




技术领域technical field
本发明涉及一种飞行器。The invention relates to an aircraft.
背景技术Background technique
机翼是飞行器在飞行中可重新构型的主要部件。在飞行中有目地的改变机翼外形(如机翼后掠角、翼展和翼型等)可以有效地增加机翼的飞行性能。其中,改变翼展和机翼面积的效果最为突出。比如,飞机在巡航时通常要求机翼具有高展弦比、大机翼面积和较小的后掠角,而要想高速飞行,就要求低展弦比、小机翼面积和较大的后掠角。在飞机飞行过程中,当垂直于机翼前缘的气流速度接近音速时,机翼上表面局部气流速度将超过音速,出现激波,使飞行阻力急剧增加。后掠翼飞机由于与机翼前缘垂直的气流速度分量低于飞行速度,与平直机翼飞机相比,只有在更高的飞行速度下才会出现激波,从而推迟了激波的产生。即使产生激波,也能减弱激波强度,减小飞行阻力。现代超音速飞机广泛采用的大后掠机翼,超音速阻力较小,但低速时气动效率低,升力特性不好,用低速性能好的小后掠角机翼又会使超音速性能变坏。飞机在起飞着陆和低速飞行时用较小的后掠角,因而具有较高的低速巡航效率和较大的起飞着陆升力。在超音速飞行时用较大的后掠角,对于减小超音速飞行的阻力很有利。此外,超音速轰炸机和强击机作超低空高速飞行时,为了减少不平稳气流引起的颠簸,也要求机翼有大的后掠角。Wings are the main components of an aircraft that are reconfigurable in flight. Purposefully changing the shape of the wing during flight (such as wing sweep angle, wingspan and airfoil, etc.) can effectively increase the flight performance of the wing. Among them, the effect of changing the wingspan and wing area is the most prominent. For example, when an aircraft is cruising, it usually requires the wing to have a high aspect ratio, a large wing area and a small sweep angle, and to fly at high speed, it requires a low aspect ratio, a small wing area and a large rear Grazing angle. During the flight of the aircraft, when the airflow velocity perpendicular to the leading edge of the wing is close to the speed of sound, the local airflow velocity on the upper surface of the wing will exceed the speed of sound, and a shock wave will appear, which will increase the flight resistance sharply. Because the air velocity component perpendicular to the leading edge of the wing is lower than the flight speed, the swept-wing aircraft will only appear shock waves at higher flight speeds compared with straight-wing aircraft, thereby delaying the generation of shock waves . Even if a shock wave is generated, the strength of the shock wave can be weakened and the flight resistance can be reduced. The large-swept wings widely used in modern supersonic aircraft have less supersonic resistance, but the aerodynamic efficiency is low at low speeds, and the lift characteristics are not good. Using low-speed wings with good low-sweep angles will make supersonic performance worse . The aircraft uses a smaller sweep angle during takeoff, landing and low-speed flight, so it has higher low-speed cruising efficiency and greater takeoff and landing lift. When flying at supersonic speed, using a larger sweep angle is very beneficial for reducing the resistance of supersonic flight. In addition, when supersonic bombers and attack aircraft fly at ultra-low altitude and high speed, in order to reduce the turbulence caused by unsteady airflow, the wings are also required to have a large sweep angle.
而现有的变后掠翼飞行器的主要缺点是机翼转动机构复杂、重量大。活动外翼的载荷全部集中在枢轴上,而枢轴又必须灵活地转动。固定翼或机身内部还要留出足够的空间容纳缩进的活动翼部分。固定翼或机身与活动翼之间的缝隙需要有密封罩以减少阻力。此外,还要有一套强有力的驱动装置,在飞行中才能快速地改变后掠角。但这些同时又带来结构重量的增加和一部分性能的降低,而且提高了研制成本和技术难度。And the main shortcoming of existing variable-sweep-wing aircraft is that the wing rotation mechanism is complicated and heavy. The load of the movable outer wing is all concentrated on the pivot, and the pivot must rotate flexibly. There is also enough room inside the fixed wing or fuselage to accommodate the retracted movable wing section. The gap between the fixed wing or fuselage and the movable wing needs to be sealed to reduce drag. In addition, there must be a set of powerful driving devices to quickly change the sweep angle in flight. But these simultaneously bring about the increase of structural weight and the reduction of some performances, and increase the development cost and technical difficulty.
发明内容Contents of the invention
本发明的目的是提供一种可改变机翼后掠角的飞行器,它可解决现有的变后掠翼飞行器存在机翼转动机构复杂、重量大、研制成本高、操作难度大、飞行性能低的问题。The purpose of the present invention is to provide a kind of aircraft that can change the wing sweep angle, it can solve the problem that existing variable-sweep wing aircraft has complex wing rotation mechanism, heavy weight, high development cost, difficult operation and low flight performance. The problem.
本发明由机身、机翼、形状记忆聚合物蒙皮、销轴、形状记忆合金棒、连杆、滑块组成;所述机身两侧突出的部位装有销轴,机翼的首端通过销轴与机身连接,销轴后面的机身上固定装有两个沿机身的轴线对称设置的形状记忆合金棒,形状记忆合金棒的两端分别与相对应的连杆的一端连接,连杆的另一端与滑块铰接,滑块与设置在机翼上的滑槽滑动连接,机翼的外表面用形状记忆聚合物蒙皮密封。The present invention is composed of fuselage, wing, shape memory polymer skin, pin shaft, shape memory alloy rod, connecting rod, slider; It is connected with the fuselage through the pin shaft, and the fuselage behind the pin shaft is fixed with two shape memory alloy rods arranged symmetrically along the axis of the fuselage, and the two ends of the shape memory alloy rod are respectively connected with one end of the corresponding connecting rod , the other end of the connecting rod is hinged with the slider, and the slider is slidingly connected with the chute provided on the wing, and the outer surface of the wing is sealed with a shape memory polymer skin.
本发明具有以下有益效果:在本发明中,利用形状记忆合金棒作为机翼后掠的驱动源,通过形状记忆合金棒与连杆和滑块的配合改变机翼的后掠角。形状记忆合金棒采用电阻丝加热的方法加热,预先给形状记忆合金棒施加一定角度的旋转,当对形状记忆合金棒加热后,热驱动使形状记忆合金棒恢复到原来的形状,带动连杆旋转,使滑块沿机翼上的滑槽滑动,从而驱动机翼转动。因此,本发明同现有的变后掠翼飞行器相比,具有质量轻、机翼转动机构简单、维修方便、研制成本低、容易操作、飞行性能高等优点,从而可以大大地提高武器系统的作战性能和安全性,减少了武器在服役过程中的风险性和维护成本。在变后掠机翼设计中最重要的因素之一是一种称作形状记忆聚合物(SMP)的特殊材料。SMP具有一种特殊的记忆功能,当SMP材料被改变为不同形状布局后,SMP分子将会重新组构以恢复其初始形状,SMP材料的初始形态,也就是它的″记忆″形状是一种刚性体即高模量形态。当SMP材料受热、高频光或电激励后将变成一种低模量弹性体,从而可以任意改变SMP材料的形状。这里,当机翼向后掠时,机翼的前侧与机身连接处的空隙将加大,机翼后侧与机身连接处的空隙将变小,此时机翼前侧的SMP蒙皮将会被拉伸,机翼后侧的SMP蒙皮将会被压缩;当机翼恢复正常的位置时,机翼的前侧与机身连接处的空隙将减小,机翼后侧与机身连接处的空隙将增大,此时可以通过热、高频光或电激励SMP,使其恢复原来的形状即机翼前侧的SMP蒙皮缩短,机翼后侧SMP蒙皮伸长,进而适应机翼的位置变化,使机翼与机身始终保持密封连接。本发明所采用的SMP具有应变量大(最大能达到200%)、回复应力较大(能达到10MPa量级)、运动稳定性好、可靠性高、低密度、高刚度、高强度和低成本等优点。从长远来看,这种机翼外形上的变化能够使飞行器达到更高的速度,并且拥有高燃油效率、高飞行质量、高安全性能,以及更好的可操作性、更快的着陆速度、适应各种条件的起飞场,实现根据不同任务进行变速、变高度、变飞行参数的飞行,并且具有较长的滞空时间。本发明不仅可以改变机翼形状,利用本发明的相关技术还可以用于可变翼巡航导弹、舰船潜艇结构等军用武器结构中,为实现武器系统的安全化、智能化、自适应化提供有力的基础保障,大大地提高了武器系统(尤其是无人机)的作战性能和安全性,减少了武器服役过程中的风险性和维护成本。The present invention has the following beneficial effects: In the present invention, the shape memory alloy rod is used as the driving source of the wing sweep, and the sweep angle of the wing is changed through the cooperation of the shape memory alloy rod, the connecting rod and the slider. The shape memory alloy rod is heated by resistance wire heating, and the shape memory alloy rod is rotated at a certain angle in advance. After the shape memory alloy rod is heated, the thermal drive restores the shape memory alloy rod to its original shape and drives the connecting rod to rotate. , so that the slider slides along the chute on the wing, thereby driving the wing to rotate. Therefore, compared with the existing variable-sweep wing aircraft, the present invention has the advantages of light weight, simple wing rotation mechanism, convenient maintenance, low development cost, easy operation, high flight performance, etc., thereby greatly improving the combat capability of the weapon system. Performance and safety, reducing the risk and maintenance costs of weapons during service. One of the most important factors in the design of a variable-sweep wing is a special material called a shape-memory polymer (SMP). SMP has a special memory function. When the SMP material is changed into a different shape layout, the SMP molecule will reorganize to restore its original shape. The initial shape of the SMP material, that is, its "memory" shape is a kind of A rigid body is a high modulus form. When the SMP material is excited by heat, high-frequency light or electricity, it will become a low-modulus elastomer, so that the shape of the SMP material can be changed arbitrarily. Here, when the wing is swept back, the gap between the front side of the wing and the fuselage will increase, and the gap between the rear side of the wing and the fuselage will become smaller. At this time, the SMP skin on the front side of the wing will be stretched, and the SMP skin on the rear side of the wing will be compressed; when the wing returns to its normal position, the gap between the front side of the wing and the fuselage will decrease, and the rear side of the wing and the fuselage will The gap at the joint of the body will increase. At this time, the SMP can be stimulated by heat, high-frequency light or electricity to restore its original shape, that is, the SMP skin on the front side of the wing is shortened, and the SMP skin on the rear side of the wing is elongated, thereby adapting to the The position of the wing changes so that the wing is always airtightly connected to the fuselage. The SMP used in the present invention has the advantages of large strain (up to 200%), large recovery stress (up to 10MPa), good motion stability, high reliability, low density, high stiffness, high strength and low cost Etc. In the long run, this change in wing shape can enable the aircraft to achieve higher speeds, and have high fuel efficiency, high flight quality, high safety performance, better maneuverability, faster landing speed, The take-off field adapts to various conditions, realizes the flight with variable speed, variable altitude, and variable flight parameters according to different tasks, and has a long time in the air. The present invention can not only change the shape of the wing, but also can be used in military weapon structures such as variable-wing cruise missiles, ship submarine structures, etc., to provide security, intelligence and self-adaptation for the realization of weapon systems. Strong basic support greatly improves the combat performance and safety of weapon systems (especially unmanned aerial vehicles), and reduces risks and maintenance costs during the service of weapons.
附图说明Description of drawings
图1是本发明的俯视图(机翼后掠角不变),图2是图1的仰视图,图3是本发明的俯视图(改变机翼后掠角),图4是图3的仰视图,图5是滑块7与机翼2滑动连接的左视图。Fig. 1 is a top view of the present invention (wing sweep angle is constant), Fig. 2 is a bottom view of Fig. 1, Fig. 3 is a top view of the present invention (wing sweep angle is changed), and Fig. 4 is a bottom view of Fig. 3 , Figure 5 is a left side view of the
具体实施方式Detailed ways
具体实施方式一:结合图1~图5说明本实施方式,本实施方式由机身1、机翼2、形状记忆聚合物蒙皮3、销轴4、形状记忆合金棒5、连杆6、滑块7组成;所述机身1两侧突出的部位装有销轴4,机翼2的首端通过销轴4与机身1连接,销轴4后面的机身1上固定装有两个沿机身1的轴线对称设置的形状记忆合金棒5,形状记忆合金棒5的两端分别与相对应的连杆6的一端连接,连杆6的另一端与滑块7铰接,滑块7与设置在机翼2上的滑槽8滑动连接,机翼2的外表面用形状记忆聚合物蒙皮3密封。Specific Embodiment 1: This embodiment is described with reference to FIGS.
具体实施方式二:结合图1~图4说明本实施方式,本实施方式的形状记忆聚合物是纯形状记忆聚合物或形状记忆聚合物复合材料;所述纯形状记忆聚合物是苯乙烯系形状记忆聚合物、环氧树脂系形状记忆聚合物、氰酸酯系形状记忆聚合物、形状记忆聚氨酯、形状记忆聚酯、形状记忆苯乙烯-丁二烯共聚物、形状记忆反式聚异戊二烯或形状记忆聚降冰片烯其中的一种;所述形状记忆聚合物复合材料由形状记忆聚合物基体相材料和增强相材料组成;所述形状记忆聚合物基体相材料是苯乙烯系形状记忆聚合物、环氧树脂系形状记忆聚合物、氰酸酯系形状记忆聚合物、形状记忆聚氨酯、形状记忆聚酯、形状记忆苯乙烯-丁二烯共聚物、形状记忆反式聚异戊二烯或形状记忆聚降冰片烯其中的一种;所述增强相材料是碳纤维、玻璃纤维、Kevlar纤维、硼纤维、石墨纤维、碳化硅纤维、炭黑、碳纳米管、石墨、碳化硅粉末、铜粉、银粉或铝粉其中的一种;所述形状记忆聚合物的加热方式是直接通电加热或通过电阻丝加热。采用上述形状记忆聚合物,在室温时(低于形状记忆聚合物的玻璃化转变温度,Tg)弹性模量较大,当加热到形状记忆聚合物的玻璃化转变温度以上时,形状记忆聚合物蒙皮的弹性模量降低,可塑性增强,在外界应力作用下,形状记忆聚合物蒙皮能被动变形至理想形状;在保持外力约束的情况下将温度降至室温时(<Tg),形状记忆聚合物弹性模量升高,当外力卸载后,形状记忆聚合物蒙皮能保持变形后的形状,且能长期储存;当再次加热至形状记忆聚合物Tg以上时,形状记忆聚合物蒙皮能主动回复至最原始(脱模后)的形状。如此设置,形状记忆聚合物蒙皮能表现出无损伤或较小损伤的拉长-回缩、弯曲-伸展、压缩-伸长等热机械循环性能。该SMP具有应变量大(最大能达到200%),回复应力较大(能达到10MPa量级)、运动稳定性好、可靠性高、低密度、高刚度、高强度和低成本等优点。其它组成及连接关系与具体实施方式一相同。Specific Embodiment 2: This embodiment is described with reference to FIGS. 1 to 4. The shape memory polymer in this embodiment is a pure shape memory polymer or a shape memory polymer composite material; the pure shape memory polymer is a styrene-based shape Memory polymer, epoxy resin-based shape-memory polymer, cyanate-based shape-memory polymer, shape-memory polyurethane, shape-memory polyester, shape-memory styrene-butadiene copolymer, shape-memory trans-polyisoprene One of ene or shape-memory polynorbornene; the shape-memory polymer composite material is composed of a shape-memory polymer matrix phase material and a reinforcing phase material; the shape-memory polymer matrix phase material is a styrene-based shape memory Polymers, epoxy resin-based shape-memory polymers, cyanate-based shape-memory polymers, shape-memory polyurethanes, shape-memory polyesters, shape-memory styrene-butadiene copolymers, shape-memory trans-polyisoprene or shape memory polynorbornene; the reinforcing phase material is carbon fiber, glass fiber, Kevlar fiber, boron fiber, graphite fiber, silicon carbide fiber, carbon black, carbon nanotube, graphite, silicon carbide powder, copper powder, silver powder or aluminum powder; the heating method of the shape memory polymer is direct electric heating or heating through resistance wire. Using the above shape memory polymer, the elastic modulus is relatively large at room temperature (below the glass transition temperature of the shape memory polymer, Tg ), and when heated above the glass transition temperature of the shape memory polymer, the shape memory polymer The elastic modulus of the physical skin is reduced, and the plasticity is enhanced. Under the action of external stress, the shape memory polymer skin can be passively deformed to the idealshape ; The elastic modulus of the shape memory polymer increases, and when the external force is unloaded, the shape memory polymer skin can maintain the deformed shape and can be stored for a long time; when heated again above the Tg of the shape memory polymer, the shape memory polymer The skin can actively return to the original (after demoulding) shape. In this way, the shape memory polymer skin can exhibit thermomechanical cycling properties such as elongation-retraction, bending-stretching, compression-elongation, etc. without damage or less damage. The SMP has the advantages of large strain (up to 200%), large recovery stress (up to 10 MPa), good motion stability, high reliability, low density, high stiffness, high strength and low cost. Other components and connections are the same as those in the first embodiment.
具体实施方式三:结合图1~图4说明本实施方式,本实施方式的形状记忆合金棒5是TiNi形状记忆合金棒、Cu-Zn形状记忆合金棒、Cu-Al-Ni形状记忆合金棒、Cu-Sn形状记忆合金棒、Mn-Cu形状记忆合金棒、Fe-Pt形状记忆合金棒或Fe-Mn-Si形状记忆合金棒其中的一种。形状记忆合金棒5在外界扭转力作用下(环境温度低于形状记忆合金马氏体转化温度),形状记忆合金棒5产生一定的扭转变形(扭转应变低于10%),然后对形状记忆合金棒5加热,形状记忆合金棒5发生奥氏体向马氏体的转变,扭转变形回复至原始形状,所述形状记忆合金棒的加热方式是直接通电加热或通过电阻丝加热。采用上述材料的形状记忆合金棒5具有扭矩大、可回复扭转角度大、响应速度快、热-机械循环可重复性高的特点。另外,如采用通电加热,以上形状记忆合金棒还有电响应特性,便于控制系统的运动。Specific Embodiment Three: This embodiment is described in conjunction with FIGS. 1 to 4. The shape
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2007100719734ACN100429119C (en) | 2007-03-30 | 2007-03-30 | Aircraft with wing sweepback angle change |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2007100719734ACN100429119C (en) | 2007-03-30 | 2007-03-30 | Aircraft with wing sweepback angle change |
| Publication Number | Publication Date |
|---|---|
| CN101028866Atrue CN101028866A (en) | 2007-09-05 |
| CN100429119C CN100429119C (en) | 2008-10-29 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2007100719734AExpired - Fee RelatedCN100429119C (en) | 2007-03-30 | 2007-03-30 | Aircraft with wing sweepback angle change |
| Country | Link |
|---|---|
| CN (1) | CN100429119C (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009140021A1 (en)* | 2008-05-14 | 2009-11-19 | Raytheon Company | Shape-changing structure member with embedded spring |
| US7728267B2 (en) | 2007-02-02 | 2010-06-01 | Raytheon Company | Methods and apparatus for adjustable surfaces |
| CN101767647A (en)* | 2010-03-02 | 2010-07-07 | 北京航空航天大学 | Self-locking 90-degree full-wing variable sweepback transmission mechanism |
| US7939178B2 (en) | 2008-05-14 | 2011-05-10 | Raytheon Company | Shape-changing structure with superelastic foam material |
| CN102060100A (en)* | 2010-12-14 | 2011-05-18 | 上海智晟航空科技有限公司 | Aircraft fuselage-wing connecting mechanism |
| US8056853B2 (en) | 2008-11-25 | 2011-11-15 | Raytheon Company | Reconfigurable wing and method of use |
| CN101734369B (en)* | 2010-01-28 | 2012-06-06 | 哈尔滨工业大学 | Shape memory polymer-based air filling extensible wing and methods for manufacturing same |
| CN102530238A (en)* | 2012-02-23 | 2012-07-04 | 北京理工大学 | Unmanned aerial vehicle with variable sweepbacks and spans of wings |
| US8262032B2 (en) | 2008-11-13 | 2012-09-11 | Raytheon Company | Collapsible wing beams and method |
| US8382042B2 (en) | 2008-05-14 | 2013-02-26 | Raytheon Company | Structure with reconfigurable polymer material |
| US8387536B2 (en) | 2008-12-04 | 2013-03-05 | Raytheon Company | Interceptor vehicle with extendible arms |
| US8573535B2 (en) | 2009-03-27 | 2013-11-05 | Raytheon Company | Shape-change material and method |
| CN103661919A (en)* | 2013-12-23 | 2014-03-26 | 北京理工大学 | Wing folding mechanism based on flex-wing aircraft |
| US8864065B2 (en) | 2011-11-04 | 2014-10-21 | Raytheon Company | Chord-expanding air vehicle wings |
| CN104176237A (en)* | 2014-07-25 | 2014-12-03 | 哈尔滨工业大学深圳研究生院 | Deformable wing device and airplane applying same |
| CN104443438A (en)* | 2014-11-08 | 2015-03-25 | 哈尔滨工业大学 | Intelligent bamboo-shaped releasing mechanism made of shape memory polymer composite material |
| CN105109667A (en)* | 2015-08-24 | 2015-12-02 | 清华大学 | Variable structure with deflection hinge locking and shape memory alloy driving |
| CN105173061A (en)* | 2015-08-13 | 2015-12-23 | 中国航空工业集团公司西安飞机设计研究所 | Plane in supersonic speed plane layout |
| CN105235889A (en)* | 2015-10-16 | 2016-01-13 | 中国空气动力研究与发展中心高速空气动力研究所 | Self-adaptive rhombic wing layout of air vehicles |
| CN105711810A (en)* | 2016-04-15 | 2016-06-29 | 仲贤辉 | Improved folding-wing unmanned aerial vehicle for municipal garden greening |
| CN105752335A (en)* | 2016-02-25 | 2016-07-13 | 胡增浩 | An aerial photography drone |
| CN105923158A (en)* | 2016-04-23 | 2016-09-07 | 董昕武 | A folding-wing UAV for municipal landscaping |
| CN105947177A (en)* | 2016-06-21 | 2016-09-21 | 徐荣婷 | Manned aircraft with variable sweep aerofoils |
| CN106569501A (en)* | 2016-10-19 | 2017-04-19 | 广东容祺智能科技有限公司 | Dihedral-angle-controllable vehicle arm system and control method thereof |
| CN106741846A (en)* | 2016-12-27 | 2017-05-31 | 李俊孝 | A kind of swing-wing fighter plane |
| CN106892088A (en)* | 2017-02-04 | 2017-06-27 | 仲松梅 | The municipal gardens aircraft of one kind building |
| CN107416157A (en)* | 2017-07-13 | 2017-12-01 | 华中科技大学 | A kind of deformable observation device of deep-sea underwater observation platform |
| CN107444589A (en)* | 2017-07-13 | 2017-12-08 | 华中科技大学 | A kind of deformable observation procedure of deep-sea underwater observation platform |
| CN107444616A (en)* | 2017-04-25 | 2017-12-08 | 西安航空学院 | The speed adaptive wing sweeping mechanism and control method of manual height gear |
| CN107509356A (en)* | 2017-09-28 | 2017-12-22 | 浙江冠华电气有限公司 | One kind is adjustably controlled cabinet |
| CN107554794A (en)* | 2016-01-20 | 2018-01-09 | 陈国栋 | Spray insecticide or the unmanned plane and its method of work of chemical fertilizer |
| CN107628228A (en)* | 2017-08-28 | 2018-01-26 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of leading edge of a wing continuously bent structure |
| CN108284942A (en)* | 2017-01-09 | 2018-07-17 | 宿迁市飞鹰模具开发科技有限公司 | A kind of Fixed Wing AirVehicle variable adjusting swept-back wing mechanism |
| CN108791811A (en)* | 2018-05-25 | 2018-11-13 | 中国航天空气动力技术研究院 | A kind of adaptive strain configuration wing of heat |
| CN109018438A (en)* | 2018-07-27 | 2018-12-18 | 北京空间机电研究所 | A kind of expanding unit driven using high drive marmem |
| CN109467929A (en)* | 2018-12-11 | 2019-03-15 | 哈尔滨工业大学 | Shape memory cyanate resin material resistant to gamma ray irradiation and preparation method thereof |
| CN111232184A (en)* | 2020-01-21 | 2020-06-05 | 南京航空航天大学 | A drive mechanism for changing back sweep of helicopter rotor tip by using shape memory alloy |
| CN111924086A (en)* | 2020-07-07 | 2020-11-13 | 北京机电工程研究所 | A Deformable Mechanism Driven by Memory Alloy |
| CN112061374A (en)* | 2020-08-24 | 2020-12-11 | 上海大学 | Variable sweepback wing with fixed wing spars |
| CN112158325A (en)* | 2020-09-30 | 2021-01-01 | 浙江大学 | Tailstock type vertical take-off and landing unmanned aerial vehicle and control method thereof |
| CN113090481A (en)* | 2021-03-19 | 2021-07-09 | 北京航空航天大学 | SMA bending driver for adjusting air inlet bulge |
| CN114379766A (en)* | 2022-01-13 | 2022-04-22 | 西北工业大学 | Umbrella type chute sweep-variable wing rotating mechanism |
| CN114802704A (en)* | 2022-04-18 | 2022-07-29 | 上海电气集团股份有限公司 | Wing folding structure for unmanned aerial vehicle |
| CN115489717A (en)* | 2021-06-17 | 2022-12-20 | 北京动力机械研究所 | A deformable wing, aircraft and deformation control method |
| CN115636079A (en)* | 2022-12-21 | 2023-01-24 | 中国航空工业集团公司沈阳空气动力研究所 | High-altitude long-endurance unmanned aerial vehicle layout with ultrahigh lift-drag ratio |
| CN114295012B (en)* | 2021-12-20 | 2023-11-03 | 北京机电工程研究所 | Rotary sweepback missile wing |
| CN115489717B (en)* | 2021-06-17 | 2025-10-10 | 北京动力机械研究所 | A deformable wing, aircraft and deformation control method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2628178A (en)* | 2023-03-17 | 2024-09-18 | Airbus Operations Ltd | Aircraft surface structure |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4113504A1 (en)* | 1991-04-25 | 1992-11-05 | Messerschmitt Boelkow Blohm | Use of shape-memory alloys - by means of wire-wound torsion element |
| DE19742314C2 (en)* | 1997-09-25 | 2000-06-21 | Daimler Chrysler Ag | Supporting structure |
| US6260795B1 (en)* | 1998-06-02 | 2001-07-17 | Kenneth Earl Gay | Oya computerized glider |
| US6588709B1 (en)* | 2002-03-20 | 2003-07-08 | The Boeing Company | Apparatus for variation of a wall skin |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7777165B2 (en) | 2007-02-02 | 2010-08-17 | Raytheon Company | Methods and apparatus for adjustable surfaces |
| US7728267B2 (en) | 2007-02-02 | 2010-06-01 | Raytheon Company | Methods and apparatus for adjustable surfaces |
| US8342457B2 (en) | 2008-05-14 | 2013-01-01 | Raytheon Company | Shape-changing structure member with embedded spring |
| US8382042B2 (en) | 2008-05-14 | 2013-02-26 | Raytheon Company | Structure with reconfigurable polymer material |
| US7939178B2 (en) | 2008-05-14 | 2011-05-10 | Raytheon Company | Shape-changing structure with superelastic foam material |
| WO2009140021A1 (en)* | 2008-05-14 | 2009-11-19 | Raytheon Company | Shape-changing structure member with embedded spring |
| AU2009246772B2 (en)* | 2008-05-14 | 2011-09-01 | Raytheon Company | Shape-changing structure member with embedded spring |
| US8016249B2 (en) | 2008-05-14 | 2011-09-13 | Raytheon Company | Shape-changing structure member with embedded spring |
| US8262032B2 (en) | 2008-11-13 | 2012-09-11 | Raytheon Company | Collapsible wing beams and method |
| US8056853B2 (en) | 2008-11-25 | 2011-11-15 | Raytheon Company | Reconfigurable wing and method of use |
| US8387536B2 (en) | 2008-12-04 | 2013-03-05 | Raytheon Company | Interceptor vehicle with extendible arms |
| US8573535B2 (en) | 2009-03-27 | 2013-11-05 | Raytheon Company | Shape-change material and method |
| CN101734369B (en)* | 2010-01-28 | 2012-06-06 | 哈尔滨工业大学 | Shape memory polymer-based air filling extensible wing and methods for manufacturing same |
| CN101767647A (en)* | 2010-03-02 | 2010-07-07 | 北京航空航天大学 | Self-locking 90-degree full-wing variable sweepback transmission mechanism |
| CN101767647B (en)* | 2010-03-02 | 2013-03-27 | 北京航空航天大学 | Self-locking 90-degree full-wing variable sweepback transmission mechanism |
| CN102060100A (en)* | 2010-12-14 | 2011-05-18 | 上海智晟航空科技有限公司 | Aircraft fuselage-wing connecting mechanism |
| US8864065B2 (en) | 2011-11-04 | 2014-10-21 | Raytheon Company | Chord-expanding air vehicle wings |
| CN102530238A (en)* | 2012-02-23 | 2012-07-04 | 北京理工大学 | Unmanned aerial vehicle with variable sweepbacks and spans of wings |
| CN102530238B (en)* | 2012-02-23 | 2013-10-02 | 北京理工大学 | Unmanned aerial vehicle with variable sweepbacks and spans of wings |
| CN103661919A (en)* | 2013-12-23 | 2014-03-26 | 北京理工大学 | Wing folding mechanism based on flex-wing aircraft |
| CN104176237A (en)* | 2014-07-25 | 2014-12-03 | 哈尔滨工业大学深圳研究生院 | Deformable wing device and airplane applying same |
| CN104176237B (en)* | 2014-07-25 | 2016-05-18 | 哈尔滨工业大学深圳研究生院 | Deformable wing installation and apply its aircraft |
| CN104443438A (en)* | 2014-11-08 | 2015-03-25 | 哈尔滨工业大学 | Intelligent bamboo-shaped releasing mechanism made of shape memory polymer composite material |
| CN105173061B (en)* | 2015-08-13 | 2017-05-17 | 中国航空工业集团公司西安飞机设计研究所 | Plane in supersonic speed plane layout |
| CN105173061A (en)* | 2015-08-13 | 2015-12-23 | 中国航空工业集团公司西安飞机设计研究所 | Plane in supersonic speed plane layout |
| CN105109667A (en)* | 2015-08-24 | 2015-12-02 | 清华大学 | Variable structure with deflection hinge locking and shape memory alloy driving |
| CN105235889A (en)* | 2015-10-16 | 2016-01-13 | 中国空气动力研究与发展中心高速空气动力研究所 | Self-adaptive rhombic wing layout of air vehicles |
| CN105235889B (en)* | 2015-10-16 | 2017-04-12 | 中国空气动力研究与发展中心高速空气动力研究所 | Self-adaptive rhombic wing layout of air vehicles |
| CN107554795A (en)* | 2016-01-20 | 2018-01-09 | 陈国栋 | Spray insecticide or chemical fertilizer, improvement afforestation unmanned plane and its method of work |
| CN107554794A (en)* | 2016-01-20 | 2018-01-09 | 陈国栋 | Spray insecticide or the unmanned plane and its method of work of chemical fertilizer |
| CN105752335A (en)* | 2016-02-25 | 2016-07-13 | 胡增浩 | An aerial photography drone |
| CN105752335B (en)* | 2016-02-25 | 2017-10-24 | 深圳市大德众和科技有限公司 | An aerial photography drone |
| CN105711810A (en)* | 2016-04-15 | 2016-06-29 | 仲贤辉 | Improved folding-wing unmanned aerial vehicle for municipal garden greening |
| CN105711810B (en)* | 2016-04-15 | 2017-09-01 | 河北一森园林绿化工程股份有限公司 | A kind of municipal afforestation folding wings unmanned plane of improvement |
| CN105923158A (en)* | 2016-04-23 | 2016-09-07 | 董昕武 | A folding-wing UAV for municipal landscaping |
| CN105923158B (en)* | 2016-04-23 | 2018-01-05 | 西安京东天鸿科技有限公司 | Folding wing unmanned aerial vehicle for municipal garden greening |
| CN105947177A (en)* | 2016-06-21 | 2016-09-21 | 徐荣婷 | Manned aircraft with variable sweep aerofoils |
| CN106569501A (en)* | 2016-10-19 | 2017-04-19 | 广东容祺智能科技有限公司 | Dihedral-angle-controllable vehicle arm system and control method thereof |
| CN106741846A (en)* | 2016-12-27 | 2017-05-31 | 李俊孝 | A kind of swing-wing fighter plane |
| CN108284942A (en)* | 2017-01-09 | 2018-07-17 | 宿迁市飞鹰模具开发科技有限公司 | A kind of Fixed Wing AirVehicle variable adjusting swept-back wing mechanism |
| CN106892088A (en)* | 2017-02-04 | 2017-06-27 | 仲松梅 | The municipal gardens aircraft of one kind building |
| CN107444616A (en)* | 2017-04-25 | 2017-12-08 | 西安航空学院 | The speed adaptive wing sweeping mechanism and control method of manual height gear |
| CN107444616B (en)* | 2017-04-25 | 2019-08-06 | 西安航空学院 | Speed-adaptive wing variable-sweep mechanism and control method for manual height gear |
| CN107444589B (en)* | 2017-07-13 | 2020-09-18 | 华中科技大学 | Deformable observation method for deep sea underwater observation platform |
| CN107416157B (en)* | 2017-07-13 | 2020-05-19 | 华中科技大学 | Deformable observation device of deep sea underwater observation platform |
| CN107416157A (en)* | 2017-07-13 | 2017-12-01 | 华中科技大学 | A kind of deformable observation device of deep-sea underwater observation platform |
| CN107444589A (en)* | 2017-07-13 | 2017-12-08 | 华中科技大学 | A kind of deformable observation procedure of deep-sea underwater observation platform |
| CN107628228A (en)* | 2017-08-28 | 2018-01-26 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of leading edge of a wing continuously bent structure |
| CN107509356A (en)* | 2017-09-28 | 2017-12-22 | 浙江冠华电气有限公司 | One kind is adjustably controlled cabinet |
| CN108791811A (en)* | 2018-05-25 | 2018-11-13 | 中国航天空气动力技术研究院 | A kind of adaptive strain configuration wing of heat |
| CN109018438A (en)* | 2018-07-27 | 2018-12-18 | 北京空间机电研究所 | A kind of expanding unit driven using high drive marmem |
| CN109467929A (en)* | 2018-12-11 | 2019-03-15 | 哈尔滨工业大学 | Shape memory cyanate resin material resistant to gamma ray irradiation and preparation method thereof |
| CN109467929B (en)* | 2018-12-11 | 2021-07-30 | 哈尔滨工业大学 | Shape memory cyanate resin material resistant to gamma ray irradiation and preparation method thereof |
| CN111232184A (en)* | 2020-01-21 | 2020-06-05 | 南京航空航天大学 | A drive mechanism for changing back sweep of helicopter rotor tip by using shape memory alloy |
| CN111232184B (en)* | 2020-01-21 | 2022-05-24 | 南京航空航天大学 | Driving mechanism for changing helicopter rotor wing tip into sweepback by utilizing shape memory alloy |
| CN111924086A (en)* | 2020-07-07 | 2020-11-13 | 北京机电工程研究所 | A Deformable Mechanism Driven by Memory Alloy |
| CN111924086B (en)* | 2020-07-07 | 2021-12-10 | 北京机电工程研究所 | A Deformable Mechanism Driven by Memory Alloy |
| CN112061374A (en)* | 2020-08-24 | 2020-12-11 | 上海大学 | Variable sweepback wing with fixed wing spars |
| CN112158325A (en)* | 2020-09-30 | 2021-01-01 | 浙江大学 | Tailstock type vertical take-off and landing unmanned aerial vehicle and control method thereof |
| CN113090481A (en)* | 2021-03-19 | 2021-07-09 | 北京航空航天大学 | SMA bending driver for adjusting air inlet bulge |
| CN115489717A (en)* | 2021-06-17 | 2022-12-20 | 北京动力机械研究所 | A deformable wing, aircraft and deformation control method |
| CN115489717B (en)* | 2021-06-17 | 2025-10-10 | 北京动力机械研究所 | A deformable wing, aircraft and deformation control method |
| CN114295012B (en)* | 2021-12-20 | 2023-11-03 | 北京机电工程研究所 | Rotary sweepback missile wing |
| CN114379766A (en)* | 2022-01-13 | 2022-04-22 | 西北工业大学 | Umbrella type chute sweep-variable wing rotating mechanism |
| CN114379766B (en)* | 2022-01-13 | 2023-07-21 | 西北工业大学 | An umbrella-type chute variable-sweep wing rotation mechanism |
| CN114802704A (en)* | 2022-04-18 | 2022-07-29 | 上海电气集团股份有限公司 | Wing folding structure for unmanned aerial vehicle |
| CN115636079A (en)* | 2022-12-21 | 2023-01-24 | 中国航空工业集团公司沈阳空气动力研究所 | High-altitude long-endurance unmanned aerial vehicle layout with ultrahigh lift-drag ratio |
| Publication number | Publication date |
|---|---|
| CN100429119C (en) | 2008-10-29 |
| Publication | Publication Date | Title |
|---|---|---|
| CN100429119C (en) | Aircraft with wing sweepback angle change | |
| CN100429120C (en) | Aircraft with changeable wing shape | |
| CN104443354B (en) | A kind of wing with self adaptation variable camber trailing edge | |
| CA3061723C (en) | Shape memory alloy active spars for blade twist | |
| CN106585948B (en) | A kind of empty amphibious unmanned vehicle of water | |
| CN101513932B (en) | Deformable aerofoil cover with changeable rigidity | |
| CN108995803A (en) | A kind of folding Waverider aerodynamic arrangement of supersonic airliner | |
| WO2010101699A2 (en) | Mechanism for changing the shape of a control surface | |
| CN101922591A (en) | Shape-memory polymer ducts and their application as air intakes for aircraft engines | |
| Kapuria et al. | Improving hydrodynamic efficiency of composite marine propellers in off-design conditions using shape memory alloy composite actuators | |
| CN110182353A (en) | A kind of flying wing of variable geometry outboard wing sweep and tiltable winglet | |
| CN114560084A (en) | Self-unfolding deformation wing of bionic flapping wing flying robot | |
| Pecora et al. | SMA for Aeronautics | |
| Hattalli et al. | Wing morphing to improve control performance of an aircraft-an overview and a case study | |
| CN113415409A (en) | Non-control surface aircraft wing with variable camber | |
| CN211731789U (en) | Wing deformation mechanism | |
| CN104859859A (en) | Pneumatic optimization oil-electricity hybrid multi-rotor aircraft | |
| CN212423467U (en) | An unmanned aerial vehicle capable of long-duration, wide-speed, and high-maneuvering cruise | |
| CN101879941A (en) | A variable stiffness wing skin | |
| Pitt et al. | SAMPSON smart inlet design overview and wind tunnel test: Part I: design overview | |
| CN114812291A (en) | Completely-contractible flexible wing-changing mechanism | |
| US8235329B1 (en) | Dynamically actuated adaptive control structures | |
| Ferede et al. | Numerical investigation of autonomous camber morphing of a helicopter rotor blade using shape memory alloys | |
| Huebsch et al. | Aircraft morphing technologies | |
| Abdullah et al. | Testing of adaptive airfoil for uav using shape memory alloy actuators |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20081029 Termination date:20200330 | |
| CF01 | Termination of patent right due to non-payment of annual fee |