Movatterモバイル変換


[0]ホーム

URL:


CN101006915A - Non-contact method for measuring key physiological parameters - Google Patents

Non-contact method for measuring key physiological parameters
Download PDF

Info

Publication number
CN101006915A
CN101006915ACN 200610007174CN200610007174ACN101006915ACN 101006915 ACN101006915 ACN 101006915ACN 200610007174CN200610007174CN 200610007174CN 200610007174 ACN200610007174 ACN 200610007174ACN 101006915 ACN101006915 ACN 101006915A
Authority
CN
China
Prior art keywords
signal
pulse wave
contact
signals
blood pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200610007174
Other languages
Chinese (zh)
Inventor
张元亭
滕晓菲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chinese University of Hong Kong CUHK
Original Assignee
Chinese University of Hong Kong CUHK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chinese University of Hong Kong CUHKfiledCriticalChinese University of Hong Kong CUHK
Priority to CN 200610007174priorityCriticalpatent/CN101006915A/en
Publication of CN101006915ApublicationCriticalpatent/CN101006915A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

The invention relates to non-contact measurement of key physiological parameters, such as blood pressure, blood pressure change rate, electrocardiogram, blood oxygen saturation, respiratory rate, heart rate change rate and the like. When the method is used for measuring physiological parameters, the sensor or the probe can obtain plethysmographic signals and bioelectric signals without direct contact with a human body, and key physiological parameters can be obtained through analysis of the signals. The device adopting the method has wider application range than the traditional contact type measurement, can be applied to special environments, such as mobile rescue or field rescue, and the like, and can also be integrated in auxiliary facilities of daily life, such as bathtubs, beds and seats. The device is simple to operate and easy to use, does not interfere the activity of a user and does not need active intervention of the user when the physiological parameters are measured, and can provide safe, economical and practical real-time continuous monitoring of the nondestructive physiological parameters for the user.

Description

Translated fromChinese
非接触式关键生理参数测量方法Non-contact method for measuring key physiological parameters

发明领域field of invention

本发明涉及多个生理参数的监测,特别涉及多个关键生理参数的实时非接触式连续监测。The invention relates to the monitoring of multiple physiological parameters, in particular to the real-time non-contact continuous monitoring of multiple key physiological parameters.

背景技术Background technique

生理参数的监测,尤其是对反映心血管系统机能的关键生理参数变化的监测可为使用者提供及时的信息反馈,以便了解其健康情况。对中老年人而言,心脑血管疾病是对健康造成最大威胁的疾病之一。美国心脏协会的统计数据显示,每年全球有16,600,000人死于心血管疾病,它已经成为危害人类健康的头号杀手。在中国,目前因心脑血管疾病而导致的死亡率占人口总死亡率的34.5%,预计到2040年每年将有9,500,000人死于心脑血管疾病,约占35-74岁人口总死亡人数的一半。The monitoring of physiological parameters, especially the monitoring of changes in key physiological parameters reflecting the function of the cardiovascular system can provide users with timely information feedback in order to understand their health conditions. For middle-aged and elderly people, cardiovascular and cerebrovascular diseases are one of the diseases that pose the greatest threat to health. Statistics from the American Heart Association show that 16,600,000 people worldwide die from cardiovascular disease every year, and it has become the number one killer of human health. In China, the current mortality rate due to cardiovascular and cerebrovascular diseases accounts for 34.5% of the total population mortality, and it is estimated that by 2040, 9,500,000 people will die of cardiovascular and cerebrovascular diseases each year, accounting for about 35-74 of the total number of deaths in the population half.

反映心血管系统机能的生理参数通常包括,心率、血压、血氧饱和度和呼吸频率等。通过对这些生理参数进行日常监测,可以使人们早发现、早治疗可能导致严重后果的心血管疾病。这些生理参数的测量通常要通过不同的仪器或装置来完成,而且绝大多数测量装置都需要与人体直接接触。在某些特殊情况下,生理参数的测量希望可以通过非接触方式来实现。而且,非接触式测量也可大大拓宽生理参数测量的应用领域和范围,方便特殊群体,如车辆驾驶员,长期伏案工作者以及需要长途乘坐飞机的乘客的需要。Physiological parameters that reflect the function of the cardiovascular system usually include heart rate, blood pressure, blood oxygen saturation, and respiratory rate. Daily monitoring of these physiological parameters can enable early detection and early treatment of cardiovascular diseases that may lead to serious consequences. The measurement of these physiological parameters is usually completed by different instruments or devices, and most of the measurement devices need to be in direct contact with the human body. In some special cases, it is hoped that the measurement of physiological parameters can be realized in a non-contact manner. Moreover, non-contact measurement can also greatly expand the application field and scope of physiological parameter measurement, which is convenient for special groups, such as vehicle drivers, long-term desk workers, and passengers who need to take long-distance flights.

目前,一些关键生理参数的测量已可以通过非接触的方式来实现。如美国专利4,958,638公开了一种非接触式关键生理参数测量装置。它无需使用任何电极或传感器与身体直接接触,而是将调频电磁波打到人体上,从而同步测得心率和呼吸。该方法的原理在于,利用电磁波进行的非接触式生理参数测量对由呼吸和心脏活动所产生的运动非常敏感。呼吸与心跳可以使从人体反射回来的电磁波的相位发生改变,而该相位改变是可测量的。也就是说,该调频信号的反射信号中包含了表征人体表面如何运动的相位信息,而心率和呼吸频率的估计正是利用该相位信息而得到的。与传统的利用超声波或光学方法进行的测量相比,利用电磁波的测量具有信号在空气中损耗小,微波级带宽信号的穿透率好等特点。容积描计法(plethysmography),特别是光电容积描计法(photoplethysmography)的非接触式应用近年来得到人们的广泛关注。它通过发光二极管和光电监测器记录对应于心脏每博的末端血容积变化情况。由于该信号与心脏的每博同步且隐含了呼吸的信息,它不仅可应用于非接触式心率测量,更可应用于非接触式呼吸频率测量。At present, the measurement of some key physiological parameters can already be realized in a non-contact manner. For example, US Patent No. 4,958,638 discloses a non-contact key physiological parameter measuring device. It does not use any electrodes or sensors in direct contact with the body, but hits the human body with frequency-modulated electromagnetic waves to measure heart rate and respiration simultaneously. The principle of the method is that the non-contact measurement of physiological parameters using electromagnetic waves is very sensitive to the movements generated by breathing and cardiac activity. Breathing and heartbeats cause measurable changes in the phase of electromagnetic waves reflected from the body. That is to say, the reflected signal of the FM signal contains phase information representing how the surface of the human body moves, and the estimation of heart rate and respiratory rate is obtained by using this phase information. Compared with the traditional measurement using ultrasonic or optical methods, the measurement using electromagnetic waves has the characteristics of small signal loss in the air and good penetration rate of microwave-level bandwidth signals. The non-contact application of plethysmography (plethysmography), especially photoplethysmography (photoplethysmography) has attracted widespread attention in recent years. It records the change of terminal blood volume corresponding to each stroke of the heart through light-emitting diodes and photoelectric monitors. Since the signal is synchronized with the beat of the heart and contains breathing information, it can be applied not only to non-contact heart rate measurement, but also to non-contact respiratory rate measurement.

除了心率和呼吸频率的非接触式测量,非接触式心电信号的测量方法近年来也被提出。传统的心电图测量需要将传导电极固定在使用者身体上裸露的皮肤表面。该电极的输入阻抗一般为106或者107欧姆并且需要向身体表面导入电流。尽管该阻抗很大,但仍然不能破坏掉人体体表的电势。采用该方法的测量很难应用于患有新生婴儿猝死症(Sudden infant deathsyndrome)的婴儿以及烧伤病人,因为很难在他们身上固定电极来测量信号。而且,传导电极的金属表面限制了它们在潮湿环境下的应用,因为高质量的信号只有在良好电接触的条件下才可以得到。为了解决上述问题,人们提出将SQUID磁力计用于人体传感。SQUID磁力计可以实现非接触式心电信号测量,但是该技术只适用于低温环境,并且价钱昂贵。在实际应用中,低阻抗的充电放大器[1]、超低噪声,超高输入阻抗(频率为1赫兹时,阻抗为1015欧姆)传感器[2]和电耦合电极[3]被提出来。这些技术的出现,使得非接触式心电信号的测量成为可能。In addition to the non-contact measurement of heart rate and respiratory rate, non-contact ECG signal measurement methods have also been proposed in recent years. Traditional ECG measurements require conductive electrodes to be fixed on the exposed skin surface of the user's body. The input impedance of the electrode is generally 106 or 107 ohms and needs to introduce current to the body surface. Although the impedance is large, it still cannot destroy the potential of the human body surface. Measurements using this method are difficult to apply to infants with sudden infant death syndrome (SIDS) and burn patients because it is difficult to attach electrodes to them to measure the signal. Moreover, the metal surface of conductive electrodes limits their application in wet environments, since high-quality signals can only be obtained under the condition of good electrical contact. In order to solve the above problems, it is proposed to use SQUID magnetometer for human body sensing. SQUID magnetometer can realize non-contact ECG signal measurement, but this technology is only suitable for low temperature environment, and the price is expensive. In practical applications, low-impedance charging amplifiers [1], ultra-low noise, ultra-high input impedance (1015 ohm impedance at a frequency of 1 Hz) sensors [2] and electrically coupled electrodes [3] are proposed. The emergence of these technologies has made it possible to measure non-contact ECG signals.

在所有关键生理参数的测量中,目前只有血压的非接触是测量还不能实现。In the measurement of all key physiological parameters, only the non-contact measurement of blood pressure has not yet been realized.

传统的脉搏血压测量法需要使用可充放气的袖带。该方法可以通过两种不同的技术来实现,一种是听诊法,一种是振荡法。听诊法的原理在于收集柯氏音。测量上肢血压时,将袖带内的气体先行驱尽,然后将袖带平整无褶地缠于上臂,摸清肱动脉的搏动,置听诊器的胸件于该处,打开水银柱开关,当通过握有活阀的气球向袖带充气时,水银柱或表针随即移动,当水银柱上升至默认值时,即停止充气,然后,微微开启气球活阀慢慢放气,水银柱则慢慢下降,如果听到肱动脉的第一音响,所示刻度即为收缩期血压,简称收缩压;当水银柱下降到音响突然变弱或听不到时,刻度指示为舒张期血压,简称舒张压。但是,该方法只能确定收缩压和舒张压,并且不适用于某些第5柯氏音较弱甚至听不到的患者。Traditional pulse blood pressure measurement requires the use of an inflatable and deflated cuff. This method can be achieved by two different techniques, one is auscultation and the other is oscillation. The principle of auscultation is to collect Korotkoff sounds. When measuring upper extremity blood pressure, expel the gas in the cuff first, then wrap the cuff around the upper arm flat and without folds, feel the pulse of the brachial artery, place the chest piece of the stethoscope there, turn on the mercury column switch, and when it passes through When the balloon with the live valve is inflated to the cuff, the mercury column or the watch hands will move immediately. When the mercury column rises to the default value, the inflation will stop. Then, slightly open the balloon live valve to deflate slowly, and the mercury column will slowly fall , if you hear the first sound of the brachial artery, the displayed scale is systolic blood pressure, referred to as systolic blood pressure; when the mercury column drops to the point where the sound suddenly becomes weak or cannot be heard, the scale indicates diastolic blood pressure, referred to as diastolic blood pressure. However, this method can only determine systolic and diastolic blood pressure and is not suitable for some patients with weak or inaudible 5th Korotkoff sound.

振荡法可以弥补听诊法的上述不足,对于柯氏音较弱的病人也可测量到血压。使用时将袖带平整无褶地缠于上臂,对袖带进行充放气。通过测量在膨胀的袖带中压力的振荡幅度来确定血压值,压力的振荡是由动脉血管的收缩和扩张所引起的。收缩压、平均压和舒张压的数值可以从该袖带缓慢放气时监测该袖带中的压力而获得。平均压对应于该包络峰值时刻在该袖带的衰减装置中的压力。收缩压通常被估计为在该包络峰值之前对应于该包络的幅度等于该峰值幅度的一个比例的时刻处该袖带的衰减装置中的压力。舒张压通常被估计为在该包络的峰值之后对应于该包络的幅度等于该峰值幅度的一个比例的时刻处该袖带的衰减装置中的压力。使用不同的比例值会影响到血压测量的准确度。The oscillation method can make up for the above-mentioned shortcomings of the auscultation method, and blood pressure can also be measured for patients with weak Korotkoff sounds. When in use, wrap the cuff around the upper arm flat and without pleats, and inflate and deflate the cuff. Blood pressure values are determined by measuring the amplitude of pressure oscillations in the inflated cuff, which are caused by the constriction and dilation of arterial vessels. Values for systolic, mean and diastolic pressure can be obtained from monitoring the pressure in the cuff as the cuff is slowly deflated. The mean pressure corresponds to the pressure in the attenuation means of the cuff at the moment of the peak of the envelope. Systolic blood pressure is generally estimated as the pressure in the attenuating means of the cuff corresponding to the moment before the peak of the envelope at which the magnitude of the envelope is equal to a proportion of the peak magnitude. Diastolic pressure is generally estimated as the pressure in the attenuating means of the cuff at a time after the peak of the envelope corresponding to a time when the magnitude of the envelope is equal to a proportion of the peak magnitude. Using different scale values will affect the accuracy of blood pressure measurement.

目前市场上的大部分产品都采用听诊法或振荡法测量血压。其测量频率受到舒适地对该袖带进行充放气所需要的时间的限制。通常,一次完整的血压测量需要1分钟左右。此外,袖带尺寸的大小对血压的测量结果也会造成影响。由于这两种方法都需要对袖带进行充放气,因此难以进行频繁测量及连续测量,更不要说实现非接触式测量。Most of the products currently on the market use auscultation or oscillation to measure blood pressure. The frequency of its measurement is limited by the time required to comfortably inflate and deflate the cuff. Usually, a complete blood pressure measurement takes about 1 minute. In addition, the size of the cuff will also affect the blood pressure measurement results. Since both methods need to inflate and deflate the cuff, it is difficult to perform frequent and continuous measurements, let alone non-contact measurements.

基于脉搏波传输时间的血压测量法根据动脉血压与脉搏波传输速度之间的关系来确定血压。当血压上升时,血管扩张,脉搏波传输速度加快,反之,脉搏波传输速度减慢。该方法的基本原理可参见[4,5],这两篇参考文献因此被引入本文以作为参考。在使用基于该方法的血压计测量血压之前,先要用标准血压计对其进行校准,即找到上臂血压与脉搏波传输时间之间的关系。然后在测量过程中再利用校准过程中所确定的关系计算出实际血压值。血压测量的其它相关内容,可参考如下文献[6,7],这些文献同时被引入本文以作为参考。Pulse wave transit time based blood pressure measurements determine blood pressure based on the relationship between arterial blood pressure and pulse wave transit velocity. When the blood pressure rises, the blood vessels dilate and the pulse wave transmission speed increases, otherwise, the pulse wave transmission speed slows down. The rationale for this method can be found in [4,5], both references are hereby incorporated by reference. Before using a sphygmomanometer based on this method to measure blood pressure, it must be calibrated with a standard sphygmomanometer, that is, to find the relationship between upper arm blood pressure and pulse wave transit time. The actual blood pressure value is then calculated during the measurement process using the relationship determined during the calibration process. For other related content of blood pressure measurement, please refer to the following documents [6, 7], which are also incorporated herein as a reference.

从前述综述中可知,目前并没有一种装置可以对多个关键生理参数进行非干扰的非接触式连续监测,尤其是血压的测量。本发明正是为实现该目的而提出了利用脉搏波相关信息来实现非接触式血压测量,该方法并可同时提供连续心电图,心率,心率变化率和呼吸频率等关键生理参数。由于本发明中生理参数的测量采用非接触式,而非采用传统的电极或袖带接触式,所以使用者可在日常生活的不同环境下实现完全无干扰的测量,从而弥补了上述所有装置或技术的不足。对于本身有心血管疾病的司机、长期伏案工作者和需要乘坐飞机长途旅行的乘客,该技术更显示出它的优势。As can be seen from the foregoing review, there is currently no device that can perform non-interfering non-contact continuous monitoring of multiple key physiological parameters, especially the measurement of blood pressure. The present invention proposes to realize the non-contact blood pressure measurement by using pulse wave related information, and this method can simultaneously provide key physiological parameters such as continuous electrocardiogram, heart rate, heart rate change rate and respiratory rate. Since the measurement of physiological parameters in the present invention adopts a non-contact type instead of a traditional electrode or cuff contact type, the user can realize completely interference-free measurement in different environments of daily life, thereby making up for all the above-mentioned devices or Insufficient technology. For drivers with cardiovascular disease, long-term desk workers and passengers who need to travel long distances by plane, this technology shows its advantages.

发明内容Contents of the invention

本发明是针对现有技术中存在的上述问题而做出的。其目的是提供一种可对关键生理参数进行无干扰测量的系统。The present invention is made aiming at the above-mentioned problems existing in the prior art. The aim is to provide a system that allows non-disturbing measurements of key physiological parameters.

为了实现上述目的,本发明提出了非接触式测量,包括对血压、血压变化率、心率、心率变化率、血氧饱和度和呼吸频率等的测量。因为非接触式测量系统可以集成在生活辅助设施中,因此在日常使用中,无需干预该监测装置即可实时连续地获得上述生理参数的数值,同时也不会干扰使用者的日常活动。In order to achieve the above object, the present invention proposes non-contact measurement, including the measurement of blood pressure, blood pressure rate of change, heart rate, heart rate rate of change, blood oxygen saturation and respiratory rate. Because the non-contact measurement system can be integrated in assisted living facilities, in daily use, the values of the above-mentioned physiological parameters can be continuously obtained in real time without interfering with the monitoring device, and at the same time it will not interfere with the daily activities of the user.

该方法包括3个主要步骤:(a)通过非接触方式测量被测者的脉搏波相关信号;(b)通过非接触方式测量被测者的生物电信号;(c)根据所测量到的信号计算关键生理参数,包括血压、血压变化率、心率、心率变化率、血氧饱和度和呼吸频率等。此发明中,脉搏波相关信号可以但不局限于通过非接触式容积描记法得到;而生物电信号可以但不局限于通过高输入阻抗电路、低阻抗充电放大器或耦合电极得到。获取脉搏波相关信号和生物电信号的传感器可以集成为一体,从而使得上述生理参数的测量可以通过一个集成传感器得到。这里,生物电信号是指由非接触方式测量到的心电信号。通过非接触方式获得的信号首先要对其进行自适应滤波,之后才可用于生理参数的计算。The method includes three main steps: (a) measuring the pulse wave-related signal of the subject in a non-contact manner; (b) measuring the bioelectrical signal of the subject in a non-contact manner; (c) according to the measured signal Calculate key physiological parameters, including blood pressure, blood pressure rate of change, heart rate, heart rate rate of change, blood oxygen saturation and respiratory rate, etc. In this invention, pulse wave-related signals can be obtained by non-contact plethysmography; bioelectric signals can be obtained by high input impedance circuits, low impedance charging amplifiers or coupled electrodes. The sensors for acquiring pulse wave related signals and bioelectrical signals can be integrated into one body, so that the measurement of the above physiological parameters can be obtained through an integrated sensor. Here, the bioelectric signal refers to an electrocardiographic signal measured in a non-contact manner. The signals obtained by non-contact methods are first adaptively filtered before they can be used for the calculation of physiological parameters.

心率、心率变化率和呼吸频率可通过脉搏波相关信号和生物电信号以双信号方式计算得到;血氧饱和度可通过脉搏波相关信号得到;而血压测量是通过脉搏波相关信息获得的。心率和心率变化率的测量可分别通过计算一列容积描记信号波形顶点之间的时间间隔或者是一列心电信号R型波顶点之间的时间间隔来实现;呼吸频率的测量可以分别通过对心电信号或容积描记信号在一定频带内进行滤波而得到的;血氧饱和度的测量可利用脉冲血氧仪的原理实现。对心率、心率变化率和呼吸频率采用双信号测量模式,可以在一定程度上减少运动噪声对测量准确性的影响。Heart rate, heart rate change rate, and respiratory rate can be calculated in a dual-signal manner through pulse wave related signals and bioelectrical signals; blood oxygen saturation can be obtained through pulse wave related signals; and blood pressure measurement is obtained through pulse wave related information. The measurement of heart rate and heart rate change rate can be realized by calculating the time interval between the peaks of a series of plethysmographic signals or the time interval between the tops of a series of R-waves of ECG signals; The signal or plethysmographic signal is obtained by filtering in a certain frequency band; the measurement of blood oxygen saturation can be realized by using the principle of pulse oximeter. The dual-signal measurement mode for heart rate, heart rate change rate, and respiratory rate can reduce the impact of motion noise on measurement accuracy to a certain extent.

脉搏波相关信息为脉搏波传输时间,它是通过与被测者的脉搏波相关的信号上的第一参考点和同时测得的生物电信号上的第二参考点之间在同一心动周期内的时间间隔来确定的。所述第一参考点选自容积描记信号波形的顶点、中间点和底点之一。所述生物电信号上的第二参考点为心电信号中的R型波上的顶点。或者,脉搏波相关信息为脉搏波特征变量,它是仅通过与被测者的脉搏波相关的信号来确定的。脉搏波特征变量是指脉搏波上升沿或下降沿时间,或所定义时间参量的比值以及在频域上所提取的特征值。采用上述两种方法的血压测量需要进行个人化校准,校准公式为预先所确定的。本发明中所述的系统,可以集成在日常生活辅助设施中,如浴缸,床和座椅等,提供特殊环境下的无干扰的生理参数监测。传感器在上述设施中的位置式可调节的,以适合不同对象得到最优的信号。The pulse wave related information is the pulse wave transit time, which is passed between the first reference point on the signal related to the pulse wave of the subject and the second reference point on the simultaneously measured bioelectrical signal within the same cardiac cycle determined by the time interval. The first reference point is selected from one of the vertex, middle point and bottom point of the plethysmographic signal waveform. The second reference point on the bioelectrical signal is the apex on the R-shaped wave in the electrocardiographic signal. Alternatively, the pulse wave-related information is a pulse wave characteristic variable, which is determined only by signals related to the pulse wave of the subject. The pulse wave feature variable refers to the pulse wave rising edge or falling edge time, or the ratio of defined time parameters and the feature value extracted in the frequency domain. Blood pressure measurement using the above two methods needs to be calibrated individually, and the calibration formula is pre-determined. The system described in the present invention can be integrated in auxiliary facilities of daily life, such as bathtubs, beds and seats, etc., to provide non-interference monitoring of physiological parameters in special environments. The position of the sensor in the above facility is adjustable to get the best signal for different objects.

与以前的装置不同,该系统除了可以以非接触方式实现心率、心率变化率和呼吸频率的测量,还可以非接触方式测量血压、血压变化率、血氧饱和度等。本发明的有益效果在于,由于所使用的传感器体积小、易于操作,因此,该系统可以有机地结合在不同的日常生活设施中(如椅子、汽车座椅、衣服、床、鞋),无需其他人的帮助即可辅助不同环境下的监测要求,同时不会对使用者有任何限制。Unlike previous devices, this system can measure blood pressure, blood pressure rate of change, blood oxygen saturation, etc. in a non-contact manner in addition to measuring heart rate, heart rate change rate, and respiratory rate in a non-contact manner. The beneficial effect of the present invention is that, because the sensors used are small in size and easy to operate, the system can be organically combined in different daily life facilities (such as chairs, car seats, clothes, beds, shoes) without other The monitoring requirements in different environments can be assisted with the help of human beings, and at the same time, there will be no restrictions on users.

附图说明Description of drawings

下面将结合附图对本发明的具体实施方案进行详细说明。通过这些说明,本发明的上述目的、优点及特征将变得更加清楚。在以下的Specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings. Through these descriptions, the above objects, advantages and features of the present invention will become more clear. in the following

附图中:In the attached picture:

图1是本发明设计思想的整体结构示意图;Fig. 1 is the overall structure schematic diagram of design idea of the present invention;

图2是非接触式测量所得到的信号与接触式测量所得到的信号的比较;Fig. 2 is the comparison of the signal obtained by non-contact measurement and the signal obtained by contact measurement;

图3是各种信号在被测者身体记录位置的示意图;Fig. 3 is a schematic diagram of various signal recording positions in the subject's body;

图4是本发明在普通座椅上及汽车中的座椅上实现的示意图;Fig. 4 is the schematic diagram that the present invention realizes on the common seat and the seat in the car;

图5是本发明在床上实现的示意图;Fig. 5 is the schematic diagram that the present invention realizes on the bed;

图6是非接触式电极的示意图;Figure 6 is a schematic diagram of a non-contact electrode;

图7是非接触式电势传感器的示意图;7 is a schematic diagram of a non-contact potential sensor;

图8是确定脉搏波传输时间的示意图;Fig. 8 is a schematic diagram of determining the pulse wave transit time;

图9是容积描记信号的特征变量在时域上的说明;Fig. 9 is an illustration of the characteristic variables of the plethysmographic signal in the time domain;

图10是同步测量到的两列容积描记信号的说明以及呼吸信号的说明。Figure 10 is an illustration of two columns of plethysmographic signals measured simultaneously and an illustration of the respiration signal.

具体实施方案specific implementation plan

本发明所述的设计思想可以集成在不同的生活辅助设施中为使用者提供生理参数信息的及时反馈,尤其适用于需要对生理参数进行日常监测或在特殊情况下需要监测的人群。相关生理参数信息可以通过其他外部终端以有线或无线的方式传达给使用者。在有需要的情况下,也可以传送给远程终端或进行报警。以下将参考图1至图10对根据本发明实施方案所述的方法进行具体说明。The design idea described in the present invention can be integrated in different living assistance facilities to provide users with timely feedback of physiological parameter information, and is especially suitable for people who need to monitor physiological parameters on a daily basis or in special circumstances. The relevant physiological parameter information can be communicated to the user through other external terminals in a wired or wireless manner. If necessary, it can also be sent to the remote terminal or alarm. The method according to the embodiment of the present invention will be specifically described below with reference to FIGS. 1 to 10 .

首先图1给出了本发明的整体设计思想。本发明的关键在于非接触式地获取生理信号,主要包括生物电信号和脉搏波信号。与接触式信号采集不同,以非接触方式获得的信号在波形上会与接触式有一些不同,这主要取决于具体所采用的非接触式测量方法以及传感器与信号采集部位之间的距离。图2为接触式和非接触方式所采集的信号的对比。从中可以看出用光电容积描记法所采集的脉搏波信号基本保持了其原有的波形,尤其是其顶点的位置;而该信号的底点位置却有一定程度的漂移。利用超高阻抗输入方式所采集的心电信号与用传统的接触式电极所采集的信号相比,噪声较大,而且该噪声的程度取决于非接触式传感器与身体的距离。在非接触方式采集的心电信号中,R型波的位置仍然清晰可见,而它是许多生理参数计算中的一个最重要的特征点。First, Fig. 1 shows the overall design idea of the present invention. The key of the present invention is to obtain physiological signals in a non-contact manner, mainly including bioelectrical signals and pulse wave signals. Different from contact signal acquisition, the waveform of the signal obtained by non-contact method will be slightly different from that of contact method, which mainly depends on the specific non-contact measurement method used and the distance between the sensor and the signal acquisition site. Figure 2 is a comparison of signals collected by contact and non-contact methods. It can be seen that the pulse wave signal collected by photoplethysmography basically maintains its original waveform, especially the position of its apex; while the position of the bottom point of the signal has a certain degree of drift. Compared with the signal collected by traditional contact electrodes, the ECG signal collected by ultra-high impedance input method has larger noise, and the degree of the noise depends on the distance between the non-contact sensor and the body. In the non-contact ECG signal, the position of the R-wave is still clearly visible, and it is one of the most important feature points in the calculation of many physiological parameters.

在信号采集之后,原始信号要经过滤波与预处理,尤其是非接触式得到的信号通常较弱,而且取决于不同的应用条件,可能在一定程度上受到运动噪声的干扰。如图2所看到,非接触式采集的信号噪声较大,在某些情况下甚至可能出现信号失真。因此,利用原始信号进行生理参数计算前,对其进行滤波、放大等预处理就显得尤为重要。After signal acquisition, the original signal is filtered and preprocessed, especially the signal obtained by non-contact is usually weak, and depending on different application conditions, it may be interfered by motion noise to a certain extent. As can be seen in Figure 2, the signal of non-contact acquisition is noisy and may even be distorted in some cases. Therefore, before using the original signal to calculate physiological parameters, it is particularly important to perform preprocessing such as filtering and amplification.

图3用于说明各种信号在被测者身体记录的位置。如图3所示,位置301和位置302分别代表被测者的背部的位置及左手手指位置,用于非接触式记录被测者的心电信号和末梢动脉的光电容积描记信号。当然,心电信号也可以从胸部或指端测得,而光电容积描记信号也可以从手腕处或身体其它部位测得。Figure 3 is used to illustrate the positions where various signals are recorded in the subject's body. As shown in FIG. 3 , positions 301 and 302 respectively represent the position of the subject's back and the position of the fingers of the left hand, and are used for non-contact recording of the subject's ECG signal and the photoplethysmography signal of the peripheral artery. Of course, ECG signals can also be measured from the chest or fingertips, and photoplethysmographic signals can also be measured from the wrist or other parts of the body.

图4是本发明在普通座椅上及汽车中的座椅上实现的示意图。如图所示:心电信号的测量是通过内嵌于椅背上的前置放大电极和置于座位上的传导金属板来实现的。获取心电信号时,使用者只需将背部接近或靠在椅背上,心电信号就可以透过衣服测量到。测量心电信号的传感器在椅子上的位置是可以调节的,以适应不同使用者获得最佳的信号质量。在不同的应用情境下,获取光电容积描记信号的传感器可以放置于不同的位置。例如在驾驶座位上,传感器可以内嵌于方向盘上,而在一般的座椅上,传感器可以内嵌于座椅扶手上。置于座椅扶手上的传感器位置也是可调节的。通过对这两个信号进行处理和分析,就可以得到我们感兴趣的生理参数,如心率、心率变化率、呼吸频率、血氧饱和度和血压等数值。上述参数的具体计算过程将在下面详细介绍。Fig. 4 is a schematic diagram of the present invention being realized on a common seat and a seat in an automobile. As shown in the figure: the measurement of the ECG signal is realized through the pre-amplification electrode embedded in the back of the chair and the conductive metal plate placed on the seat. When obtaining the ECG signal, the user only needs to approach or lean on the back of the chair, and the ECG signal can be measured through the clothes. The position of the sensor for measuring the ECG signal on the chair can be adjusted to adapt to different users to obtain the best signal quality. In different application scenarios, the sensors for obtaining photoplethysmographic signals can be placed in different positions. For example, in the driver's seat, the sensor can be embedded in the steering wheel, and in a general seat, the sensor can be embedded in the armrest of the seat. The position of the sensor placed on the armrest of the seat is also adjustable. By processing and analyzing these two signals, we can obtain the physiological parameters we are interested in, such as heart rate, heart rate change rate, respiratory rate, blood oxygen saturation and blood pressure. The specific calculation process of the above parameters will be described in detail below.

图5是本发明在床上实现的示意图。此时,心电信号可以分别从手上和脚上得到。其中,脚上位置的传感器可以置于床尾上,并且其位置是可调节的。获取光电容积描记信号的传感器可以与一个获取心电信号的电极集成在一个传感器装置上,至于手腕处或手指处。Fig. 5 is a schematic diagram of the present invention implemented on a bed. At this time, ECG signals can be obtained from the hands and feet respectively. Wherein, the sensor of the position on the foot can be placed on the end of the bed, and its position is adjustable. The sensor for acquiring photoplethysmographic signals can be integrated with an electrode for acquiring electrocardiographic signals on a sensor device, either at the wrist or at the fingers.

非接触式心电信号的测量有几种不同的方式。如图6所示,其中一种方法是通过利用低阻抗的充电放大器。通过选取合适的参数,可以使运算放大器的输入端和输出端电容为最小。如图所示,由于源电容值小于1pF,所以在该电路中采用一个低阻抗充电放大器。这种低阻抗的配置,使得负反馈回路可以去除放大器的共模输入阻抗和差模输入阻抗。这与高阻抗配置的情形不同,因为在这种情况下,共模阻抗并不能去除。另外,尽管正反馈在高阻抗配置中可以使输入阻抗为零,但是整个系统的稳定性却受到破坏。而图6中的放大器在负反馈配置中是无条件稳定。运算放大器OPA129的输入偏流是30fA,电流噪声是0.1fA/Hz1/2。因此该运算放大器从输入端到输出端的电容被最小化了。0.35pF反馈电容并不是一个实际的元件,而是一个与500Gohm反馈电阻相关联的电容。该反馈回路的截止频率是0.9Hz。当该电极与身体的距离为0.5cm时,该充电放大器的增益为2。系统在1Hz和10Hz时的输出噪声分别是70μF/Hz1/29.4μF/Hz1/2,这里主要的噪声源是500Gohm电阻的热噪声。理想情况是去掉反馈电阻,但这时必须注意防止放大器饱和。为了最小化输出端的噪声,在这个电极上可以应用一个5到35Hz的带通滤波器。There are several different ways of measuring non-contact ECG signals. As shown in Figure 6, one way is by using a low-impedance charge amplifier. By selecting appropriate parameters, the input and output capacitance of the operational amplifier can be minimized. As shown, a low-impedance charging amplifier is used in this circuit since the source capacitance is less than 1pF. This low-impedance configuration allows the negative feedback loop to remove the amplifier's common-mode and differential-mode input impedances. This is different from the case of high-impedance configurations because in this case the common-mode impedance cannot be removed. Also, although positive feedback can bring the input impedance to zero in the high-impedance configuration, the stability of the overall system is compromised. However, the amplifier in Figure 6 is unconditionally stable in the negative feedback configuration. The input bias current of the operational amplifier OPA129 is 30fA, and the current noise is 0.1fA/Hz1/2 . Therefore the capacitance of the operational amplifier from input to output is minimized. The 0.35pF feedback capacitor is not an actual component, but a capacitor associated with the 500Gohm feedback resistor. The cutoff frequency of this feedback loop is 0.9Hz. When the distance between the electrode and the body is 0.5 cm, the gain of the charging amplifier is 2. The output noise of the system at 1Hz and 10Hz is 70μF/Hz1/2 9.4μF/Hz1/2 respectively, and the main noise source here is the thermal noise of the 500Gohm resistor. Ideally, the feedback resistor would be removed, but care must be taken to prevent the amplifier from saturating. To minimize noise at the output, a 5 to 35Hz bandpass filter can be applied across this electrode.

非接触式生物电势信号测量的另一种方法是利用超低噪声,超高输入阻抗(频率为1赫兹时,阻抗为1015欧姆)传感器,如图7所示。超高阻抗的优点在于,身体本身电信号的衰减可忽略不计。该配置具有高达1015欧姆的输入阻抗,在最优耦合条件下,1Hz的最低噪声为70μF/Hz1/2。由于该配置对身体产生可忽略不计的并行负荷,因此它可以在远离身体达1m的情况下测到信号。Another method for non-contact biopotential signal measurement is to use an ultra-low noise, ultra-high input impedance (1015 ohm impedance at a frequency of 1 Hz) sensor, as shown in Figure 7. The advantage of ultra-high impedance is that there is negligible attenuation of the body's own electrical signals. This configuration has an input impedance of up to 1015 ohms and a minimum noise of 70µF/Hz1/2 at 1Hz under optimal coupling conditions. Since this configuration creates negligible parallel loading on the body, it can detect signals up to 1 m away from the body.

非接触式生物电势信号测量的另一种方法是利用电耦合电极。其基本思想是人体本身和测量使用的电极可以组成一个电容。反映皮肤表层上电势信号变化的心电信号可以通过放大器传给一个电容器。通常情况下,该电容器的电容值非常小,所以放大器的输入阻抗要非常大。因此电压输出跟随器的输入阻抗要远远小于所使用电极的阻抗以便得到较高的增益。Another approach to non-contact biopotential signal measurement utilizes electrically coupled electrodes. The basic idea is that the human body itself and the electrodes used for measurement can form a capacitor. Electrocardiographic signals reflecting changes in electrical potential on the surface of the skin can be passed through an amplifier to a capacitor. Typically, the capacitance of this capacitor is very small, so the input impedance of the amplifier must be very large. Therefore, the input impedance of the voltage output follower should be much smaller than that of the electrode used in order to obtain a higher gain.

参考图8对脉搏波传输时间的检测进行简要说明。脉搏波传输时间可用于非接触式血压测量。在图8所示的本发明的实施方案中,脉搏波传输时间可根据被测者的心电信号和光电容积描记信号而得到。在图8中,时间801和时间802分别代表心电信号和光电容积描记信号的特征点在时间轴上的位置。心电信号的特征点在本发明的实施方案中可以优选为心电信号上R型波的顶点。光电容积描记信号的特征点在本发明的实施方案中可以是光电容积描记信号波形的顶点、底点及中间点。时间T803为时间801与时间802之间的时间间隔,该时间间隔即为脉搏波传输时间。The detection of the pulse wave transit time will be briefly described with reference to FIG. 8 . Pulse wave transit time can be used for non-contact blood pressure measurement. In the embodiment of the present invention shown in FIG. 8, the pulse wave transit time can be obtained from the electrocardiographic signal and photoplethysmographic signal of the subject. In FIG. 8 , time 801 and time 802 respectively represent the positions of the feature points of the electrocardiographic signal and the photoplethysmographic signal on the time axis. In the embodiment of the present invention, the characteristic point of the electrocardiographic signal may preferably be the apex of the R-shaped wave on the electrocardiographic signal. In the embodiment of the present invention, the characteristic points of the photoplethysmography signal may be the apex, bottom point and middle point of the photoplethysmography signal waveform. Time T803 is the time interval between time 801 and time 802, which is the pulse wave transmission time.

本领域的普通技术人员应该明白,对脉搏波传输时间的测量可以采用多种方法而不仅限于上述内容。例如光电容积描记信号也可以用电阻抗信号或心音信号替代,在这些信号上取适当的参考点,然后通过计算该参考点与心电信号中的参考点在时间轴上的时间间隔就可以确定出脉搏波传输时间。Those skilled in the art should understand that various methods can be used to measure the pulse wave transit time and are not limited to the above-mentioned ones. For example, the photoplethysmography signal can also be replaced by an electrical impedance signal or a heart sound signal, and an appropriate reference point is taken on these signals, and then it can be determined by calculating the time interval between the reference point and the reference point in the ECG signal on the time axis Pulse wave transit time.

非接触式血压测量可通过以下三种方式实现:Non-contact blood pressure measurement can be achieved in the following three ways:

实施例一Embodiment one

利用脉搏波传输时间来计算血压。许多文献和专利中都介绍过利用脉搏波传输时间的理论来计算血压的方法。脉搏波传输时间是指脉搏沿同一个动脉传输时到达两个不同点之间的时间差。该时延被证明与血压有一定的关系,它会随血压的升高而减小。因此,通过利用标准血压仪,对脉搏波传输时间与血压之间的关系进行校准,即找到脉搏波传输时间与血压之间的关系。之后,就可利用该时间估计血压值。其具体计算方法可参见美国专利4,869,262和5,649,543等,这里不再赘述。Blood pressure is calculated using pulse wave transit time. Many documents and patents have introduced the method of calculating blood pressure using the theory of pulse wave transit time. Pulse wave transit time is the time difference between a pulse arriving at two different points as it travels along the same artery. This time delay has been proved to be related to blood pressure, and it will decrease with the increase of blood pressure. Therefore, by using a standard blood pressure instrument to calibrate the relationship between the pulse wave transit time and blood pressure, that is to find the relationship between the pulse wave transit time and blood pressure. This time can then be used to estimate the blood pressure value. For the specific calculation method, please refer to US Patent Nos. 4,869,262 and 5,649,543, etc., which will not be repeated here.

实施例二Embodiment two

利用与脉搏波相关的其它特征量,如光电容积描记信号本身的特征值来来估计血压。在这种情况下,无需利用生物电信号,即可实现非接触式连续动脉血压测量。图9给出了一些光电容积描记信号特征值的定义。由于本申请的重点在于非接触式生理参数的测量,因此这里不再对该方法作详细说明,其相关信息可通过附录中的参考文献[8-11]获得。The blood pressure is estimated by using other characteristic quantities related to the pulse wave, such as the characteristic value of the photoplethysmographic signal itself. In this case, non-contact continuous arterial blood pressure measurement can be achieved without utilizing bioelectrical signals. Fig. 9 gives the definitions of some characteristic values of photoplethysmographic signals. Since this application focuses on the measurement of non-contact physiological parameters, the method will not be described in detail here, and its relevant information can be obtained from the references [8-11] in the appendix.

实施例三Embodiment three

计算血压的另一种方法是,利用上臂血压的波形对光电容积描记信号波形进行校正。从而只利用一列波形,即一个传感器来获得血压的信息。已经发表的文献指出,桡动脉血压波形与由手指处得到的光电容积描记信号的波形之间存在着一定的关系,  可参见文献[12,13],该关系可以用一个传递函数来表示。通过利用一个可以从手腕处进行连续血压测量的装置得到桡动脉血压波形,并与光电容积描记信号波形相比较,可以得到该传递函数,完成校准步骤。需要指出的是,该校准过程是对象依赖的。因此使用前,要对每个使用者进行分别校准。其具体计算方法可参见美国专利6,616,613。Another way to calculate blood pressure is to correct the photoplethysmographic signal waveform with the upper arm blood pressure waveform. Therefore, only one series of waveforms, that is, one sensor, is used to obtain blood pressure information. Published literature points out that there is a certain relationship between the waveform of radial artery blood pressure and the waveform of the photoplethysmography signal obtained from the finger, see literature [12,13], and this relationship can be expressed by a transfer function. The transfer function can be obtained by comparing the radial artery blood pressure waveform with a device capable of continuous blood pressure measurement from the wrist and comparing it with the photoplethysmography signal waveform, and the calibration step is completed. It should be pointed out that this calibration process is object-dependent. Therefore, each user should be calibrated separately before use. The specific calculation method can be found in US Patent 6,616,613.

下面结合图9来说明本发明中其他各生理参数测量的原理。本发明中,心率、心率变化率、呼吸频率和血氧饱和度的测量都可以利用光电容积描记法实现。同时,心率、心率变化率和呼吸频率也可以通过心电图得到。光电容积描记法使用简便、安全,而且长时间使用也不会造成使用者的不适。其检测信号的装置通常包括一个传感器单元,它有一个发光装置,如光敏晶体管,把光射入到测量位置的表面,如手指,耳垂或前额,和一个接收光装置,如光电检测器,检测从测量位置反射或透射的光。由于动脉搏动导致血管中血流量的变化,因此光的吸收、反射和散射也相应改变。因此,接收光装置检测到的光强也相应发生变化,该信号与心脏的搏动同步。该光强信号被转换成电信号后可进行进一步的处理和分析。The principle of measuring other physiological parameters in the present invention will be described below with reference to FIG. 9 . In the present invention, the measurement of heart rate, rate of heart rate change, respiratory rate and blood oxygen saturation can be realized by photoplethysmography. At the same time, the heart rate, heart rate variability and respiratory rate can also be obtained through the electrocardiogram. Photoplethysmography is easy and safe to use, and will not cause discomfort to the user if used for a long time. The device for detecting the signal usually includes a sensor unit, which has a light-emitting device, such as a phototransistor, that emits light onto the surface of the measurement location, such as a finger, earlobe or forehead, and a light-receiving device, such as a photodetector, that detects Light reflected or transmitted from the measurement location. As arterial pulsations cause changes in blood flow in vessels, there are corresponding changes in the absorption, reflection and scattering of light. Therefore, the light intensity detected by the light receiving device also changes accordingly, and the signal is synchronized with the beating of the heart. The light intensity signal is converted into an electrical signal for further processing and analysis.

如图10(a)所示,通过计算光电容积描记信号相邻两个顶点或相邻两个底点之间的时间间隔(intervali)即可计算出心率值。为了减小计算误差,我们可以采用多个时间间隔的平均(Ave_interval)来计算瞬时心率(HR),如公式(1)和(2)所示。通过该时间间隔亦可计算心率变化率,其为一定个数的时间间隔的标准方差。As shown in FIG. 10( a ), the heart rate value can be calculated by calculating the time interval (intervali ) between two adjacent vertices or two adjacent bottom points of the photoplethysmographic signal. In order to reduce the calculation error, we can use the average (Ave_interval) of multiple time intervals to calculate the instantaneous heart rate (HR), as shown in formulas (1) and (2). From this time interval it is also possible to calculate the rate of heart rate change, which is the standard deviation of a certain number of time intervals.

AveAve.__intervalinterval==ΣΣii==11nnointervalintervaliinno,,nno==1010------((11))

HRHR==11AveAve.__intervalinterval××6060------((22))

同样的,通过计算心电图上相邻两个R型波的顶点之间的时间间隔(intervali)也可计算出心率值,进而计算出心率变化率,即一定时间内心率方差与均值的比值。我们提出采用双信号模式计算心率和心率变化率,以保证在存在杂波的情况下,仍然可以准确地得到所需要的生理参数的数值。双信号模式是指利用光电容积描记信号和心电信号分别计算心率和心率变化率,如果二者的计算结果相差超过5%或10%,即确认测量有效。Similarly, the heart rate value can also be calculated by calculating the time interval (intervali ) between the vertices of two adjacent R-shaped waves on the ECG, and then the rate of change of the heart rate can be calculated, that is, the ratio of the variance of the heart rate to the mean value within a certain period of time. We propose to use the dual-signal mode to calculate the heart rate and the rate of change of the heart rate to ensure that the required physiological parameters can still be accurately obtained in the presence of clutter. The dual-signal mode refers to using the photoplethysmography signal and the ECG signal to calculate the heart rate and heart rate change rate respectively. If the difference between the two calculation results exceeds 5% or 10%, the measurement is confirmed to be valid.

如图10(b)所示,光电容积描记信号中明显的还包括有呼吸的信息。健康成年人的的呼吸频率在每分钟10-20次。利用光电容积描记信号提取呼吸频率的方法近年来在文献中被广泛讨论,如文献[14,15]。选取适当的滤波器进行低通滤波,即可得到呼吸波形,从而计算出呼吸频率。与心率计算相同,呼吸频率的计算我们同样地采取双信号模式确保计算的准确性。As shown in FIG. 10( b ), the photoplethysmography signal obviously includes breathing information. The respiratory rate of a healthy adult is 10-20 breaths per minute. Methods for extracting respiratory rate using photoplethysmographic signals have been widely discussed in the literature in recent years, such as [14, 15]. Select an appropriate filter for low-pass filtering to obtain the respiratory waveform and calculate the respiratory frequency. Same as heart rate calculation, we also adopt dual-signal mode to ensure the accuracy of the calculation of respiratory rate.

由于血液中的两种主要吸光的物质,氧合血红蛋白和血红蛋白在红光范围和红外光范围对光的吸收程度不一样,因此通过利用两种波长的光即可确定动脉血氧饱和度。放置具有不同波长的光敏晶体管,即红光和红外光的两个光敏晶体管在同一测量位置,可同时得到两列光电容积描记信号。首先对这两列信号进行滤波和放大。然后将红光和红外光信号的直流和交流部分分开,再根据脉冲血氧仪的原理,我们就可以通过这两个信号得到动脉血氧饱和度。其具体电路实现可在”Design of Pulse Oximeters”by JG Webseter中查到。图10(a)即为由不同波长的光得到的光电容积描记信号的交流部分的示意图。动脉血氧饱和度的计算可通过下式完成:Since the two main light-absorbing substances in blood, oxyhemoglobin and hemoglobin, absorb light differently in the red light range and infrared light range, arterial blood oxygen saturation can be determined by using two wavelengths of light. Place phototransistors with different wavelengths, that is, two phototransistors for red light and infrared light at the same measurement position, and two columns of photoplethysmographic signals can be obtained at the same time. The two columns of signals are first filtered and amplified. Then separate the DC and AC parts of the red light and infrared light signals, and then according to the principle of the pulse oximeter, we can get the arterial blood oxygen saturation through these two signals. Its specific circuit implementation can be found in "Design of Pulse Oximeters" by JG Webseter. Fig. 10(a) is a schematic diagram of the AC part of the photoplethysmography signal obtained by light of different wavelengths. The calculation of arterial oxygen saturation can be done by the following formula:

RR==ACACRRDCDCRRACACIRIRDCDCIRIR------((33))

SpO2=110-25R    (4)SpO2 =110-25R (4)

其中ACR代表由红光得到的光电容积描记信号的交流部分,DCR代表由红光得到的光电容积描记信号的直流部分;ACIR代表由红外光得到的光电容积描记信号的交流部分,DCIR代表由红外光得到的光电容积描记信号的直流部分。通过求取它们之间的比值(3),并利用经验公式(4),可求得动脉血氧饱和度。Among them, ACR represents the AC part of the photoplethysmography signal obtained by red light, DCR represents the DC part of the photoplethysmography signal obtained by red light; ACIR represents the AC part of the photoplethysmography signal obtained by infrared light, DCIR stands for the DC portion of the photoplethysmographic signal obtained from infrared light. By obtaining the ratio (3) between them and using the empirical formula (4), the arterial blood oxygen saturation can be obtained.

参考文献references

[1]W.J.Smith and J.R.LaCourse,Non-contact biopotential measurement fromthe human body using a low-impedance charge amplifier,BioengineeringConference,2004.Proceedings of the IEEE 30th Annual Northeast,pp.31-32,17-18 April 2004.[1] W.J.Smith and J.R.LaCourse, Non-contact biopotential measurement from the human body using a low-impedance charge amplifier, Bioengineering Conference, 2004. Proceedings of the IEEE 30th Annual Northeast, pp.31-32, 17-120 April

[2]C.J.Harland,T.D.Clark and R.J.Prance,Electric potential probes-newdirections in the remote sensing of the human body,Measurement Science andTechnology,vol.13,pp.163-169,2002.[2] C.J.Harland, T.D.Clark and R.J.Prance, Electric potential probes-new directions in the remote sensing of the human body, Measurement Science and Technology, vol.13, pp.163-169, 2002.

[3]Yong Kyu Lim,Ko Keun Kim and Kwang Suk Park,“The electrically non-contacting ECG measurement in daily life,”in Proceedings of the InternationalUbiquitous-Healthcare Conference 2004,Seoul,Korea,Oct.2004.[3] Yong Kyu Lim, Ko Keun Kim and Kwang Suk Park, "The electrically non-contacting ECG measurement in daily life," in Proceedings of the International Ubiquitous-Healthcare Conference 2004, Seoul, Korea, Oct.2004.

[4]J.C.Bramwell and A.V.Hill,“The Velocity of the Pulse Wave in Man”,Proceedings of the Royal Society,London,pp.298-306,1922.[4] J.C.Bramwell and A.V.Hill, "The Velocity of the Pulse Wave in Man", Proceedings of the Royal Society, London, pp.298-306, 1922.

[5]B.Gribbin,A.StEptoe,and P.Sleight,“Pulse Wave Velocity as aMeasure of Blood Pressure Change”,Psychophysiology,vol.13,no.1,pp.86-90,1976.[5] B. Gribbin, A. StEptoe, and P. Sleight, "Pulse Wave Velocity as a Measure of Blood Pressure Change", Psychophysiology, vol.13, no.1, pp.86-90, 1976.

[6]Norman M.Kaplan,“Clinical Hypertension”;J Woo,“Nutrition and healthissues in the general Hong Kong population”,HKMJ,Vol4,No4,pp.383-388,1998.[6] Norman M. Kaplan, "Clinical Hypertension"; J Woo, "Nutrition and health suses in the general Hong Kong population", HKMJ, Vol4, No4, pp.383-388, 1998.

[7]“Non-invasive blood pressure”,ANSI/AAMI,SP10,1992.[7] "Non-invasive blood pressure", ANSI/AAMI, SP10, 1992.

[8]US 4,418,700,Method and apparatus for measurement of heart-relatedparameters.[8] US 4,418,700, Method and apparatus for measurement of heart-related parameters.

[9]US 4,834,107,Heart-related parameters monitoring apparatus.[9] US 4,834,107, Heart-related parameters monitoring apparatus.

[10]US 5,269,310 Method of measuring blood pressure with aplethysmograph.[10]US 5,269,310 Method of measuring blood pressure with aplethysmograph.

[11]US 6,616,613,Physiological signal monitoring system.[11] US 6,616,613, Physiological signal monitoring system.

[12]Modeling the relationship between peripheral blood pressure and bloodvolume pulses using linear and neural network system identification techniques,John Allen and Alan Murray,Physiol.Meas.,vol.20,pp.287-300,1999.[12]Modeling the relationship between peripheral blood pressure and blood volume pulses using linear and neural network system identification techniques, John Allen and Alan Murray, Physiol.Meas., vol.20, pp.287-300, 1999.

[13]Noninvasive assessment of the digital volume pulse comparison with theperipheral pressure pulse,Sandrine C.Millasseau and Franck G.Guigui,et al.,Hypertension,vol.36,pp.952-956,2000.[13]Noninvasive assessment of the digital volume pulse comparison with the peripheral pressure pulse, Sandrine C.Millasseau and Franck G.Guigui, et al., Hypertension, vol.36, pp.952-956, 2000.

[14]Respiratory rhythm detection with photoplethysmographic methods,DieterBarschdorff and Wei Zhang,Proceedings of IEEE-EMBS,pp.912-913,1994.[14] Respiratory rhythm detection with photoplethysmographic methods, DieterBarschdorff and Wei Zhang, Proceedings of IEEE-EMBS, pp.912-913, 1994.

[15]Monitoring of heart and respiratory rates by photoplethysmography using adigital filtering technique,K.Nakajima,T.Tamura and H.Miike,Med.Eng.Phys.Vol.18,No.5,pp.365-372,1996.[15]Monitoring of heart and respiratory rates by photoplethysmography using digital filtering technique, K.Nakajima, T.Tamura and H.Miike, Med.Eng.Phys.Vol.18, No.5, pp.365-372, 1996.

Claims (18)

Translated fromChinese
1.一种非接触式关键生理参数测量方法,包括:1. A method for measuring non-contact key physiological parameters, comprising:(a)通过非接触方式测量被测者的脉搏波相关信号;(a) measuring the pulse wave related signal of the subject by a non-contact method;(b)通过非接触方式测量被测者的生物电信号;(b) measuring the bioelectrical signal of the subject by non-contact means;(c)根据所测量到的信号计算关键生理参数。(c) Calculating key physiological parameters from the measured signals.2.如权利要求1所述的系统,其特征在于,非接触是指非直接电接触或非机械接触。2. The system of claim 1, wherein non-contact refers to non-direct electrical contact or non-mechanical contact.3.如权利要求1所述的系统,其特征在于,脉搏波相关信号可以但不局限于通过非接触式容积描记法得到。3. The system according to claim 1, wherein the pulse wave related signal can be obtained by but not limited to non-contact plethysmography.4.如权利要求1所述的系统,其特征在于,生物电信号可以但不局限于通过高输入阻抗电路、低阻抗充电放大器或耦合电极得到。4. The system according to claim 1, wherein the bioelectrical signal can be obtained through but not limited to a high input impedance circuit, a low impedance charging amplifier or a coupling electrode.5.如权利要求3和4所述的系统,其特征在于,获取脉搏波相关信号和生物电信号的传感器可以集成为一体。5. The system according to claims 3 and 4, characterized in that the sensors for acquiring pulse wave related signals and bioelectrical signals can be integrated into one body.6.如权利要求1所述的系统,其特征在于,其可计算的关键生理参数包括血压、血压变化率、心率、心率变化率、血氧饱和度和呼吸频率等。6. The system according to claim 1, wherein the key physiological parameters that can be calculated include blood pressure, rate of change of blood pressure, heart rate, rate of change of heart rate, blood oxygen saturation and respiratory rate, etc.7.如权利要求5和6所述的系统,其特征在于,关键生理参数:血压、血压变化率、心率、心率变化率、血氧饱和度和呼吸频率等的测量可通过一个集成传感器以非接触方式得到。7. The system according to claims 5 and 6, wherein the key physiological parameters: blood pressure, blood pressure rate of change, heart rate, heart rate rate of change, blood oxygen saturation and respiratory rate, etc. Get in touch.8.如权利要求4所述的系统,其特征在于,生物电信号是指由非接触方式测量到的心电信号。8. The system according to claim 4, wherein the bioelectrical signal refers to an electrocardiographic signal measured in a non-contact manner.9.如权利要求5所述的系统,其特征在于,心率、心率变化率和呼吸频率是通过双信号,即脉搏波相关信号和心电信号两个信号得到。9. The system according to claim 5, characterized in that the heart rate, the rate of heart rate change and the respiratory rate are obtained from two signals, namely pulse wave-related signals and electrocardiographic signals.10.如权利要求5所述的系统,其特征在于,血氧饱和度可通过脉搏波相关信号得到。10. The system according to claim 5, wherein the blood oxygen saturation can be obtained through a pulse wave correlation signal.11.如权利要求5所述的系统,其特征在于,血压测量是通过脉搏波相关信息获得的。11. The system of claim 5, wherein blood pressure measurements are obtained from pulse wave related information.12.如权利要求11所述的系统,其特征在于,脉搏波相关信息为脉搏波传输时间,它是通过与被测者的脉搏波相关信号上的第一参考点和被测者的生物电信号上的第二参考点之间在同一心动周期内的时间间隔来确定的。12. The system according to claim 11, wherein the pulse wave related information is the pulse wave transit time, which is passed through the first reference point on the pulse wave related signal of the measured person and the bioelectricity of the measured person. The time interval between the second reference points on the signal within the same cardiac cycle is determined.13.如权利要求11所述的系统,其特征在于,脉搏波相关信息为脉搏波特征变量,它是仅通过与被测者的脉搏波相关的信号来确定的。13. The system according to claim 11, wherein the pulse wave-related information is a pulse wave characteristic variable, which is determined only by signals related to the pulse wave of the subject.14.如权利要求12所述的系统,其特征在于,所述第一参考点选自容积描记信号波形的顶点、中间点和底点之一。14. The system of claim 12, wherein the first reference point is selected from one of a top point, a middle point, and a bottom point of a plethysmographic signal waveform.15.根据权利要求12所述的系统,其特征在于,所述生物电信号上的第二参考点为心电信号中的R型波的顶点。15. The system according to claim 12, characterized in that, the second reference point on the bioelectrical signal is the apex of the R-shaped wave in the electrocardiographic signal.16.如权利要求13所述的系统,其特征在于,脉搏波特征变量是指时域上脉搏波上升沿或下降沿时间,或所定义时间参量的比值以及在频域上所提取的特征值。16. The system according to claim 13, wherein the characteristic variable of the pulse wave refers to the rising or falling edge time of the pulse wave in the time domain, or the ratio of the defined time parameter and the extracted eigenvalue in the frequency domain .17.如权利要求1所述的系统,其特征在于,该方法可以集成在日常生活辅助设施中,如浴缸,床和座椅等,提供特殊环境下的生理参数监测。17. The system according to claim 1, characterized in that the method can be integrated in daily life assistance facilities, such as bathtubs, beds and chairs, to provide physiological parameter monitoring in special environments.18.如权利要求17所述的系统,其特征在于,集成于生活辅助设施中测量信号的传感器位置是可调节的。18. The system of claim 17, wherein the position of the sensor integrated in the assisted living facility for measuring the signal is adjustable.
CN 2006100071742006-01-262006-01-26 Non-contact method for measuring key physiological parametersPendingCN101006915A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN 200610007174CN101006915A (en)2006-01-262006-01-26 Non-contact method for measuring key physiological parameters

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN 200610007174CN101006915A (en)2006-01-262006-01-26 Non-contact method for measuring key physiological parameters

Publications (1)

Publication NumberPublication Date
CN101006915Atrue CN101006915A (en)2007-08-01

Family

ID=38695744

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN 200610007174PendingCN101006915A (en)2006-01-262006-01-26 Non-contact method for measuring key physiological parameters

Country Status (1)

CountryLink
CN (1)CN101006915A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102283642A (en)*2011-06-102011-12-21中国科学院深圳先进技术研究院Wearable system capable of continuously measuring multiple physiological parameters based on body sensor network
CN101627902B (en)*2009-07-152011-12-28深圳先进技术研究院Low-power consumption and high-precision front processing module of photoelectric plethysmograph signal based on ambient light
CN102499687A (en)*2011-11-172012-06-20江苏大学Pig respirator rate detecting method and device on basis of machine vision
ES2384834A1 (en)*2009-09-082012-07-13Universitat Politècnica De Catalunya METHOD AND APPARATUS FOR CONTINUOUS CONTINUOUS DETECTION OF HEART FREQUENCY FOR IMPEDANCE PLETISMOGRAPHY WITH HID ELECTRODES.
CN103083010A (en)*2013-01-142013-05-08深圳美粹科技有限公司Portable electrocardiogram measuring device and remote health monitoring system
US8665098B2 (en)2010-09-202014-03-04Industrial Technology Research InstituteNon-contact motion detection apparatus
CN103767696A (en)*2013-11-052014-05-07深圳市倍轻松科技股份有限公司Heart rate detection method and device
CN103815888A (en)*2012-11-192014-05-28株式会社东芝Biosignal measuring device and biosignal measuring method
US8754772B2 (en)2010-09-202014-06-17Industrial Technology Research InstituteNon-contact vital sign sensing system and sensing method using the same
CN104055499A (en)*2014-06-162014-09-24朱宇东Wearable intelligent hand ring and method for continuously monitoring human body physiological signs
CN104123536A (en)*2009-08-202014-10-29皇家飞利浦电子股份有限公司System and method for image analysis
CN104173036A (en)*2014-09-112014-12-03重庆大学Pulse wave acquisition device, and non-invasive blood pressure continuous beat-to-beat measuring system and method
CN104490373A (en)*2014-12-172015-04-08辛勤Method and device for judging pulse signals and physiological parameter measuring equipment
CN104706348A (en)*2015-03-202015-06-17宁波市美灵思医疗科技有限公司Multi-mode continuous blood pressure measurement device and self-calibration method thereof
CN104769596A (en)*2012-12-072015-07-08英特尔公司Physiological cue processing
CN104837403A (en)*2012-11-272015-08-12佛吉亚汽车座椅有限责任公司Vehicle seat with integrated sensors
CN105105784A (en)*2015-07-202015-12-02广州丰谱信息技术有限公司Bathing equipment based on ultrasonic human body physiological data acquisition and auxiliary health protection
CN105286829A (en)*2015-11-052016-02-03南京理工大学Non-contact vital sign intelligent detection device
CN105391916A (en)*2014-08-212016-03-09索尼公司Method and system for video data processing
US9375153B2 (en)2010-05-172016-06-28Industrial Technology Research InstituteMotion/vibration sensor
US9448053B2 (en)2010-09-202016-09-20Industrial Technology Research InstituteMicrowave motion sensor
CN106068097A (en)*2014-02-202016-11-02佛吉亚汽车座椅有限责任公司Integrate the seat having sensor
CN106343984A (en)*2015-07-172017-01-25松下知识产权经营株式会社 Attention information prompting device and attention information prompting method
CN106527105A (en)*2015-09-142017-03-22深圳市美达尔前海医疗科技有限公司Intelligent watch and blood oxygen detection method
CN106516122A (en)*2015-09-092017-03-22空中客车集团印度私人有限公司Aircraft occupant seat for aircraft occupant health, safety, and comfort management
US9603555B2 (en)2010-05-172017-03-28Industrial Technology Research InstituteMotion/vibration detection system and method with self-injection locking
CN106901705A (en)*2017-01-112017-06-30南京邮电大学A kind of unaware human Body Physiology Multi-parameter harvester and acquisition method and application
CN107256021A (en)*2017-07-252017-10-17陕西舜洋电子科技有限公司Study of Intelligent Robot Control method for volleyball training
CN107427245A (en)*2015-01-262017-12-01蔚山大学校产学协力团Blood circulation disorder measurement apparatus and its method
CN107920735A (en)*2015-04-102018-04-17伊瓦·阿尔布佐夫 Multi-sensor modular subject observation and monitoring system
CN107920763A (en)*2015-07-162018-04-17普瑞温迪克斯有限责任公司Handle biological data
CN108852330A (en)*2018-05-082018-11-23广东小天才科技有限公司Biological signal detection method and device based on TWS earphone
CN108932803A (en)*2018-07-272018-12-04广东交通职业技术学院A kind of method that preventing sudden death of the baby, warning device and system
CN109310369A (en)*2016-06-102019-02-05博能电子公司For estimating the multisensor syste of blood pulse wave characteristic
CN109620198A (en)*2019-02-212019-04-16天津惊帆科技有限公司Cardiovascular index detection and model training method and device
CN109715062A (en)*2016-09-202019-05-03夏普株式会社Computer, the acquisition methods of respiration rate and information processing system
CN110301905A (en)*2019-07-312019-10-08安徽华米信息科技有限公司Detection device for vital signs and method
CN110426427A (en)*2019-09-072019-11-08中国科学院宁波材料技术与工程研究所A kind of capacitive coupled sensors, preparation method and application
CN110547778A (en)*2018-05-312019-12-10中山大学Non-contact pulse transmission time measuring system and physiological sign sensing device thereof
CN111657891A (en)*2020-06-232020-09-15北京理工大学Method for monitoring health condition of old people based on edge computing platform
CN112638246A (en)*2018-08-272021-04-09株式会社爱考斯研究Blood pressure measurement device, vehicle device, and blood pressure measurement program
CN112890792A (en)*2020-11-252021-06-04合肥工业大学Cloud computing cardiovascular health monitoring system and method based on network camera
CN113082668A (en)*2021-04-122021-07-09常州思泰姆教育科技有限公司Intelligent bicycle training controller and control system thereof
TWI796267B (en)*2022-08-012023-03-11長庚大學A biomarker system for detecting cardiovascular function and method of operation thereof
CN120501396A (en)*2025-07-222025-08-19天津工业大学 Blood pressure measurement compensation method, device and apparatus for rapid blood pressure changes

Cited By (59)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101627902B (en)*2009-07-152011-12-28深圳先进技术研究院Low-power consumption and high-precision front processing module of photoelectric plethysmograph signal based on ambient light
CN104123536A (en)*2009-08-202014-10-29皇家飞利浦电子股份有限公司System and method for image analysis
CN104123536B (en)*2009-08-202018-09-21皇家飞利浦电子股份有限公司System and method for image analysis
ES2384834A1 (en)*2009-09-082012-07-13Universitat Politècnica De Catalunya METHOD AND APPARATUS FOR CONTINUOUS CONTINUOUS DETECTION OF HEART FREQUENCY FOR IMPEDANCE PLETISMOGRAPHY WITH HID ELECTRODES.
US9375153B2 (en)2010-05-172016-06-28Industrial Technology Research InstituteMotion/vibration sensor
US9603555B2 (en)2010-05-172017-03-28Industrial Technology Research InstituteMotion/vibration detection system and method with self-injection locking
US9448053B2 (en)2010-09-202016-09-20Industrial Technology Research InstituteMicrowave motion sensor
US8665098B2 (en)2010-09-202014-03-04Industrial Technology Research InstituteNon-contact motion detection apparatus
US8754772B2 (en)2010-09-202014-06-17Industrial Technology Research InstituteNon-contact vital sign sensing system and sensing method using the same
CN102283642A (en)*2011-06-102011-12-21中国科学院深圳先进技术研究院Wearable system capable of continuously measuring multiple physiological parameters based on body sensor network
CN102283642B (en)*2011-06-102014-12-10中国科学院深圳先进技术研究院Wearable system capable of continuously measuring multiple physiological parameters based on body sensor network
CN102499687B (en)*2011-11-172014-05-28江苏大学Pig respirator rate detecting method and device on basis of machine vision
CN102499687A (en)*2011-11-172012-06-20江苏大学Pig respirator rate detecting method and device on basis of machine vision
CN103815888B (en)*2012-11-192016-01-20株式会社东芝Biological signal measuring device and biological signal measuring method
CN103815888A (en)*2012-11-192014-05-28株式会社东芝Biosignal measuring device and biosignal measuring method
CN104837403A (en)*2012-11-272015-08-12佛吉亚汽车座椅有限责任公司Vehicle seat with integrated sensors
US9640218B2 (en)2012-12-072017-05-02Intel CorporationPhysiological cue processing
CN104769596A (en)*2012-12-072015-07-08英特尔公司Physiological cue processing
CN103083010A (en)*2013-01-142013-05-08深圳美粹科技有限公司Portable electrocardiogram measuring device and remote health monitoring system
CN103767696B (en)*2013-11-052016-08-17深圳市倍轻松科技股份有限公司The detection method of heart rate and device
CN103767696A (en)*2013-11-052014-05-07深圳市倍轻松科技股份有限公司Heart rate detection method and device
WO2015066876A1 (en)*2013-11-052015-05-14深圳市倍轻松科技股份有限公司Heart rate detection method and device
CN106068097B (en)*2014-02-202020-09-29佛吉亚汽车座椅有限责任公司Vehicle seat with integrated sensor
CN106068097A (en)*2014-02-202016-11-02佛吉亚汽车座椅有限责任公司Integrate the seat having sensor
CN104055499A (en)*2014-06-162014-09-24朱宇东Wearable intelligent hand ring and method for continuously monitoring human body physiological signs
CN105391916B (en)*2014-08-212018-10-12索尼公司Method and system for video data processing
CN105391916A (en)*2014-08-212016-03-09索尼公司Method and system for video data processing
CN104173036A (en)*2014-09-112014-12-03重庆大学Pulse wave acquisition device, and non-invasive blood pressure continuous beat-to-beat measuring system and method
CN104490373A (en)*2014-12-172015-04-08辛勤Method and device for judging pulse signals and physiological parameter measuring equipment
CN107427245A (en)*2015-01-262017-12-01蔚山大学校产学协力团Blood circulation disorder measurement apparatus and its method
CN104706348A (en)*2015-03-202015-06-17宁波市美灵思医疗科技有限公司Multi-mode continuous blood pressure measurement device and self-calibration method thereof
CN107920735A (en)*2015-04-102018-04-17伊瓦·阿尔布佐夫 Multi-sensor modular subject observation and monitoring system
CN107920763A (en)*2015-07-162018-04-17普瑞温迪克斯有限责任公司Handle biological data
CN106343984A (en)*2015-07-172017-01-25松下知识产权经营株式会社 Attention information prompting device and attention information prompting method
CN105105784A (en)*2015-07-202015-12-02广州丰谱信息技术有限公司Bathing equipment based on ultrasonic human body physiological data acquisition and auxiliary health protection
CN106516122A (en)*2015-09-092017-03-22空中客车集团印度私人有限公司Aircraft occupant seat for aircraft occupant health, safety, and comfort management
CN106516122B (en)*2015-09-092021-07-27空中客车集团印度私人有限公司Aircraft passenger seat for aircraft passenger health, safety and comfort management
CN106527105A (en)*2015-09-142017-03-22深圳市美达尔前海医疗科技有限公司Intelligent watch and blood oxygen detection method
CN105286829A (en)*2015-11-052016-02-03南京理工大学Non-contact vital sign intelligent detection device
US11160453B2 (en)2016-06-102021-11-02Polar Electro OyMulti-sensor system for estimating blood pulse wave characteristics
CN109310369A (en)*2016-06-102019-02-05博能电子公司For estimating the multisensor syste of blood pulse wave characteristic
CN109310369B (en)*2016-06-102021-10-19博能电子公司Multi-sensor system for estimating blood pulse wave characteristics
CN109715062A (en)*2016-09-202019-05-03夏普株式会社Computer, the acquisition methods of respiration rate and information processing system
CN106901705A (en)*2017-01-112017-06-30南京邮电大学A kind of unaware human Body Physiology Multi-parameter harvester and acquisition method and application
CN107256021A (en)*2017-07-252017-10-17陕西舜洋电子科技有限公司Study of Intelligent Robot Control method for volleyball training
CN108852330A (en)*2018-05-082018-11-23广东小天才科技有限公司Biological signal detection method and device based on TWS earphone
CN110547778A (en)*2018-05-312019-12-10中山大学Non-contact pulse transmission time measuring system and physiological sign sensing device thereof
CN110547778B (en)*2018-05-312021-09-21中山大学Non-contact pulse transmission time measuring system and physiological sign sensing device thereof
CN108932803A (en)*2018-07-272018-12-04广东交通职业技术学院A kind of method that preventing sudden death of the baby, warning device and system
CN112638246A (en)*2018-08-272021-04-09株式会社爱考斯研究Blood pressure measurement device, vehicle device, and blood pressure measurement program
CN109620198A (en)*2019-02-212019-04-16天津惊帆科技有限公司Cardiovascular index detection and model training method and device
CN109620198B (en)*2019-02-212022-04-12天津惊帆科技有限公司Cardiovascular index detection and model training method and device
CN110301905A (en)*2019-07-312019-10-08安徽华米信息科技有限公司Detection device for vital signs and method
CN110426427A (en)*2019-09-072019-11-08中国科学院宁波材料技术与工程研究所A kind of capacitive coupled sensors, preparation method and application
CN111657891A (en)*2020-06-232020-09-15北京理工大学Method for monitoring health condition of old people based on edge computing platform
CN112890792A (en)*2020-11-252021-06-04合肥工业大学Cloud computing cardiovascular health monitoring system and method based on network camera
CN113082668A (en)*2021-04-122021-07-09常州思泰姆教育科技有限公司Intelligent bicycle training controller and control system thereof
TWI796267B (en)*2022-08-012023-03-11長庚大學A biomarker system for detecting cardiovascular function and method of operation thereof
CN120501396A (en)*2025-07-222025-08-19天津工业大学 Blood pressure measurement compensation method, device and apparatus for rapid blood pressure changes

Similar Documents

PublicationPublication DateTitle
CN101006915A (en) Non-contact method for measuring key physiological parameters
EP3965644B1 (en)Patch-based physiological sensor
CN101327121B (en)Physiological parameter measuring device
JP6351504B2 (en) Device for obtaining cardiovascular information by measuring between two limbs
JP2021519621A (en) A method for estimating blood pressure and arterial wall sclerosis based on photoplethysmographic (PPG) signals
JP6006254B2 (en) System for measuring and recording user vital signs
CN101229058A (en)Initial calibration device for measuring arterial blood pressure by pulse wave transmission time method
Zhang et al.Health monitoring of human multiple physiological parameters based on wireless remote medical system
CN105708431A (en)Real-time blood pressure measuring device and measuring method
Ibrahim et al.Continuous blood pressure monitoring using wrist-worn bio-impedance sensors with wet electrodes
CN113164076B (en) Patch-based physiological sensors
US20200129078A1 (en)Blood Pressure Calculation Method and Device
JP7235120B2 (en) Sphygmomanometer
TWM542444U (en) Wearable multifunctional pulse wave diagnosis and analysis device
CN101234016A (en)Physiological parameter measuring device
US11096590B2 (en)Patch-based physiological sensor
CN100502768C (en)Human physiological parameter monitoring device based on high-frequency photoplethysmography signals
Ibrahim et al.A novel method for pulse transit time estimation using wrist bio-impedance sensing based on a regression model
US20200029834A1 (en)Patch-based physiological sensor
Rao et al.A comparative analysis of reflective and transmissive PPG sensor in pulse acquisition system
CN107692987A (en)Object wearing device for physical sign parameters collection
Alqudah et al.Multiple time and spectral analysis techniques for comparing the PhotoPlethysmography to PiezoelectricPlethysmography with electrocardiography
Revathi et al.IoT based pulse oximeter for remote health assessment: design, challenges and futuristic scope
Gu et al.A h-shirt-based body sensor network for cuffless calibration and estimation of arterial blood pressure
CN213883186U (en)Sleeveless blood pressure monitoring device

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C12Rejection of a patent application after its publication
RJ01Rejection of invention patent application after publication

Open date:20070801


[8]ページ先頭

©2009-2025 Movatter.jp