Movatterモバイル変換


[0]ホーム

URL:


CN101028866A - Aircraft with wing sweepback angle change - Google Patents

Aircraft with wing sweepback angle change
Download PDF

Info

Publication number
CN101028866A
CN101028866ACN 200710071973CN200710071973ACN101028866ACN 101028866 ACN101028866 ACN 101028866ACN 200710071973CN200710071973CN 200710071973CN 200710071973 ACN200710071973 ACN 200710071973ACN 101028866 ACN101028866 ACN 101028866A
Authority
CN
China
Prior art keywords
shape memory
wing
shape
aircraft
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200710071973
Other languages
Chinese (zh)
Other versions
CN100429119C (en
Inventor
冷劲松
刘彦菊
刘晓伟
孙启健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology ShenzhenfiledCriticalHarbin Institute of Technology Shenzhen
Priority to CNB2007100719734ApriorityCriticalpatent/CN100429119C/en
Publication of CN101028866ApublicationCriticalpatent/CN101028866A/en
Application grantedgrantedCritical
Publication of CN100429119CpublicationCriticalpatent/CN100429119C/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Landscapes

Abstract

Translated fromChinese

一种可改变机翼后掠角的飞行器,它涉及一种飞行器。针对现有的变后掠翼飞行器存在机翼转动机构复杂、重量大、研制成本高、操作难度大、飞行性能低的问题。本发明的机身(1)两侧突出的部位装有销轴(4),机翼(2)的首端通过销轴(4)与机身(1)连接,销轴(4)后面的机身(1)上固定装有两个沿机身(1)轴线对称设置的形状记忆合金棒(5),形状记忆合金棒(5)的两端分别与相对应的连杆(6)的一端连接,连杆(6)的另一端与滑块(7)铰接,滑块(7)与设置在机翼(2)上的滑槽(8)滑动连接,机翼(2)的外表面用形状记忆聚合物蒙皮(3)密封。本发明利用形状记忆合金棒作为机翼变形的驱动源,其质量轻、机构简单、维修方便,通过机翼后掠角的变化解决了飞行器高、低速性能要求的矛盾。

Figure 200710071973

An aircraft capable of changing the sweep angle of its wings relates to an aircraft. The existing variable-sweep wing aircraft has the problems of complex wing rotation mechanism, heavy weight, high development cost, difficult operation and low flight performance. The positions protruding from both sides of the fuselage (1) of the present invention are equipped with bearing pins (4), and the head end of the wing (2) is connected with the fuselage (1) by the bearing pins (4). The fuselage (1) is fixed with two shape memory alloy rods (5) arranged symmetrically along the axis of the fuselage (1), and the two ends of the shape memory alloy rods (5) are connected with the corresponding connecting rods (6) respectively. One end is connected, the other end of the connecting rod (6) is hinged with the slider (7), and the slider (7) is slidably connected with the chute (8) arranged on the wing (2), and the outer surface of the wing (2) Sealed with a shape memory polymer skin (3). The invention uses the shape memory alloy rod as the driving source of wing deformation, which has light weight, simple mechanism and convenient maintenance, and solves the contradiction between high and low speed performance requirements of the aircraft through the change of wing sweep angle.

Figure 200710071973

Description

Translated fromChinese
一种可改变机翼后掠角的飞行器An aircraft capable of changing the sweep angle of the wings

技术领域technical field

本发明涉及一种飞行器。The invention relates to an aircraft.

背景技术Background technique

机翼是飞行器在飞行中可重新构型的主要部件。在飞行中有目地的改变机翼外形(如机翼后掠角、翼展和翼型等)可以有效地增加机翼的飞行性能。其中,改变翼展和机翼面积的效果最为突出。比如,飞机在巡航时通常要求机翼具有高展弦比、大机翼面积和较小的后掠角,而要想高速飞行,就要求低展弦比、小机翼面积和较大的后掠角。在飞机飞行过程中,当垂直于机翼前缘的气流速度接近音速时,机翼上表面局部气流速度将超过音速,出现激波,使飞行阻力急剧增加。后掠翼飞机由于与机翼前缘垂直的气流速度分量低于飞行速度,与平直机翼飞机相比,只有在更高的飞行速度下才会出现激波,从而推迟了激波的产生。即使产生激波,也能减弱激波强度,减小飞行阻力。现代超音速飞机广泛采用的大后掠机翼,超音速阻力较小,但低速时气动效率低,升力特性不好,用低速性能好的小后掠角机翼又会使超音速性能变坏。飞机在起飞着陆和低速飞行时用较小的后掠角,因而具有较高的低速巡航效率和较大的起飞着陆升力。在超音速飞行时用较大的后掠角,对于减小超音速飞行的阻力很有利。此外,超音速轰炸机和强击机作超低空高速飞行时,为了减少不平稳气流引起的颠簸,也要求机翼有大的后掠角。Wings are the main components of an aircraft that are reconfigurable in flight. Purposefully changing the shape of the wing during flight (such as wing sweep angle, wingspan and airfoil, etc.) can effectively increase the flight performance of the wing. Among them, the effect of changing the wingspan and wing area is the most prominent. For example, when an aircraft is cruising, it usually requires the wing to have a high aspect ratio, a large wing area and a small sweep angle, and to fly at high speed, it requires a low aspect ratio, a small wing area and a large rear Grazing angle. During the flight of the aircraft, when the airflow velocity perpendicular to the leading edge of the wing is close to the speed of sound, the local airflow velocity on the upper surface of the wing will exceed the speed of sound, and a shock wave will appear, which will increase the flight resistance sharply. Because the air velocity component perpendicular to the leading edge of the wing is lower than the flight speed, the swept-wing aircraft will only appear shock waves at higher flight speeds compared with straight-wing aircraft, thereby delaying the generation of shock waves . Even if a shock wave is generated, the strength of the shock wave can be weakened and the flight resistance can be reduced. The large-swept wings widely used in modern supersonic aircraft have less supersonic resistance, but the aerodynamic efficiency is low at low speeds, and the lift characteristics are not good. Using low-speed wings with good low-sweep angles will make supersonic performance worse . The aircraft uses a smaller sweep angle during takeoff, landing and low-speed flight, so it has higher low-speed cruising efficiency and greater takeoff and landing lift. When flying at supersonic speed, using a larger sweep angle is very beneficial for reducing the resistance of supersonic flight. In addition, when supersonic bombers and attack aircraft fly at ultra-low altitude and high speed, in order to reduce the turbulence caused by unsteady airflow, the wings are also required to have a large sweep angle.

而现有的变后掠翼飞行器的主要缺点是机翼转动机构复杂、重量大。活动外翼的载荷全部集中在枢轴上,而枢轴又必须灵活地转动。固定翼或机身内部还要留出足够的空间容纳缩进的活动翼部分。固定翼或机身与活动翼之间的缝隙需要有密封罩以减少阻力。此外,还要有一套强有力的驱动装置,在飞行中才能快速地改变后掠角。但这些同时又带来结构重量的增加和一部分性能的降低,而且提高了研制成本和技术难度。And the main shortcoming of existing variable-sweep-wing aircraft is that the wing rotation mechanism is complicated and heavy. The load of the movable outer wing is all concentrated on the pivot, and the pivot must rotate flexibly. There is also enough room inside the fixed wing or fuselage to accommodate the retracted movable wing section. The gap between the fixed wing or fuselage and the movable wing needs to be sealed to reduce drag. In addition, there must be a set of powerful driving devices to quickly change the sweep angle in flight. But these simultaneously bring about the increase of structural weight and the reduction of some performances, and increase the development cost and technical difficulty.

发明内容Contents of the invention

本发明的目的是提供一种可改变机翼后掠角的飞行器,它可解决现有的变后掠翼飞行器存在机翼转动机构复杂、重量大、研制成本高、操作难度大、飞行性能低的问题。The purpose of the present invention is to provide a kind of aircraft that can change the wing sweep angle, it can solve the problem that existing variable-sweep wing aircraft has complex wing rotation mechanism, heavy weight, high development cost, difficult operation and low flight performance. The problem.

本发明由机身、机翼、形状记忆聚合物蒙皮、销轴、形状记忆合金棒、连杆、滑块组成;所述机身两侧突出的部位装有销轴,机翼的首端通过销轴与机身连接,销轴后面的机身上固定装有两个沿机身的轴线对称设置的形状记忆合金棒,形状记忆合金棒的两端分别与相对应的连杆的一端连接,连杆的另一端与滑块铰接,滑块与设置在机翼上的滑槽滑动连接,机翼的外表面用形状记忆聚合物蒙皮密封。The present invention is composed of fuselage, wing, shape memory polymer skin, pin shaft, shape memory alloy rod, connecting rod, slider; It is connected with the fuselage through the pin shaft, and the fuselage behind the pin shaft is fixed with two shape memory alloy rods arranged symmetrically along the axis of the fuselage, and the two ends of the shape memory alloy rod are respectively connected with one end of the corresponding connecting rod , the other end of the connecting rod is hinged with the slider, and the slider is slidingly connected with the chute provided on the wing, and the outer surface of the wing is sealed with a shape memory polymer skin.

本发明具有以下有益效果:在本发明中,利用形状记忆合金棒作为机翼后掠的驱动源,通过形状记忆合金棒与连杆和滑块的配合改变机翼的后掠角。形状记忆合金棒采用电阻丝加热的方法加热,预先给形状记忆合金棒施加一定角度的旋转,当对形状记忆合金棒加热后,热驱动使形状记忆合金棒恢复到原来的形状,带动连杆旋转,使滑块沿机翼上的滑槽滑动,从而驱动机翼转动。因此,本发明同现有的变后掠翼飞行器相比,具有质量轻、机翼转动机构简单、维修方便、研制成本低、容易操作、飞行性能高等优点,从而可以大大地提高武器系统的作战性能和安全性,减少了武器在服役过程中的风险性和维护成本。在变后掠机翼设计中最重要的因素之一是一种称作形状记忆聚合物(SMP)的特殊材料。SMP具有一种特殊的记忆功能,当SMP材料被改变为不同形状布局后,SMP分子将会重新组构以恢复其初始形状,SMP材料的初始形态,也就是它的″记忆″形状是一种刚性体即高模量形态。当SMP材料受热、高频光或电激励后将变成一种低模量弹性体,从而可以任意改变SMP材料的形状。这里,当机翼向后掠时,机翼的前侧与机身连接处的空隙将加大,机翼后侧与机身连接处的空隙将变小,此时机翼前侧的SMP蒙皮将会被拉伸,机翼后侧的SMP蒙皮将会被压缩;当机翼恢复正常的位置时,机翼的前侧与机身连接处的空隙将减小,机翼后侧与机身连接处的空隙将增大,此时可以通过热、高频光或电激励SMP,使其恢复原来的形状即机翼前侧的SMP蒙皮缩短,机翼后侧SMP蒙皮伸长,进而适应机翼的位置变化,使机翼与机身始终保持密封连接。本发明所采用的SMP具有应变量大(最大能达到200%)、回复应力较大(能达到10MPa量级)、运动稳定性好、可靠性高、低密度、高刚度、高强度和低成本等优点。从长远来看,这种机翼外形上的变化能够使飞行器达到更高的速度,并且拥有高燃油效率、高飞行质量、高安全性能,以及更好的可操作性、更快的着陆速度、适应各种条件的起飞场,实现根据不同任务进行变速、变高度、变飞行参数的飞行,并且具有较长的滞空时间。本发明不仅可以改变机翼形状,利用本发明的相关技术还可以用于可变翼巡航导弹、舰船潜艇结构等军用武器结构中,为实现武器系统的安全化、智能化、自适应化提供有力的基础保障,大大地提高了武器系统(尤其是无人机)的作战性能和安全性,减少了武器服役过程中的风险性和维护成本。The present invention has the following beneficial effects: In the present invention, the shape memory alloy rod is used as the driving source of the wing sweep, and the sweep angle of the wing is changed through the cooperation of the shape memory alloy rod, the connecting rod and the slider. The shape memory alloy rod is heated by resistance wire heating, and the shape memory alloy rod is rotated at a certain angle in advance. After the shape memory alloy rod is heated, the thermal drive restores the shape memory alloy rod to its original shape and drives the connecting rod to rotate. , so that the slider slides along the chute on the wing, thereby driving the wing to rotate. Therefore, compared with the existing variable-sweep wing aircraft, the present invention has the advantages of light weight, simple wing rotation mechanism, convenient maintenance, low development cost, easy operation, high flight performance, etc., thereby greatly improving the combat capability of the weapon system. Performance and safety, reducing the risk and maintenance costs of weapons during service. One of the most important factors in the design of a variable-sweep wing is a special material called a shape-memory polymer (SMP). SMP has a special memory function. When the SMP material is changed into a different shape layout, the SMP molecule will reorganize to restore its original shape. The initial shape of the SMP material, that is, its "memory" shape is a kind of A rigid body is a high modulus form. When the SMP material is excited by heat, high-frequency light or electricity, it will become a low-modulus elastomer, so that the shape of the SMP material can be changed arbitrarily. Here, when the wing is swept back, the gap between the front side of the wing and the fuselage will increase, and the gap between the rear side of the wing and the fuselage will become smaller. At this time, the SMP skin on the front side of the wing will be stretched, and the SMP skin on the rear side of the wing will be compressed; when the wing returns to its normal position, the gap between the front side of the wing and the fuselage will decrease, and the rear side of the wing and the fuselage will The gap at the joint of the body will increase. At this time, the SMP can be stimulated by heat, high-frequency light or electricity to restore its original shape, that is, the SMP skin on the front side of the wing is shortened, and the SMP skin on the rear side of the wing is elongated, thereby adapting to the The position of the wing changes so that the wing is always airtightly connected to the fuselage. The SMP used in the present invention has the advantages of large strain (up to 200%), large recovery stress (up to 10MPa), good motion stability, high reliability, low density, high stiffness, high strength and low cost Etc. In the long run, this change in wing shape can enable the aircraft to achieve higher speeds, and have high fuel efficiency, high flight quality, high safety performance, better maneuverability, faster landing speed, The take-off field adapts to various conditions, realizes the flight with variable speed, variable altitude, and variable flight parameters according to different tasks, and has a long time in the air. The present invention can not only change the shape of the wing, but also can be used in military weapon structures such as variable-wing cruise missiles, ship submarine structures, etc., to provide security, intelligence and self-adaptation for the realization of weapon systems. Strong basic support greatly improves the combat performance and safety of weapon systems (especially unmanned aerial vehicles), and reduces risks and maintenance costs during the service of weapons.

附图说明Description of drawings

图1是本发明的俯视图(机翼后掠角不变),图2是图1的仰视图,图3是本发明的俯视图(改变机翼后掠角),图4是图3的仰视图,图5是滑块7与机翼2滑动连接的左视图。Fig. 1 is a top view of the present invention (wing sweep angle is constant), Fig. 2 is a bottom view of Fig. 1, Fig. 3 is a top view of the present invention (wing sweep angle is changed), and Fig. 4 is a bottom view of Fig. 3 , Figure 5 is a left side view of thesliding block 7 and thewing 2 sliding connection.

具体实施方式Detailed ways

具体实施方式一:结合图1~图5说明本实施方式,本实施方式由机身1、机翼2、形状记忆聚合物蒙皮3、销轴4、形状记忆合金棒5、连杆6、滑块7组成;所述机身1两侧突出的部位装有销轴4,机翼2的首端通过销轴4与机身1连接,销轴4后面的机身1上固定装有两个沿机身1的轴线对称设置的形状记忆合金棒5,形状记忆合金棒5的两端分别与相对应的连杆6的一端连接,连杆6的另一端与滑块7铰接,滑块7与设置在机翼2上的滑槽8滑动连接,机翼2的外表面用形状记忆聚合物蒙皮3密封。Specific Embodiment 1: This embodiment is described with reference to FIGS.Slider 7 is composed of;pin shaft 4 is installed on the protruding parts of the two sides of thefuselage 1, the head end ofwing 2 is connected withfuselage 1 throughpin shaft 4, and thefuselage 1 behindpin shaft 4 is fixedly equipped with two A shapememory alloy rod 5 arranged symmetrically along the axis of thefuselage 1, the two ends of the shapememory alloy rod 5 are respectively connected with one end of thecorresponding connecting rod 6, the other end of the connectingrod 6 is hinged with theslider 7, and theslider 7 is slidably connected with thechute 8 arranged on thewing 2, and the outer surface of thewing 2 is sealed with a shapememory polymer skin 3.

具体实施方式二:结合图1~图4说明本实施方式,本实施方式的形状记忆聚合物是纯形状记忆聚合物或形状记忆聚合物复合材料;所述纯形状记忆聚合物是苯乙烯系形状记忆聚合物、环氧树脂系形状记忆聚合物、氰酸酯系形状记忆聚合物、形状记忆聚氨酯、形状记忆聚酯、形状记忆苯乙烯-丁二烯共聚物、形状记忆反式聚异戊二烯或形状记忆聚降冰片烯其中的一种;所述形状记忆聚合物复合材料由形状记忆聚合物基体相材料和增强相材料组成;所述形状记忆聚合物基体相材料是苯乙烯系形状记忆聚合物、环氧树脂系形状记忆聚合物、氰酸酯系形状记忆聚合物、形状记忆聚氨酯、形状记忆聚酯、形状记忆苯乙烯-丁二烯共聚物、形状记忆反式聚异戊二烯或形状记忆聚降冰片烯其中的一种;所述增强相材料是碳纤维、玻璃纤维、Kevlar纤维、硼纤维、石墨纤维、碳化硅纤维、炭黑、碳纳米管、石墨、碳化硅粉末、铜粉、银粉或铝粉其中的一种;所述形状记忆聚合物的加热方式是直接通电加热或通过电阻丝加热。采用上述形状记忆聚合物,在室温时(低于形状记忆聚合物的玻璃化转变温度,Tg)弹性模量较大,当加热到形状记忆聚合物的玻璃化转变温度以上时,形状记忆聚合物蒙皮的弹性模量降低,可塑性增强,在外界应力作用下,形状记忆聚合物蒙皮能被动变形至理想形状;在保持外力约束的情况下将温度降至室温时(<Tg),形状记忆聚合物弹性模量升高,当外力卸载后,形状记忆聚合物蒙皮能保持变形后的形状,且能长期储存;当再次加热至形状记忆聚合物Tg以上时,形状记忆聚合物蒙皮能主动回复至最原始(脱模后)的形状。如此设置,形状记忆聚合物蒙皮能表现出无损伤或较小损伤的拉长-回缩、弯曲-伸展、压缩-伸长等热机械循环性能。该SMP具有应变量大(最大能达到200%),回复应力较大(能达到10MPa量级)、运动稳定性好、可靠性高、低密度、高刚度、高强度和低成本等优点。其它组成及连接关系与具体实施方式一相同。Specific Embodiment 2: This embodiment is described with reference to FIGS. 1 to 4. The shape memory polymer in this embodiment is a pure shape memory polymer or a shape memory polymer composite material; the pure shape memory polymer is a styrene-based shape Memory polymer, epoxy resin-based shape-memory polymer, cyanate-based shape-memory polymer, shape-memory polyurethane, shape-memory polyester, shape-memory styrene-butadiene copolymer, shape-memory trans-polyisoprene One of ene or shape-memory polynorbornene; the shape-memory polymer composite material is composed of a shape-memory polymer matrix phase material and a reinforcing phase material; the shape-memory polymer matrix phase material is a styrene-based shape memory Polymers, epoxy resin-based shape-memory polymers, cyanate-based shape-memory polymers, shape-memory polyurethanes, shape-memory polyesters, shape-memory styrene-butadiene copolymers, shape-memory trans-polyisoprene or shape memory polynorbornene; the reinforcing phase material is carbon fiber, glass fiber, Kevlar fiber, boron fiber, graphite fiber, silicon carbide fiber, carbon black, carbon nanotube, graphite, silicon carbide powder, copper powder, silver powder or aluminum powder; the heating method of the shape memory polymer is direct electric heating or heating through resistance wire. Using the above shape memory polymer, the elastic modulus is relatively large at room temperature (below the glass transition temperature of the shape memory polymer, Tg ), and when heated above the glass transition temperature of the shape memory polymer, the shape memory polymer The elastic modulus of the physical skin is reduced, and the plasticity is enhanced. Under the action of external stress, the shape memory polymer skin can be passively deformed to the idealshape ; The elastic modulus of the shape memory polymer increases, and when the external force is unloaded, the shape memory polymer skin can maintain the deformed shape and can be stored for a long time; when heated again above the Tg of the shape memory polymer, the shape memory polymer The skin can actively return to the original (after demoulding) shape. In this way, the shape memory polymer skin can exhibit thermomechanical cycling properties such as elongation-retraction, bending-stretching, compression-elongation, etc. without damage or less damage. The SMP has the advantages of large strain (up to 200%), large recovery stress (up to 10 MPa), good motion stability, high reliability, low density, high stiffness, high strength and low cost. Other components and connections are the same as those in the first embodiment.

具体实施方式三:结合图1~图4说明本实施方式,本实施方式的形状记忆合金棒5是TiNi形状记忆合金棒、Cu-Zn形状记忆合金棒、Cu-Al-Ni形状记忆合金棒、Cu-Sn形状记忆合金棒、Mn-Cu形状记忆合金棒、Fe-Pt形状记忆合金棒或Fe-Mn-Si形状记忆合金棒其中的一种。形状记忆合金棒5在外界扭转力作用下(环境温度低于形状记忆合金马氏体转化温度),形状记忆合金棒5产生一定的扭转变形(扭转应变低于10%),然后对形状记忆合金棒5加热,形状记忆合金棒5发生奥氏体向马氏体的转变,扭转变形回复至原始形状,所述形状记忆合金棒的加热方式是直接通电加热或通过电阻丝加热。采用上述材料的形状记忆合金棒5具有扭矩大、可回复扭转角度大、响应速度快、热-机械循环可重复性高的特点。另外,如采用通电加热,以上形状记忆合金棒还有电响应特性,便于控制系统的运动。Specific Embodiment Three: This embodiment is described in conjunction with FIGS. 1 to 4. The shapememory alloy rod 5 of this embodiment is a TiNi shape memory alloy rod, a Cu-Zn shape memory alloy rod, a Cu-Al-Ni shape memory alloy rod, One of Cu-Sn shape memory alloy rods, Mn-Cu shape memory alloy rods, Fe-Pt shape memory alloy rods or Fe-Mn-Si shape memory alloy rods. The shapememory alloy rod 5 is under the action of external torsional force (the ambient temperature is lower than the martensitic transformation temperature of the shape memory alloy), the shapememory alloy rod 5 produces a certain torsional deformation (the torsional strain is lower than 10%), and then the shape memory alloy When therod 5 is heated, the shapememory alloy rod 5 undergoes transformation from austenite to martensite, and the torsional deformation returns to the original shape. The heating method of the shape memory alloy rod is direct electric heating or heating by resistance wire. The shapememory alloy rod 5 using the above material has the characteristics of large torque, large recoverable torsion angle, fast response speed and high repeatability of thermal-mechanical cycle. In addition, if electric heating is adopted, the above shape memory alloy rods also have electric response characteristics, which is convenient for controlling the movement of the system.

Claims (10)

Translated fromChinese
1、一种可改变机翼后掠角的飞行器,它由机身(1)、机翼(2)、形状记忆聚合物蒙皮(3)、销轴(4)、形状记忆合金棒(5)、连杆(6)、滑块(7)组成;其特征在于所述机身(1)两侧突出的部位装有销轴(4),机翼(2)的首端通过销轴(4)与机身(1)连接,销轴(4)后面的机身(1)上固定装有两个沿机身(1)的轴线对称设置的形状记忆合金棒(5),形状记忆合金棒(5)的两端分别与相对应的连杆(6)的一端连接,连杆(6)的另一端与滑块(7)铰接,滑块(7)与设置在机翼(2)上的滑槽(8)滑动连接,机翼(2)的外表面用形状记忆聚合物蒙皮(3)密封。1. An aircraft capable of changing the sweep angle of the wings, which consists of a fuselage (1), wings (2), shape memory polymer skin (3), pin shafts (4), shape memory alloy rods (5 ), connecting rod (6), slide block (7); It is characterized in that pin shaft (4) is equipped with on the protruding position of described fuselage (1) both sides, and the head end of wing (2) passes through pin shaft ( 4) It is connected with the fuselage (1), and the fuselage (1) behind the pin shaft (4) is fixed with two shape memory alloy rods (5) symmetrically arranged along the axis of the fuselage (1). The two ends of rod (5) are respectively connected with one end of corresponding connecting rod (6), and the other end of connecting rod (6) is hinged with slide block (7), and slide block (7) is arranged on wing (2) The upper chute (8) is slidingly connected, and the outer surface of the wing (2) is sealed with a shape memory polymer skin (3).2、根据权利要求1所述的一种可改变机翼后掠角的飞行器,其特征在于所述形状记忆聚合物是纯形状记忆聚合物或形状记忆聚合物复合的材料。2. The aircraft with variable wing sweep angle according to claim 1, characterized in that said shape memory polymer is a pure shape memory polymer or a compound material of shape memory polymers.3、根据权利要求2所述的一种可改变机翼后掠角的飞行器,其特征在于所述纯形状记忆聚合物是苯乙烯系形状记忆聚合物、环氧树脂系形状记忆聚合物、氰酸酯系形状记忆聚合物、形状记忆聚氨酯、形状记忆聚酯、形状记忆苯乙烯-丁二烯共聚物、形状记忆反式聚异戊二烯或形状记忆聚降冰片烯其中的一种。3. The aircraft capable of changing the sweep angle of the wings according to claim 2, characterized in that said pure shape memory polymer is a styrene-based shape-memory polymer, an epoxy-based shape-memory polymer, cyanide One of ester shape memory polymer, shape memory polyurethane, shape memory polyester, shape memory styrene-butadiene copolymer, shape memory trans polyisoprene or shape memory polynorbornene.4、根据权利要求2所述的一种可改变机翼后掠角的飞行器,其特征在于所述形状记忆聚合物复合材料由形状记忆聚合物基体相材料和增强相材料组成。4. The aircraft with variable wing sweep angle according to claim 2, characterized in that said shape memory polymer composite material is composed of shape memory polymer matrix phase material and reinforcement phase material.5、根据权利要求4所述的一种可改变机翼后掠角的飞行器,其特征在于所述形状记忆聚合物基体相材料是苯乙烯系形状记忆聚合物、环氧树脂系形状记忆聚合物、氰酸酯系形状记忆聚合物、形状记忆聚氨酯、形状记忆聚酯、形状记忆苯乙烯-丁二烯共聚物、形状记忆反式聚异戊二烯或形状记忆聚降冰片烯其中的一种;5. The aircraft capable of changing the sweep angle of the wing according to claim 4, characterized in that the shape memory polymer matrix phase material is a styrene-based shape-memory polymer, an epoxy resin-based shape-memory polymer , cyanate-based shape-memory polymer, shape-memory polyurethane, shape-memory polyester, shape-memory styrene-butadiene copolymer, shape-memory trans-polyisoprene or shape-memory polynorbornene ;6、根据权利要求4所述的一种可改变机翼后掠角的飞行器,其特征在于所述增强相材料是碳纤维、玻璃纤维、Kevlar纤维、硼纤维、石墨纤维、碳化硅纤维、炭黑、碳纳米管、石墨、碳化硅粉末、铜粉、银粉或铝粉其中的一种。6. The aircraft capable of changing the sweep angle of the wing according to claim 4, characterized in that the reinforcing phase material is carbon fiber, glass fiber, Kevlar fiber, boron fiber, graphite fiber, silicon carbide fiber, carbon black , carbon nanotubes, graphite, silicon carbide powder, copper powder, silver powder or aluminum powder.7、根据权利要求1或2所述的一种可改变机翼后掠角的飞行器,其特征在于所述形状记忆聚合物的加热方式是直接通电加热或通过电阻丝加热。7. The aircraft capable of changing the sweep angle of the wings according to claim 1 or 2, characterized in that the heating method of the shape memory polymer is direct electric heating or heating by resistance wire.8、根据权利要求1所述的一种可改变机翼后掠角的飞行器,其特征在于所述形状记忆合金棒(5)是TiNi形状记忆合金棒、Cu-Zn形状记忆合金棒、Cu-Al-Ni形状记忆合金棒、Cu-Sn形状记忆合金棒、Mn-Cu形状记忆合金棒、Fe-Pt形状记忆合金棒或Fe-Mn-Si形状记忆合金棒其中的一种。8. The aircraft capable of changing the wing sweep angle according to claim 1, characterized in that said shape memory alloy rod (5) is a TiNi shape memory alloy rod, Cu-Zn shape memory alloy rod, Cu-Zn shape memory alloy rod, Cu- One of Al-Ni shape memory alloy rods, Cu-Sn shape memory alloy rods, Mn-Cu shape memory alloy rods, Fe-Pt shape memory alloy rods or Fe-Mn-Si shape memory alloy rods.9、根据权利要求8所述的一种可改变机翼后掠角的飞行器,其特征在于所述形状记忆合金棒(5)的加热方式是直接通电加热或通过电阻丝加热。9. The aircraft capable of changing the sweep angle of the wings according to claim 8, characterized in that the heating method of the shape memory alloy rod (5) is direct electric heating or heating by resistance wire.10、根据权利要求1所述的一种可改变机翼后掠角的飞行器,其特征在于所述机翼(2)上的滑槽(8)沿机翼(2)的长度方向设置。10. The aircraft with variable wing sweep angle according to claim 1, characterized in that the chute (8) on the wing (2) is arranged along the length direction of the wing (2).
CNB2007100719734A2007-03-302007-03-30Aircraft with wing sweepback angle changeExpired - Fee RelatedCN100429119C (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CNB2007100719734ACN100429119C (en)2007-03-302007-03-30Aircraft with wing sweepback angle change

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CNB2007100719734ACN100429119C (en)2007-03-302007-03-30Aircraft with wing sweepback angle change

Publications (2)

Publication NumberPublication Date
CN101028866Atrue CN101028866A (en)2007-09-05
CN100429119C CN100429119C (en)2008-10-29

Family

ID=38714459

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CNB2007100719734AExpired - Fee RelatedCN100429119C (en)2007-03-302007-03-30Aircraft with wing sweepback angle change

Country Status (1)

CountryLink
CN (1)CN100429119C (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2009140021A1 (en)*2008-05-142009-11-19Raytheon CompanyShape-changing structure member with embedded spring
US7728267B2 (en)2007-02-022010-06-01Raytheon CompanyMethods and apparatus for adjustable surfaces
CN101767647A (en)*2010-03-022010-07-07北京航空航天大学Self-locking 90-degree full-wing variable sweepback transmission mechanism
US7939178B2 (en)2008-05-142011-05-10Raytheon CompanyShape-changing structure with superelastic foam material
CN102060100A (en)*2010-12-142011-05-18上海智晟航空科技有限公司Aircraft fuselage-wing connecting mechanism
US8056853B2 (en)2008-11-252011-11-15Raytheon CompanyReconfigurable wing and method of use
CN101734369B (en)*2010-01-282012-06-06哈尔滨工业大学Shape memory polymer-based air filling extensible wing and methods for manufacturing same
CN102530238A (en)*2012-02-232012-07-04北京理工大学Unmanned aerial vehicle with variable sweepbacks and spans of wings
US8262032B2 (en)2008-11-132012-09-11Raytheon CompanyCollapsible wing beams and method
US8382042B2 (en)2008-05-142013-02-26Raytheon CompanyStructure with reconfigurable polymer material
US8387536B2 (en)2008-12-042013-03-05Raytheon CompanyInterceptor vehicle with extendible arms
US8573535B2 (en)2009-03-272013-11-05Raytheon CompanyShape-change material and method
CN103661919A (en)*2013-12-232014-03-26北京理工大学Wing folding mechanism based on flex-wing aircraft
US8864065B2 (en)2011-11-042014-10-21Raytheon CompanyChord-expanding air vehicle wings
CN104176237A (en)*2014-07-252014-12-03哈尔滨工业大学深圳研究生院Deformable wing device and airplane applying same
CN104443438A (en)*2014-11-082015-03-25哈尔滨工业大学Intelligent bamboo-shaped releasing mechanism made of shape memory polymer composite material
CN105109667A (en)*2015-08-242015-12-02清华大学Variable structure with deflection hinge locking and shape memory alloy driving
CN105173061A (en)*2015-08-132015-12-23中国航空工业集团公司西安飞机设计研究所Plane in supersonic speed plane layout
CN105235889A (en)*2015-10-162016-01-13中国空气动力研究与发展中心高速空气动力研究所Self-adaptive rhombic wing layout of air vehicles
CN105711810A (en)*2016-04-152016-06-29仲贤辉Improved folding-wing unmanned aerial vehicle for municipal garden greening
CN105752335A (en)*2016-02-252016-07-13胡增浩 An aerial photography drone
CN105923158A (en)*2016-04-232016-09-07董昕武 A folding-wing UAV for municipal landscaping
CN105947177A (en)*2016-06-212016-09-21徐荣婷Manned aircraft with variable sweep aerofoils
CN106569501A (en)*2016-10-192017-04-19广东容祺智能科技有限公司Dihedral-angle-controllable vehicle arm system and control method thereof
CN106741846A (en)*2016-12-272017-05-31李俊孝A kind of swing-wing fighter plane
CN106892088A (en)*2017-02-042017-06-27仲松梅The municipal gardens aircraft of one kind building
CN107416157A (en)*2017-07-132017-12-01华中科技大学A kind of deformable observation device of deep-sea underwater observation platform
CN107444589A (en)*2017-07-132017-12-08华中科技大学A kind of deformable observation procedure of deep-sea underwater observation platform
CN107444616A (en)*2017-04-252017-12-08西安航空学院The speed adaptive wing sweeping mechanism and control method of manual height gear
CN107509356A (en)*2017-09-282017-12-22浙江冠华电气有限公司One kind is adjustably controlled cabinet
CN107554794A (en)*2016-01-202018-01-09陈国栋Spray insecticide or the unmanned plane and its method of work of chemical fertilizer
CN107628228A (en)*2017-08-282018-01-26中国航空工业集团公司沈阳飞机设计研究所A kind of leading edge of a wing continuously bent structure
CN108284942A (en)*2017-01-092018-07-17宿迁市飞鹰模具开发科技有限公司A kind of Fixed Wing AirVehicle variable adjusting swept-back wing mechanism
CN108791811A (en)*2018-05-252018-11-13中国航天空气动力技术研究院A kind of adaptive strain configuration wing of heat
CN109018438A (en)*2018-07-272018-12-18北京空间机电研究所A kind of expanding unit driven using high drive marmem
CN109467929A (en)*2018-12-112019-03-15哈尔滨工业大学 Shape memory cyanate resin material resistant to gamma ray irradiation and preparation method thereof
CN111232184A (en)*2020-01-212020-06-05南京航空航天大学 A drive mechanism for changing back sweep of helicopter rotor tip by using shape memory alloy
CN111924086A (en)*2020-07-072020-11-13北京机电工程研究所 A Deformable Mechanism Driven by Memory Alloy
CN112061374A (en)*2020-08-242020-12-11上海大学Variable sweepback wing with fixed wing spars
CN112158325A (en)*2020-09-302021-01-01浙江大学Tailstock type vertical take-off and landing unmanned aerial vehicle and control method thereof
CN113090481A (en)*2021-03-192021-07-09北京航空航天大学SMA bending driver for adjusting air inlet bulge
CN114379766A (en)*2022-01-132022-04-22西北工业大学Umbrella type chute sweep-variable wing rotating mechanism
CN114802704A (en)*2022-04-182022-07-29上海电气集团股份有限公司Wing folding structure for unmanned aerial vehicle
CN115489717A (en)*2021-06-172022-12-20北京动力机械研究所 A deformable wing, aircraft and deformation control method
CN115636079A (en)*2022-12-212023-01-24中国航空工业集团公司沈阳空气动力研究所High-altitude long-endurance unmanned aerial vehicle layout with ultrahigh lift-drag ratio
CN114295012B (en)*2021-12-202023-11-03北京机电工程研究所Rotary sweepback missile wing
CN115489717B (en)*2021-06-172025-10-10北京动力机械研究所 A deformable wing, aircraft and deformation control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
GB2628178A (en)*2023-03-172024-09-18Airbus Operations LtdAircraft surface structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE4113504A1 (en)*1991-04-251992-11-05Messerschmitt Boelkow BlohmUse of shape-memory alloys - by means of wire-wound torsion element
DE19742314C2 (en)*1997-09-252000-06-21Daimler Chrysler Ag Supporting structure
US6260795B1 (en)*1998-06-022001-07-17Kenneth Earl GayOya computerized glider
US6588709B1 (en)*2002-03-202003-07-08The Boeing CompanyApparatus for variation of a wall skin

Cited By (67)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7777165B2 (en)2007-02-022010-08-17Raytheon CompanyMethods and apparatus for adjustable surfaces
US7728267B2 (en)2007-02-022010-06-01Raytheon CompanyMethods and apparatus for adjustable surfaces
US8342457B2 (en)2008-05-142013-01-01Raytheon CompanyShape-changing structure member with embedded spring
US8382042B2 (en)2008-05-142013-02-26Raytheon CompanyStructure with reconfigurable polymer material
US7939178B2 (en)2008-05-142011-05-10Raytheon CompanyShape-changing structure with superelastic foam material
WO2009140021A1 (en)*2008-05-142009-11-19Raytheon CompanyShape-changing structure member with embedded spring
AU2009246772B2 (en)*2008-05-142011-09-01Raytheon CompanyShape-changing structure member with embedded spring
US8016249B2 (en)2008-05-142011-09-13Raytheon CompanyShape-changing structure member with embedded spring
US8262032B2 (en)2008-11-132012-09-11Raytheon CompanyCollapsible wing beams and method
US8056853B2 (en)2008-11-252011-11-15Raytheon CompanyReconfigurable wing and method of use
US8387536B2 (en)2008-12-042013-03-05Raytheon CompanyInterceptor vehicle with extendible arms
US8573535B2 (en)2009-03-272013-11-05Raytheon CompanyShape-change material and method
CN101734369B (en)*2010-01-282012-06-06哈尔滨工业大学Shape memory polymer-based air filling extensible wing and methods for manufacturing same
CN101767647A (en)*2010-03-022010-07-07北京航空航天大学Self-locking 90-degree full-wing variable sweepback transmission mechanism
CN101767647B (en)*2010-03-022013-03-27北京航空航天大学Self-locking 90-degree full-wing variable sweepback transmission mechanism
CN102060100A (en)*2010-12-142011-05-18上海智晟航空科技有限公司Aircraft fuselage-wing connecting mechanism
US8864065B2 (en)2011-11-042014-10-21Raytheon CompanyChord-expanding air vehicle wings
CN102530238A (en)*2012-02-232012-07-04北京理工大学Unmanned aerial vehicle with variable sweepbacks and spans of wings
CN102530238B (en)*2012-02-232013-10-02北京理工大学Unmanned aerial vehicle with variable sweepbacks and spans of wings
CN103661919A (en)*2013-12-232014-03-26北京理工大学Wing folding mechanism based on flex-wing aircraft
CN104176237A (en)*2014-07-252014-12-03哈尔滨工业大学深圳研究生院Deformable wing device and airplane applying same
CN104176237B (en)*2014-07-252016-05-18哈尔滨工业大学深圳研究生院Deformable wing installation and apply its aircraft
CN104443438A (en)*2014-11-082015-03-25哈尔滨工业大学Intelligent bamboo-shaped releasing mechanism made of shape memory polymer composite material
CN105173061B (en)*2015-08-132017-05-17中国航空工业集团公司西安飞机设计研究所Plane in supersonic speed plane layout
CN105173061A (en)*2015-08-132015-12-23中国航空工业集团公司西安飞机设计研究所Plane in supersonic speed plane layout
CN105109667A (en)*2015-08-242015-12-02清华大学Variable structure with deflection hinge locking and shape memory alloy driving
CN105235889A (en)*2015-10-162016-01-13中国空气动力研究与发展中心高速空气动力研究所Self-adaptive rhombic wing layout of air vehicles
CN105235889B (en)*2015-10-162017-04-12中国空气动力研究与发展中心高速空气动力研究所Self-adaptive rhombic wing layout of air vehicles
CN107554795A (en)*2016-01-202018-01-09陈国栋Spray insecticide or chemical fertilizer, improvement afforestation unmanned plane and its method of work
CN107554794A (en)*2016-01-202018-01-09陈国栋Spray insecticide or the unmanned plane and its method of work of chemical fertilizer
CN105752335A (en)*2016-02-252016-07-13胡增浩 An aerial photography drone
CN105752335B (en)*2016-02-252017-10-24深圳市大德众和科技有限公司 An aerial photography drone
CN105711810A (en)*2016-04-152016-06-29仲贤辉Improved folding-wing unmanned aerial vehicle for municipal garden greening
CN105711810B (en)*2016-04-152017-09-01河北一森园林绿化工程股份有限公司A kind of municipal afforestation folding wings unmanned plane of improvement
CN105923158A (en)*2016-04-232016-09-07董昕武 A folding-wing UAV for municipal landscaping
CN105923158B (en)*2016-04-232018-01-05西安京东天鸿科技有限公司Folding wing unmanned aerial vehicle for municipal garden greening
CN105947177A (en)*2016-06-212016-09-21徐荣婷Manned aircraft with variable sweep aerofoils
CN106569501A (en)*2016-10-192017-04-19广东容祺智能科技有限公司Dihedral-angle-controllable vehicle arm system and control method thereof
CN106741846A (en)*2016-12-272017-05-31李俊孝A kind of swing-wing fighter plane
CN108284942A (en)*2017-01-092018-07-17宿迁市飞鹰模具开发科技有限公司A kind of Fixed Wing AirVehicle variable adjusting swept-back wing mechanism
CN106892088A (en)*2017-02-042017-06-27仲松梅The municipal gardens aircraft of one kind building
CN107444616A (en)*2017-04-252017-12-08西安航空学院The speed adaptive wing sweeping mechanism and control method of manual height gear
CN107444616B (en)*2017-04-252019-08-06西安航空学院 Speed-adaptive wing variable-sweep mechanism and control method for manual height gear
CN107444589B (en)*2017-07-132020-09-18华中科技大学Deformable observation method for deep sea underwater observation platform
CN107416157B (en)*2017-07-132020-05-19华中科技大学Deformable observation device of deep sea underwater observation platform
CN107416157A (en)*2017-07-132017-12-01华中科技大学A kind of deformable observation device of deep-sea underwater observation platform
CN107444589A (en)*2017-07-132017-12-08华中科技大学A kind of deformable observation procedure of deep-sea underwater observation platform
CN107628228A (en)*2017-08-282018-01-26中国航空工业集团公司沈阳飞机设计研究所A kind of leading edge of a wing continuously bent structure
CN107509356A (en)*2017-09-282017-12-22浙江冠华电气有限公司One kind is adjustably controlled cabinet
CN108791811A (en)*2018-05-252018-11-13中国航天空气动力技术研究院A kind of adaptive strain configuration wing of heat
CN109018438A (en)*2018-07-272018-12-18北京空间机电研究所A kind of expanding unit driven using high drive marmem
CN109467929A (en)*2018-12-112019-03-15哈尔滨工业大学 Shape memory cyanate resin material resistant to gamma ray irradiation and preparation method thereof
CN109467929B (en)*2018-12-112021-07-30哈尔滨工业大学 Shape memory cyanate resin material resistant to gamma ray irradiation and preparation method thereof
CN111232184A (en)*2020-01-212020-06-05南京航空航天大学 A drive mechanism for changing back sweep of helicopter rotor tip by using shape memory alloy
CN111232184B (en)*2020-01-212022-05-24南京航空航天大学Driving mechanism for changing helicopter rotor wing tip into sweepback by utilizing shape memory alloy
CN111924086A (en)*2020-07-072020-11-13北京机电工程研究所 A Deformable Mechanism Driven by Memory Alloy
CN111924086B (en)*2020-07-072021-12-10北京机电工程研究所 A Deformable Mechanism Driven by Memory Alloy
CN112061374A (en)*2020-08-242020-12-11上海大学Variable sweepback wing with fixed wing spars
CN112158325A (en)*2020-09-302021-01-01浙江大学Tailstock type vertical take-off and landing unmanned aerial vehicle and control method thereof
CN113090481A (en)*2021-03-192021-07-09北京航空航天大学SMA bending driver for adjusting air inlet bulge
CN115489717A (en)*2021-06-172022-12-20北京动力机械研究所 A deformable wing, aircraft and deformation control method
CN115489717B (en)*2021-06-172025-10-10北京动力机械研究所 A deformable wing, aircraft and deformation control method
CN114295012B (en)*2021-12-202023-11-03北京机电工程研究所Rotary sweepback missile wing
CN114379766A (en)*2022-01-132022-04-22西北工业大学Umbrella type chute sweep-variable wing rotating mechanism
CN114379766B (en)*2022-01-132023-07-21西北工业大学 An umbrella-type chute variable-sweep wing rotation mechanism
CN114802704A (en)*2022-04-182022-07-29上海电气集团股份有限公司Wing folding structure for unmanned aerial vehicle
CN115636079A (en)*2022-12-212023-01-24中国航空工业集团公司沈阳空气动力研究所High-altitude long-endurance unmanned aerial vehicle layout with ultrahigh lift-drag ratio

Also Published As

Publication numberPublication date
CN100429119C (en)2008-10-29

Similar Documents

PublicationPublication DateTitle
CN100429119C (en)Aircraft with wing sweepback angle change
CN100429120C (en)Aircraft with changeable wing shape
CN104443354B (en)A kind of wing with self adaptation variable camber trailing edge
CA3061723C (en)Shape memory alloy active spars for blade twist
CN106585948B (en)A kind of empty amphibious unmanned vehicle of water
CN101513932B (en)Deformable aerofoil cover with changeable rigidity
CN108995803A (en)A kind of folding Waverider aerodynamic arrangement of supersonic airliner
WO2010101699A2 (en)Mechanism for changing the shape of a control surface
CN101922591A (en) Shape-memory polymer ducts and their application as air intakes for aircraft engines
Kapuria et al.Improving hydrodynamic efficiency of composite marine propellers in off-design conditions using shape memory alloy composite actuators
CN110182353A (en)A kind of flying wing of variable geometry outboard wing sweep and tiltable winglet
CN114560084A (en)Self-unfolding deformation wing of bionic flapping wing flying robot
Pecora et al.SMA for Aeronautics
Hattalli et al.Wing morphing to improve control performance of an aircraft-an overview and a case study
CN113415409A (en)Non-control surface aircraft wing with variable camber
CN211731789U (en)Wing deformation mechanism
CN104859859A (en)Pneumatic optimization oil-electricity hybrid multi-rotor aircraft
CN212423467U (en) An unmanned aerial vehicle capable of long-duration, wide-speed, and high-maneuvering cruise
CN101879941A (en) A variable stiffness wing skin
Pitt et al.SAMPSON smart inlet design overview and wind tunnel test: Part I: design overview
CN114812291A (en)Completely-contractible flexible wing-changing mechanism
US8235329B1 (en)Dynamically actuated adaptive control structures
Ferede et al.Numerical investigation of autonomous camber morphing of a helicopter rotor blade using shape memory alloys
Huebsch et al.Aircraft morphing technologies
Abdullah et al.Testing of adaptive airfoil for uav using shape memory alloy actuators

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20081029

Termination date:20200330

CF01Termination of patent right due to non-payment of annual fee

[8]ページ先頭

©2009-2025 Movatter.jp