和在更小尺寸的单元中提供较高比流率(即流体体积流量除以泵的实体体积)的泵和压缩机。需要高性能MESO尺寸的泵的应用示例包括用于便携式电子装置的燃料电池的小型化,这种便携式电子装置例如是便携式计算装置、掌中电脑(PDA)和移动电话(cellphone),该系统能够安装在电路卡上并为微处理器和其他半导体电子设备提供冷却的机内热管理系统、和不必卧床病人的便携式个人医疗装备。这样,需要一种紧凑的经济上可行的压电泵,它至少克服了当前压电泵的一些缺陷。Currently, there is an increasing demand for smaller fluidic devices, which are not possible with current piezoelectric pump technology. Or consistent with the use and function of these devices. For example, there is a need for pumps and compressors that can provide higher specific flow rates (ie, fluid volume flow divided by the pump's physical volume) at higher heads and in smaller sized units. Examples of applications requiring high-performance MESO-sized pumps include the miniaturization of fuel cells for portable electronic devices such as portable computing devices, PDAs, and cellphones, where the system can mount On-board thermal management systems that provide cooling for microprocessors and other semiconductor electronics on circuit cards, and portable personal medical equipment for ambulatory patients. Thus, there is a need for a compact, economically viable piezoelectric pump that overcomes at least some of the deficiencies of current piezoelectric pumps.
发明内容Contents of the invention
为了满足这些需求并克服前述工作限制,本发明提供一种流体能量传输装置,它利用一种新的反应驱动的驱动器在系统共振下或接近于系统共振来驱动膜片流体装置,例如泵和压缩机。根据一个实施例的流体能量传输装置,其包括一个流体腔,流体腔具有内壁和开口,内壁成形以形成一个腔容积,一个流体膜片刚性连接到开口的周边,一个弯曲器型驱动器连接到流体膜片。根据本发明的一些实施例,反应驱动的能量传输装置设置有一个用于驱动流体膜片的位移的独特系统,该膜片的位移能够比以前压电膜片的位移大一个数量级。To meet these needs and overcome the aforementioned operational limitations, the present invention provides a fluidic energy transfer device that utilizes a novel reaction-driven driver to drive diaphragm fluidic devices such as pumps and compressors at or near system resonance machine. A fluidic energy transfer device according to one embodiment comprising a fluid chamber having an inner wall and an opening, the inner wall being shaped to define a chamber volume, a fluidic membrane rigidly connected to the periphery of the opening, a bender type actuator connected to the fluidic Diaphragm. According to some embodiments of the present invention, the reaction-driven energy transfer device is provided with a unique system for driving the displacement of the fluidic diaphragm, which can be an order of magnitude larger than that of previous piezoelectric diaphragms.
根据本发明的大多数实施例的反应驱动系统能够使得例如MESO尺寸泵和压缩机和合成喷射器等装置具有高性能。根据本发明的一些实施例的泵和压缩机可以包括调节端口和阀门,它们允许低压流体进入和高压流体响应周期性的压缩离开压缩腔。反应驱动系统可以使用各种各样的例如单一形态、两种形态和多层PZT弯曲器的弯曲器驱动器,例如PVDF、结晶材料、磁致伸缩材料、电激活聚合物转换器(EPTs)、电致伸缩聚合物和各种“智能材料”例如形状记忆合金(SMA)和PZT膜片(RFD)驱动器的压电聚合物的复合材料以及辐射(radial)场。Reaction driven systems according to most embodiments of the invention enable high performance in devices such as MESO sized pumps and compressors and synthetic ejectors. Pumps and compressors according to some embodiments of the invention may include regulating ports and valves that allow low pressure fluid to enter and high pressure fluid to exit the compression chamber in response to periodic compression. Reaction-driven systems can use a wide variety of bender actuators such as single-morphology, dual-morphology, and multilayer PZT benders, such as PVDF, crystalline materials, magnetostrictive materials, electroactive polymer transducers (EPTs), electric Composites of stretchable polymers and various "smart materials" such as shape memory alloys (SMA) and piezoelectric polymers of PZT diaphragm (RFD) actuators and radial fields.
根据本发明的流体装置在一个驱动频率下运行,该频率允许能量在系统的机械共振中贮存,由此提供膜片位移,该位移比弯曲器驱动器的实际弯曲位移更大并且典型地大很多。系统共振可以根据膜片、弯曲器驱动器和有关部件的有效运动质量和流体、流体膜片和其他可选的机械弹簧弹性刚度和/或其他影响共振频率的部件/环境来确定。Fluidic devices according to the present invention operate at a drive frequency that allows energy to be stored in the mechanical resonance of the system, thereby providing a diaphragm displacement that is greater and typically much greater than the actual bending displacement of the bender drive. System resonance may be determined from the effective moving mass of the diaphragm, bender drive and associated components and the fluid, fluid diaphragm and other optional mechanical spring spring stiffness and/or other components/environment that affect the resonance frequency.
根据本发明的一些实施例的泵可以用在各种各样的应用中,只是作为例子,这些应用包括气体例如空气、碳氢化合物、工艺过程气体、高纯度气体、有害和腐蚀气体的一般压缩,和用于冷藏、空调和带液体的热泵的相变致冷剂的压缩,和其他专业蒸汽压缩或相变热传输应用。根据本发明的一些实施例的泵也可以泵送液体例如燃料、水、油、润滑剂、冷却剂、溶剂、水力流体、毒性或活性化学物性,这取决于具体的泵设计。本发明的泵也能够为气体或液体操作提供可变的容量。Pumps according to some embodiments of the present invention may be used in a wide variety of applications including, by way of example only, the general compression of gases such as air, hydrocarbons, process gases, high purity gases, noxious and corrosive gases , and compression of phase change refrigerants for refrigeration, air conditioning and heat pumps with liquids, and other specialized vapor compression or phase change heat transfer applications. Pumps according to some embodiments of the invention may also pump liquids such as fuels, water, oils, lubricants, coolants, solvents, hydraulic fluids, toxic or reactive chemicals, depending on the specific pump design. The pump of the present invention can also provide variable capacity for gas or liquid operation.
更特别地,本发明的示范实施例包括一个流体腔,流体腔具有内壁和一个开口,内壁成形以便形成一个腔容积。流体膜片刚性连接到流体腔中的开口周边,膜片具有一个柔性部分,它能够相对于外周边在多个第一位置和多个第二位置之间运动,第一和第二位置与流体腔内壁具有变化的距离。该腔充有流体,流体包括系统的载荷部分。流体腔内的流体包括一个弹簧,流体膜片也包括一个弹簧。具有连接点的弯曲器驱动器连接到流体膜片。质量-弹簧机械共振频率由弯曲器驱动器和流体膜片的组合有效运动质量和由机械弹簧和气体弹簧来确定,弯曲器驱动器可在驱动频率下运行,以便在质量-弹簧机械共振中贮存能量和提供流体膜片的位移,该位移大于(和在许多情况中远大于)弯曲器驱动器的弯曲位移,以致增加的能量被传输到流体腔内的流体载荷上。More particularly, exemplary embodiments of the present invention include a fluid chamber having an inner wall and an opening, the inner wall being shaped to define a chamber volume. The fluid diaphragm is rigidly connected to the periphery of the opening in the fluid chamber, the diaphragm has a flexible portion that is movable relative to the outer periphery between a plurality of first positions and a plurality of second positions, the first and second positions being in contact with the fluid The lumen walls have varying distances. The cavity is filled with fluid, which comprises the payload portion of the system. The fluid in the fluid chamber includes a spring, and the fluid diaphragm also includes a spring. A bender driver with a connection point is connected to the fluid diaphragm. The mass-spring mechanical resonance frequency is determined by the combined effective moving mass of the bender drive and the fluid diaphragm and by the mechanical and gas springs, the bender drive can be operated at the drive frequency to store energy in the mass-spring mechanical resonance and A displacement of the fluid diaphragm is provided that is greater (and in many cases much greater) than the bending displacement of the bender driver such that increased energy is transferred to the fluid load within the fluid chamber.
在本发明的另一个实施例中,有一种流体能量传输装置,其包括:In another embodiment of the present invention, there is a fluid energy transfer device comprising:
流体腔,其适合于接收预定的流体,流体腔包括流体膜片,流体膜片基本上在膜片的周边刚性地连接到流体腔的结构,其中膜片包括一个柔性部分,它适合于相对于被连接的该结构的周边在第一位置和第二位置之间运动;和A fluid chamber adapted to receive a predetermined fluid, the fluid chamber including a fluid diaphragm rigidly connected to the structure of the fluid chamber substantially at the periphery of the diaphragm, wherein the diaphragm includes a flexible portion adapted to the perimeter of the structure being connected moves between a first position and a second position; and
弯曲器驱动器;其中bender drive; where
弯曲器驱动器连接到流体膜片以形成弯曲器-膜片组件;a bender driver connected to the fluid diaphragm to form a bender-diaphragm assembly;
其中弯曲器驱动器适合于在一个频率下弯曲,以致弯曲器-膜片组件将基本上只由于驱动器弯曲的频率而在第一位置和第二位置之间运动,和wherein the bender driver is adapted to bend at a frequency such that the bender-diaphragm assembly will move between the first position and the second position substantially only due to the frequency at which the driver bends, and
其中在第一位置和第二位置之间的距离基本上大于驱动器峰值到峰值弯曲的距离,典型的是比峰值到峰值弯曲的距离大约大一个数量级。Wherein the distance between the first position and the second position is substantially greater than the distance of the peak-to-peak bend of the driver, typically about an order of magnitude greater than the distance of the peak-to-peak bend.
在本发明的另一个实施例中,有一种流体能量传输装置,其包括:In another embodiment of the present invention, there is a fluid energy transfer device comprising:
流体腔,其适合于接收预定的流体,流体腔包括流体膜片,流体膜片基本上在膜片的周边刚性地连接到流体腔的结构,其中膜片包括一个柔性部分,它适合于相对于被连接的结构在第一位置和第二位置之间运动;和A fluid chamber adapted to receive a predetermined fluid, the fluid chamber including a fluid diaphragm rigidly connected to the structure of the fluid chamber substantially at the periphery of the diaphragm, wherein the diaphragm includes a flexible portion adapted to the connected structure moves between a first position and a second position; and
弯曲器驱动器;bender drive;
其中弯曲器驱动器至少是下列情况之一:(i)直接连接到流体膜片和(ii)直接联接到流体膜片,wherein the bender drive is at least one of: (i) directly connected to the fluid diaphragm and (ii) directly coupled to the fluid diaphragm,
其中弯曲器不与除膜片之外的泵的任何其他部件有效地连接和联接,和where the bender is not operatively connected and coupled to any other part of the pump other than the diaphragm, and
其中弯曲器选择地连接到适合于将电传导到弯曲器的电导体。Wherein the bender is selectively connected to an electrical conductor adapted to conduct electricity to the bender.
在本发明的另一个实施例中,有一种流体能量传输装置,其包括:In another embodiment of the present invention, there is a fluid energy transfer device comprising:
流体腔,其具有内壁和开口,所述内壁成形以便形成一个腔容积;a fluid cavity having an inner wall and an opening, the inner wall shaped to form a cavity volume;
流体膜片,其刚性地连接到流体腔中开口的周边,膜片具有一个柔性部分,它能够相对外周边在多个第一位置和多个第二位置之间运动,第一和第二位置与流体腔内壁有变化的距离;A fluid diaphragm rigidly connected to the periphery of the opening in the fluid chamber, the diaphragm having a flexible portion movable relative to the outer periphery between a plurality of first positions and a plurality of second positions, the first and second positions a varying distance from the inner wall of the fluid chamber;
流体,其在流体腔内;a fluid within the fluid chamber;
流体弹簧,其由流体腔内的流体构成;a fluid spring comprised of fluid within the fluid chamber;
机械弹簧,其包括膜片;a mechanical spring comprising a diaphragm;
弯曲器驱动器,其连接点连接到流体膜片;A bender driver with a connection point to the fluid diaphragm;
其中质量-弹簧机械共振频率由弯曲器驱动器和膜片的组合有效运动质量和由机械弹簧和气体弹簧来确定,弯曲器驱动器是在驱动频率下运行,以便在质量-弹簧机械共振中贮存能量,由此将能量传输到流体腔内的流体。where the mass-spring mechanical resonance frequency is determined by the combined effective moving mass of the bender drive and diaphragm and by the mechanical and gas springs, the bender drive is operated at the drive frequency to store energy in the mass-spring mechanical resonance, Energy is thereby transferred to the fluid within the fluid cavity.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,其中弯曲器驱动器与流体膜片的连接点包括动力输出点,反应质量连接到弯曲器驱动器上的一点,该点以与动力输出点相反的时间相位运动。In another embodiment of the invention there is a fluid transfer device as described above and/or below, wherein the connection point of the bender drive to the fluidic membrane comprises a power take-off point and the reactive mass is connected to the bender drive , which moves in the opposite time phase to the power output point.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,其中在弯曲器驱动器和流体膜片之间的连接点还包括一个调节弹簧,以致由弯曲器驱动器形成的力通过调节弹簧传递到流体膜片,调节弹簧的刚度被选择以改善机械动力因数。In another embodiment of the present invention, there is a fluid transfer device as described above and/or below, wherein the connection point between the bender driver and the fluid diaphragm further includes an adjustment spring such that the bender The force developed by the driver is transferred to the fluid diaphragm via an adjustment spring whose stiffness is chosen to improve the mechanical power factor.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,其中轴向稳定构件的第一点连接到隔离块,而隔离块的另一端连接到流体膜片的运动部分,轴向稳定部件的第二点连接到流体腔的外面,由此轴向稳定部件轴向偏离流体膜片的平面,从而允许运动质量轴向运动但是阻碍运动质量横向运动。In another embodiment of the invention there is a fluid transfer device as described above and/or below, wherein a first point of the axial stabilizing member is connected to a spacer block and the other end of the spacer block is connected to the fluid membrane The moving part of the diaphragm, the second point of the axial stabilizing member is connected to the outside of the fluid chamber, whereby the axial stabilizing member is axially offset from the plane of the fluid diaphragm, thereby allowing the moving mass to move axially but hindering the moving mass to move laterally.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,其中弯曲器驱动器包括一个压电陶瓷弯曲器驱动器。In another embodiment of the present invention there is a fluid transport device as described above and/or below, wherein the bender actuator comprises a piezoceramic bender actuator.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,其中弯曲器驱动器包括压电聚合物复合材料的弯曲器驱动器。In another embodiment of the present invention there is a fluid transfer device as described above and/or below, wherein the bender actuator comprises a piezoelectric polymer composite bender actuator.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,其中弯曲器驱动器包括磁致伸缩的弯曲器驱动器。In another embodiment of the present invention there is a fluid transfer device as described above and/or below, wherein the bender drive comprises a magnetostrictive bender drive.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,其中弯曲器驱动器包括辐射场PZT膜片弯曲器驱动器。In another embodiment of the present invention there is a fluid transport device as described above and/or below, wherein the bender actuator comprises a radiated field PZT diaphragm bender actuator.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,其中流体腔的壁还包括合成喷射端口,它将流体腔内部流体连通到流体腔外部,由此流体腔内的压力在驱动频率下波动,从而形成在流体腔外面的合成喷射,使流体沿合成喷射端口的圆柱轴线流动离开流体腔。In another embodiment of the present invention, there is a fluid transfer device as described above and/or below, wherein the wall of the fluid chamber further comprises a synthetic jet port, which fluidly communicates the interior of the fluid chamber to the exterior of the fluid chamber, by The pressure within the fluid chamber fluctuates at the drive frequency to form a synthetic jet outside the fluid chamber, causing fluid to flow out of the fluid chamber along the cylindrical axis of the synthetic jet port.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,还包括:In another embodiment of the present invention, there is a fluid transfer device as described above and/or below, further comprising:
和流体腔连通的输入端口,以便使流体流进流体腔;an input port in communication with the fluid chamber for allowing fluid to flow into the fluid chamber;
和流体腔连通的输出端口,以便使流体流出流体腔。An output port in communication with the fluid chamber for allowing fluid to flow out of the fluid chamber.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,其中输入端口具有流动校正断面设计,以提供流体流进流体腔,输出端口具有流动校正断面设计,以提供流体流出流体腔。In another embodiment of the present invention, there is a fluid transfer device as described above and/or below, wherein the input port has a flow-corrected cross-sectional design to provide fluid flow into the fluid chamber, and the output port has a flow-corrected cross-sectional design , to provide fluid flow out of the fluid cavity.
由此,流体膜片的位移形成在驱动频率下的流体内的压力波动,由此使流体通过输入端口流进流体腔和通过输出端口流出流体腔。Thus, displacement of the fluid diaphragm creates pressure fluctuations in the fluid at the drive frequency, thereby causing fluid to flow into the fluid cavity through the input port and out of the fluid cavity through the output port.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种流体传输装置,其中弯曲器驱动器包括压电陶瓷弯曲器驱动器。In another embodiment of the present invention there is a fluid transfer device as described above and/or below, wherein the bender actuator comprises a piezoelectric ceramic bender actuator.
在本发明的另一个实施例中,存在一种泵,其包括:In another embodiment of the invention there is a pump comprising:
流体腔,其具有内壁和开口,内壁成形以便形成一个腔容积;a fluid cavity having an inner wall and an opening, the inner wall shaped to define a cavity volume;
流体膜片,其刚性地连接到流体腔中的开口周边,流体膜片具有一个柔性部分,它能够相对于外周边在多个第一位置和多个第二位置之间运动,第一和第二位置与流体腔内壁具有变化的距离;A fluid diaphragm rigidly connected to the periphery of the opening in the fluid cavity, the fluid diaphragm having a flexible portion movable relative to the outer periphery between a plurality of first positions and a plurality of second positions, the first and second The second position has a varying distance from the inner wall of the fluid chamber;
输入端口,其和流体腔连通以便使流体流进流体腔;an input port in communication with the fluid chamber for allowing fluid to flow into the fluid chamber;
输出端口,其和流体腔连通,以便使流体流出流体腔;an output port in communication with the fluid chamber for allowing fluid to flow out of the fluid chamber;
流体,其在流体腔内;a fluid within the fluid chamber;
流体弹簧,由在流体腔内的流体构成;a fluid spring comprised of fluid within the fluid chamber;
机械弹簧,其包括膜片;a mechanical spring comprising a diaphragm;
弯曲器驱动器,其连接点连接到流体腔;a bender driver with a connection point connected to the fluid chamber;
其中质量-弹簧机械共振频率由弯曲器驱动器和膜片的组合有效运动质量和由机械弹簧和气体弹簧来确定,其中弯曲器驱动器可在驱动频率下运行,以致在质量-弹簧机械共振中贮存能量,从而将能量传输到流体腔内的流体。where the mass-spring mechanical resonance frequency is determined by the combined effective moving mass of the bender drive and diaphragm and by the mechanical and gas springs, where the bender drive can be operated at the drive frequency such that energy is stored in the mass-spring mechanical resonance , thereby transferring energy to the fluid in the fluid cavity.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中弯曲器驱动器与流体膜片的连接点包括动力输出点,反应质量连接到弯曲器驱动器上的一点,该点以与动力输出点不同的时间相位运动。In another embodiment of the invention there is a pump as described above and/or below, wherein the point of connection of the bender drive to the fluid membrane comprises a power take-off point at which the reactive mass is connected to the bender drive , the point moves with a different time phase than the PTO point.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中在弯曲器驱动器和流体膜片之间的连接点还包括调节弹簧,这样由弯曲器驱动器形成的力通过调节弹簧传递到流体膜片,调节弹簧的刚度被选择成改善机械动力因数。In another embodiment of the invention there is a pump as described above and/or below, wherein the connection point between the bender drive and the fluid diaphragm further comprises an adjustment spring such that the The force is transmitted to the fluid diaphragm through an adjustment spring whose stiffness is chosen to improve the mechanical power factor.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中轴向稳定构件的第一点连接到隔离块,而隔离块的另一端连接到流体膜片的运动部分,轴向稳定部件的第二点连接到流体腔的外面,由此轴向稳定部件轴向偏离流体膜片的平面,从而允许运动质量轴向运动但是阻碍运动质量横向运动。In another embodiment of the invention there is a pump as described above and/or below, wherein the first point of the axial stabilization member is connected to the spacer block and the other end of the spacer block is connected to the fluid diaphragm The moving part, the second point of the axial stabilizing member is connected to the outside of the fluid chamber, whereby the axial stabilizing member is axially offset from the plane of the fluid diaphragm, thereby allowing the moving mass to move axially but hindering the moving mass to move laterally.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中弯曲器驱动器包括压电陶瓷弯曲器驱动器。In another embodiment of the present invention there is a pump as described above and/or below, wherein the bender drive comprises a piezoelectric ceramic bender drive.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中弯曲器驱动器包括压电聚合物合成材料的弯曲器驱动器。In another embodiment of the present invention there is a pump as described above and/or below, wherein the bender drive comprises a piezoelectric polymer composite bender drive.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中弯曲器驱动器包括磁致伸缩的弯曲器驱动器。In another embodiment of the invention there is a pump as described above and/or below, wherein the bender drive comprises a magnetostrictive bender drive.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中弯曲器驱动器包括辐射场PZT膜片弯曲器驱动器。In another embodiment of the invention there is a pump as described above and/or below, wherein the bender drive comprises a radiated field PZT diaphragm bender drive.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,还包括控制装置,控制装置和弯曲器驱动器操作上连接,以便改变驱动频率来响应质量-弹簧机械共振频率的变化。In another embodiment of the present invention there is a pump as described above and/or below, further comprising control means operatively connected to the bender drive to vary the drive frequency in response to mass-spring mechanical resonance frequency changes.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中驱动频率等于质量-弹簧机械共振频率。In another embodiment of the invention there is a pump as described above and/or below, wherein the drive frequency is equal to the mass-spring mechanical resonance frequency.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中控制装置还包括:In another embodiment of the present invention, there is a pump as described above and/or below, wherein the control device further comprises:
一个用于测量所选择的泵工作状态的装置;a device for measuring the working condition of the selected pump;
一个用于改变马达的驱动频率以响应所测量的工作状态以使被测量的工作状态最大化的装置。A means for varying the drive frequency of the motor in response to the measured operating condition to maximize the measured operating condition.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中工作状态包括传送到泵的电功率。In another embodiment of the invention there is a pump as described above and/or below, wherein the operating conditions include electrical power delivered to the pump.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中流体是气体。In another embodiment of the invention there is a pump as described above and/or below, wherein the fluid is a gas.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中气体是从包括空气、碳氢化合物、工艺过程气体、高纯气体、有害和腐蚀气体、毒性流体、高纯流体、反应性流体和环境有害流体的组中选择的。In another embodiment of the invention there is a pump as above and/or below, wherein the gas is obtained from air, hydrocarbons, process gases, high purity gases, harmful and corrosive gases, toxic fluids , high-purity fluids, reactive fluids, and environmentally hazardous fluids are selected from the group.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中流体是液体。In another embodiment of the invention there is a pump as described above and/or below, wherein the fluid is a liquid.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中液体是从包括燃料、水、油、润滑剂、冷却剂、溶剂、水力流体、毒性或反应性化学物质的组中选择的。In another embodiment of the present invention there is a pump as described above and/or below, wherein the liquid is derived from fuels, water, oils, lubricants, coolants, solvents, hydraulic fluids, toxic or reactive The group of chemicals selected.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中流体膜片的第一位置靠近在各个压缩行程顶端处流体腔的壁,第二位置在各个输入行程的末端处远离流体腔的壁,这里第一和第二接近位置位于离开流体腔壁的不同距离处,这里第一和第二远离位置位于离流体腔壁的不同距离处,其中膜片在操作上可以从在第一接近和远离位置之间的振动运动到在第二接近和远离位置之间的振动,以响应来改变弯曲器驱动器的驱动力。In another embodiment of the invention there is a pump as described above and/or below wherein the first position of the fluid diaphragm is close to the wall of the fluid chamber at the top of each compression stroke and the second position is at each input The end of the stroke is away from the wall of the fluid chamber, where the first and second approach positions are located at different distances from the wall of the fluid chamber, where the first and second remote positions are located at different distances from the wall of the fluid chamber, wherein the diaphragm is at a different distance from the wall of the fluid chamber Operationally movable from an oscillating movement between a first approximated and a distanced position to an oscillating between a second approximated and distanced position, in response to varying the drive force of the bender drive.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中改变弯曲器驱动器的驱动力在操作上使膜片从在第一接近和远离位置之间的振动运动到在第二接近和远离位置之间的振动,由此提供流体的流量的改变。In another embodiment of the invention there is a pump as described above and/or below, wherein varying the drive force of the bender drive is operative to cause the diaphragm to oscillate from between a first approached and a distanced position The movement to vibration is between the second proximal and distal positions, thereby providing a change in flow of fluid.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中输入端口具有流动校正断面设计以提供流进流体腔,输出端口具有流动校正断面设计以提供流出流体腔。In another embodiment of the invention there is a pump as described above and/or below, wherein the input port has a flow-corrected cross-section design to provide flow into the fluid chamber and the output port has a flow-correct cross-section design to provide outflow fluid cavity.
由此,流体膜片的位移形成在驱动频率下流体内的压力波动,从而使流体通过输入端口流进流体腔,通过输出端口流出流体腔。Thus, displacement of the fluid diaphragm creates pressure fluctuations in the fluid at the drive frequency, causing fluid to flow into the fluid cavity through the input port and out of the fluid cavity through the output port.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中泵还包括一个操作上连接到输入端口的入口阀和一个操作上连接到输出端口的出口阀,入口阀和出口阀都具有预定的刚度和阀门工作循环,其中入口阀在关闭位置阻止流过输入端口,在开启位置允许流过输入端口,出口阀在关闭位置阻止流过输出端口,在开启位置允许流过输出端口,出口阀和入口阀的刚度和尺寸被选择成调节入口阀和出口阀,以致入口阀和出口阀的工作循环的定时是与流体流的填充和/或通过输入端口的流体流和通过输出端口的流体流的排放以及压缩腔内的压力循环的定时相协调的,以提供泵内流体在一个方向上的净流动。In another embodiment of the present invention, there is a pump as above and/or below, wherein the pump further comprises an inlet valve operatively connected to the input port and an outlet valve operatively connected to the output port, Both the inlet and outlet valves have a predetermined stiffness and valve duty cycle, where the inlet valve blocks flow through the input port in the closed position and allows flow through the input port in the open position, and the outlet valve blocks flow through the output port in the closed position and in the open position Allowing flow through the output port, the stiffness and size of the outlet valve and inlet valve are selected to adjust the inlet valve and outlet valve so that the timing of the duty cycle of the inlet valve and outlet valve is related to the filling of fluid flow and/or the fluid passing through the input port The timing of the discharge of the flow and the discharge of the fluid flow through the output port and the pressure cycle in the compression chamber is coordinated to provide a net flow of fluid in the pump in one direction.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中入口阀是簧片阀和出口阀是簧片阀。In another embodiment of the invention there is a pump as described above and/or below, wherein the inlet valve is a reed valve and the outlet valve is a reed valve.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中入口簧片阀和出口簧片阀都具有弹簧刚度和质量,它们适合于按正确顺序开启和关闭,以响应流体腔内波动的流体压力,由此正确的阀门定时被维持而不需阀门止挡。In another embodiment of the invention there is a pump as described above and/or below wherein both the inlet and outlet reed valves have spring rates and masses adapted to open and close in the correct order , in response to fluctuating fluid pressure within the fluid chamber, whereby correct valve timing is maintained without valve stops.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中流体膜片还包括一个以平面方式运动的平坦部分,其中输入端口和入口阀位于膜片的平坦部分上,由此提供入口阀的驱动。In another embodiment of the invention there is a pump as described above and/or below, wherein the fluidic diaphragm further comprises a planar portion that moves in a planar manner, wherein the input port and inlet valve are located on the flat portion of the diaphragm In part, actuation of the inlet valve is thereby provided.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中流体膜片还包括一个以平面方式运动的平坦部分,其中输出端口和出口阀位于膜片的平坦部分上,由此提供出口阀的驱动。In another embodiment of the invention there is a pump as described above and/or below, wherein the fluid diaphragm further comprises a flat portion that moves in a planar manner, wherein the output port and outlet valve are located on the flat portion of the diaphragm In part, actuation of the outlet valve is thereby provided.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中泵还包括:In another embodiment of the present invention, there is a pump as described above and/or below, wherein the pump further comprises:
多个输入端口,其和流体腔连通以便使流体流进流体腔;a plurality of input ports in communication with the fluid chamber for allowing fluid to flow into the fluid chamber;
多个输出端口,其和流体腔连通以便使流体流出流体腔。A plurality of output ports communicates with the fluid chamber for allowing fluid to flow out of the fluid chamber.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中流体腔壁还包括一个径向成型的壁部分,膜片的柔性部分自由挠曲以在形状上大致符合所述径向成型的壁部分,以便当运动部分循环到多个第一位置时使流体腔的余隙容积最小。In another embodiment of the invention there is a pump as above and/or below, wherein the fluid chamber wall further comprises a radially shaped wall portion, the flexible portion of the diaphragm is free to flex to shape The radially profiled wall portion is substantially conformed to minimize the clearance volume of the fluid chamber as the moving portion cycles to a plurality of first positions.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中流体膜片还包括在流体腔内的第一面和在流体腔内部外侧的第二面,泵还包括与膜片第二面流体连通的外腔,在流体腔和外腔之间延伸并与它们连通的孔,该孔的几何形状被确定尺寸和选择,以使足够量的流体通过该孔在流体腔和外腔之间流通,以便使膜片的第一和第二面上的压力相等。In another embodiment of the present invention, there is a pump as above and/or below, wherein the fluid diaphragm further comprises a first face inside the fluid chamber and a second face outside the interior of the fluid chamber, the pump Also comprising an outer lumen in fluid communication with the second face of the diaphragm, an orifice extending between and communicating with the fluid lumen and the outer lumen, the geometry of the orifice being sized and selected to allow a sufficient amount of fluid to pass through the orifice Communication is between the fluid chamber and the outer chamber to equalize the pressure on the first and second faces of the diaphragm.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中所述孔定位在膜片上。In another embodiment of the present invention there is a pump as described above and/or below, wherein said holes are positioned on the diaphragm.
在本发明的另一个实施例中,有一种泵,其包括:In another embodiment of the invention, there is a pump comprising:
流体腔,其具有内壁和第一以及第二开口,所述内壁成形以便形成一个腔容积;a fluid cavity having an inner wall and first and second openings, the inner wall shaped to form a cavity volume;
第一流体膜片,其刚性地连接到流体腔内第一开口的周边,第一流体膜片具有一个柔性部分,它能够相对于外周边在多个第一位置和多个第二位置之间运动,第一和第二位置离流体腔内壁具有变化的距离。A first fluid membrane rigidly connected to the periphery of the first opening in the fluid chamber, the first fluid membrane having a flexible portion capable of being positioned between a plurality of first positions and a plurality of second positions relative to the outer periphery motion, the first and second positions have varying distances from the inner wall of the fluid chamber.
第二流体膜片刚性地连接到流体腔中第一开口的周边,第二流体膜片具有一个柔性部分,它能够相对于外周边在多个第一位置和多个第二位置之间运动,第一和第二位置离流体腔内壁具有变化距离。a second fluid membrane rigidly connected to the periphery of the first opening in the fluid chamber, the second fluid membrane having a flexible portion movable relative to the outer periphery between a plurality of first positions and a plurality of second positions, The first and second positions have varying distances from the inner wall of the fluid chamber.
至少一个输入端口,其与流体腔连通,以便使流体流进流体腔;at least one input port in communication with the fluid chamber for allowing fluid to flow into the fluid chamber;
至少一个输出端口,其与流体腔连通,以便使流体流出流体腔;at least one output port in communication with the fluid chamber for allowing fluid to flow out of the fluid chamber;
流体,其在流体腔内;a fluid within the fluid cavity;
流体弹簧,其由在流体腔内的流体构成;a fluid spring comprised of fluid within the fluid chamber;
第一机械弹簧,其包括第一膜片;a first mechanical spring including a first diaphragm;
第二机械弹簧,其包括第二膜片;a second mechanical spring including a second diaphragm;
第一弯曲器驱动器,其具有连接到第一流体膜片的第一连接点;a first bender driver having a first connection point connected to the first fluid membrane;
第二弯曲器驱动器,其具有连接到第二流体膜片的第二连接点;a second bender driver having a second connection point connected to a second fluidic membrane;
其中质量-弹簧机械共振频率由第一弯曲器驱动器和第一膜片的组合有效运动质量和由第一机械弹簧和气体弹簧确定,以及由第二弯曲器驱动器和第二膜片的组合有效运动质量和由第二机械弹簧和气体弹簧确定,其中第一和第二弯曲器驱动器可在同一驱动频率下运行,以便使第一和第二膜片同时经过它们各自的压缩和输出行程,从而在质量-弹簧机械共振中贮存能量并使能量传输到流体腔内的流体上。where the mass-spring mechanical resonance frequency is determined by the combined effective motion mass of the first bender drive and first diaphragm and by the combined effective motion of the first mechanical spring and gas spring, and by the combined effective motion of the second bender drive and second diaphragm The mass sum is determined by a second mechanical spring and a gas spring, wherein the first and second bender drives can be operated at the same drive frequency to cause the first and second diaphragms to go through their respective compression and output strokes simultaneously to Energy is stored in the mass-spring mechanical resonance and transferred to the fluid in the fluid chamber.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中第一弯曲器驱动器与第一流体膜片的连接点包括第一动力输出点,其中第一反应质量连接到第一弯曲器驱动器上的一点,该点以与第一动力输出点不同的时间相位运动,其中第二弯曲器驱动器与第二流体膜片的连接点包括第二动力输出点,其中第二反应质量连接到第二弯曲器驱动器上的一点,该点以与第二动力输出点不同的时间相位运动。In another embodiment of the invention there is a pump as described above and/or below, wherein the connection point of the first bender drive to the first fluid diaphragm comprises a first power take-off point, wherein the first reaction The mass is connected to a point on the first bender drive that moves at a different time phase than the first PTO point, wherein the connection point of the second bender drive to the second fluidic membrane comprises the second PTO point, wherein The second reactive mass is connected to a point on the second bender drive that moves in a different time phase than the second power take-off point.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中在第一弯曲器驱动器和第一流体膜片之间的第一连接点还包括第一调节弹簧,以致由第一弯曲器驱动器形成的力通过第一调节弹簧传递到第一流体膜片,其中第一调节弹簧的刚度被选择成改善第一弯曲器驱动器的机械动力因数,在第二弯曲器驱动器和第二流体膜片之间的第二连接点还包括第二调节弹簧,以致由第二弯曲器驱动器形成的力通过第二调节弹簧传递到第二流体膜片,其中第二调节弹簧的刚度被选择成改善第二弯曲器驱动器的机械动力因数。In another embodiment of the invention there is a pump as described above and/or below, wherein the first connection point between the first bender drive and the first fluid diaphragm further comprises a first adjustment spring , so that the force developed by the first bender drive is transmitted to the first fluid diaphragm through the first adjustment spring, wherein the stiffness of the first adjustment spring is selected to improve the mechanical power factor of the first bender drive, and in the second bender The second connection point between the driver and the second fluid diaphragm also includes a second adjustment spring, so that the force formed by the second bender driver is transmitted to the second fluid diaphragm through the second adjustment spring, wherein the second adjustment spring The stiffness is selected to improve the mechanical power factor of the second bender drive.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中第一轴向稳定构件的第一点连接到第一隔离块,而第一隔离块的另一端连接到第一流体膜片的运动部分,第一轴向稳定部件的第二点连接到流体腔的外面,其中第二轴向稳定构件的第一点连接到第二隔离块,而第二隔离块的另一端连接到第二流体膜片的运动部分,第二轴向稳定部件的第二点连接到流体腔的外面。In another embodiment of the invention there is a pump as described above and/or below, wherein the first point of the first axial stabilization member is connected to the first spacer block and the other end of the first spacer block Connected to the moving part of the first fluid diaphragm, the second point of the first axial stabilizing member is connected to the outside of the fluid chamber, wherein the first point of the second axial stabilizing member is connected to the second spacer block, and the second spacer The other end of the block is connected to the moving part of the second fluid diaphragm, and the second point of the second axial stabilization member is connected to the outside of the fluid chamber.
由此,第一和第二轴向稳定部件在轴向上偏离它们各自的第一和第二流体膜片的平面,从而允许运动质量轴向运动,阻碍运动质量横向运动。Thereby, the first and second axially stabilizing members are axially offset from the plane of their respective first and second fluid membranes, thereby permitting axial movement of the moving mass and resisting lateral movement of the moving mass.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中第一弯曲器驱动器包括一个压电陶瓷弯曲器驱动器,第二弯曲器驱动器包括一个压电陶瓷弯曲器驱动器。In another embodiment of the present invention there is a pump as described above and/or below, wherein the first bender actuator comprises a piezoceramic bender actuator and the second bender actuator comprises a piezoceramic bender drive.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中第一弯曲器驱动器包括一个压电聚合物合成材料的弯曲器驱动器,第二弯曲器驱动器包括一个压电聚合物合成材料的弯曲器驱动器。In another embodiment of the invention there is a pump as described above and/or below, wherein the first bender actuator comprises a piezoelectric polymer composite bender actuator and the second bender actuator comprises a Bender actuators in piezoelectric polymer composites.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中第一弯曲器驱动器包括一个磁致伸缩弯曲器驱动器,第二弯曲器驱动器包括一个磁致伸缩弯曲器驱动器。In another embodiment of the invention there is a pump as described above and/or below, wherein the first bender drive comprises a magnetostrictive bender drive and the second bender drive comprises a magnetostrictive bender drive. drive.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中第一弯曲器驱动器包括一个辐射场PZT膜片弯曲器驱动器,第二弯曲器驱动器包括一个辐射场PZT膜片弯曲器驱动器。In another embodiment of the invention there is a pump as described above and/or below wherein the first bender drive comprises a radiated field PZT diaphragm bender drive and the second bender drive comprises a radiated field PZT diaphragm bender driver.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,还包括控制装置,控制装置与第一和第二弯曲器驱动器操作上连接,以便改变驱动频率以响应质量-弹簧机械共振频率的变化。In another embodiment of the present invention there is a pump as described above and/or below, further comprising control means operatively connected to the first and second bender drives for varying the drive frequency in response to Variation of mass-spring mechanical resonance frequency.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中驱动频率等于质量-弹簧机械共振频率。In another embodiment of the invention there is a pump as described above and/or below, wherein the drive frequency is equal to the mass-spring mechanical resonance frequency.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中控制装置还包括:In another embodiment of the present invention, there is a pump as described above and/or below, wherein the control device further comprises:
用于测量泵的被选择的工作状态的装置;means for measuring selected operating states of the pump;
用于改变马达的驱动频率以响应被测量的工作状态,以使被测量的工作状态最大化的装置。A device for varying the drive frequency of a motor in response to a measured operating condition in order to maximize the measured operating condition.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中所述工作状态包括传送到泵的电功率。In another embodiment of the present invention there is a pump as described above and/or below, wherein said operating state comprises electrical power delivered to the pump.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,还包括控制装置,控制装置与第一和第二弯曲器驱动器操作上连接,以便根据需要改变第一和第二弯曲器驱动器的单个驱动电压幅度,以使泵的振动最小。In another embodiment of the invention there is a pump as described above and/or below, further comprising control means operatively connected to the first and second bender drives for varying the first and a single drive voltage amplitude for the second bender driver to minimize pump vibration.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中流体是气体。In another embodiment of the invention there is a pump as described above and/or below, wherein the fluid is a gas.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中气体是从包括空气、碳氢化合物、工艺过程气体、高纯气体、有害和腐蚀气体、毒性流体、高纯流体、反应性流体和循环有害流体的组中选择的。In another embodiment of the invention there is a pump as above and/or below, wherein the gas is obtained from air, hydrocarbons, process gases, high purity gases, harmful and corrosive gases, toxic fluids , high-purity fluids, reactive fluids, and circulating hazardous fluids are selected from the group.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中流体是液体。In another embodiment of the invention there is a pump as described above and/or below, wherein the fluid is a liquid.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中液体是从包括燃料、水、油、润滑剂、冷却剂、溶剂、水力流体、毒性或反应性化学物质在内的组中选择的。In another embodiment of the present invention there is a pump as described above and/or below, wherein the liquid is derived from fuels, water, oils, lubricants, coolants, solvents, hydraulic fluids, toxic or reactive Selected from the group consisting of chemical substances.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中第一和第二流体膜片的第一位置在各个压缩行程的顶端接近流体腔壁,第二位置在各个输入行程的末端远离流体腔壁,这里第一和第二接近位置位于离流体腔壁的不同距离处,这里第一和第二远离位置位于离流体腔壁的不同距离处,其中第一和第二流体膜片可从在第一接近和远离位置之间的振动操作上运动到在第二接近和远离位置之间的振动,以响应来改变第一和第二弯曲器驱动器的驱动力。In another embodiment of the invention there is a pump as described above and/or below, wherein the first position of the first and second fluid diaphragms is close to the fluid chamber wall at the top of each compression stroke, and the second position away from the fluid chamber wall at the end of each input stroke, where the first and second approaching positions are located at different distances from the fluid chamber wall, where the first and second remote positions are located at different distances from the fluid chamber wall, wherein the first The first and second fluid membranes are operatively movable from an oscillating position between a first approximated and distanced position to an oscillating position between a second approximated and distanced position in response to varying actuation of the first and second bender actuators force.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中改变第一和第二弯曲器驱动器的驱动力操作上使第一和第二流体膜片从在第一接近和远离位置之间的振动运动到在第二接近和远离位置之间的振动,由此提供流体流量的改变。In another embodiment of the present invention there is a pump as described above and/or below, wherein varying the drive force of the first and second bender actuators operatively causes the first and second fluid diaphragms to move from The oscillating movement between the first approximate and distal position to the oscillating between the second approximate and distal position thereby provides a change in fluid flow.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中输入端口具有流动校正断面设计以提供流进流体腔,输出端口具有流动校正断面设计以提供流出流体腔;In another embodiment of the invention there is a pump as described above and/or below, wherein the input port has a flow-corrected cross-section design to provide flow into the fluid chamber and the output port has a flow-correct cross-section design to provide outflow fluid Cavity;
由此第一和第二流体膜片的位移形成流体在驱动频率下的压力波动,从而使流体通过输入端口流进流体腔,通过输出端口流出流体腔。The displacement of the first and second fluid diaphragms thus creates a pressure fluctuation of the fluid at the driving frequency, so that the fluid flows into the fluid cavity through the input port and flows out of the fluid cavity through the output port.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中泵还包括一个操作上连接到输入端口的入口阀和一个操作上连接到输出端口的出口阀,而入口阀和出口阀都具有预定的刚度和阀门工作循环,其中入口阀在关闭位置阻止流过输入端口,在开启位置允许流过输入端口,出口阀在关闭位置阻止流过输出端口和在开启位置允许流过输出端口,其中出口阀和入口阀的刚度和尺寸都可选择以调节入口阀和出口阀,以致入口阀和出口阀的工作循环的定时与流体流通过输入端口的填充和通过输出端口的流体流的排放以及压缩腔内的压力循环的定时相协调,以提供泵内流体在一个方向上的净流动。In another embodiment of the present invention, there is a pump as above and/or below, wherein the pump further comprises an inlet valve operatively connected to the input port and an outlet valve operatively connected to the output port, Whereas both the inlet and outlet valves have a predetermined stiffness and valve duty cycle, where the inlet valve blocks flow through the input port in the closed position and allows flow through the input port in the open position, and the outlet valve blocks flow through the output port in the closed position and in the open position The position allows flow through the output port, where the stiffness and size of both the outlet and inlet valves can be selected to adjust the inlet and outlet valves such that the timing of the duty cycle of the inlet and outlet valves is related to the filling of the fluid flow through the input port and through the output The discharge of fluid flow from the port and the timing of the pressure cycle in the compression chamber are coordinated to provide a net flow of fluid in the pump in one direction.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中入口阀是簧片阀和出口阀是簧片阀。In another embodiment of the invention there is a pump as described above and/or below, wherein the inlet valve is a reed valve and the outlet valve is a reed valve.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中入口簧片阀和出口簧片阀都具有弹簧刚性和质量,它们适合于按正确顺序开启和关闭,以响应流体腔内波动的流体压力,由此正确的阀门定时被维持而不需要阀门止挡。In another embodiment of the invention there is a pump as described above and/or below wherein both the inlet and outlet reed valves have spring rates and masses adapted to open and close in the correct sequence , in response to fluctuating fluid pressure within the fluid chamber, whereby correct valve timing is maintained without the need for valve stops.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中第一流体膜片还包括以平面方式运动的第一平坦部分,第二流体膜片还包括以平面方式运动的第二平坦部分,其中输入端口和入口阀位于第一膜片的第一平坦部分上,输出端口和出口阀位于第二膜片的第二平坦部分上,由此提供入口阀和出口阀的驱动。In another embodiment of the present invention, there is a pump as described above and/or below, wherein the first fluid diaphragm further comprises a first flat portion moving in a planar manner, and the second fluid diaphragm further comprises a A second planar portion moving in a planar manner, wherein the input port and inlet valve are located on the first flat portion of the first diaphragm, and the output port and outlet valve are located on the second flat portion of the second diaphragm, thereby providing the inlet valve and Actuation of the outlet valve.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中泵还包括:In another embodiment of the present invention, there is a pump as described above and/or below, wherein the pump further comprises:
多个输入端口,其与流体腔连通,以便使流体流进流体腔;a plurality of input ports in communication with the fluid chamber for allowing fluid to flow into the fluid chamber;
多个输出端口,其与流体腔连通,以便使流体流出流体腔。A plurality of output ports communicates with the fluid chamber for allowing fluid to flow out of the fluid chamber.
在本发明的另一个实施例中,具有如上面和/或下面所述的一种泵,其中流体腔壁还包括一个径向成型的壁部分,第一和第二流体膜片的柔性部分自由挠曲,以在形状上大致符合所述径向成型的部分,以便当第一和第二流体膜片的运动部分循环到多个第一位置时,使流体腔内的余隙容积最小。In another embodiment of the present invention, there is a pump as above and/or below, wherein the fluid chamber wall further comprises a radially shaped wall portion, the flexible portions of the first and second fluid membranes are free The radially formed portion is flexed to substantially conform in shape to minimize a clearance volume within the fluid chamber as the moving portion of the first and second fluid diaphragms cycles to a plurality of first positions.
在本发明的另一个实施例中,具有泵动流体的方法,其包括:In another embodiment of the present invention there is a method of pumping a fluid comprising:
提供一个用于压缩流体的泵,该泵包括:A pump for compressing fluid is provided, comprising:
流体腔,其具有内壁和开口,内壁成形以便形成一个腔容积;a fluid cavity having an inner wall and an opening, the inner wall shaped to define a cavity volume;
流体膜片,其刚性地连接到流体腔中开口的周边,流体膜片具有一个柔性部分,它能够相对于外周边在多个第一位置和多个第二位置之间运动,第一和第二位置具有离流体腔内壁变化的距离;a fluid diaphragm rigidly connected to the periphery of the opening in the fluid chamber, the fluid diaphragm having a flexible portion movable relative to the outer periphery between a plurality of first positions and a plurality of second positions, the first and second The second position has a varying distance from the inner wall of the fluid chamber;
输入端口,其与流体腔连通,以便使流体流进流体腔;an input port in communication with the fluid chamber for allowing fluid to flow into the fluid chamber;
输出端口,其与流体腔连通,以便使流体流出流体腔;an output port in communication with the fluid chamber for allowing fluid to flow out of the fluid chamber;
流体,其在流体腔内;a fluid within the fluid chamber;
流体弹簧,其由流体腔内的流体构成;a fluid spring comprised of fluid within the fluid chamber;
机械弹簧,其包括膜片;a mechanical spring comprising a diaphragm;
弯曲器驱动器,其具有连接到流体膜片的连接点;该方法还包括:a bender driver having a connection point connected to the fluid diaphragm; the method also includes:
在第一压力下将流体引入流体腔,其中在变化的压力条件下,流体当作流体弹簧;introducing fluid into the fluid chamber at a first pressure, wherein the fluid acts as a fluid spring under varying pressure conditions;
由膜片和弯曲器驱动器的组合运动质量和由机械弹簧和流体弹簧确定质量-弹簧机械共振频率;Combined moving mass driven by diaphragm and bender and mass-spring mechanical resonance frequency determined by mechanical and fluid springs;
在驱动频率下运行弯曲器驱动器,以便在质量-弹簧机械共振中贮存能量;Operating the bender drive at the drive frequency to store energy in mass-spring mechanical resonance;
使膜片在多个第一位置和第二位置之间振动;vibrating the diaphragm between a plurality of first positions and second positions;
使流体压缩到希望的第二压力;和compressing the fluid to a desired second pressure; and
在第二压力下从压缩腔排出流体。Fluid is expelled from the compression chamber at a second pressure.
在本发明的另一个实施例中,具有一种流体能量传输装置,其包括:In another embodiment of the present invention, there is a fluid energy transmission device comprising:
用于接收特定流体的流体腔,它具有内壁和开口,内壁成形以便形成一个腔容积;A fluid cavity for receiving a specific fluid, having an inner wall and an opening, the inner wall being shaped so as to form a cavity volume;
流体膜片,其刚性地连接到流体腔开口的周边,膜片具有一个柔性部分,它能够相对于外周边在多个第一位置和多个第二位置之间运动,第一和第二位置具有离流体腔内壁变化的距离;A fluid diaphragm rigidly attached to the periphery of the fluid chamber opening, the diaphragm having a flexible portion movable relative to the outer periphery between a plurality of first positions and a plurality of second positions, the first and second positions having a varying distance from the inner wall of the fluid cavity;
弯曲器驱动器,其具有连接到流体膜片的连接点;a bender driver having connection points to the fluid diaphragm;
其中质量-弹簧机械共振频率由动力部件和特定流体的组合有效运动质量和组合有效弹簧刚度确定,其中弯曲器驱动器是在驱动频率下运行,以便在质量-弹簧机械共振中贮存能量。where the mass-spring mechanical resonance frequency is determined by the combined effective moving mass and combined effective spring stiffness of the powered component and specific fluid, where the bender actuator is operated at the drive frequency to store energy in the mass-spring mechanical resonance.
在本发明的另一个实施例中,具有流体能量传输装置,其包括:In another embodiment of the invention there is a fluid energy transfer device comprising:
流体腔,其具有内壁和开口,内壁成形以便形成一个腔容积;a fluid cavity having an inner wall and an opening, the inner wall shaped to define a cavity volume;
流体膜片,其刚性地连接到所述流体腔的开口周边,膜片具有一个柔性部分,它能够相对于外周边在多个第一位置和多个第二位置之间运动,第一和第二位置具有离流体腔内壁变化的距离;a fluid diaphragm rigidly connected to the opening periphery of the fluid chamber, the diaphragm having a flexible portion movable relative to the outer periphery between a plurality of first positions and a plurality of second positions, the first and second The second position has a varying distance from the inner wall of the fluid chamber;
流体,其在流体腔内;a fluid within the fluid cavity;
流体载荷,其包括所述流体;a fluid load comprising said fluid;
流体弹簧,其由所述流体腔内的流体构成;a fluid spring comprised of fluid within the fluid chamber;
机械弹簧,其包括所述膜片;和a mechanical spring comprising said diaphragm; and
弯曲器驱动器,其具有连接到所述流体膜片的连接点;a bender drive having a connection point to the fluid diaphragm;
其中质量-弹簧机械共振频率由所述弯曲器驱动器和所述膜片的组合有效运动质量和由所述机械弹簧和所述气体弹簧确定,其中弯曲器驱动器在驱动频率下运行,以便在质量-弹簧机械共振中贮存能量并提供流体膜片的位移,该位移大于弯曲器驱动器的弯曲位移,能量被传输到流体腔内的流体载荷。wherein the mass-spring mechanical resonant frequency is determined by the combined effective moving mass of the bender drive and the diaphragm and by the mechanical spring and the gas spring, wherein the bender drive operates at the drive frequency so that the mass-spring Energy is stored in the mechanical resonance of the spring and provides a displacement of the fluid diaphragm that is greater than the bending displacement of the bender actuator, and the energy is transferred to the fluid load in the fluid chamber.
在本发明的另一个实施例中,具有流体能量传输装置,其包括:In another embodiment of the invention there is a fluid energy transfer device comprising:
适合于接收预定的流体的流体腔,流体腔包括流体膜片,流体膜片基本上在膜片周边刚性地连接到流体腔的结构,其中膜片包括一个柔性部分,它适合于相对于被连接到所述结构的周边在第一位置和第二位置之间运动;A fluid chamber adapted to receive a predetermined fluid, the fluid chamber including a fluid diaphragm rigidly connected to the structure of the fluid chamber substantially at the periphery of the diaphragm, wherein the diaphragm includes a flexible portion adapted to be connected relative to movement to the perimeter of the structure between a first position and a second position;
弯曲器驱动器;其中bender drive; where
弯曲器驱动器连接到流体膜片,以形成弯曲器-膜片组件;a bender driver connected to the fluid diaphragm to form a bender-diaphragm assembly;
其中弯曲器驱动器适合在一个频率下弯曲,以致弯曲器-膜片组件将基本上只是由于驱动器弯曲频率而在第一位置和第二位置之间运动,和wherein the bender driver is adapted to bend at a frequency such that the bender-diaphragm assembly will move between the first position and the second position substantially only due to the driver bending frequency, and
其中在第一位置和第二位置之间的距离基本上大于驱动器的峰值到峰值弯曲的距离,例如比峰值到峰值弯曲的距离大约大一个数量级。Wherein the distance between the first position and the second position is substantially greater than the peak-to-peak bend distance of the drive, for example approximately an order of magnitude greater than the peak-to-peak bend distance.
附图说明Description of drawings
结合到说明书中并构成说明书一部分的附图示出了本发明的实施例,这些实施例连同说明一起用于解释本发明的原理,在附图中:The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention, in which:
图1是本发明的反应驱动系统的一个实施例的断面视图,简要示出了处在非挠曲状态的弯曲盘;Figure 1 is a cross-sectional view of one embodiment of the reaction drive system of the present invention, schematically illustrating a flexed disc in an unflexed state;
图2是弯曲器驱动器的断面视图,示出了弯曲盘响应交流电压波形的挠曲形状;Figure 2 is a cross-sectional view of a bender actuator showing the deflected shape of the bending disc in response to an AC voltage waveform;
图3是本发明一个实施例的断面视图,它具有可以改善来自弯曲盘的机械动力传输的反应质量;Figure 3 is a cross-sectional view of an embodiment of the present invention having reactive qualities that improve mechanical power transfer from a curved disk;
图4是本发明一个实施例的断面视图,它具有可以改善弯曲器驱动器的机械动力因数的椭圆调节弹簧;Figure 4 is a cross-sectional view of an embodiment of the present invention having an elliptical adjustment spring that improves the mechanical power factor of the bender drive;
图5是本发明一个实施例的断面视图,它具有可以改善弯曲器驱动器的机械动力因数的盘调节弹簧;Figure 5 is a cross-sectional view of an embodiment of the present invention having a disc adjustment spring that improves the mechanical power factor of the bender drive;
图6是本发明一个实施例的断面视图,它具有可以改善轴向稳定性的轴向对准盘;Figure 6 is a cross-sectional view of an embodiment of the invention having axially aligned disks for improved axial stability;
图7是本发明另一个实施例的断面视图;Figure 7 is a cross-sectional view of another embodiment of the present invention;
图8是本发明的反应驱动泵实施例的断面视图,它提供闭环蒸发-压缩热传输系统以致冷剂压缩和流动;Figure 8 is a cross-sectional view of a reaction driven pump embodiment of the present invention providing a closed loop evaporation-compression heat transfer system for refrigerant compression and flow;
图9是本发明的反应驱动泵实施例的断面视图,它提供被减小的余隙容积;Figure 9 is a cross-sectional view of a reaction driven pump embodiment of the present invention, which provides reduced clearance volume;
图10是本发明的反应驱动泵实施例的断面视图,其带有增大直径的膜片隔离块,这里的膜片与图1实施例比较在其位移过程中更象是一个活塞,并进一步减小余隙容积;Figure 10 is a cross-sectional view of a reaction driven pump embodiment of the present invention with an enlarged diameter diaphragm spacer, where the diaphragm acts more like a piston during its displacement than the embodiment of Figure 1 and further Reduced clearance volume;
图11是本发明的反应驱动泵实施例的断面视图,它减小泵的尺寸并通过在流体膜片上安置入口阀来提供阀门的驱动;Figure 11 is a cross-sectional view of a reaction driven pump embodiment of the present invention which reduces the size of the pump and provides valve actuation by placing the inlet valve on the fluid diaphragm;
图12是本发明的反应驱动泵实施例的断面视图,它驱动相对着的两个流体膜片,这样,在一些实施例中通过力的消除和减少泵的振动使传递到泵壳的力最小;Figure 12 is a cross-sectional view of a reaction driven pump embodiment of the present invention that drives two opposed fluid diaphragms such that, in some embodiments, forces transmitted to the pump casing are minimized by force cancellation and reduced pump vibration ;
图13提供了具有共振控制器的驱动电路的方块图,该共振控制器和本发明一些实施例的泵一起使用;Figure 13 provides a block diagram of a drive circuit with a resonance controller for use with pumps of some embodiments of the present invention;
图14提供双膜片驱动电路的方块图,它具有共振控制器并对平衡膜片驱动力进行控制;Figure 14 provides a block diagram of a dual-diaphragm drive circuit with a resonant controller and control of the balanced-diaphragm drive force;
图15是本发明的合成喷射器实施例的断面图。Figure 15 is a cross-sectional view of an embodiment of a synthetic jet of the present invention.
具体实施方式Detailed ways
现在参考图1,图1是本发明的反应驱动系统的一个实施例的断面视图。圆柱形流体填充腔2由外壳4和圆膜片6限定。膜片6的周边保持在O形环8和O形环10之间,两个O形环由螺纹夹持环11夹持在外壳4内。隔离块(stand off)12刚性地连接到膜片6的中心,而隔离块12的另一端刚性地连接到弯曲器-驱动盘14(bender-actuator disk)的中心。这些部件连接可以利用粘接、钎焊或其它类型的超薄(low profile)连接工艺。在本发明的大多数实施例中,除了与隔离块12的连接之外弯曲盘14没有任何其他机械连接,这样,它的周边没有任何机械约束。然而,在其他实施例中,可以存在机械连接,只要该连接基本上不妨碍反应驱动系统在驱动频率下的工作。该驱动频率允许能量以系统机械共振方式贮存,以提供所希望的膜片或活塞位移。电线15用于将弯曲盘14连接到外部电压源并具有机械弹性,例如由细线、纹线或薄金属条构造。电线与压电盘的连接点可以根据压电弯曲器(piezo-bender)的类型而变化。为了使电线15上的与振动有关的应力最小,电线可以按规定路径返回到外壳4(机械接地)内,这是通过使电线绝缘并粘接到弯曲器14和隔离块12,然后从膜片6中心出来到外壳4布置的。按这种方式电线将沿其整个路径被机械支承。当弯曲盘14由施加的电压供能时,弯曲盘14弯曲成一个轴对称拱顶,如图2中所示。这里挠曲形状16和18示出了弯曲盘14如何响应相反极性的电压而弯曲。为了清楚起见挠度16和18被放大。Reference is now made to FIG. 1, which is a cross-sectional view of one embodiment of the reaction drive system of the present invention. A cylindrical fluid-filled
在工作过程中,具有频率f的交变电压波形施加到图1的弯曲盘14,使弯曲盘14以频率f在图2的弯曲挠度16和18之间振动。当弯曲盘14以频率f在挠度16和18之间振动时,力将通过隔离块12对挠曲起反应而被传递到膜片6,这样使膜片6以频率f同样在其基本位移模式的两个极端之间振动,由此将能量传输到腔2内的流体。在图1的实施例中,弯曲盘14的动力输出(PTO)点位于弯曲盘14的中心。图1的反应驱动的流体系统可以具有机械共振频率f0=(1/2π)(K/M)1/2,这里K是机械和流体弹簧的组合刚度,M是膜片6、隔离块12和弯曲器驱动器14的组合有效运动质量,f0是系统共振频率,它导致被夹持的流体膜片6按其最低阶模式形状振动。集总(lumped)元件的机械和电气模拟数字模型和其他模型可以用于预计/估计图1流体系统的基本共振频率。还可以理解的是,如果由于系统的组合模型谱中的其他模式的激振,驱动频率f超过系统基本共振频率f0,膜片6可能不按其基本模式响应。激发这些较高阶模式在将净能量传输到流体方面可能是低效的,在一些情况下,可能更加低效,因为膜片的一些部分可以反相运动,从而由于抵消作用减小了净能量的传输。In operation, an alternating voltage waveform having a frequency f is applied to the
如果驱动频率f选择成靠近或等于系统的基本共振频率f0,那么在驱动频率f下能量可以与系统的共振品质因数Q成比例地贮存在振动中。当能量贮存在系统的共振中,膜片6的位移能够超过弯曲盘8的实际弯曲位移。以这种方式,低位移弯曲盘驱动器可以用于提供由目前MESO和MEMS流体应用所要求的较高膜片位移。由于图1中的弯曲盘14的仅有基本的(或者有效的)机械连接是与隔离块12的连接,所以即使当压电盘14的弯曲幅度16和18只保持在膜片6的挠曲幅度的一部分时,弯曲盘14自由地随较大位移的膜片6而运动。If the drive frequency f is chosen to be close to or equal to the system's fundamental resonant frequencyf0 , energy can be stored in the vibrations at the drive frequency f proportional to the resonant quality factor Q of the system. When energy is stored in the resonance of the system, the displacement of the
例如,用类似图1中所图示的系统作试验,使用25.4mm直径的压电弯曲盘,3.5密耳(mil)厚32mm夹持直径和由“瓣阀(flappervalve)”钢制造的膜片,以及流体填充腔的高度是60mil。所用的流体是1大气压的空气。当压电盘安装在反应驱动系统中时,即使压电盘在不损坏的情况下只能只提供0.20mm的峰-峰挠曲位移,它能驱动的膜片峰-峰位移在3.0mm以上。因此,这种反应驱动系统能够使流体膜片产生比压电弯曲器位移大15倍的位移。根据系统的调节,可以提供更高的位移放大倍数,甚至远高于15倍,可提供较低的放大倍数,甚至远低于15倍。弯曲器驱动器的共振位移放大形成了本发明的特性动力学,在这里称之为“反应驱动”。For example, a system similar to that illustrated in Figure 1 was tested using a 25.4 mm diameter piezoelectric bending disc, 3.5 mil thick 32 mm clamping diameter and a diaphragm made of "flapper valve" steel , and the height of the fluid-filled cavity is 60mil. The fluid used was air at 1 atmosphere. When the piezoelectric disk is installed in the reaction drive system, even if the piezoelectric disk can only provide a peak-to-peak deflection displacement of 0.20mm without damage, it can drive a diaphragm with a peak-to-peak displacement of more than 3.0mm . As a result, this reaction-driven system is capable of producing displacements of the fluid membrane that are 15 times greater than those of the piezoelectric bender. Depending on the adjustment of the system, higher displacement magnifications can be provided, even much higher than 15 times, and lower magnifications can be provided, even much lower than 15 times. The amplification of the resonant displacement of the bender drive forms the characteristic dynamics of the present invention, referred to herein as "reaction drive".
反应驱动系统的实施例是简单的和结实的,要求较低的组装精度。在由弯曲器驱动器驱动的实施例中,没有与电磁和音圈型驱动器相关的任何空气间隙,系统允许非轴向振动。Embodiments of the reaction-driven system are simple and robust, requiring less assembly precision. In embodiments driven by bender drivers, the system allows non-axial vibration without any air gaps associated with electromagnetic and voice coil type drivers.
由于使用非夹持弯曲器驱动器(或非有效夹持的弯曲器驱动器)来驱动一个公开的流体膜片,弯曲器驱动器实际上可以看成是与位移源相反的力源。许多不同的压电弯曲器形状和布局(topologies)能够在本发明的大多数实施例的范围使用。例如,具有矩形、正方形、多边形对称结构的单一形态(uni-morph)和两种形态(bio-morphs)的弯曲器可以在本发明的一些实施例中使用。通过在例如驱动器材料、刚性、质量、质量分布、力输出和弯曲器的机械共振频率之间权衡考虑弯曲器驱动器设计可以被优化以用于本发明的一些实施例中。同时响应所施加电压而弯曲变形的任何弯曲器可以和本发明的大多数实施例的反应驱动系统一起使用。单一形态、两种形态和多层弯曲器能够由一些不同种类的陶瓷、压电聚合物的复合物例如PVDF、水晶材料、磁致伸缩材料、电活化聚合物转换器(EPT)、电致伸缩聚合物和各种“智能材料”例如形状记忆合金(SMA)制造的。由例如镍钛诺(nitinol)材料制造的驱动器可以作为一个例子。另一种压电换能器(PZT)弯曲器是辐射场PZT膜片(RFD),它也能在本发明中使用。总之,响应能量的循环作用而弯曲的任何材料几乎肯定可以在本发明范围内的反应驱动系统中用作弯曲器,在这里统称为“弯曲器驱动器(benderactuator)”。Due to the use of non-clamping bender actuators (or non-effectively clamping bender actuators) to actuate a disclosed fluid membrane, the bender actuators can actually be viewed as the opposite force source to the displacement source. Many different piezoelectric bender shapes and topologies can be used within the scope of most embodiments of the invention. For example, uni-morph and bio-morphs benders with rectangular, square, polygonal symmetric structures may be used in some embodiments of the invention. The bender actuator design can be optimized for use in some embodiments of the invention by considering tradeoffs between, for example, actuator material, stiffness, mass, mass distribution, force output, and mechanical resonance frequency of the bender. Any bender that simultaneously bends and deforms in response to an applied voltage may be used with the reaction actuation system of most embodiments of the invention. Single modality, dual modality and multilayer benders can be made of several different kinds of ceramics, piezoelectric polymer composites such as PVDF, crystalline materials, magnetostrictive materials, electroactive polymer transducers (EPT), electrostrictive polymers and various "smart materials" such as shape memory alloys (SMA). A driver made of eg nitinol material can be taken as an example. Another piezoelectric transducer (PZT) bender is the Radiated Field PZT Diaphragm (RFD), which can also be used in the present invention. In general, any material that bends in response to cycling of energy can almost certainly be used as a bender in a reaction-actuated system within the scope of the present invention, collectively referred to herein as a "benderactuator."
反应驱动系统的调节Regulation of response-driven systems
在本发明的大多数实施例中,可以对系统部件进行调节,以改变(例如增加/最大化)从弯曲器驱动器传输到流体载荷的动力和改变动力传输效率。对于给定的弯曲器驱动器,传递到流体载荷的动力可以以多种方式最佳化。在这些实施例中,系统共振典型地应该在弯曲器驱动器的有效工作范围内。如上面讨论的,例如通过选择系统的组合机械和流体弹性刚度和组合有效运动质量,可以改变系统共振频率f0。例如在图1中,通过改变膜片6的刚度和/或质量,改变隔离块12的质量和/或刚度、弯曲器驱动器14的质量,或改变腔2内的流体的性能和/或压力,来改变系统的共振频率。In most embodiments of the invention, system components can be adjusted to alter (eg, increase/maximize) the power transfer from the bender drive to the fluid load and to alter the efficiency of power transfer. For a given bender drive, the power delivered to the fluid load can be optimized in a number of ways. In these embodiments, the system resonance should typically be within the effective operating range of the bender driver. As discussed above, the system resonant frequency f0 can be varied, for example, by selecting the combined mechanical and hydroelastic stiffness and combined effective moving mass of the system. For example in FIG. 1 , by changing the stiffness and/or mass of the
图3提供本发明的一个实施例,其中包括增加弯曲器驱动器的反应质量,这样可以改善动力传输。在图3中,圆柱形流体填充腔22由外壳20和圆形膜片24限定。膜片24的周边被保持在O形环26和O形环28之间,两个O形环由螺纹夹持环30夹持在外壳20中。隔离块32的一端刚性地连接到膜片24的中心,而隔离块32的另一端刚性地连接到弯曲器驱动器34的中心。环形反应质量36(reaction mass)刚性地连接到弯曲盘34的周边。Figure 3 presents an embodiment of the invention that includes increasing the reactive mass of the bender drive, which improves power transmission. In FIG. 3 , a cylindrical fluid-filled
当反应质量可能用在一些实施例中时,现在将解释反应质量的作用。如果在弯曲器驱动器的周边处的有效运动质量较小,那么弯曲器的力输出大部分可能在图2所示的位移极端16和17之间分流到使弯曲器的周边振动,从而可能导致减小通过隔离块32传送到流体载荷中的动力。反应质量36提供一个质量给弯曲器34以克服推动作用,这样可以使大部分力传送到膜片24(和没有反应质量的情况相比较),这样,大部分动力被传送到流体载荷。为了达到给定的设计性能,要增加的最佳质量例如可以由模拟或由实验确定。改变环形反应质量36的质量将典型地也改变系统的有效运动质量M,它又将改变系统共振的频率f0=(1/2π)(K/M)1/2。While reactive mass may be used in some embodiments, the role of reactive mass will now be explained. If the effective moving mass at the periphery of the bender drive is small, a large portion of the bender's force output may be shunted between the
本发明的一些实施例可以通过考虑功率因数来改善。典型的功率因数用cosθ形式表示,这里θ是在随时间变化的力F(t)=Fcos(wt)和被驱动部件的合速度V之间的时间相位角,从而传送的功率是FVcosθ。对于向载荷的最大功率传输,理想功率因数是1,意味着θ是零。对于给定的功率传送设计目标,如果功率因数cosθ下降到小于1,那么积FV必须按比例增加以维持功率传送目标。增加F来维持功率传输将会减少效率,增加V来维持功率传输将会增加装置的应力、振动和引起的噪音。对于本发明,弯曲器的力通过包括弯曲器自身的内部弹簧在内的路径来传送。因此,对于给定的设计,在F和V之间的时间相位θ在共振时将不一定必须等于零。为了最佳化能量效率和减少噪音和振动,人们希望调节系统以便使相位角θ尽可能接近于零。Some embodiments of the invention can be improved by taking power factor into account. A typical power factor is expressed in the form of cos θ, where θ is the time phase angle between the time-varying force F(t)=Fcos(wt) and the resultant velocity V of the driven part, so that the delivered power is FVcos θ. For maximum power transfer to the load, the ideal power factor is 1, meaning θ is zero. For a given power transfer design target, if the power factor cos θ falls below 1, then the product FV must be increased proportionally to maintain the power transfer target. Increasing F to maintain power transfer will reduce efficiency, and increasing V to maintain power transfer will increase device stress, vibration and induced noise. With the present invention, the force of the bender is transmitted through a path that includes the internal spring of the bender itself. Therefore, for a given design, the temporal phase θ between F and V will not necessarily have to be equal to zero at resonance. To optimize energy efficiency and reduce noise and vibration, it is desirable to tune the system so that the phase angle θ is as close to zero as possible.
本发明的一些实施例的性能能够通过有效运动质量M的大小以及M如何在各个运动部件之间分配来改变。参考图3,总的有效运动质量M可以大致限定为两个分开的运动质量:流体膜片质量MD和反应质量MR。MD等于膜片24的有效动力质量、隔离块32的质量和弯曲器34的中心部分质量之和。MR等于环形反应质量36和弯曲器34的一部分质量之和,所述弯曲器34的一部分从反应质量36径向延伸到弯曲器34的中心。MD和MR是通过弯曲器34的弹簧刚度连接,在它们各个运动之间的时间相位将取决于具体的设计、部件数值和工作状态。对于本发明的另一个实施例,MR/MD比可以大于1,以便增加向流体载荷的机械动力传输。对于恒定峰值驱动力,当MR从零开始增加,同时保持MD恒定,转换效率一般会增加,动力传输能够在某一MR/MD值下达到最大。对于某一应用,可以通过将M=(MR+MD)的大小保持在最小值来提高性能,以便使从载荷分流的力的数量最小来加速质量M。按这种方式,使M的数值最小可以使系统总能量效率最大。The performance of some embodiments of the invention can be varied by the size of the effective moving mass M and how M is distributed among the various moving parts. Referring to Figure 3, the total effective moving mass M can be roughly defined as two separate moving masses: a fluid diaphragm mass MD and a reactive mass MR . MD is equal to the sum of the effective dynamic mass of the
在上述的所有质量和弹簧常数可以改变以最佳化功率因数的同时,可以增加附加的部件以进一步改变(改善)机械功率因数。例如在图4中,图3的隔离块26已经用椭圆形弹簧38代替。弹簧38提供在弯曲器驱动器40和膜片42之间的弹性连接。弹簧38的弹簧刚度、质量和阻尼常数的改变能够用于调节相位角θ,并因此补偿弯曲器驱动器40的非理想功率因数特性。在图4的实施例中,弹簧38的选择特性可能取决于给定应用的性能要求,但是通常将选择成使时间相位角θ最小。在这些讨论中,泵体响应膜片反应力的振动也必须考虑。While all the masses and spring constants described above can be changed to optimize the power factor, additional components can be added to further change (improve) the mechanical power factor. For example in FIG. 4 the
图5示出另一个调节弹簧装置,它具有弯曲器驱动器44、连接到弯曲器44中心的圆柱形反应质量46、其下表面连接到弯曲器44的周边的环形隔离块48、其周边连接到环形隔离块48上表面的盘调节弹簧50和圆柱形隔离块52。隔离块52的下表面连接到调节弹簧50的中心,其上表面连接到流体膜片54的中心。在图5的实施例中,弯曲器44的周边作为PTO点。来自弯曲器44的振动力依次从弯曲器44的周边,通过隔离块48,通过盘调节弹簧50,通过隔离块50,最终传递到流体膜片52。可选地在图5中,反应质量46能够连接到弯曲盘34的相对表面。在图5的实施例中,弹簧50的特性可以根据给定应用的性能要求,并可以选择成最佳化时间相位角θ。Fig. 5 shows another adjusting spring arrangement, it has bender driver 44, is connected to the cylindrical reaction mass 46 of bender 44 center, the annular spacer block 48 of its lower surface is connected to the periphery of bender 44, and its periphery is connected to The disk adjustment spring 50 and the cylindrical spacer 52 on the upper surface of the annular spacer 48 . The lower surface of the spacer block 52 is connected to the center of the adjustment spring 50 and the upper surface thereof is connected to the center of the fluid diaphragm 54 . In the embodiment of FIG. 5, the perimeter of bender 44 serves as the PTO point. The vibrating force from the bender 44 is sequentially transmitted from the periphery of the bender 44 , through the isolation block 48 , through the disc adjustment spring 50 , through the isolation block 50 , and finally to the fluid diaphragm 52 . Alternatively in FIG. 5 , the reactive mass 46 can be attached to the opposite surface of the
在图4和5中和在其他示范实施例中图示的调节弹簧可以用不同类型的弹簧代替,例如片簧和盘簧,并能够提供线性或非线性刚度特性。The adjustment springs illustrated in FIGS. 4 and 5 and in other exemplary embodiments may be replaced by different types of springs, such as leaf springs and coil springs, and capable of providing linear or non-linear stiffness characteristics.
根据本发明的特定应用和设计,弯曲器驱动器的弯曲幅度可以小于、等于或大于膜片和/或活塞的位移。例如,变化MR/MD比可以导致弯曲器驱动器的弯曲幅度小于、等于或大于膜片和/或活塞的位移。而且,系统中的机械和流体弹簧的线性或非线性程度可以导致弯曲器驱动器的弯曲幅度小于、等于或大于膜片和/或活塞的位移。在工作期间,在膜片/活塞和弯曲器驱动器之间的位移比不必是常数。对于一些应用例如泵或压缩机,弯曲器对膜片/活塞的位移比在工作过程中可以从小于1变化到1或大于1。Depending on the particular application and design of the invention, the bending amplitude of the bender actuator may be less than, equal to or greater than the displacement of the diaphragm and/or piston. For example, varying theMR /MD ratio can result in a bender actuator that bends less than, equal to, or greater than the displacement of the diaphragm and/or piston. Also, the degree of linearity or nonlinearity of the mechanical and fluid springs in the system can cause the bender actuator to bend less than, equal to or greater than the displacement of the diaphragm and/or piston. During operation, the displacement ratio between the diaphragm/piston and bender drive need not be constant. For some applications such as pumps or compressors, the bender to diaphragm/piston displacement ratio can vary from less than 1 to 1 or greater than 1 during operation.
相对于系统共振频率,弯曲盘的机械共振频率也可以有利于改善系统性能和使机械功率因数最大。然而,在一些实施例中,在系统设计中应防止系统共振频率与弯曲盘共振频率重合。在许多实施例中,所选的弯曲器共振频率可以在系统的预期工作范围之上。对于例如泵和压缩机这样的应用,其系统共振频率能够改变,可以采用共振控制器使电驱动频率锁定到变化的系统共振频率。在本发明的一些实施例中,弯曲盘的机械共振频率可以不调节到系统共振频率附近,从而两个共振频率不可能在工作过程中重叠,从而减少共振控制器由于共振排斥现象可能引起的问题。The mechanical resonant frequency of the curved disk can also be beneficial to improve system performance and maximize mechanical power factor relative to the system resonant frequency. However, in some embodiments, the system design should prevent the system resonant frequency from coinciding with the curved disk resonant frequency. In many embodiments, the selected bender resonant frequency may be above the expected operating range of the system. For applications such as pumps and compressors, where the system resonant frequency can be changed, a resonance controller can be used to lock the electric drive frequency to the changing system resonant frequency. In some embodiments of the present invention, the mechanical resonance frequency of the curved disk may not be adjusted to be close to the system resonance frequency, so that the two resonance frequencies cannot overlap during operation, thereby reducing the problems that may be caused by the resonance controller due to the phenomenon of resonance repulsion .
轴向稳定性axial stability
对于图1、3、4和5的反应驱动的实施例,执行有用功的希望位移是在轴向方向上。因此,许多实施例将使运动部件例如弯曲盘、反应质量或弹簧的重心靠近运动轴线。轴向对中可以有助于使偏离轴线的惯性距最小,所述偏移轴线的惯性矩可能导致运动质量的横向振动,该振动可以在膜片上形成附加应力和不需要的系统振动。同样,图1、3、4和5的实施例可能具有非轴向共振模式,该模式可能由不平衡的运动质量激发,由此增强膜片的机械应力。在许多实施例中,设计将尽力避免非轴向模式的频率和驱动频率的重合。For the reaction driven embodiments of Figures 1, 3, 4 and 5, the desired displacement to perform useful work is in the axial direction. Therefore, many embodiments will have the center of gravity of the moving parts, such as bending discs, reaction masses or springs, close to the axis of motion. Axial alignment can help minimize off-axis moments of inertia that can cause lateral vibrations of the moving mass that can create additional stress on the diaphragm and unwanted system vibrations. Also, the embodiments of Figures 1, 3, 4 and 5 may have non-axial resonant modes that may be excited by an unbalanced moving mass, thereby increasing the mechanical stress on the diaphragm. In many embodiments, the design will try to avoid coincidence of the frequencies of the non-axial modes and the driving frequency.
横向模式可以通过增加稳定部件来阻止,该稳定部件可以允许轴向运动同时阻止横向运动。图6提供本发明用于阻止或基本上阻止横向运动的一个实施例,这里圆柱形流体填充腔56由外壳58和圆形流体膜片60限定。膜片60的周边保持在O形环62和O形环64之间,两个O形环通过螺纹夹持环66夹持在外壳58内。流体膜片60连接到圆柱形隔离块68,而隔离块68的另一端连接到弯曲器驱动器70。环形反应质量72连接到弯曲器驱动器70周边。稳定盘76通过夹持在第一夹持环66和第二夹持环78之间刚性地连接到外壳58,稳定盘76通过圆柱形稳定隔离块74刚性地连接到弯曲器70。稳定盘弹簧76设计成在轴向是柔性的但是在垂直于希望的轴向运动的方向上是较刚性的。稳定盘76能够包括金属、塑料或弹性物在内的任何数量的材料制造,只要过大的运动阻尼/实质性(substantial)的运动阻尼可以被避免。图6的稳定盘76不必是一个盘,例如也可以用包括任意数量的片簧形状或轮廓来代替。这个实施例的弯曲器70的PTO点出现在弯曲器70的中心。Lateral modes can be prevented by adding stabilizing components that allow axial movement while resisting lateral movement. FIG. 6 provides one embodiment of the invention for preventing or substantially preventing lateral movement, where a cylindrical fluid-filled chamber 56 is defined by a housing 58 and a circular fluid diaphragm 60 . Diaphragm 60 is held at its periphery between O-rings 62 and 64 , both O-rings are clamped within housing 58 by threaded clamping ring 66 . The fluid membrane 60 is connected to a cylindrical spacer block 68 , while the other end of the spacer block 68 is connected to a bender driver 70 . A ring-shaped reactive mass 72 is attached to the perimeter of the bender drive 70 . A stabilizing disc 76 is rigidly connected to the housing 58 by being clamped between the first clamping ring 66 and the second clamping ring 78 , and the stabilizing disc 76 is rigidly connected to the bender 70 by a cylindrical stabilizing spacer 74 . The stabilizing disc spring 76 is designed to be flexible in the axial direction but relatively rigid in a direction perpendicular to the desired axial movement. Stabilizer plate 76 can be manufactured from any number of materials including metal, plastic or elastomer so long as excessive/substantial motion damping can be avoided. The stabilizing disc 76 of FIG. 6 need not be a disc, but could instead include any number of leaf spring shapes or profiles, for example. The PTO point of the bender 70 of this embodiment occurs at the center of the bender 70 .
图6a中提供本发明用于阻止或基本上阻止横向运动的一个实施例,这里圆柱流体填充腔300是由外壳302和圆形流体膜片302限定。膜片304的周边保持在O形环306和O形环308之间,两个O形环由螺纹夹持环310夹持在外壳302内。流体膜片304连接到圆柱形隔离块312,而隔离块312的另一端连接到弯曲器驱动器314。环形反应质量316连接到弯曲器驱动器314周边。稳定盘318通过夹持在第一夹持环310和第二夹持环320之间刚性地连接到外壳302,稳定盘318刚性地连接到弯曲器314的周边322。稳定盘弹簧318设计成对轴向运动具有低的弹簧刚度,但在垂直于希望的轴向运动的方向上具有高的弹簧刚度。稳定盘318能够由包括金属、塑料或弹性物在内的一些材料制造,只要避免过大的弹簧刚度和过大的运动阻尼/实质性的运动阻尼。图6a的稳定盘318不必是一个盘,例如也可以用包括任意数量的片簧形状或轮廓来代替。One embodiment of the present invention for preventing or substantially preventing lateral movement is provided in FIG. 6 a , where a cylindrical fluid filled
参考图6a,本发明的许多优点来自于连接到流体膜片304或类似的流体活塞的弯曲器314,同时避免在外壳302和弯曲器314的其他部分之间的刚性辅助连接。为了防止这样的辅助连接是刚性连接,任何这样的辅助连接应是弹性的,那就是说辅助连接应具有小的弹簧常数值K,从而不过分地约束本发明的有利动力学运动。例如,如果图6a的稳定弹簧318刚性非常大,从而使弯曲器314的周边322有效地固着到外壳302上,那么膜片304的位移决不可能超过弯曲器312的弯曲位移。然而,可以理解,任何辅助连接的弹簧刚度K可以具有一个刚度值范围,并可以有一个相应的性能值的范围,这些性能值例如是产生的膜片或活塞行程、传送到流体载荷的动力、机械转换效率等。Referring to Figure 6a, many of the advantages of the present invention come from the
在柔性方面,弹簧318的刚度K可以理想地在一个范围内变化,由此施加到弯曲器314上的约束会相应地在从无穷大(无约束)到零(完全刚性的)的柔性范围内变化。性能会随弹簧318的柔性C=1/K增加。例如,如果弯曲器314的峰值力保持恒定,同时弹簧31 8的柔性C以无穷大值逐步减小到零,那么膜片(或活塞)304的位移将从最大值(由所有的部件数值和流体特性确定)改变到等于弯曲器的最大位移的数值。因此对于恒定的峰值力,如果弹簧318的柔性C减小,以致膜片304的位移减小10%,那么性能将减小约10%。如果弹簧318的柔性减小,以致膜片304的位移减小20%,那么性能将减小约20%。如果弹簧318的柔性C减小,以致膜片304的位移减小30%,那么性能将减小约30%。如果弹簧318的柔性减小,以致膜片304的位移减小40%,那么性能将减小约40%。如果弹簧318的柔性C减小,以致膜片304的位移减小50%,那么性能将减小约50%等等,直至弹簧318的柔性C达到零值,膜片或活塞的位移被限制到弯曲器314的位移。上面的描述当然假定该系统在或靠近其系统共振频率f0下被驱动,该频率f0随C值的改变而改变。相应地,具有非零柔性的辅助弯曲器连接被认为在本发明的范围内。In terms of flexibility, the stiffness K of the
反应驱动泵reaction driven pump
上述的反应驱动方法提供了用于本发明的膜片泵和压缩机的紧凑膜片驱动器系统。反应驱动系统的超薄布设结构使膜片型泵的高性能小型化能够减小到MESO和MEMS尺寸范围内。The reaction-driven approach described above provides a compact diaphragm drive system for the diaphragm pumps and compressors of the present invention. The ultra-thin layout of the reaction-driven system enables the high-performance miniaturization of diaphragm-type pumps down to the MESO and MEMS size range.
图7图示本发明的一个反应驱动泵的实施例,它示出泵79的顶视图和侧视图,这里的顶视图是在联腔盖板88去掉的情况下示出的。在图7中,泵体80设置有O形环密封82,它形成泵体80和驱动器盖板86之间的压力密封。泵体80设置有O形环密封84,它形成泵体80和联腔盖板88之间的压力密封。泵79还设置有流体膜片90,该膜片90的周边保持在O形环92和O形环94之间,两个O形环通过螺纹夹持环96夹持在泵体80内。流体膜片90典型地由金属制造,但是也可能由其他材料制造。隔离块98刚性地连接到膜片90的中心,而隔离块98的另一端刚性地连接到弯曲器驱动器100的中心。环形反应质量102连接到弯曲器驱动器100的周边。电线104将弯曲器驱动器100连接到压力密封的电馈入装置106,这些装置106都用于将弯曲器驱动器连接到外部电压波形发生器。压缩腔108由流体膜片90和泵体80限定。Figure 7 illustrates a reaction driven pump embodiment of the present invention showing a top view and a side view of pump 79, where the top view is shown with chamber cover plate 88 removed. In FIG. 7 , the pump body 80 is provided with an O-ring seal 82 which forms a pressure seal between the pump body 80 and the driver cover plate 86 . The pump body 80 is provided with an O-ring seal 84 which forms a pressure seal between the pump body 80 and the chamber cover 88 . The pump 79 is also provided with a fluid diaphragm 90 held at its periphery between an O-ring 92 and an O-ring 94 , the two O-rings being clamped within the pump body 80 by a threaded clamping ring 96 . Fluid diaphragm 90 is typically fabricated from metal, but other materials are possible. Spacer block 98 is rigidly connected to the center of diaphragm 90 , while the other end of spacer block 98 is rigidly connected to the center of bender driver 100 . A ring-shaped reactive mass 102 is attached to the perimeter of the bender drive 100 . Wires 104 connect the bender drive 100 to pressure-sealed electrical feedthroughs 106, both of which are used to connect the bender drive to an external voltage waveform generator. Compression chamber 108 is defined by fluid diaphragm 90 and pump body 80 .
图7的泵体80还设置有环形排放联腔(plenum)110和圆柱形输入联腔112,这里排放联腔110和圆柱形输入联腔112共轴地位于泵体80内。排放联腔110通过图7顶视图中示出的6个排放口114连通到压缩腔108,但是在侧视图平面上未示出排放口114。输入联腔112通过6个输入端口连通到压缩腔108。排放簧片阀120位于排放联腔110的底面118上并覆盖排放口114,簧片阀120的形状示于图7的顶视图。入口簧片阀124位于输入联腔112的底面122上并覆盖输入端口116,簧片阀124的形状用虚线示于图7的顶视图。排放簧片阀120的周边通过环形间隔件126被压靠在排放联腔110的底面118上,该环形间隔件126又由联腔盖板88夹持。入口簧片阀124的周边通过O形环92被压靠在压缩腔108的上表面128上。本实施例的输入和排放簧片阀典型地是由瓣阀钢制造的,对于运行在200-300Hz频率范围内的小型压缩机为0.001-0.004mil厚。垫片130形成在排放联腔110和输入联腔112之间的压力密封。输入通道132和排放通道134位于联腔盖板88内,输入通道132引导从泵79外侧到输入联腔112的流动,排放通道134引导离开排放联腔110到泵79外部的流动。The pump body 80 of FIG. 7 is also provided with an annular discharge plenum 110 and a cylindrical inlet plenum 112 , which are located coaxially within the pump body 80 here. The discharge manifold 110 communicates to the compression chamber 108 through six discharge ports 114 shown in the top view of Figure 7, but not shown in the side view plane. The input chamber 112 communicates with the compression chamber 108 through 6 input ports. The discharge reed valve 120 is located on the bottom surface 118 of the discharge chamber 110 and covers the discharge port 114 , the shape of the reed valve 120 is shown in the top view of FIG. 7 . The inlet reed valve 124 is located on the bottom surface 122 of the input chamber 112 and covers the input port 116 , and the shape of the reed valve 124 is shown in the top view of FIG. 7 by dashed lines. The periphery of the discharge reed valve 120 is pressed against the bottom surface 118 of the discharge union 110 via an annular spacer 126 , which in turn is clamped by the union cover 88 . The perimeter of the inlet reed valve 124 is pressed against the upper surface 128 of the compression chamber 108 by the O-ring 92 . The inlet and discharge reed valves of this embodiment are typically fabricated from flap valve steel, 0.001-0.004 mil thick for small compressors operating in the 200-300 Hz frequency range. The gasket 130 forms a pressure seal between the outlet manifold 110 and the inlet manifold 112 . An input channel 132 directs flow from outside the pump 79 to the input manifold 112 and a discharge channel 134 directs flow out of the exhaust manifold 110 to the outside of the pump 79 , located within the manifold cover plate 88 .
在工作过程中,交变电压波形的频率f施加到弯曲器驱动器100,使其在频率f下在例如图2中所示的弯曲变形形状之间振动。当弯曲器驱动器100在频率f下机械地振动时,振动力可以通过隔离块98传递到流体膜片90,使膜片90也在频率f下振动,由此使压缩腔108内的压力在频率f下波动。在图7的实施例中,弯曲器驱动器100的动力输出(PTO)点是在弯曲器驱动器100的中心。如果电驱动频率f等于或接近系统共振频率f0,那么流体膜片90的位移应按系统的频率f下的共振品质因数Q成比例地或基本上成比例地增加。在这样一个实施例中,在给定工作状态下系统共振频率f0可以由组合机械和流体弹簧的刚度、有效运动质量、和与包括阀损失在内的泵送功有关的阻尼等来确定。In operation, an alternating voltage waveform of frequency f is applied to the bender driver 100 causing it to oscillate at frequency f between bend deformed shapes such as that shown in FIG. 2 . When the bender driver 100 vibrates mechanically at a frequency f, the vibration force can be transmitted to the fluid diaphragm 90 through the isolation block 98, causing the diaphragm 90 to also vibrate at the frequency f, thereby causing the pressure in the compression chamber 108 to vary at frequency f fluctuate under f. In the embodiment of FIG. 7 , the power take-off (PTO) point of the bender drive 100 is at the center of the bender drive 100 . If the electric drive frequency f is equal to or close to the system resonant frequencyf0 , then the displacement of the fluid diaphragm 90 should increase proportionally or substantially proportionally to the resonance quality factor Q at the system frequency f. In such an embodiment, the system resonant frequencyf0 at a given operating condition can be determined by the combined mechanical and fluid spring stiffness, effective moving mass, and damping related to pumping work including valve losses.
当膜片90正在向下运动远离压缩腔108的上表面128时输入冲程出现,当膜片90正在向着压缩腔128的上表面128向上运动时排放冲程出现。在输入冲程中,压缩腔108内的流体压力下降到低于输入联腔112内的流体压力,产生的压差将开启入口簧片阀124,从而允许流体从输入联腔112通过输入端口116流进压缩腔108。当膜片90达到其冲程底部时,它掉转方向,表示压缩冲程开始,压缩腔内的流体压力开始增加。当压缩腔108内的流体压力上升到高于输入联腔112内的流体压力时,产生的压差将关闭入口簧片阀124,从而密封住输入端口116和停止流体从输入联腔112流进压缩腔108。在压缩冲程中,压缩腔108内的流体压力上升到高于排放联腔110内的流体压力,产生的压差将开启排放簧片阀120,从而允许流体从压缩腔108通过输出端口114流进排放联腔110。当膜片90达到其冲程顶部时,它掉转方向表示输入冲程开始,压缩腔内的流体压力开始下降。当压缩腔108内的流体压力下降到低于排放联腔110内的流体压力时,产生的压差将关闭排放簧片阀120,从而停止或有效地停止流体从压缩腔108流进排放联腔110。按这种方式,形成通过泵79的净流体流量,这里流体通过输入通道132被吸入,通过排放通道134排出。协助输入和排放阀门关闭的还有阀门的弹簧刚性,它将总是趋向于使阀门恢复到关闭位置。The input stroke occurs when the diaphragm 90 is moving downward away from the upper surface 128 of the compression chamber 108 and the discharge stroke occurs when the diaphragm 90 is moving upward toward the upper surface 128 of the compression chamber 128 . During the intake stroke, the fluid pressure in compression chamber 108 drops below the fluid pressure in intake manifold 112, and the resulting pressure differential opens inlet reed valve 124, allowing fluid to flow from intake manifold 112 through input port 116. into the compression chamber 108. When the diaphragm 90 reaches the bottom of its stroke, it reverses direction, indicating the start of the compression stroke and the fluid pressure in the compression chamber begins to increase. When the fluid pressure in compression chamber 108 rises above the fluid pressure in inlet union chamber 112, the resulting pressure differential will close inlet reed valve 124, thereby sealing inlet port 116 and stopping fluid flow from inlet chamber 112 into Compression chamber 108 . During the compression stroke, the fluid pressure in the compression chamber 108 rises above the fluid pressure in the discharge union chamber 110, and the resulting pressure differential will open the discharge reed valve 120, thereby allowing fluid to flow from the compression chamber 108 through the output port 114. Discharge manifold 110 . When the diaphragm 90 reaches the top of its stroke, it reverses direction to indicate the start of the input stroke and the fluid pressure in the compression chamber begins to drop. When the fluid pressure in compression chamber 108 drops below the fluid pressure in discharge union chamber 110, the resulting pressure differential will close discharge reed valve 120, thereby stopping or effectively stopping fluid flow from compression chamber 108 into discharge union chamber 110. In this manner, a net fluid flow is established through the pump 79 where fluid is drawn in through the input passage 132 and expelled through the discharge passage 134 . Also assisting the inlet and discharge valves in closing is the spring rate of the valve which will always tend to return the valve to the closed position.
图7中示出的实施例中的泵79的膜片90没有固定的位移。在膜片90的位移范围内,膜片90的位移幅度可以通过改变驱动电压波形、通过相对于系统共振频率改变驱动频率,或通过改变电压幅度和频率而变化。因此,膜片90在多个第一位置和多个第二位置之间自由运动,其中第一位置在各个压缩冲程的顶端处最接近压缩腔108的表面128,第二位置在各个吸入冲程的末端时远离压缩腔108的表面128。膜片在连续的压缩冲程可操作地运动到多个第一位置和在连续的吸入冲程中可操作地运动到多个第二位置,以响应变化的驱动电压或驱动频率。对于泵79和对于本发明的所有其他的泵实施例而言,多个膜片位移幅度提供了可变的工作容量,因此改变膜片的位移将引起泵的容量变化。这种可变容量特征能够用于液体或气体。The diaphragm 90 of the pump 79 in the embodiment shown in FIG. 7 has no fixed displacement. Within the range of displacement of the diaphragm 90, the magnitude of the displacement of the diaphragm 90 can be varied by changing the driving voltage waveform, by changing the driving frequency relative to the system resonant frequency, or by changing the voltage magnitude and frequency. Accordingly, the diaphragm 90 is free to move between a plurality of first positions closest to the surface 128 of the compression chamber 108 at the top end of each compression stroke and a plurality of second positions at the top of each suction stroke. Ends away from the surface 128 of the compression chamber 108 . The diaphragm is operable to move to a plurality of first positions on successive compression strokes and to a plurality of second positions on successive intake strokes in response to varying drive voltage or drive frequency. As with pump 79, as with all other pump embodiments of the present invention, multiple diaphragm displacement amplitudes provide variable operating capacity, so varying diaphragm displacement will cause the pump capacity to vary. This variable capacity feature can be used for liquids or gases.
横跨泵体进行测量时,图7的泵79直径约为2.25英寸。所使用的膜片典型地由瓣阀钢制造,具有的厚度约为0.002-0.005英寸。对于空气,典型的工作频率在200至400Hz之间变化,这取决于压缩比、流量和系统的特定设计。The pump 79 of Figure 7 is approximately 2.25 inches in diameter when measured across the pump body. The diaphragms used are typically fabricated from clapper valve steel and have a thickness of about 0.002-0.005 inches. For air, typical operating frequencies vary between 200 and 400Hz, depending on the compression ratio, flow rate and the specific design of the system.
应当理解,在本发明的许多其他实施例中,弯曲器驱动器和流体膜片的相关直径将不同于这里举例指出的直径。弯曲器的直径可能大于或小于流体膜片的直径。驱动流体膜片所需要的力以及泵的流动容量随着流体膜片的直径增加。提供所希望的力所需要的弯曲器驱动器直径将随弯曲器驱动器的类型变化。It should be understood that in many other embodiments of the invention, the relative diameters of the bender actuator and fluidic membrane will differ from the diameters exemplified here. The diameter of the bender may be larger or smaller than the diameter of the fluid membrane. The force required to actuate the fluidic diaphragm, as well as the flow capacity of the pump, increases with the diameter of the fluidic diaphragm. The diameter of the bender driver needed to provide the desired force will vary with the type of bender driver.
稳压运行和压力平衡Regulated operation and pressure equalization
图7的O形环82和84提供泵体80的压力密封并允许利用高压流体运行。例如,本发明许多实施例的泵可以用作致冷或热泵回路中的压缩机和用于需要小型压缩机的现场冷却(spot cooling)或加热。图8示出蒸汽-压缩传热循环,其中具有致冷剂压缩机140、冷凝器142、降压毛细管144、蒸发器146和冷却区域148。在工作过程中,压缩机140提供致冷剂的流动和压力提升,致冷剂环绕回路顺时针流动,气体致冷剂在冷凝器142中冷凝到液体,在毛细管144中压力下降,从冷却区域148吸收热量,并在蒸发器146中沸腾,最终以气体状态返回到压缩机140。O-rings 82 and 84 of FIG. 7 provide pressure sealing of pump body 80 and allow operation with high pressure fluid. For example, the pumps of many embodiments of the invention can be used as compressors in refrigeration or heat pump circuits and for spot cooling or heating where small compressors are required. FIG. 8 shows a vapor-compression heat transfer cycle with a
对于将图7中的泵用于需要压力提升流体的场合,膜片90可以防止扭曲,以响应压缩腔108内升高的平均压力。压缩腔108内的较高平均压力可以会引起膜片90朝离开压缩腔108的内表面128的方向鼓起来。对于给定的峰值到峰值的膜片位移,这种膜片扭曲可以增加泵的余隙容积(cleavence volume)以及增加膜片90的弯曲应力。Diaphragm 90 prevents distortion in response to the increased average pressure within compression chamber 108 for use with the pump of FIG. A higher average pressure within the compression chamber 108 may cause the diaphragm 90 to bulge away from the inner surface 128 of the compression chamber 108 . For a given peak-to-peak diaphragm displacement, this diaphragm twist can increase the pump's clearance volume as well as increase the bending stress of the diaphragm 90 .
压力引起的膜片扭曲可以通过增加膜片90的刚度来减少。控制压力引起的膜片扭曲的另一种方法可以是使流体膜片90两侧上的压力平衡。如图7所示,膜片90中的压力平衡孔136可以提供本发明泵的压力平衡。如果压缩腔108内的平均流体压力上升到高于驱动器腔138内的流体压力,那么产生的压差可以使流体从压缩腔108流进驱动器腔138,直至压力平衡。Pressure induced diaphragm distortion can be reduced by increasing the stiffness of the diaphragm 90 . Another method of controlling pressure-induced diaphragm distortion may be to equalize the pressure on both sides of the fluid diaphragm 90 . As shown in FIG. 7, pressure equalization holes 136 in diaphragm 90 can provide pressure equalization for the pump of the present invention. If the average fluid pressure in compression chamber 108 rises above the fluid pressure in driver chamber 138, the resulting pressure differential may cause fluid to flow from compression chamber 108 into driver chamber 138 until the pressures equalize.
压力平衡孔136的直径可以选择成提供一个压力平衡时间常数,它是按持续时间的许多泵动周期。如果流量时间常数太短(孔太大),那么泵的流动容量和效率可能减小,这是因为每个泵送周期中能量可能浪费在泵送流体进出孔136的过程中。如果流量时间常数较长(例如孔太小),那么压力平衡可能太慢以致不能防止膜片扭曲。孔136的尺寸可以由孔板流量计算来确定,该计算根据给定的孔两侧的压差和驱动器腔138的容积来进行。作为膜片孔136的可替换方案,可以使用钻穿泵体80的方案,钻穿的孔将压缩腔108连接到驱动器腔138。The diameter of the pressure equalization hole 136 can be selected to provide a pressure equalization time constant which is in duration many pumping cycles. If the flow time constant is too short (orifice is too large), the flow capacity and efficiency of the pump may be reduced because energy may be wasted pumping fluid into and out of the orifice 136 each pumping cycle. If the flow time constant is long (eg, the orifice is too small), pressure equalization may be too slow to prevent diaphragm distortion. The size of the orifice 136 can be determined by an orifice flow calculation based on a given pressure differential across the orifice and the volume of the driver chamber 138 . As an alternative to the diaphragm hole 136 , drilling through the pump body 80 connecting the compression chamber 108 to the driver chamber 138 may be used.
余隙容积Clearance volume
在本发明的大多数实施例中,可以达到的压缩比基于泵的间隙容量,这是因为压缩比=(VS+VC)/VC,这里VS是有效容积(swept volume)和VC是余隙容积。余隙容积是当膜片处在其冲程顶端时压缩腔的容积。In most embodiments of the invention, the achievable compression ratio is based on the clearance capacity of the pump because compression ratio = (VS +VC )/VC , where VS is the swept volume and VC is the clearance volume. Clearance volume is the volume of the compression chamber when the diaphragm is at the top of its stroke.
在图7中,当泵79的膜片90处在其冲程顶端时,环绕压缩腔108的周边将保留基本的余隙容积。对于象泵79的设计,在最大冲程下的余隙容积例如可能与有效容积的1/3一样大。对于不需要压力提升的场合,泵79的设计可以提供需要的性能。In Figure 7, when the diaphragm 90 of the pump 79 is at the top of its stroke, a substantial clearance volume will remain around the periphery of the compression chamber 108. For a design like pump 79, the clearance volume at maximum stroke could be as large as 1/3 of the effective volume, for example. For applications where a pressure boost is not required, the pump 79 is designed to provide the required performance.
图9示出本发明减小余隙容积的一个实施例。在图9中提供了侧视图和顶视图,这里顶视图是在联腔盖去掉的情况下看到的。在图9中提供一种泵162,这里图7的O形环92已用锥形环150来代替。为了避免覆盖排放口,锥形环150具有和压缩机本体160中的排放口重合的端口,因为断面平面不通过该端口切割,所以在图9的断面视图中没有示出该端口。泵162还用图9顶视图中以虚线示出的入口簧片阀154来代替图7的入口簧片阀124。入口簧片阀154定中地位于压缩腔152的上表面158上,以便不与锥状O形环150干涉。在工作过程中,当膜片156向压缩腔152的上表面158位移时,膜片156在其周边的弯曲轮廓倾向于紧密地与锥形环150的径向轮廓匹配,由此减少压缩腔152的余隙容积。可选地,锥形环150的轮廓可能包括在泵体160内,作为其整体结构的一部分。用于减小膜片压缩机的余隙容积的许多方法和结构形式可以用于实现本发明的这样的实施例。Figure 9 shows an embodiment of the present invention for reducing the clearance volume. A side view and a top view are provided in Figure 9, where the top view is seen with the chamber cover removed. In FIG. 9 a
图10提供本发明进一步减小振荡泵(oscillating pump)的余隙容积的一个实施例,这里泵168的隔离块170的上侧部分164具有直径D并刚性地连接到膜片166。膜片166的连接到隔离块170的上侧部分164的区域可以被限制成象活塞面一样以平面方式运动,而膜片166的大于直径D和小于夹持直径的外侧部分将象一个环绕膜片一样自由挠曲。这种活塞-膜片结构形式和锥形压缩腔的组合将导致一个小于图9中泵162的余隙容积。泵168的活塞状设计对于给定的位移可能增加膜片166上的应力,这样导致对膜片材料和厚度的选择。然而,对于给定的运行条件,增加的性能可能使位移减小,由此会抵消膜片上的较高应力。10 provides an embodiment of the present invention to further reduce the clearance volume of an oscillating pump, where the
图9和10中示出的压缩腔高度和轮廓为了清晰有点夸大。当使压缩腔成形以使余隙容积减小到最小时,所使用的特定轮廓将由膜片-活塞在其最大冲程时的形状来确定,该形状又将随所选择的特定设计而变化。The compression chamber heights and profiles shown in Figures 9 and 10 are somewhat exaggerated for clarity. When shaping the compression chamber to minimize clearance volume, the particular profile used will be determined by the shape of the diaphragm-piston at its maximum stroke, which in turn will vary with the particular design chosen.
对于本发明的一些实施例,具体设计可以是在低的余隙容积和压缩腔内流体的弹性性能影响系统动力特性的方式之间的折衷。低的余隙容积能够导致在压缩冲程末端有较少的流体存留,并因此导致较小的流体弹簧刚度和相关的恢复力。如果希望具有很小的余隙容积,那么可以增加机械弹簧以补偿失去的流体弹簧刚度。这样的机械弹簧能够采取图6中的对齐盘(alignment disk)76、片簧的形式,或者可以只是包括使用较刚性的流体膜片。For some embodiments of the invention, the specific design may be a compromise between low clearance volume and the way the elastic properties of the fluid in the compression chamber affect the dynamic characteristics of the system. A low clearance volume can result in less fluid retention at the end of the compression stroke, and thus a lower fluid spring rate and associated restoring force. If a small clearance volume is desired, a mechanical spring can be added to compensate for the lost fluid spring rate. Such a mechanical spring could take the form of an alignment disk 76 in Figure 6, a leaf spring, or could simply involve the use of a stiffer fluid diaphragm.
为了减小余隙容积,本领域技术人员会想到,采用许多其他实施例来减小余隙容积。在如何使活塞和压缩腔分界以减小余隙容积的其他变型,在现有技术专利如美国专利3572908、美国专利6514047、英国专利428632、英国专利700368和美国专利4874299中可以看到,它们的全部内容结合在这里作为参考。In order to reduce the clearance volume, it will occur to those skilled in the art that many other embodiments are used to reduce the clearance volume. Other variations on how to demarcate the piston and compression chamber to reduce the clearance volume can be seen in prior art patents such as US Patent 3572908, US Patent 6514047, UK Patent 428632, UK Patent 700368 and US Patent 4874299, their The entire contents are incorporated herein by reference.
阀门valve
本发明的较高工作频率意味着被动式阀门(passive valve)设计将经常考虑某些流体和机械动力学问题,这些问题在较高频率下变得越来越重要。这些与频率有关的效应例如包括运动阀门的惯性和弹簧刚性以及有关的开启和关闭时间,当流体加速通过阀门和阀门端口的流动路径时流体的惯性定时效应(inertial timing ettect)和阀门端口的尺寸和断面轮廓对流体流动定时(fluid flow timing)具有的效应。这些参数可以用来提高给定的泵设计的流量和压力性能,并能够利用许多数字集总元件(lumped-element)模型来成功地模拟。在一些实施例的泵中,可以使用不带阀门止挡的簧片阀来提供超薄阀门。对于具体的泵工作频率、流量和压缩比,当没有阀门止挡时,阀门必须通过选择恰当的阀门刚度和阀门质量来调节,以便实现良好的阀门定时。The higher operating frequency of the present invention means that passive valve designs will often take into account certain fluid and mechanical dynamics issues which become increasingly important at higher frequencies. These frequency-dependent effects include, for example, the inertia and spring stiffness of a moving valve and the associated opening and closing times, the inertial timing effects of the fluid as it accelerates through the flow path of the valve and valve port, and the size of the valve port. and the effect of cross-sectional profile on fluid flow timing. These parameters can be used to improve the flow and pressure performance of a given pump design and can be successfully simulated using many numerical lumped-element models. In the pumps of some embodiments, a reed valve without a valve stop may be used to provide an ultra-thin valve. For a specific pump operating frequency, flow rate and compression ratio, when there is no valve stop, the valve must be adjusted by selecting the proper valve stiffness and valve mass in order to achieve good valve timing.
本发明的一些实施例能够通过阀门端口的正确调节在没有运动的机械阀门例如簧片阀的情况下运行。阀门端口调节可以采取本领域熟知的各种阀门端口类型的形式,例如扩散阀、喷嘴阀和Tesla阀等。这些阀门端口对通过该端口的流体流,典型地具有改变的断面面积,并设计成在一个方向具有低的流动阻力和在相反方向具有高的流动阻力。这种方向上的流动阻力的不同形成整流效应,将振动的流动转换成在一个方向上的净流动。虽然被调节的端口不能单独提供例如簧片阀这样的机械阀门的流量和压力性能,但是它们提供了简单性和可靠性并能够按比例缩小到小的尺寸和高的频率。Some embodiments of the present invention are able to operate without moving mechanical valves such as reed valves through proper adjustment of the valve ports. Valve port adjustments can take the form of various valve port types well known in the art, such as diffusion valves, nozzle valves, and Tesla valves, among others. These valve ports typically have varying cross-sectional areas to fluid flow through the ports and are designed to have low flow resistance in one direction and high flow resistance in the opposite direction. This difference in flow resistance in one direction creates a rectifying effect that converts the vibrating flow into a net flow in one direction. While regulated ports alone cannot provide the flow and pressure performance of mechanical valves such as reed valves, they provide simplicity and reliability and can be scaled to small size and high frequency.
本发明的一些实施例中的泵也可以使用被驱动的阀门,这些阀门可以由弯曲器驱动器、电磁驱动器、静电驱动器或其他驱动器来驱动,这些驱动器能够提供由特定应用所要求的位移和频率响应。根据一些实施例,泵也可以采用阀门止挡,该止挡限制阀门的开启高度,以便使阀门性能最佳化,如在泵阀门领域中熟知的。Pumps in some embodiments of the invention may also use actuated valves, which may be actuated by bender actuators, electromagnetic actuators, electrostatic actuators, or other actuators capable of providing the displacement and frequency response required by a particular application . According to some embodiments, the pump may also employ a valve stop that limits the opening height of the valve in order to optimize valve performance, as is well known in the art of pump valves.
图11示出了本发明的另一个泵实施例,这里入口簧片阀位于运动的膜片-活塞组件上。在图11中,泵172包括泵体174、弯曲器驱动器176、隔离块178让隔离块178的下端刚性地连接到弯曲器驱动器176上,其上端刚性地连接到流体膜片180上。为隔离块178设置了在一个圆上的6个输入端口182,这里,6个输入端口182中只有两个表示在泵172断面视图的平面内。入口簧片阀184刚性地连接到膜片180的中心,以使入口簧片阀184的瓣(pedal)覆盖输入端口182。泵体174设置有在一个圆上的6个输出端口186,这里6个输出端口中只有两个表示在泵172断面视图的平面内。出口簧片阀188的周边刚性地连接到泵体174的表面190上,以使出口簧片阀188的瓣覆盖输出端口186。Figure 11 shows another pump embodiment of the invention where the inlet reed valve is located on the moving diaphragm-piston assembly. In FIG. 11 , pump 172 includes
在工作过程中,具有频率f的电压波形被施加到弯曲器驱动器176上,驱动器176激发泵172的系统共振,如上所述,流体膜片180在两个位移极端之间响应振动,从而使压缩腔196内的流体压力在频率f下波动。为了响应压缩腔196内的波动流体压力,入口阀184和出口阀188按顺序每个周期一次地开启和关闭,由此吸入低压流体通过泵体输入端口194、通过驱动器腔200、通过输入端口182,并进入压缩腔196,然后排放高压流体通过输出端口186、通过输出联腔198、和通过泵体输出端口192离开泵172。将输入端口和入口簧片阀设置在隔离块178上提供设计灵活性,使泵能够进一步减小尺寸。另一个优点是活塞的运动将提供入口阀的自然驱动,这里阀门的惯性和活塞的运动将随压力循环适当地同步开启和开关阀门。During operation, a voltage waveform having a frequency f is applied to the
对于图11的泵172,简单重新设计的簧片阀将使出口阀放置在隔离块178上,从而覆盖输入端口182的背面,并使入口阀放置在泵体174的表面190上。在这种情况下,出口阀而不是入口阀将有利于驱动。For the
泵振动的减小Reduced pump vibration
在本发明的一些实施例中,流体压缩愈高,泵的潜在振幅愈大。图12示出了本发明的一个可以减小泵振动的实施例。这里出现了两个相对的流体膜片。在图12中,提供的泵202包括泵体204、第一弯曲器驱动器206、第一隔离块208。第一隔离块208的下端刚性地连接到第一弯曲器驱动器206上,其上端刚性地连接到第一流体膜片210上。第一隔离块208设置有在一个圆上的6个输出端口212,这里6个输出端口212中只有两个表示在泵202的断面视图的平面内。出口簧片阀214安装成与第一隔离块208的下表面216齐平,以致出口簧片阀214的瓣覆盖住输出端口212。出口簧片阀214的内环218刚性地连接到第一隔离块208的下表面216上,使出口簧片阀21 4的瓣以悬臂方式开启和关闭。In some embodiments of the invention, the higher the fluid compression, the greater the potential amplitude of the pump. Figure 12 shows an embodiment of the present invention that reduces pump vibration. Here two opposing fluid membranes appear. In FIG. 12 , a
泵202还设置有第二弯曲器驱动器220、第二隔离块222。第二隔离块222的上端刚性地连接到第二弯曲器驱动器220上,其下端刚性地连接到第二流体膜片224上。第二隔离块222设置有在一个圆上的6个输入端口226,这里6个输出端口226中只有两个表示在泵202的断面视图平面内。入口簧片阀228安装成与第二流体膜片224的下表面230齐平,以使入口簧片阀228的瓣覆盖住输入端口226。入口簧片阀228的中心区域232刚性地连接到第二流体膜片224的下表面230,以使入口簧片阀228的瓣以悬臂方式自由开启和关闭。泵202还设置有泵外壳,泵外壳包括圆柱形壳体236、上部壳盖238和下部壳盖240。圆柱形壳体236具有壳体入口250和壳体出口248。圆柱形壳体236通过弹性圆环242连接到泵体404,圆环242提供在排放联腔244和输入联腔246之间的压力密封。The
在工作过程中,具有频率f的电压波形被施加到第一和第二弯曲器驱动器206和220,从而使第一和第二流体膜片210和224在它们各自的位移极端之间响应地振动。具有同样时间相位和频率f的电压波形被施加到第一和第二弯曲器驱动器206和220,由此保证每个流体膜片将一致地跨越压缩和输入冲程,由此使压缩腔234内的流体压力在频率f下波动。为了响应压缩腔234内的波动流体压力,出口阀214和入口阀228将按顺序每个周期一次地开启和关闭,由此吸入低压流体通过壳体入口250、通过输入联腔246、通过输入端口226进入压缩腔234,然后排放高压流体通过输出端口212、通过输出联腔244和通过壳体出口248出来。In operation, a voltage waveform having a frequency f is applied to the first and
图12的泵202可以具有下列方面的特点:将出口阀214和入口阀228定位在各自的第一和第二隔离块208和222上提供了设计灵活性并可以能够使泵的尺寸进一步缩减。这个实施例的另一方面是第一隔离块208和第二隔离块222的运动可以提供排放阀214和入口阀228的自然驱动,这里阀门的惯性和它们各自隔离块的运动将随压力循环适当地同步开启和关闭阀门。另外的优点是由弹性圆环242提供,弹性圆环242形成在泵体204和泵外壳之间的一定水平的振动绝缘。圆环242的刚度由设计者选择,以使从泵体204到泵外壳242的振动传递最小,这一点在振动控制领域中是很好理解的。可选地,图12中泵202的阀门能够环绕压缩腔234的周边以固定方式安装在泵体204内。The
图12的泵202能够从这里公开的其他实施例的其他方面受益,例如通过调节弹簧来改善机械功率因数,通过稳定弹簧来改善轴向稳定性等。The
驱动回路和控制Drive Circuit and Control
本发明的泵实施例依靠系统的机械共振来提供大的流体膜片位移。改变工作状态可以变换系统的共振频率。例如,本发明的泵可以是非线性的机械振动器,其中它们的系统共振频率可以随驱动幅度而改变。因此,当应用要求改变驱动电压以便改变泵的流动容量和压力时,可以使用共振控制器。一个示范的共振控制器示于图13,这里本发明的泵252设有函数发生器254、驱动放大器256、微处理器258和低电阻的电阻器260。在工作过程中,函数发生器254向放大器256提供具有频率f的电压波形,放大器256又将放大的电压波形传送到泵252的弯曲器驱动器端子。对于给定的电压幅度VO,微处理器258测量通过泵252的端子的随时间变化的电压V(t)、通过电阻器260的随时间变化的电流I(t)以及V(t)和I(t)之间的时间相位角。然后,微处理器258计算电功率因数cos,并计算传送的电功率P=V(t)·I(t)·cos。传送的电功率P在系统共振频率f0下达到最大值。这样微处理器258通过连续地进行例行的搜索使驱动频率f接近系统共振频率f0,所述例行的搜索使频率f变化一个增量,然后确定P是否已增加或减小。对于给定的频率变化,如果P减小,然后微处理器258作一个步进的频率改变,该频率改变具有和前面的频率改变步骤相反的算术符号。对于给定的频率改变,如果P增加,然后微处理器258作一个步进的频率改变,该频率改变具有和前面频率改变步骤同样的算术符号。Pump embodiments of the present invention rely on the mechanical resonance of the system to provide large fluid diaphragm displacements. Changing the working state can change the resonant frequency of the system. For example, the pumps of the present invention may be nonlinear mechanical vibrators in which their system resonant frequency may vary with drive amplitude. Therefore, a resonant controller can be used when the application requires varying the drive voltage in order to vary the flow capacity and pressure of the pump. An exemplary resonant controller is shown in FIG. 13 , where the
能够使用许多其他的共振控制方法。例如,利用共振控制器达到最大值的参数可能是由接近弯曲器驱动器的位移传感器、在泵的出口处的压力传感器或连接到泵体的加速计提供的信号。另一种方法将是利用相位锁定回路(PLL)来维持在驱动电压和电流之间的目标时间相位角,该相位角对应于所希望的驱动频率,该驱动频率等于或接近于系统共振频率。Many other resonance control methods can be used. For example, the parameter that is maximized with a resonance controller may be a signal provided by a displacement sensor close to the bender drive, a pressure sensor at the outlet of the pump, or an accelerometer connected to the pump body. Another approach would be to use a phase locked loop (PLL) to maintain a target temporal phase angle between the drive voltage and current that corresponds to the desired drive frequency, which is at or close to the system resonant frequency.
对于具有两个相对的流体膜片的泵,例如图12的泵202,力的消除可以利用附加的控制器来提高。图14示出的电路提供力消除控制器以及象图13中一样的共振控制器的一个实施例。在图14中,本发明的双膜片泵262具有第一弯曲器驱动器280和第二弯曲器驱动器282,还设置有控制器电路,该电路包括第一放大器264、第二放大器266、微处理器268、函数发生器270、第一电流检测电阻器272、第二电流检测电阻器274、第一位移传感器276、第二位移传感器278和加速计284。For pumps with two opposing fluid diaphragms, such as
在工作过程中,函数发生器270将具有频率f的电压波形提供到第一放大器264和第二放大器266,这里每个放大器将各自的放大电压波形传送到泵262的第一弯曲器驱动器280和第二弯曲器驱动器282。对于给定的电压幅度VO,微处理器268测量通过弯曲器驱动器280和282的端子的随时间变化的电压V(t),测量通过电阻器272和274的随时间变化的电流I(t),和测量在弯曲器驱动器280和282的各自的V(t)和I(t)之间的时间相位角。然后,微处理器268计算电功率因数cos,并对每个弯曲器驱动器计算传送的电功率P=V(t)·I(t)·cos。传送的电功率P在系统共振频率f0下达到最大值。这样,微处理器268通过连续地进行例行的收索,使函数发生器270的驱动频率f接近系统共振频率f0,所述例行的搜索使频率f变化一个增量,然后确定P是否已增加或减小。对于给定的频率变化,如果P减小,那么微处理器268作一个步进的频率改变,该频率改变具有和前面频率改变步骤相反的算术符号。对于给定的频率改变,如果P增加,那么微处理器268作一个步进的频率改变,该频率改变具有和前面频率改变步骤同样的算术符号。In operation,
微处理器268和图14的共振控制器同时运行通过各个位移传感器276和278测量弯曲器驱动器280和282的位移幅度并进行放大器264和266的增益调整,以使泵262的两个膜片具有相等的位移幅度。微处理器268也监控加速计284的输出并进一步进行放大器264和266的相对增益的调整,以使加速计284的加速信号最小化,由此使泵262的振动最小。本领域技术人员将能够想到许多其他的等效控制方案,通过控制本发明的两个膜片压缩机的相对位移使泵的振动最小。控制回路的其他反馈源可以包括传感如在弯曲器驱动器的端子处观察的弯曲器驱动器的电特性。The
合成喷射器synthetic jet
根据本发明的一些实施例的反应驱动系统的另一个应用是合成喷射器的驱动,图15示出一种合成喷射装置286,它具有本发明的反应驱动的驱动器实施例,这里合成喷射器286设置有弯曲器驱动器288、流体膜片292、隔离块294、流体填充腔296和端口298,弯曲器驱动器288具有刚性地连接到其周边的反应质量290,隔离块294刚性地连接到膜片292的中心,而隔离块294的另一端刚性地连接到弯曲器驱动器288的中心。Another application of the reaction-driven system according to some embodiments of the present invention is the drive of synthetic jets. FIG. A
在工作过程中,弯曲器驱动器288在频率f下驱动流体膜片292,以使能量贮存在系统共振中,从而允许流体膜片292的位移超过弯曲器驱动器288的弯曲位移。膜片292的位移振动形成腔296内的在频率f下的波动压力,这样使液体在频率f下在端口298中来回振动。如在合成喷射器领域中所熟知的,端口298内的流体振动形成脉动的脉动喷射流,它沿着端口298的圆柱形轴线离开合成喷射器286。利用反应驱动的膜片驱动器的一种可能结果是更多的能量能够传输到同样尺寸单元内的流体中,导致更大的喷射流。In operation,
流体应用fluid application
根据本发明一些实施例的反应驱动的驱动器可以具有许多的应用,这些应用需要将能量施加到流体,特别是较小尺寸的流体应用。根据一些实施例的反应驱动的驱动器可以具有下列应用:例如用于包括燃料在内的多种液体的喷雾器;燃料、气体、例如液体和气体的两相混合物、和粉末的混合器;用于化学物质制造、用于与呼吸性药物传送有关的混合的微反应器。根据一些实施例的泵可以用于任何在消费、商业、工业、医疗和科学应用领域中需要使用泵和压缩机的地方,在需要小尺寸、高性能、低噪音和低振动的地方是特别有利的。本发明的泵还能够具有下列应用,这些应用包括通常的例如空气、碳氢化合物、过程气体、高纯气体、有害和腐蚀气体等气体的压缩,冷藏、空调和热泵用的相变致冷剂的压缩,以及其他专用蒸汽压缩热传输应用。Reaction driven actuators according to some embodiments of the present invention may have many applications that require the application of energy to fluids, especially smaller sized fluid applications. Reaction-driven actuators according to some embodiments may have applications such as sprayers for various liquids including fuels; mixers for fuels, gases, two-phase mixtures such as liquids and gases, and powders; for chemical Substance manufacturing, microreactors for mixing related to respiratory drug delivery. Pumps according to some embodiments may be used wherever pumps and compressors are required in consumer, commercial, industrial, medical and scientific applications, and are particularly advantageous where small size, high performance, low noise and low vibration are required of. The pump of the present invention can also have applications including the compression of common gases such as air, hydrocarbons, process gases, high purity gases, harmful and corrosive gases, phase change refrigerants for refrigeration, air conditioning and heat pumps compression, and other specialized vapor compression heat transfer applications.
这里所描述的泵的一些实施例可以用于各种消费和工业产品。只作为例子,一些泵可以用于便携式电子装置的小型燃料电池,这些电子装置例如是可携带的计算装置、PDA和移动电话,机内热管理系统,和行走病人的可携带个人医疗装置等。所述热管理系统能够装配在电路卡上并提供微处理器和其他半导体电子仪器的冷却。这样,本发明延伸到以这样一种方式使用泵的设备和系统和方法。Some embodiments of the pumps described herein can be used in a variety of consumer and industrial products. By way of example only, some pumps may be used in small fuel cells for portable electronic devices such as portable computing devices, PDAs, and mobile phones, in-board thermal management systems, and portable personal medical devices for ambulatory patients, among others. The thermal management system can fit on a circuit card and provide cooling for microprocessors and other semiconductor electronics. Thus, the invention extends to apparatus and systems and methods for using the pump in such a manner.
本发明包括实施本发明的方法、实施发明的软件和构造成实施本发明的设备。相应地,本发明包括程序产品和硬件和固形件(firmware),它们用于完成实施本发明以及这里所述的系统和方法的算法,并用于装置的控制和这里所述方法的实现。这样,作为例子,本发明包括用逻辑来控制根据本发明的泵或泵部件的处理器。注意,这里所使用的术语“处理器”包括简单电路和复杂电路以及计算机处理器。The invention includes methods for implementing the invention, software for implementing the invention, and devices configured to implement the invention. Accordingly, the present invention includes program products and hardware and firmware for implementing algorithms implementing the present invention and the systems and methods described herein, and for the control of devices and implementation of the methods described herein. Thus, by way of example, the invention includes a processor with logic to control a pump or pump component according to the invention. Note that the term "processor" as used herein includes both simple and complex circuits as well as computer processors.
在本发明能够小型化的同时,本发明的范围决不局限于任何给定尺寸的实施例。在这里公开了本发明的各个实施例和改进,本领域的技术人员将能够想到利用这些实施例和改进的许多不同组合。这些实施例的所有各种组合将根据给定应用的要求来确定并被认为在本发明的范围内。例如,所使用的泵的数目,是否需要附加的轴向稳定性,一个或两个膜片的使用,是否需要控制器,连接部件所用的方法类型,所用的弯曲器驱动器的类型,所用的密封的类型,泵串联或并联的使用,将由给定应用的性能和成本要求来确定。本领域技术人员将想到的本发明范围内的其他应用例子将是将单独的弯曲器驱动器位于两个背对背的流体膜片之间,而每个膜片具有它们自己的压缩腔,以便利用单独的弯曲器驱动器以推拉结构形式驱动两个膜片。而且,本发明的泵能够在尺寸上按比例增大或缩小,并能够用在闭路循环系统以及开路循环系统,这对本领域技术人员将是显而易见的。While the invention is capable of miniaturization, the scope of the invention is in no way limited to any given size embodiment. Various embodiments and improvements of the invention are disclosed herein, and those skilled in the art will be able to imagine utilizing many different combinations of these embodiments and improvements. All various combinations of these embodiments will be determined by the requirements of a given application and are considered to be within the scope of the present invention. For example, the number of pumps used, whether additional axial stability is required, the use of one or two diaphragms, whether a controller is required, the type of method used to connect components, the type of bender drive used, the seals used The type, whether the pumps are used in series or in parallel, will be determined by the performance and cost requirements of a given application. Other examples of applications within the scope of this invention that will occur to those skilled in the art would be to place a separate bender driver between two back-to-back fluidic diaphragms, each with their own compression chambers, to utilize separate The bender drive drives two diaphragms in a push-pull configuration. Furthermore, the pumps of the present invention can be scaled up or down in size and can be used in closed loop systems as well as open loop systems, as will be apparent to those skilled in the art.
为了图示和说明,已经介绍了上述的本发明的一些实施例。这并不是要穷尽或将本发明到所公开的精确形式,显然,许多修改和变化根据上面的讲授是可能的。一些实施例被选择和描述是为了最好地解释本发明的原理和它的实际应用,由此使本领域其他技术人员能够最好地在各个实施例中利用本发明,和进行与所想要的具体使用相适应的各种修改。虽然上面的说明包含许多技术要求,这些技术要求不应认为是对本发明范围的限制,而应认为是其可选实施例的一个示范作用。The foregoing description of some embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching. Certain embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to best utilize the invention in the various embodiments, and to carry out the contemplated Various modifications adapted to the specific use. While the above description contains many specifications, these should not be construed as limitations on the scope of the invention, but as an illustration of alternative embodiments thereof.
权利要求书(按照条约第19条的修改)Claims (as amended under Article 19 of the Treaty)
1.一种流体能量传输装置,包括:1. A fluid energy transmission device, comprising:
用于接纳流体的腔,该腔的至少一部分包括相对于该腔的另一部分的一个可运动部分,所述可运动部分通过所述可运动部分的运动适于使该腔的容积从第一容积改变到第二容积;和A chamber for receiving a fluid, at least a portion of which includes a movable portion relative to another portion of the chamber, the movable portion being adapted by movement of the movable portion to change the volume of the chamber from a first volume to change to the second volume; and
弯曲器驱动器,其连接到所述可运动部分,以便允许弯曲器驱动器的一部分独立于所述可运动部分运动;a bender drive connected to the moveable portion so as to allow a portion of the bender drive to move independently of the moveable portion;
其中所述弯曲器驱动器至少是下列情况之一:(i)直接连接到所述可运动部分和(ii)联接到所述可运动部分,以形成一个弯曲器-可运动部分的组件;wherein said bender drive is at least one of: (i) directly connected to said movable part and (ii) coupled to said movable part to form a bender-movable part assembly;
其中所述弯曲器不与除了可运动部分之外的所述装置的任何其他部件有效地连接和有效地联接;和wherein said bender is not operatively connected and operatively coupled to any other part of said device other than a movable part; and
弯曲器-可运动部分的组件适于基本上只是由于弯曲器在驱动频率下的振动而运动。The bender-movable part assembly is adapted to move substantially only due to vibrations of the bender at the drive frequency.
2.权利要求1的装置,其中弯曲器连接到适合于将电传送到弯曲器的电导线。2. The device of claim 1, wherein the bender is connected to electrical leads adapted to deliver electricity to the bender.
3.权利要求1的装置,其中弯曲器弹性地连接到所述装置的一个与所述可运动部分分开的部件。3. The device of claim 1, wherein the bender is resiliently connected to a part of said device separate from said movable portion.
4.权利要求1的装置,其中弯曲器通过非刚性连接连接到所述装置的一个与所述可运动部分分开的部件。4. The device of claim 1, wherein the bender is connected to a component of said device separate from said movable portion by a non-rigid connection.
5.权利要求1的装置,其中所述弯曲器驱动器适合于在一个频率下弯曲,以致所述弯曲器和可运动部分将基本上只由于驱动器的弯曲而在第一位置和第二位置之间运动,在所述第一位置和第二位置之间的距离基本上大于驱动器的峰值到峰值弯曲的距离。5. The device of claim 1, wherein said bender driver is adapted to bend at a frequency such that said bender and movable portion will move between the first position and the second position substantially only due to bending of the driver motion, the distance between the first position and the second position is substantially greater than the peak-to-peak bending distance of the actuator.
6.权利要求1的装置,其中所述弯曲器驱动器适合于使所述可运动部分在一个频率下振动,以便在所述装置的系统共振中贮存能量。6. The device of claim 1, wherein said bender drive is adapted to vibrate said movable portion at a frequency to store energy in a system resonance of said device.
7.权利要求1的装置,还包括轴向稳定结构,其中所述轴向稳定结构连接到所述弯曲器-可运动部分的组件并适合于允许所述弯曲器-可运动部分的组件的轴向运动和阻碍弯曲器-可运动部分的组件的横向运动。7. The device of claim 1, further comprising an axial stabilization structure, wherein said axial stabilization structure is connected to said bender-movable part assembly and is adapted to allow the axis of said bender-movable part assembly to Towards movement and lateral movement of the assembly that hinders the bender-movable part.
8.权利要求1的装置,还包括在操作上连接到弯曲器的控制器,其中所述控制器适合于改变驱动频率,以响应系统共振频率的变化。8. The apparatus of claim 1, further comprising a controller operatively connected to the bender, wherein the controller is adapted to vary the drive frequency in response to changes in the resonant frequency of the system.
9.权利要求1的装置,还包括适合于监控所述装置的性能的控制器,其中所述性能包括离开所述装置的流体的流量和通过所述装置离开的流体的流体压力中的至少一个,所述控制器还适合于自动地改变弯曲器的驱动力,以响应所述装置的被监控的性能。9. The device of claim 1, further comprising a controller adapted to monitor performance of the device, wherein the performance includes at least one of flow rate of fluid exiting the device and fluid pressure of fluid exiting through the device , the controller is further adapted to automatically vary the drive force of the bender in response to the monitored performance of the device.
10.权利要求9的装置,其中所述控制器还适合于自动地改变弯曲器驱动器的驱动力,以自动地改变所述可运动部分的冲程距离,从第一冲程距离改变到不同于所述第一冲程距离的第二冲程距离。10. The apparatus of claim 9, wherein said controller is further adapted to automatically vary the drive force of the bender drive to automatically vary the stroke distance of said movable portion from a first stroke distance to a value different from said The second stroke distance of the first stroke distance.
11.权利要求1的装置,其中可运动部分是膜片。11. The device of claim 1, wherein the movable portion is a diaphragm.
12.一种流体能量传输装置,包括:12. A fluid energy transfer device comprising:
用于接纳流体的腔,该腔的至少一部分包括相对于该腔的另一部分的一个可运动部分,所述可运动部分适合于使该腔的容积从第一容积改变到第二容积;和a chamber for receiving fluid, at least a portion of the chamber including a movable portion relative to another portion of the chamber, the movable portion being adapted to change the volume of the chamber from a first volume to a second volume; and
弯曲器驱动器,其连接到所述可运动部分,其中所述弯曲器驱动器至少是下列情况之一:(i)直接连接到所述可运动部分和(ii)联接到所述可运动部分,以形成一个弯曲器-可运动部分的组件;a bender drive connected to the moveable portion, wherein the bender drive is at least one of: (i) directly connected to the moveable portion and (ii) coupled to the moveable portion to an assembly forming a bender-movable part;
其中所述弯曲器驱动器适合于在一个频率下弯曲,以致弯曲器-膜片的组件将基本上由于驱动器的弯曲在第一位置和第二位置之间运动;和wherein said bender driver is adapted to bend at a frequency such that the bender-diaphragm assembly will move between a first position and a second position substantially due to bending of the driver; and
在所述第一位置和第二位置之间的距离是大于和小于驱动器的峰值到峰值弯曲的距离中的至少一个。The distance between the first position and the second position is at least one of greater and less than a peak-to-peak bend distance of the driver.
13.权利要求12的装置,其中在第一位置和第二位置之间的距离比所述驱动器的峰值到峰值弯曲的距离至少要大一个数量级。13. The apparatus of
14.一种流体系统,包括:14. A fluid system comprising:
根据权利要求12的装置;和The device according to
流体,它的至少一部分处在所述腔内;fluid, at least a portion of which is within the cavity;
其中所述弯曲器驱动器适于在一个驱动频率下可操作,以便在系统共振中储存能量。Wherein the bender drive is adapted to be operable at a drive frequency to store energy in system resonance.
15.一种流体系统,包括:15. A fluid system comprising:
根据权利要求12的装置;和The device according to
流体,它的至少一部分处在所述腔内;fluid, at least a portion of which is within the cavity;
其中所述装置的系统共振频率由机械部件和流体的组合有效运动质量与机械部件和流体的组合有效弹簧刚度来控制;以及wherein the system resonant frequency of the device is controlled by the combined effective moving mass of the mechanical component and fluid and the combined effective spring stiffness of the mechanical component and fluid; and
所述弯曲器驱动器适合于在一个驱动频率下可操作,该驱动频率处在或接近于系统共振频率。The bender drive is adapted to be operable at a drive frequency at or close to the system resonant frequency.
16.权利要求12的装置,16. The device of
其中所述弯曲器不与除了可运动部分之外的泵的任何其他部件有效地连接和联接。Wherein said bender is not operatively connected and coupled to any other part of the pump other than the movable part.
17.一种使流体运动的方法,包括:17. A method of moving a fluid comprising:
提供用于泵送流体的泵,该泵包括:Pumps are available for pumping fluids including:
用于接纳流体的腔,该腔的至少一部分包括相对于该腔的另一个部分的一个可运动部分,所述可运动部分适合于改变该腔的容积,通过所述可运动部分的运动从第一容积改变到第二容积;和A cavity for receiving fluid, at least a part of which comprises a movable part relative to another part of the cavity, said movable part being adapted to change the volume of the cavity from a first changing from one volume to a second volume; and
弯曲器驱动器,其连接到所述可运动部分;a bender drive connected to the movable part;
使弯曲器在驱动频率下振动,以致反应所述弯曲器的振动的力被传递到所述可运动部分,使可运动部分按这样一种方式位移,以致所述可运动部分的位移距离至少是大于或小于在弯曲器振动期间遇到的弯曲器的峰值到峰值弯曲位移中的一个,和causing the bender to vibrate at a drive frequency such that a force responsive to the vibration of the bender is transmitted to the movable portion to displace the movable portion in such a manner that the movable portion is displaced by a distance of at least greater than or less than one of the peak-to-peak bending displacement of the bender encountered during the bender vibration, and
通过使所述可运动部分运动来增加该腔的容积以使流体吸入该腔。The volume of the chamber is increased by moving the movable portion to draw fluid into the chamber.
18.权利要求17的方法,还包括使弯曲器在一个频率下振动以得到所述可运动部分的位移距离,该位移距离超过在弯曲器的振动过程中遇到的弯曲器的峰值到峰值的最大弯曲位移至少约一个数量级。18. The method of claim 17, further comprising vibrating the bender at a frequency to obtain a displacement distance of the movable portion that exceeds a peak-to-peak value of the bender encountered during vibration of the bender The maximum bending displacement is at least about an order of magnitude.
19.权利要求17的方法,还包括使弯曲器在一个驱动频率下振动,该频率至少是接近和等于泵的系统基本共振频率中的一个。19. The method of claim 17, further comprising vibrating the bender at a drive frequency at least one of near and equal to a fundamental resonant frequency of the pump.
20.权利要求17的方法,还包括使弯曲器在一个驱动频率下振动,以使反应弯曲器振动的力被传递到可运动部分,使可运动部分按这样一种方式位移,以便在系统共振中贮存能量,以得到可运动部件的位移距离,该位移距离超过在弯曲器振动过程中遇到的弯曲器最大的峰值到峰值的弯曲位移。20. The method of claim 17, further comprising vibrating the bender at a drive frequency such that a force responsive to the vibration of the bender is transmitted to the moveable portion, causing the moveable portion to displace in such a manner that the system resonates Store energy in the bender to obtain a displacement distance of the movable member that exceeds the maximum peak-to-peak bending displacement of the bender encountered during the bender's vibration.
21.权利要求17的方法,还包括:21. The method of claim 17, further comprising:
开启腔的入口和关闭腔的出口;Opening the inlet of the chamber and closing the outlet of the chamber;
关闭腔的入口和开启腔的出口;closing the inlet of the chamber and opening the outlet of the chamber;
其中,为了将流体吸入所述腔,开启腔的入口和关闭腔的出口的动作是与可运动部分的增加腔的容积的第一运动短暂地协调的;wherein the action of opening the inlet of the chamber and closing the outlet of the chamber is momentarily coordinated with a first movement of the movable part to increase the volume of the chamber in order to draw fluid into said chamber;
为了引导流体离开所述腔,关闭腔的入口和开启腔的出口的动作是与可运动部分的减小腔的容积的第二运动短暂地协调的;The action of closing the inlet of the chamber and opening the outlet of the chamber is momentarily coordinated with a second movement of the movable part that reduces the volume of the chamber in order to direct the fluid out of said chamber;
其中至少在开启入口的一部分时间中流体流进所述腔;和wherein fluid flows into the cavity at least for a portion of the time the inlet is open; and
至少在开启出口的一部分时间中流体流出所述腔。Fluid flows out of the chamber at least a portion of the time the outlet is open.
22.权利要求17的方法,其中泵的弯曲器驱动器至少是下列情况之一:(i)直接连接到所述可运动部分和(ii)联接到所述可运动部分。22. The method of claim 17, wherein the bender drive of the pump is at least one of: (i) directly connected to the movable portion and (ii) coupled to the movable portion.
其中弯曲器不与除了可运动部分之外的所述装置的任何其他部件有效地连接和联接。wherein the bender is not operatively connected and coupled to any other part of the device other than the movable part.
23.权利要求17的方法,还包括使弯曲器驱动器振动来使所述可运动部分在一个频率下振动,以便在泵的系统共振中贮存能量。23. The method of claim 17, further comprising vibrating the bender drive to vibrate the movable portion at a frequency to store energy in the system resonance of the pump.
24.权利要求22的方法,其中所述弯曲器连接到适于将电传送到弯曲器的电导线。24. The method of
25.权利要求22的方法,其中弯曲器弹性地连接到所述装置的一个与所述可运动部分分开的部件。25. The method of
26.权利要求17的方法,还包括在一个驱动频率下操作弯曲器,以便在泵的系统共振中贮存能量,所述系统共振频率由机械部件和流体的组合有效运动质量与机械部件和流体的组合有效弹簧刚度来控制。26. The method of claim 17, further comprising operating the bender at a drive frequency to store energy in the pump's system resonance frequency determined by the combined effective moving mass of the mechanical component and fluid and the combined effective mass of the mechanical component and fluid Combined effective spring stiffness to control.
27.权利要求17的方法,还包括在一个驱动频率下操作弯曲器,该驱动频率处在或接近泵的系统共振频率。27. The method of claim 17, further comprising operating the bender at a drive frequency that is at or near a system resonant frequency of the pump.
28.一种流体能量传输装置,包括:28. A fluid energy transfer device comprising:
用于接纳流体的腔,该腔的至少一部分包括相对于该腔的另一个部分的一个可运动部分,可运动部分适合于改变该腔的容积,通过可运动部分的运动从第一容积改变到第二容积;和A chamber for receiving a fluid, at least a portion of which includes a movable portion relative to another portion of the chamber, the movable portion being adapted to change the volume of the chamber from a first volume to a volume by movement of the movable portion the second volume; and
包含有弯曲部分的弯曲器驱动器,所述弯曲器驱动器连接到可运动部分,以便允许所述弯曲器驱动器的弯曲部分独立于所述可运动部分运动;a bender drive comprising a bending portion, the bender drive being connected to the movable portion so as to allow the bending portion of the bender drive to move independently of the movable portion;
其中所述弯曲器驱动器至少是下列情况之一:(i)直接连接到可运动部分和(ii)联接到可运动部分,以形成一个弯曲器-可运动部分的组件;wherein said bender drive is at least one of: (i) directly connected to the movable part and (ii) coupled to the movable part to form a bender-movable part assembly;
所述弯曲器至少是下列情况之一:(a)非刚性地连接到和(b)非刚性地联接到除了所述可运动部分之外的所述装置的任何其他部件;和The bender is at least one of: (a) non-rigidly connected and (b) non-rigidly coupled to any other component of the device other than the movable portion; and
所述弯曲器-可运动部分的组件适合于基本上只由于弯曲器在一个驱动频率下的振动而运动。The bender-movable part assembly is adapted to move substantially only due to vibration of the bender at a drive frequency.
29.一种致冷剂系统,包括:29. A refrigerant system comprising:
致冷剂压缩机,其包括权利要求1的装置;A refrigerant compressor comprising the apparatus of claim 1;
冷凝器;condenser;
降压毛细管;和pressure-reducing capillary; and
蒸发器;Evaporator;
其中致冷剂压缩机、冷凝器、降压毛细管和蒸发器处在一个致冷剂回路中。Wherein the refrigerant compressor, condenser, decompression capillary and evaporator are in a refrigerant circuit.
30.一种致冷剂系统,包括:30. A refrigerant system comprising:
致冷剂压缩机,其包括权利要求12的装置;A refrigerant compressor comprising the apparatus of
冷凝器;和condenser; and
蒸发器;Evaporator;
其中致冷剂压缩机、冷凝器和蒸发器处在一个致冷剂回路中。Wherein the refrigerant compressor, condenser and evaporator are in a refrigerant circuit.
31.一种传输热量的方法,包括:31. A method of transferring heat comprising:
通过执行权利要求17的方法,使致冷剂运动并为致冷剂提供压力提升,其中所述液体是致冷剂,使气体致冷剂从蒸发器运动到冷凝器,以冷凝致冷剂。By performing the method of claim 17, moving refrigerant and providing a pressure rise to refrigerant, wherein said liquid is refrigerant, moving gaseous refrigerant from the evaporator to the condenser to condense the refrigerant.
32.一种泵,包括:32. A pump comprising:
权利要求1的装置;The device of claim 1;
和所述腔流体连通的流体入口端;和a fluid inlet port in fluid communication with the cavity; and
和所述腔流体连通的流体出口端;a fluid outlet port in fluid communication with the cavity;
其中所述装置适合于在可运动部分以增加腔的容积的方式运动过程中使流体通过入口端进入所述腔,和wherein the means is adapted to allow fluid to enter the chamber through the inlet port during movement of the movable portion in a manner that increases the volume of the chamber, and
其中所述装置适合于在可运动部分以减少腔的容积的方式运动过程中使流体通过出口端离开所述腔。Wherein the means is adapted to cause fluid to leave the chamber through the outlet port during movement of the movable part in such a manner as to reduce the volume of the chamber.
33.一种流体装置,包括:33. A fluidic device comprising:
合成喷射器,其中所述合成喷射器包括权利要求1的装置。A synthetic jet, wherein said synthetic jet comprises the device of claim 1 .
34.一种泵,包括:34. A pump comprising:
权利要求12的装置;The device of
和所述腔流体连通的流体入口端;和a fluid inlet port in fluid communication with the cavity; and
和所述腔流体连通的流体出口端;a fluid outlet port in fluid communication with the cavity;
其中所述装置适合于在可运动部分以增加腔的容积方式运动过程中使流体通过入口端进入所述腔,和wherein the means is adapted to allow fluid to enter the chamber through the inlet port during movement of the movable portion in a manner that increases the volume of the chamber, and
所述装置适用于在可运动部分以减少腔的容积方式运动过程中使流体通过出口端离开所述腔。The device is adapted to cause fluid to leave the chamber through the outlet port during movement of the movable portion in a manner that reduces the volume of the chamber.
35.一种流体装置,包括:35. A fluidic device comprising:
合成喷射器,其中所述合成喷射器包括权利要求12的装置。A synthetic jet, wherein said synthetic jet comprises the apparatus of
36.权利要求1的装置,其中除了电导线之外,弯曲器不连接到与所述可运动部分分开的部件。36. The device of claim 1, wherein the bender is not connected to components separate from the movable portion other than electrical leads.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US63819504P | 2004-12-23 | 2004-12-23 | |
| US60/638,195 | 2004-12-23 |
| Publication Number | Publication Date |
|---|---|
| CN101115924Atrue CN101115924A (en) | 2008-01-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNA2005800479104APendingCN101115924A (en) | 2004-12-23 | 2005-12-22 | Reaction-driven energy transmission device |
| Country | Link |
|---|---|
| US (1) | US20080304979A1 (en) |
| EP (1) | EP1834092A2 (en) |
| JP (1) | JP2008525709A (en) |
| CN (1) | CN101115924A (en) |
| BR (1) | BRPI0516425A (en) |
| CA (1) | CA2592189A1 (en) |
| WO (1) | WO2006071719A2 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109991150A (en)* | 2017-12-11 | 2019-07-09 | 霍尼韦尔国际公司 | Micro Airflow Generator for Micro Particulate Sensor Module |
| CN115843171A (en)* | 2019-12-06 | 2023-03-24 | 福珞尔系统公司 | Center anchored MEMS-based active cooling system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4248003B2 (en)* | 2007-03-27 | 2009-04-02 | 岡山県 | pump |
| US20090084866A1 (en)* | 2007-10-01 | 2009-04-02 | Nuventix Inc. | Vibration balanced synthetic jet ejector |
| US10274263B2 (en) | 2009-04-09 | 2019-04-30 | General Electric Company | Method and apparatus for improved cooling of a heat sink using a synthetic jet |
| US9615482B2 (en) | 2009-12-11 | 2017-04-04 | General Electric Company | Shaped heat sinks to optimize flow |
| GB2482466B (en)* | 2009-05-04 | 2014-02-12 | Cameron Int Corp | System and method of providing high pressure fluid injection with metering using low pressure supply lines |
| US8776871B2 (en)* | 2009-11-19 | 2014-07-15 | General Electric Company | Chassis with distributed jet cooling |
| JP5868015B2 (en)* | 2010-04-14 | 2016-02-24 | ゼネラル・エレクトリック・カンパニイ | Chassis with distributed jet cooling |
| EP2619549B1 (en)* | 2010-09-23 | 2018-03-21 | Li-Cor, Inc. | Gas exchange system flow configuration |
| US8692202B2 (en) | 2010-09-23 | 2014-04-08 | Li-Cor, Inc. | Gas exchange system flow configuration with thermally insulated sample chamber |
| US8610072B2 (en) | 2010-09-23 | 2013-12-17 | Li-Cor, Inc. | Gas exchange system flow configuration |
| US20130343918A1 (en)* | 2011-03-10 | 2013-12-26 | Michael L. Fripp | Hydraulic pump with solid-state actuator |
| US10852040B2 (en)* | 2015-07-23 | 2020-12-01 | Korea Institute Of Machinery & Materials | Linear expander and cryogenic refrigeration system including the same |
| KR101736168B1 (en)* | 2016-07-28 | 2017-05-17 | 한전원자력연료 주식회사 | Pulsed column having apparatus for supplying pulse |
| CN107575417A (en)* | 2017-07-24 | 2018-01-12 | 西北工业大学 | A kind of axial flow compressor treated casing device based on synthesizing jet-flow |
| WO2019073739A1 (en)* | 2017-10-10 | 2019-04-18 | 株式会社村田製作所 | Pump and fluid control device |
| CN109899327B (en)* | 2017-12-07 | 2021-09-21 | 昆山纬绩资通有限公司 | Airflow generating device |
| US12089374B2 (en) | 2018-08-10 | 2024-09-10 | Frore Systems Inc. | MEMS-based active cooling systems |
| US11043444B2 (en) | 2018-08-10 | 2021-06-22 | Frore Systems Inc. | Two-dimensional addessable array of piezoelectric MEMS-based active cooling devices |
| JP7283164B2 (en)* | 2019-03-25 | 2023-05-30 | セイコーエプソン株式会社 | Diaphragm type compressor, cooling unit, projector, recording device and 3D model manufacturing device |
| JP2021004551A (en)* | 2019-06-25 | 2021-01-14 | セイコーエプソン株式会社 | Diaphragm-type compressor, cooling unit, projector, recording device and three-dimensional molding manufacturing method |
| KR102677216B1 (en) | 2019-10-30 | 2024-06-24 | 프로리 시스템스 인코포레이티드 | MEMS-based airflow system |
| US11510341B2 (en) | 2019-12-06 | 2022-11-22 | Frore Systems Inc. | Engineered actuators usable in MEMs active cooling devices |
| US11796262B2 (en) | 2019-12-06 | 2023-10-24 | Frore Systems Inc. | Top chamber cavities for center-pinned actuators |
| US12193192B2 (en) | 2019-12-06 | 2025-01-07 | Frore Systems Inc. | Cavities for center-pinned actuator cooling systems |
| JP7333417B2 (en) | 2019-12-17 | 2023-08-24 | フロー・システムズ・インコーポレーテッド | MEMS-based cooling system for closed and open devices |
| US12033917B2 (en)* | 2019-12-17 | 2024-07-09 | Frore Systems Inc. | Airflow control in active cooling systems |
| US11956921B1 (en)* | 2020-08-28 | 2024-04-09 | Frore Systems Inc. | Support structure designs for MEMS-based active cooling |
| US12127369B2 (en) | 2020-09-17 | 2024-10-22 | Frore Systems Inc. | Hood for MEMS-based cooling systems |
| US12123662B2 (en) | 2020-09-17 | 2024-10-22 | Frore Systems Inc. | Cover for MEMS-based cooling systems |
| US11765863B2 (en) | 2020-10-02 | 2023-09-19 | Frore Systems Inc. | Active heat sink |
| US11976892B2 (en) | 2020-12-16 | 2024-05-07 | Frore Systems Inc. | Frequency lock in active MEMS cooling systems |
| US12167564B2 (en) | 2021-03-02 | 2024-12-10 | Frore Systems Inc. | Integration of airjets into computing devices |
| WO2022187160A1 (en) | 2021-03-02 | 2022-09-09 | Frore Systems Inc. | Exhaust blending for piezoelectric cooling systems |
| GB2606743B (en)* | 2021-05-19 | 2023-12-27 | Lee Ventus Ltd | Microfluidic pump control |
| WO2023283448A2 (en) | 2021-07-09 | 2023-01-12 | Frore Systems Inc. | Anchor and cavity configuration for mems-based cooling systems |
| WO2023287720A1 (en) | 2021-07-12 | 2023-01-19 | Frore Systems Inc. | Cooling element architecture for mems-based cooling system architecture |
| CN115111143B (en)* | 2022-06-28 | 2023-11-17 | 桂林理工大学 | Valve-free piezoelectric pump with inner dip arrow-shaped fluid-blocking cambered surface cavity |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AT141756B (en) | 1933-09-22 | 1935-05-25 | Georg Szekely | Electrically powered compressor. |
| GB700368A (en) | 1951-01-10 | 1953-12-02 | Anton Ryba | Electromagnetic compressor or pump |
| US3572908A (en)* | 1969-03-24 | 1971-03-30 | American Optical Corp | Apparatus for measuring and recording refractive errors of a patient{3 s eye |
| JPS6231784A (en)* | 1985-08-02 | 1987-02-10 | Hitachi Metals Ltd | Piezoelectric driving type valve |
| US4874299A (en)* | 1987-04-08 | 1989-10-17 | Life Loc, Inc. | High precision pump |
| US4918942A (en)* | 1989-10-11 | 1990-04-24 | General Electric Company | Refrigeration system with dual evaporators and suction line heating |
| US6457654B1 (en)* | 1995-06-12 | 2002-10-01 | Georgia Tech Research Corporation | Micromachined synthetic jet actuators and applications thereof |
| DE19735156C1 (en)* | 1996-11-25 | 1999-04-29 | Fraunhofer Ges Forschung | Piezo-electrically operated micro valve |
| JPH10281909A (en)* | 1997-04-10 | 1998-10-23 | Fuji Electric Co Ltd | Fluid pressure measuring method and fluid pressure measuring device |
| DE19719861A1 (en)* | 1997-05-12 | 1998-11-19 | Fraunhofer Ges Forschung | Method of manufacturing a micromembrane pump body |
| JP2995400B2 (en)* | 1998-03-05 | 1999-12-27 | セイコーインスツルメンツ株式会社 | Micropump and method of manufacturing micropump |
| US6659740B2 (en)* | 1998-08-11 | 2003-12-09 | Jean-Baptiste Drevet | Vibrating membrane fluid circulator |
| KR20000050679A (en)* | 1999-01-13 | 2000-08-05 | 윤종용 | Heat sinking apparatus for electronic equipment |
| DE19912140C2 (en)* | 1999-03-18 | 2001-04-26 | Daimler Chrysler Ag | Motor vehicle with flow influencing means for reducing the air resistance |
| JP4005297B2 (en)* | 2000-05-08 | 2007-11-07 | セイコーインスツル株式会社 | Microvalves and micropumps |
| US6471477B2 (en)* | 2000-12-22 | 2002-10-29 | The Boeing Company | Jet actuators for aerodynamic surfaces |
| US6514047B2 (en) | 2001-05-04 | 2003-02-04 | Macrosonix Corporation | Linear resonance pump and methods for compressing fluid |
| US6848631B2 (en)* | 2002-01-23 | 2005-02-01 | Robert James Monson | Flat fan device |
| US6588497B1 (en)* | 2002-04-19 | 2003-07-08 | Georgia Tech Research Corporation | System and method for thermal management by synthetic jet ejector channel cooling techniques |
| JP4378937B2 (en)* | 2002-06-03 | 2009-12-09 | セイコーエプソン株式会社 | pump |
| US6801430B1 (en)* | 2003-05-09 | 2004-10-05 | Intel Corporation | Actuation membrane to reduce an ambient temperature of heat generating device |
| DE602004003316T2 (en)* | 2003-09-12 | 2007-03-15 | Samsung Electronics Co., Ltd., Suwon | Diaphragm pump for cooling air |
| US7484940B2 (en)* | 2004-04-28 | 2009-02-03 | Kinetic Ceramics, Inc. | Piezoelectric fluid pump |
| KR100805698B1 (en)* | 2006-08-31 | 2008-02-21 | 주식회사 하이닉스반도체 | Semiconductor memory device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109991150A (en)* | 2017-12-11 | 2019-07-09 | 霍尼韦尔国际公司 | Micro Airflow Generator for Micro Particulate Sensor Module |
| CN109991150B (en)* | 2017-12-11 | 2022-07-08 | 霍尼韦尔国际公司 | Miniature airflow generator for miniature particulate matter sensor module |
| US11808691B2 (en) | 2017-12-11 | 2023-11-07 | Honeywell International Inc. | Micro airflow generator for miniature particulate matter sensor module |
| CN115843171A (en)* | 2019-12-06 | 2023-03-24 | 福珞尔系统公司 | Center anchored MEMS-based active cooling system |
| Publication number | Publication date |
|---|---|
| CA2592189A1 (en) | 2006-07-06 |
| US20080304979A1 (en) | 2008-12-11 |
| WO2006071719A3 (en) | 2007-06-14 |
| EP1834092A2 (en) | 2007-09-19 |
| JP2008525709A (en) | 2008-07-17 |
| BRPI0516425A (en) | 2008-09-02 |
| WO2006071719B1 (en) | 2007-08-02 |
| WO2006071719A2 (en) | 2006-07-06 |
| Publication | Publication Date | Title |
|---|---|---|
| CN101115924A (en) | Reaction-driven energy transmission device | |
| US8272851B2 (en) | Fluidic energy transfer devices | |
| CA2764334C (en) | Pump with disc-shaped cavity | |
| US7484940B2 (en) | Piezoelectric fluid pump | |
| US20200072211A1 (en) | Systems and methods for supplying reduced pressure using a disc pump with electrostatic actuation | |
| EP2758666B1 (en) | Dual-cavity pump | |
| US6071087A (en) | Ferroelectric pump | |
| JP2009529119A5 (en) | ||
| US6514047B2 (en) | Linear resonance pump and methods for compressing fluid | |
| EP2812574B1 (en) | Systems and methods for monitoring reduced pressure supplied by a disc pump system | |
| US20100310398A1 (en) | Fluid disc pump | |
| EP2090781A1 (en) | Piezoelectric micro-blower | |
| AU2199599A (en) | Ferroelectric pump | |
| EP3462026B1 (en) | Control method of fluid device | |
| WO2012076899A2 (en) | Device | |
| MXPA01005911A (en) | Ferroelectric pump |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication | Open date:20080130 |