




技术领域technical field
本发明涉及半导体制造技术领域,特别涉及一种晶片检测方法。The invention relates to the technical field of semiconductor manufacturing, in particular to a wafer detection method.
背景技术Background technique
在半导体制程中,主要通过光学检测技术确定晶片缺陷,并进一步追踪缺陷产生的原因,进而改善生产流程,提高产品良率。显然,晶片检测是实际生产过程中重要步骤。申请号为“98115227.9”的中国专利申请中提到,在半导体制造工艺中,多采用自动方法检测晶片缺陷。In the semiconductor manufacturing process, wafer defects are mainly determined through optical inspection technology, and the cause of defects is further tracked, thereby improving the production process and increasing product yield. Obviously, wafer inspection is an important step in the actual production process. The Chinese patent application with the application number "98115227.9" mentioned that in the semiconductor manufacturing process, automatic methods are often used to detect wafer defects.
图1为现有技术自动目检流程示意图,如图1所示,现有技术中自动目检的具体步骤,包括:Fig. 1 is a schematic diagram of an automatic visual inspection process in the prior art. As shown in Fig. 1, the specific steps of the automatic visual inspection in the prior art include:
步骤11:利用AVI工具中的光学处理单元获取晶片的光学图像。本文中晶片光学图像的最小独立单元称为芯片(die)。所述芯片内包含复数个像素单元。Step 11: Obtain an optical image of the wafer using the optical processing unit in the AVI tool. In this paper, the smallest independent unit of the optical image of the wafer is called a die. The chip contains a plurality of pixel units.
图2为现有技术中晶片光学图像示意图,所述获取的晶片光学图像如图2所示。FIG. 2 is a schematic diagram of an optical image of a wafer in the prior art, and the obtained optical image of the wafer is shown in FIG. 2 .
然后,通过预先编制的程序控制图像处理单元进行自动分析、处理,检测出缺陷。Then, the image processing unit is controlled by a pre-programmed program for automatic analysis and processing to detect defects.
通过程序控制的图像处理单元对检测图像的处理过程包括:The processing process of the detected image by the image processing unit controlled by the program includes:
步骤12:对晶片的光学图像进行灰度计算;将晶片光学图像内的各芯片(die)转化为具有多级灰度值的像素矩阵表示。Step 12: Perform grayscale calculation on the optical image of the wafer; transform each die in the optical image of the wafer into a pixel matrix representation with multi-level grayscale values.
步骤13:确定标准芯片(golden die)100。Step 13: Determine a standard chip (golden die) 100 .
在晶片上任取复数个芯片,对代表所述芯片的像素矩阵内对应像素单元的灰度值取平均,得到具有各像素单元平均灰度值数据的像素矩阵,确定此像素矩阵表示的芯片为标准芯片。Randomly select a plurality of chips on the wafer, average the gray value of the corresponding pixel unit in the pixel matrix representing the chip, obtain a pixel matrix with the average gray value data of each pixel unit, and determine the chip represented by the pixel matrix as the standard chip.
图3为现有技术中标准芯片示意图,选取的标准芯片100如图3所示。FIG. 3 is a schematic diagram of a standard chip in the prior art, and a selected standard chip 100 is shown in FIG. 3 .
步骤14:根据代表晶片内其它芯片的像素矩阵同标准芯片的像素矩阵的灰度值对比结果,如果代表芯片的像素矩阵内某一像素单元或多个像素单元与标准芯片内相应像素单元的灰度值偏差超出允许范围,则判定该芯片为缺陷芯片110。图4为现有技术中检测结果示意图,检测出的缺陷芯片110如图4中所示。Step 14: According to the comparison result of the gray value between the pixel matrix representing other chips in the wafer and the pixel matrix of the standard chip, if the gray value of a certain pixel unit or multiple pixel units in the pixel matrix representing the chip is different from that of the corresponding pixel unit in the standard chip If the degree value deviation exceeds the allowable range, it is determined that the chip is a defective chip 110. FIG. 4 is a schematic diagram of detection results in the prior art, and the detected defective chips 110 are shown in FIG. 4 .
实际生产发现,由于半导体器件在设计、布局等方面的因素,晶片中心区域与边缘区域存在工艺允许的性质差异,在检测过程中表现为经过图像转换后晶片中心区域与边缘区域存在颜色差异,继而在图像处理后表现为中心区域与边缘区域的灰度值具有明显差距;而整片晶片只有一个标准芯片,且其是以整片晶片所有芯片的灰度为依据生成,那么势必会造成边缘或中心区域的颜色灰度值与标准芯片的灰度值相差较大,将由于正常因素造成的颜色差异误认为是由于缺陷产生的颜色差异,这一现象的存在极易造成检测过程中的误报警,将原本正常的芯片判定为有缺陷的芯片,造成生产效率的降低以及生产成本的增加。因此,急需一种可以降低自动目检过程中误报警次数的检测方法。The actual production found that due to factors such as the design and layout of the semiconductor device, there are differences in the properties allowed by the process between the central area of the wafer and the edge area. After image processing, it shows that the gray value of the central area and the edge area has a significant difference; and the whole wafer has only one standard chip, and it is generated based on the gray levels of all the chips of the whole wafer, then it will inevitably cause edge or The gray value of the color in the central area is quite different from the gray value of the standard chip. The color difference caused by normal factors is mistaken for the color difference caused by defects. The existence of this phenomenon can easily cause false alarms during the detection process. , Determining an originally normal chip as a defective chip, resulting in a decrease in production efficiency and an increase in production cost. Therefore, there is an urgent need for a detection method that can reduce the number of false alarms in the automatic visual inspection process.
发明内容Contents of the invention
因此,本发明的目的在于提供一种自动目检方法,用以降低自动目检过程中的误报警次数,进而提高生产效率,降低生产成本。Therefore, the object of the present invention is to provide an automatic visual inspection method to reduce the number of false alarms in the automatic visual inspection process, thereby improving production efficiency and reducing production costs.
为达到上述目的,本发明提供的一种晶片检测方法,包括:In order to achieve the above object, a kind of wafer detection method provided by the present invention comprises:
a.利用自动目检(AVI)工具中的光学处理单元获取晶片光学图像;a. Using the optical processing unit in the automatic visual inspection (AVI) tool to obtain the optical image of the wafer;
b.对晶片光学图像进行灰度计算及分区;b. Perform gray scale calculation and partition on the optical image of the wafer;
c.确定各分区内的标准芯片;c. Determine the standard chips in each partition;
d.将不同分区内的其它芯片同标准芯片进行灰度值对比,检测出缺陷芯片。d. Compare the gray value of other chips in different partitions with the standard chip to detect defective chips.
所述芯片内包含复数个像素单元;所述芯片通过复数个像素单元构成的像素矩阵表示;对晶片光学图像进行灰度计算后,所述像素矩阵具有确定的多级灰度值;所述分区的具体方式根据产品状况及工艺条件确定;所述分区为晶片光学图像内的任意区域;所述分区内标准芯片的选取根据产品状况及工艺条件确定;用以代表所述分区内标准芯片的像素矩阵内各像素单元具有的灰度值通过特定的数学运算得到;所述特定的数学运算为对所处分区内代表任取的复数个芯片的像素矩阵内各相应像素单元的灰度值取平均值;进行所述灰度值对比之前,需预先设定灰度值允许偏差范围;所述灰度值允许偏差范围由具体的产品要求及工艺条件确定;当代表晶片内其它芯片的像素矩阵内某一像素单元或多个像素单元与标准芯片内相应像素单元的灰度值偏差超出所述允许偏差范围时,判定所述被测芯片为缺陷芯片。The chip contains a plurality of pixel units; the chip is represented by a pixel matrix composed of a plurality of pixel units; after the grayscale calculation is performed on the optical image of the wafer, the pixel matrix has a definite multi-level grayscale value; the partition The specific method is determined according to the product status and process conditions; the partition is any area in the optical image of the wafer; the selection of standard chips in the partition is determined according to the product status and process conditions; the pixels used to represent the standard chips in the partition The gray value of each pixel unit in the matrix is obtained through a specific mathematical operation; the specific mathematical operation is to average the gray value of each corresponding pixel unit in the pixel matrix representing arbitrarily selected plural chips in the partition value; before performing the gray value comparison, it is necessary to pre-set the allowable deviation range of the gray value; the allowable deviation range of the gray value is determined by the specific product requirements and process conditions; when representing the pixel matrix of other chips in the wafer When the gray value deviation between a certain pixel unit or multiple pixel units and the corresponding pixel unit in the standard chip exceeds the allowable deviation range, it is determined that the tested chip is a defective chip.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1.通过对晶片图像进行分区,进而对不同分区内的晶片图像分别选定标准芯片,提高了标准芯片的精确度。1. By partitioning the wafer image, and then selecting standard chips for the wafer images in different partitions, the accuracy of the standard chip is improved.
2.对不同分区内的晶片图像选定不同的标准芯片,继而将不同分区内的其它芯片分别与其所在分区内的标准芯片进行灰度数据对比以检出缺陷芯片,减少了检测过程中的误报警次数,进而提高了生产效率,降低了生产成本。2. Select different standard chips for wafer images in different partitions, and then compare the grayscale data of other chips in different partitions with the standard chips in the partitions to detect defective chips, reducing errors in the detection process The number of alarms, thereby improving production efficiency and reducing production costs.
附图说明Description of drawings
图1为现有技术自动目检流程示意图;Fig. 1 is a schematic diagram of the prior art automatic visual inspection process;
图2为现有技术中晶片光学图像示意图;2 is a schematic diagram of an optical image of a wafer in the prior art;
图3为现有技术中标准芯片示意图;Fig. 3 is a schematic diagram of a standard chip in the prior art;
图4为现有技术中检测结果示意图;Fig. 4 is a schematic diagram of detection results in the prior art;
图5为说明本发明实施例的自动目检流程示意图;FIG. 5 is a schematic diagram illustrating an automatic visual inspection process of an embodiment of the present invention;
图6为本发明实施例中采用的晶片光学图像示意图;6 is a schematic diagram of an optical image of a wafer used in an embodiment of the present invention;
图7为说明本发明第一实施例的晶片图像分区示意图;FIG. 7 is a schematic diagram of wafer image partitions illustrating the first embodiment of the present invention;
图8为说明本发明第一实施例的标准芯片示意图;FIG. 8 is a schematic diagram of a standard chip illustrating the first embodiment of the present invention;
图9为说明本发明第一实施例的检测结果示意图;Fig. 9 is a schematic diagram illustrating the detection results of the first embodiment of the present invention;
图10为说明本发明第二实施例的晶片图像分区示意图;FIG. 10 is a schematic diagram illustrating a wafer image partition according to a second embodiment of the present invention;
图11为说明本发明第二实施例的标准芯片示意图;FIG. 11 is a schematic diagram of a standard chip illustrating a second embodiment of the present invention;
图12为说明本发明第二实施例的检测结果示意图;Fig. 12 is a schematic diagram illustrating the detection results of the second embodiment of the present invention;
其中:in:
100:现有技术中的标准芯片; 110:现有技术中的缺陷芯片;100: standard chip in prior art; 110: defective chip in prior art;
200:分区I; 201:分区I内标准芯片;200: Partition I; 201: Standard chips in Partition I;
202:分区I内缺陷芯片; 210:分区II;202: Defective chip in Partition I; 210: Partition II;
211:分区II内标准芯片; 212:分区II内缺陷芯片;211: Standard chips in Partition II; 212: Defective chips in Partition II;
220:分区III; 221:分区III内标准芯片;220: Partition III; 221: Standard chips in Partition III;
222:分区III内缺陷芯片; 230:分区(I);222: Defective chip in Partition III; 230: Partition (I);
231:分区(I)内标准芯片; 232:分区(I)内缺陷芯片;231: Standard chip in partition (I); 232: Defective chip in partition (I);
240:分区(II); 241:分区(II)内标准芯片;240: Partition (II); 241: Standard chip in Partition (II);
242:分区(II)内缺陷芯片; 250:分区(III);242: defective chip in partition (II); 250: partition (III);
251:分区(III)内标准芯片; 252:分区(III)内缺陷芯片。251: Standard chip in partition (III); 252: Defective chip in partition (III).
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.
本发明提供的晶片检测方法包括:获取晶片的光学图像;对所述晶片光学图像进行灰度计算并进行分区;确定分区内标准芯片;将分区内的其它芯片同标准芯片的灰度值进行对比,若对比结果超出允许范围,则检测出所述芯片为缺陷芯片。The wafer inspection method provided by the present invention includes: acquiring an optical image of the wafer; performing grayscale calculation on the optical image of the wafer and performing partitioning; determining the standard chip in the partition; comparing the grayscale values of other chips in the partition with the standard chip , if the comparison result exceeds the allowable range, it is detected that the chip is a defective chip.
图5为说明本发明实施例的自动目检流程示意图,如图5所示,本发明第一实施例的自动目检流程为:Fig. 5 is a schematic diagram illustrating the automatic visual inspection process of the embodiment of the present invention. As shown in Fig. 5, the automatic visual inspection process of the first embodiment of the present invention is:
步骤51:利用AVI工具中的光学处理单元获取晶片的光学图像,用以通过AVI工具中的图像处理单元实现对晶片的缺陷检测。图6为本发明实施例中采用的晶片光学图像示意图,利用AVI工具中的光学处理单元获取的晶片的光学图像如图6所示。Step 51: Using the optical processing unit in the AVI tool to acquire an optical image of the wafer, so as to implement defect detection on the wafer through the image processing unit in the AVI tool. FIG. 6 is a schematic diagram of the optical image of the wafer used in the embodiment of the present invention. The optical image of the wafer acquired by the optical processing unit in the AVI tool is shown in FIG. 6 .
步骤52:对获取的晶片光学图像进行灰度计算;将晶片光学图像内各芯片转化为具有多级灰度值的像素矩阵表示。Step 52: Carry out grayscale calculation on the acquired optical image of the wafer; convert each chip in the optical image of the wafer into a pixel matrix representation with multi-level grayscale values.
步骤53:对晶片的光学图像进行分区。Step 53: Partitioning the optical image of the wafer.
所述分区的具体方式根据产品状况及工艺条件确定。The specific manner of partitioning is determined according to the product status and process conditions.
图7为说明本发明第一实施例的晶片光学图像分区示意图,所述同心环状分区的直径、面积、数目等参数由产品状况及工艺条件决定。作为本发明的实施例,所述晶片光学图像被分成具有同心环状分布的不同区域,在本实施例中分为三个区域,所述分区I200、分区II210、分区III220如图7所示。FIG. 7 is a schematic diagram illustrating the optical image division of the wafer according to the first embodiment of the present invention. The diameter, area, number and other parameters of the concentric annular divisions are determined by the product status and process conditions. As an embodiment of the present invention, the optical image of the wafer is divided into different regions with concentric annular distribution, and in this embodiment, it is divided into three regions. The partition I200, partition II210, and partition III220 are shown in FIG. 7 .
步骤54:确定分区内标准芯片。Step 54: Determine the standard chip in the partition.
所述分区内标准芯片的选取根据产品状况及工艺条件确定。The selection of standard chips in the partition is determined according to the product status and process conditions.
在晶片上不同分区内分别任意选取复数个芯片,通过对代表所述芯片的像素矩阵的灰度值进行分析,按照特定的数学运算,例如对代表所述芯片的像素矩阵的相应像素单元的灰度值取平均值,得到具有各像素单元平均灰度值数据的像素矩阵,确定此像素矩阵表示的芯片为所述分区内的标准芯片;当然,也可以采用其它的计算方法确定标准芯片。所述标准芯片为晶片光学图像内实际存在的芯片或经由AVI工具虚拟得到的芯片模型。图8为说明本发明第一实施例的标准芯片示意图,所述具有不同分区内的标准芯片I201、标准芯片II211、标准芯片III221如图8所示。用以表示不同分区内标准芯片的像素矩阵内相应像素单元的灰度值可不同。A plurality of chips are arbitrarily selected in different partitions on the wafer, and by analyzing the gray value of the pixel matrix representing the chip, according to a specific mathematical operation, for example, the gray value of the corresponding pixel unit of the pixel matrix representing the chip Take the average value of the gray value to obtain a pixel matrix with the average gray value data of each pixel unit, and determine the chip represented by the pixel matrix as the standard chip in the partition; of course, other calculation methods can also be used to determine the standard chip. The standard chip is a chip that actually exists in the optical image of the wafer or a chip model obtained virtually through an AVI tool. FIG. 8 is a schematic diagram illustrating a standard chip according to the first embodiment of the present invention. The standard chip I201 , standard chip II211 , and standard chip III221 in different partitions are shown in FIG. 8 . The gray values of the corresponding pixel units in the pixel matrix used to represent standard chips in different partitions may be different.
步骤55:将代表晶片内其它芯片的像素矩阵同标准芯片的像素矩阵进行灰度值对比,如果代表被测芯片的像素矩阵内某一像素单元或多个像素单元与标准芯片内相应像素单元的灰度值偏差超出允许范围,则认为被测芯片为缺陷芯片。Step 55: Compare the gray value of the pixel matrix representing other chips in the wafer with the pixel matrix of the standard chip. If the gray value deviation exceeds the allowable range, the chip under test is considered to be a defective chip.
进行所述灰度值对比之前,需预先设定灰度值允许偏差范围;用以判断对比结果,检测芯片是否带有缺陷;所述灰度值允许偏差范围由具体的产品要求及工艺条件确定。Before performing the gray value comparison, it is necessary to pre-set the allowable deviation range of the gray value; it is used to judge the comparison result and detect whether the chip has defects; the allowable deviation range of the gray value is determined by specific product requirements and process conditions .
图9为说明本发明第一实施例的检测结果示意图,如图9所示,在分区I200、分区II210、分区III220内分别确定标准芯片I201、标准芯片II211、标准芯片III221后,将代表品片内其它芯片的像素矩阵同标准芯片的像素矩阵进行灰度值对比,例如,被测芯片分别为分区I200内的芯片202、分区II210内的芯片242以及分区III220内的芯片222,当被测芯片202、212和222的像素矩阵内某一像素单元或多个像素单元与标准芯片内相应像素单元的灰度值偏差超出允许范围,则认为被测芯片202、212以及222为有缺陷的芯片。Fig. 9 is a schematic diagram illustrating the detection results of the first embodiment of the present invention. As shown in Fig. 9, after the standard chip I201, the standard chip II211, and the standard chip III221 are respectively determined in the partition I200, the partition II210, and the partition III220, the representative chip The pixel matrix of other chips in the same area is compared with the pixel matrix of the standard chip. For example, the tested chips are respectively the
图10为说明本发明第二实施例的晶片图像分区示意图,作为本发明的第二实施例,利用AVI工具中的光学处理单元获取晶片的光学图像后,首先,对晶片光学图像进行灰度计算,将晶片光学图像内各芯片转化为具有多级灰度值的像素矩阵表示。Fig. 10 is a schematic diagram illustrating the partitioning of the wafer image according to the second embodiment of the present invention. As the second embodiment of the present invention, after using the optical processing unit in the AVI tool to acquire the optical image of the wafer, first, the grayscale calculation is performed on the optical image of the wafer , to convert each chip in the wafer optical image into a pixel matrix representation with multi-level gray values.
然后,将所述晶片的光学图像进行分区;所述分区为晶片光学图像内的条状区域。Then, the optical image of the wafer is partitioned; the partitions are strip-like regions within the optical image of the wafer.
所述条状分区(I)230、分区(II)240、分区(III)250如图10所示;所述条状分区的大小及数目等参数由产品状况及工艺条件决定。The striped partition (I) 230, partition (II) 240, and partition (III) 250 are shown in Figure 10; parameters such as the size and number of the striped partitions are determined by product status and process conditions.
随后,确定分区内标准芯片。Subsequently, standard chips within the partition are determined.
所述分区内标准芯片的选取根据产品状况及工艺条件确定。The selection of standard chips in the partition is determined according to the product status and process conditions.
在晶片上不同分区内分别任意选取复数个芯片,通过对代表所述芯片的像素矩阵的灰度值进行分析,按照特定的数学运算,例如对代表所述芯片的像素矩阵的相应像素单元的灰度值取平均值,得到具有各像素单元平均灰度值数据的像素矩阵,确定此像素矩阵表示的芯片为所述分区内的标准芯片;当然,也可以采用其它的计算方法确定标准芯片。所述标准芯片为晶片光学图像内实际存在的芯片或经由AVI工具虚拟得到的芯片模型。图8为说明本发明第一实施例的标准芯片示意图,所述不同条状分区内标准芯片(I)231、标准芯片(II)241、标准芯片(III)251如图11所示。用以表示不同分区内标准芯片的像素矩阵内相应像素单元的灰度值可不同。A plurality of chips are arbitrarily selected in different partitions on the wafer, and by analyzing the gray value of the pixel matrix representing the chip, according to a specific mathematical operation, for example, the gray value of the corresponding pixel unit of the pixel matrix representing the chip Take the average value of the gray value to obtain a pixel matrix with the average gray value data of each pixel unit, and determine the chip represented by the pixel matrix as the standard chip in the partition; of course, other calculation methods can also be used to determine the standard chip. The standard chip is a chip that actually exists in the optical image of the wafer or a chip model obtained virtually through an AVI tool. FIG. 8 is a schematic diagram of a standard chip illustrating the first embodiment of the present invention. The standard chip (I) 231 , standard chip (II) 241 , and standard chip (III) 251 in different strip partitions are shown in FIG. 11 . The gray values of the corresponding pixel units in the pixel matrix used to represent standard chips in different partitions may be different.
最后,将代表晶片内其它芯片的像素矩阵同标准芯片的像素矩阵进行灰度值对比,如果代表被测芯片的像素矩阵内某一像素单元或多个像素单元与标准芯片内相应像素单元的灰度值偏差超出允许范围,则认为被测芯片为缺陷芯片。Finally, compare the gray value of the pixel matrix representing other chips in the wafer with the pixel matrix of the standard chip. If the deviation of the degree value exceeds the allowable range, the chip under test is considered to be a defective chip.
进行所述灰度值对比之前,需预先设定灰度值允许偏差范围;用以判断对比结果,检测芯片是否带有缺陷;所述灰度值允许偏差范围由具体的产品要求及工艺条件确定。Before performing the gray value comparison, it is necessary to pre-set the allowable deviation range of the gray value; it is used to judge the comparison result and detect whether the chip has defects; the allowable deviation range of the gray value is determined by specific product requirements and process conditions .
图12为说明本发明第二实施例的检测结果示意图,如图12所示,在分区(I)230、分区(II)240.分区(III)250内分别确定标准芯片(I)231、标准芯片(II)241、标准芯片(III)251后,将代表晶片内其它芯片的像素矩阵同标准芯片的像素矩阵进行灰度值对比,例如,被测芯片分别为分区(I)230内的芯片232、分区(II)240内的芯片242以及分区(III)250内的芯片252,当被测芯片232、242和252的像素矩阵内某一像素单元或多个像素单元与标准芯片内相应像素单元的灰度值则认为被测芯片232、242以及252为有缺陷的芯片。Fig. 12 is a schematic diagram illustrating the detection results of the second embodiment of the present invention. As shown in Fig. 12, standard chip (I) 231, standard chip (I) 231, standard After the chip (II) 241 and the standard chip (III) 251, the pixel matrix representing other chips in the wafer is compared with the pixel matrix of the standard chip in gray value, for example, the tested chips are the chips in the partition (I) 230 respectively 232, the
诚然,改变对晶片光学图像进行灰度计算及分区的顺序不影响本发明方法的实施。所述对晶片光学图像进行灰度计算及分区的顺序为先进行灰度计算,后分区;或者先分区,后进行灰度计算。Certainly, changing the order of performing grayscale calculation and partitioning on the optical image of the wafer does not affect the implementation of the method of the present invention. The order of performing grayscale calculation and partitioning on the wafer optical image is to perform grayscale calculation first and then partition; or first partition and then perform grayscale calculation.
采用本发明提供的方法,通过对晶片光学图像进行分区,进而对不同分区分别确定标准芯片,提高了标准芯片的精确度;同时,通过将不同分区内的其它芯片分别与其所在分区内的标准芯片进行灰度数据对比以检出缺陷,减少了检测过程中的误报警次数,进而提高了生产效率,降低了生产成本。By adopting the method provided by the present invention, by partitioning the optical image of the wafer, and then determining standard chips for different partitions respectively, the accuracy of the standard chip is improved; Gray scale data comparison is performed to detect defects, which reduces the number of false alarms during the detection process, thereby improving production efficiency and reducing production costs.
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,因此本发明的保护范围应当以本发明权利要求所界定的范围为准。Although the present invention is disclosed as above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art can make possible changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection should be based on the scope defined by the claims of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200610027587CN100499057C (en) | 2006-06-12 | 2006-06-12 | Chip detection method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200610027587CN100499057C (en) | 2006-06-12 | 2006-06-12 | Chip detection method |
| Publication Number | Publication Date |
|---|---|
| CN101090083Atrue CN101090083A (en) | 2007-12-19 |
| CN100499057C CN100499057C (en) | 2009-06-10 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200610027587Expired - Fee RelatedCN100499057C (en) | 2006-06-12 | 2006-06-12 | Chip detection method |
| Country | Link |
|---|---|
| CN (1) | CN100499057C (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101308184B (en)* | 2008-06-13 | 2010-12-08 | 深圳创维-Rgb电子有限公司 | Method and system for detecting machine-inserted components using image analysis |
| CN102376599A (en)* | 2010-08-10 | 2012-03-14 | 中芯国际集成电路制造(上海)有限公司 | Generation method and device of qualified crystal grain distribution pattern |
| CN102412168A (en)* | 2011-11-30 | 2012-04-11 | 上海华力微电子有限公司 | Method and system for detecting wafer defects |
| CN101728227B (en)* | 2008-10-27 | 2012-05-23 | 威控自动化机械股份有限公司 | Standard type crystal grain picking method |
| CN102023161B (en)* | 2009-09-09 | 2012-05-30 | 中芯国际集成电路制造(上海)有限公司 | Method for acquiring defect image |
| CN102522350A (en)* | 2011-11-29 | 2012-06-27 | 上海华力微电子有限公司 | Method and device for detecting failed production machine platforms |
| CN103837551A (en)* | 2014-02-21 | 2014-06-04 | 上海华力微电子有限公司 | Method for carrying out defect detection on chips through partitioning according to transparency |
| CN104122272A (en)* | 2014-08-01 | 2014-10-29 | 上海华力微电子有限公司 | Optical detection method for defects of semiconductor devices |
| CN104201132A (en)* | 2014-09-02 | 2014-12-10 | 上海华力微电子有限公司 | Method for improving defect scanning accuracy of bright field machine station |
| CN104897706A (en)* | 2014-03-07 | 2015-09-09 | 旺宏电子股份有限公司 | A method for measuring the surface structure of a chip or wafer |
| CN104900553A (en)* | 2014-03-07 | 2015-09-09 | 中芯国际集成电路制造(上海)有限公司 | Wafer defect detection method |
| CN105373764A (en)* | 2014-08-14 | 2016-03-02 | 义隆电子股份有限公司 | Pixel sensing device capable of sensing in partition mode and operation method thereof |
| CN105931976A (en)* | 2016-05-25 | 2016-09-07 | 上海华力微电子有限公司 | Detection method capable of automatically defining scanning area for bright field scanning device |
| CN107037345A (en)* | 2016-02-02 | 2017-08-11 | 上海和辉光电有限公司 | Self is detected during wafer sort method and its wafer sort fixture |
| CN107402218A (en)* | 2017-09-25 | 2017-11-28 | 武汉华星光电技术有限公司 | Microdefect detection method, device and the equipment of CF substrates |
| CN108037142A (en)* | 2017-12-04 | 2018-05-15 | 江苏维普光电科技有限公司 | Mask plate optical defect detection method based on image intensity value |
| CN108475649A (en)* | 2016-01-06 | 2018-08-31 | 科磊股份有限公司 | It is monitored by the feature selecting and automation process window of rejecting outliers |
| CN108700531A (en)* | 2016-03-07 | 2018-10-23 | 东丽工程株式会社 | Flaw detection apparatus |
| CN109508722A (en)* | 2018-11-08 | 2019-03-22 | 中交第二航务工程局有限公司 | Picture comparison method and picture Compare System based on gray value |
| CN109585323A (en)* | 2018-11-27 | 2019-04-05 | 德淮半导体有限公司 | Test scan method |
| CN109994398A (en)* | 2019-04-18 | 2019-07-09 | 上海华力微电子有限公司 | A kind of wafer defect scanning control methods |
| CN110189300A (en)* | 2019-04-22 | 2019-08-30 | 中国科学院微电子研究所 | Detection method, detection device, storage medium and processor for process quality of hole structure |
| CN110969175A (en)* | 2018-09-29 | 2020-04-07 | 长鑫存储技术有限公司 | Wafer processing method and device, storage medium and electronic equipment |
| CN111239152A (en)* | 2020-01-02 | 2020-06-05 | 长江存储科技有限责任公司 | Wafer inspection method, apparatus and equipment |
| CN111257727A (en)* | 2020-01-17 | 2020-06-09 | 上海华力集成电路制造有限公司 | Device and method for detecting arc discharge in WAT test |
| WO2020187319A1 (en)* | 2019-03-21 | 2020-09-24 | 深圳中科飞测科技有限公司 | Detection method and detection system |
| CN112086373A (en)* | 2019-06-13 | 2020-12-15 | 芯恩(青岛)集成电路有限公司 | Wafer defect detection method |
| CN112635346A (en)* | 2020-12-08 | 2021-04-09 | 深圳中科飞测科技股份有限公司 | Wafer detection method, semiconductor detection device and storage medium |
| CN113495538A (en)* | 2020-04-08 | 2021-10-12 | 南亚科技股份有限公司 | Control system and method for semiconductor manufacturing equipment |
| CN113916903A (en)* | 2021-09-29 | 2022-01-11 | 芯盟科技有限公司 | Defect detection method and system |
| WO2022088660A1 (en)* | 2020-10-29 | 2022-05-05 | 长鑫存储技术有限公司 | Method and apparatus for improving wafer detection sensitivity, and storage medium |
| CN115147422A (en)* | 2022-09-05 | 2022-10-04 | 武汉精立电子技术有限公司 | Method, device and equipment for generating crystal grains at center of wafer and storage medium |
| CN115187564A (en)* | 2022-07-22 | 2022-10-14 | 长鑫存储技术有限公司 | Defect detection method, defect detection device, computer-readable storage medium and electronic equipment |
| CN116048901A (en)* | 2023-03-31 | 2023-05-02 | 南京芯驰半导体科技有限公司 | Data detection method, device, electronic equipment, storage medium and chip |
| CN117197617A (en)* | 2023-09-19 | 2023-12-08 | 芯率智能科技(苏州)有限公司 | A defect classification method and system for repeated defects |
| TWI825721B (en)* | 2021-06-04 | 2023-12-11 | 日商Sumco股份有限公司 | Wafer appearance inspection device and wafer appearance inspection method |
| US11935244B2 (en) | 2020-10-29 | 2024-03-19 | Changxin Memory Technologies, Inc. | Method and apparatus for improving sensitivity of wafer detection, and storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101308184B (en)* | 2008-06-13 | 2010-12-08 | 深圳创维-Rgb电子有限公司 | Method and system for detecting machine-inserted components using image analysis |
| CN101728227B (en)* | 2008-10-27 | 2012-05-23 | 威控自动化机械股份有限公司 | Standard type crystal grain picking method |
| CN102023161B (en)* | 2009-09-09 | 2012-05-30 | 中芯国际集成电路制造(上海)有限公司 | Method for acquiring defect image |
| CN102376599B (en)* | 2010-08-10 | 2014-04-09 | 中芯国际集成电路制造(上海)有限公司 | Generation method and device of qualified crystal grain distribution pattern |
| CN102376599A (en)* | 2010-08-10 | 2012-03-14 | 中芯国际集成电路制造(上海)有限公司 | Generation method and device of qualified crystal grain distribution pattern |
| CN102522350A (en)* | 2011-11-29 | 2012-06-27 | 上海华力微电子有限公司 | Method and device for detecting failed production machine platforms |
| CN102412168A (en)* | 2011-11-30 | 2012-04-11 | 上海华力微电子有限公司 | Method and system for detecting wafer defects |
| CN103837551A (en)* | 2014-02-21 | 2014-06-04 | 上海华力微电子有限公司 | Method for carrying out defect detection on chips through partitioning according to transparency |
| CN103837551B (en)* | 2014-02-21 | 2016-04-20 | 上海华力微电子有限公司 | Chip carries out the method for defects detection by transparency subregion |
| CN104900553B (en)* | 2014-03-07 | 2018-05-01 | 中芯国际集成电路制造(上海)有限公司 | Wafer defect detection method |
| CN104897706A (en)* | 2014-03-07 | 2015-09-09 | 旺宏电子股份有限公司 | A method for measuring the surface structure of a chip or wafer |
| CN104900553A (en)* | 2014-03-07 | 2015-09-09 | 中芯国际集成电路制造(上海)有限公司 | Wafer defect detection method |
| CN104122272A (en)* | 2014-08-01 | 2014-10-29 | 上海华力微电子有限公司 | Optical detection method for defects of semiconductor devices |
| CN104122272B (en)* | 2014-08-01 | 2019-08-06 | 上海华力微电子有限公司 | The optical detecting method of defects of semiconductor device |
| CN105373764A (en)* | 2014-08-14 | 2016-03-02 | 义隆电子股份有限公司 | Pixel sensing device capable of sensing in partition mode and operation method thereof |
| CN104201132A (en)* | 2014-09-02 | 2014-12-10 | 上海华力微电子有限公司 | Method for improving defect scanning accuracy of bright field machine station |
| CN108475649A (en)* | 2016-01-06 | 2018-08-31 | 科磊股份有限公司 | It is monitored by the feature selecting and automation process window of rejecting outliers |
| CN107037345A (en)* | 2016-02-02 | 2017-08-11 | 上海和辉光电有限公司 | Self is detected during wafer sort method and its wafer sort fixture |
| CN107037345B (en)* | 2016-02-02 | 2019-09-17 | 上海和辉光电有限公司 | The method and its wafer test fixture that self is detected when wafer test |
| CN108700531A (en)* | 2016-03-07 | 2018-10-23 | 东丽工程株式会社 | Flaw detection apparatus |
| CN105931976A (en)* | 2016-05-25 | 2016-09-07 | 上海华力微电子有限公司 | Detection method capable of automatically defining scanning area for bright field scanning device |
| CN105931976B (en)* | 2016-05-25 | 2019-01-04 | 上海华力微电子有限公司 | A kind of bright field scanning device defines the detection method of scanning area automatically |
| CN107402218A (en)* | 2017-09-25 | 2017-11-28 | 武汉华星光电技术有限公司 | Microdefect detection method, device and the equipment of CF substrates |
| CN108037142A (en)* | 2017-12-04 | 2018-05-15 | 江苏维普光电科技有限公司 | Mask plate optical defect detection method based on image intensity value |
| CN110969175B (en)* | 2018-09-29 | 2022-04-12 | 长鑫存储技术有限公司 | Wafer processing method and device, storage medium and electronic equipment |
| CN110969175A (en)* | 2018-09-29 | 2020-04-07 | 长鑫存储技术有限公司 | Wafer processing method and device, storage medium and electronic equipment |
| CN109508722A (en)* | 2018-11-08 | 2019-03-22 | 中交第二航务工程局有限公司 | Picture comparison method and picture Compare System based on gray value |
| CN109585323A (en)* | 2018-11-27 | 2019-04-05 | 德淮半导体有限公司 | Test scan method |
| US11881186B2 (en) | 2019-03-21 | 2024-01-23 | Skyverse Technology Co., Ltd. | Detection method and detection system |
| WO2020187319A1 (en)* | 2019-03-21 | 2020-09-24 | 深圳中科飞测科技有限公司 | Detection method and detection system |
| CN111724335A (en)* | 2019-03-21 | 2020-09-29 | 深圳中科飞测科技有限公司 | Detection method and detection system |
| CN109994398A (en)* | 2019-04-18 | 2019-07-09 | 上海华力微电子有限公司 | A kind of wafer defect scanning control methods |
| CN110189300B (en)* | 2019-04-22 | 2021-03-09 | 中国科学院微电子研究所 | Detection method and detection device for process quality of hole-shaped structure, storage medium and processor |
| CN110189300A (en)* | 2019-04-22 | 2019-08-30 | 中国科学院微电子研究所 | Detection method, detection device, storage medium and processor for process quality of hole structure |
| CN112086373A (en)* | 2019-06-13 | 2020-12-15 | 芯恩(青岛)集成电路有限公司 | Wafer defect detection method |
| CN111239152A (en)* | 2020-01-02 | 2020-06-05 | 长江存储科技有限责任公司 | Wafer inspection method, apparatus and equipment |
| CN111239152B (en)* | 2020-01-02 | 2023-11-17 | 长江存储科技有限责任公司 | Wafer detection method, device and equipment |
| CN111257727A (en)* | 2020-01-17 | 2020-06-09 | 上海华力集成电路制造有限公司 | Device and method for detecting arc discharge in WAT test |
| CN113495538B (en)* | 2020-04-08 | 2024-03-29 | 南亚科技股份有限公司 | Control system and method for semiconductor manufacturing equipment |
| CN113495538A (en)* | 2020-04-08 | 2021-10-12 | 南亚科技股份有限公司 | Control system and method for semiconductor manufacturing equipment |
| WO2022088660A1 (en)* | 2020-10-29 | 2022-05-05 | 长鑫存储技术有限公司 | Method and apparatus for improving wafer detection sensitivity, and storage medium |
| US11935244B2 (en) | 2020-10-29 | 2024-03-19 | Changxin Memory Technologies, Inc. | Method and apparatus for improving sensitivity of wafer detection, and storage medium |
| CN112635346B (en)* | 2020-12-08 | 2023-12-26 | 深圳中科飞测科技股份有限公司 | Wafer inspection method, semiconductor inspection apparatus, and storage medium |
| CN112635346A (en)* | 2020-12-08 | 2021-04-09 | 深圳中科飞测科技股份有限公司 | Wafer detection method, semiconductor detection device and storage medium |
| TWI825721B (en)* | 2021-06-04 | 2023-12-11 | 日商Sumco股份有限公司 | Wafer appearance inspection device and wafer appearance inspection method |
| CN113916903A (en)* | 2021-09-29 | 2022-01-11 | 芯盟科技有限公司 | Defect detection method and system |
| CN115187564A (en)* | 2022-07-22 | 2022-10-14 | 长鑫存储技术有限公司 | Defect detection method, defect detection device, computer-readable storage medium and electronic equipment |
| CN115147422A (en)* | 2022-09-05 | 2022-10-04 | 武汉精立电子技术有限公司 | Method, device and equipment for generating crystal grains at center of wafer and storage medium |
| CN116048901A (en)* | 2023-03-31 | 2023-05-02 | 南京芯驰半导体科技有限公司 | Data detection method, device, electronic equipment, storage medium and chip |
| CN117197617A (en)* | 2023-09-19 | 2023-12-08 | 芯率智能科技(苏州)有限公司 | A defect classification method and system for repeated defects |
| CN117197617B (en)* | 2023-09-19 | 2024-05-28 | 芯率智能科技(苏州)有限公司 | A defect classification method and system for repeated defects |
| Publication number | Publication date |
|---|---|
| CN100499057C (en) | 2009-06-10 |
| Publication | Publication Date | Title |
|---|---|---|
| CN101090083A (en) | Wafer Inspection Method | |
| US9430713B2 (en) | Method and apparatus for detecting repetitive pattern in image | |
| US6683974B1 (en) | Image defect detection apparatus and image defect detection method | |
| EP2212909B1 (en) | Patterned wafer defect inspection system and method | |
| US8170707B2 (en) | Failure detecting method, failure detecting apparatus, and semiconductor device manufacturing method | |
| CN104520983A (en) | Detection of defects embedded in noise for inspection in semiconductor manufacturing | |
| CN116128839A (en) | Wafer defect identification method, device, electronic device and storage medium | |
| TWI641961B (en) | Design and layout-based fast online defect diagnosis, classification and sampling method and system | |
| TW201512649A (en) | Method of chip detects inspecting, system therefor, and computer program product thereof | |
| WO2014103617A1 (en) | Alignment device, defect inspection device, alignment method, and control program | |
| TW201606854A (en) | Automatic calibration sample selection for die-to-database photomask inspection | |
| CN107689335B (en) | method for analyzing defects of wafers of various products | |
| TWI722861B (en) | Classification method and a classification system | |
| TWI748184B (en) | Defect detecting method, electronic device, and computer readable storage medium | |
| JP6609954B2 (en) | DNA chip image spot effectiveness determination apparatus, DNA chip image spot effectiveness determination method, and DNA chip image spot effectiveness determination program | |
| JP5155938B2 (en) | Pattern contour detection method | |
| CN104198495A (en) | Method for detecting step evolution abnormality of semiconductor substrate | |
| US9006003B1 (en) | Method of detecting bitmap failure associated with physical coordinate | |
| JP2005236094A (en) | Method for manufacturing semiconductor device, method and system for failure analysis | |
| JP6114559B2 (en) | Automatic unevenness detector for flat panel display | |
| TWI504911B (en) | Method for testing special pattern and probe card defect in wafer testing | |
| CN118115447A (en) | Wafer defect detection method, device, equipment and readable storage medium | |
| CN108508053B (en) | Method for detecting systematic infinitesimal physical defects | |
| CN117455865A (en) | Material defect review display method, device, equipment and storage medium | |
| TWI808595B (en) | Method for analyzing defect |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right | Owner name:SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING | |
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right | Effective date of registration:20111109 Address after:201203 Shanghai City, Pudong New Area Zhangjiang Road No. 18 Co-patentee after:Semiconductor Manufacturing International (Beijing) Corporation Patentee after:Semiconductor Manufacturing International (Shanghai) Corporation Address before:201203 Shanghai City, Pudong New Area Zhangjiang Road No. 18 Patentee before:Semiconductor Manufacturing International (Shanghai) Corporation | |
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20090610 Termination date:20180612 | |
| CF01 | Termination of patent right due to non-payment of annual fee |