



技术领域:Technical field:
本发明属于光电子器件制造技术领域,具体有关于半导体发光二极管(LED)的电极构造。The invention belongs to the technical field of optoelectronic device manufacturing, and in particular relates to the electrode structure of a semiconductor light emitting diode (LED).
背景技术:Background technique:
半导体发光二极管(Light Emitting Diode,LED)的是一种以半导体将电能转变成光能的光电子器件。具有体积小,寿命长,光电转换效率高,无污染,节能等特性,能够适应各种应用设备的轻薄小型化的要求,广泛应用于各种交通标志,LCD背光光源,打印,大屏幕显示,通信,照明等方面。A semiconductor light emitting diode (Light Emitting Diode, LED) is an optoelectronic device that converts electrical energy into light energy with a semiconductor. It has the characteristics of small size, long life, high photoelectric conversion efficiency, no pollution, energy saving, etc., and can meet the requirements of various application equipment for thinness and miniaturization. It is widely used in various traffic signs, LCD backlight sources, printing, large-screen display, communication, lighting, etc.
构成发光二极管的材料主要有各种化合物半导体材料如III-V族材料、II-VI族材料等。可以发出不同颜色的光,如紫,蓝,绿,黄和红。Materials constituting light-emitting diodes mainly include various compound semiconductor materials such as III-V group materials, II-VI group materials, and the like. Can emit light of different colors, such as purple, blue, green, yellow and red.
公知的LED的构造如图1、图2和图3图4。The structure of the known LED is shown in Fig. 1, Fig. 2 and Fig. 3 Fig. 4 .
传统LED结构中,不加反射镜的LED有六个面可以出光。其中只有一个出光面可以被利用。如果不对其他几个出光面加以利用,那么大部分光都损失掉。传统结构普通电极LED所带高反镜的一般为平面板式,只在一个平面上对光进行反射,这样相当于有两个出光面的光线被利用。其缺点是还有两个出光面没有被利用,很多光从LED台的侧面逸出。这些从侧面逸出的光,只有一部分被封装的反射杯反射,大部分光损失掉。于是又出现一种传统倒金字塔结构普通电极LED如图5。这种传统金字塔结构普通电极的LED光提效率比传统结构普通电极LED高10%-20%。但这种传统倒金字塔结构普通电极LED侧面没有高反镜。这种LED的好处是LED台的侧面与竖直面成这一定的角度,一般为器件发出光的临界角。这样射向侧面的光线也被利用。但这种结构也存在很多问题,如这种倒金字塔结构制备起来很难,需要用腐蚀液钻蚀的办法才能实现。而且传统倒金字塔结构普通电极LED台的侧面与竖直面所成的角度很难准确地做成为光的临界角,这样很多光线依然没有被利用上。即使其角度做成为光的临界角,可是LED发出的光为各种同性,什么方向都有,依然有很多光得不到满意地利用。如果光线不能从我们所要利用的出光面射出来,那么这些光就会经过多次反射和吸收形成大量的热,造成光提取效率低,热可靠性差。传统制备绝缘层过程中,绝缘层都是一次生长完成,如果以传统方法来制备透明绝缘层11很容易造成PN结漏电现象。In the traditional LED structure, the LED without a reflector has six sides that can emit light. Only one of the light-emitting surfaces can be utilized. If the other few light-emitting surfaces are not utilized, most of the light is lost. The high-reflection mirror of the traditional structure ordinary electrode LED is generally a flat plate type, which only reflects light on one plane, which is equivalent to using the light from two light-emitting surfaces. The disadvantage is that there are still two light-emitting surfaces that have not been utilized, and a lot of light escapes from the side of the LED table. Only a part of the light escaping from the side is reflected by the packaged reflective cup, and most of the light is lost. Then there is a traditional inverted pyramid structure ordinary electrode LED as shown in Figure 5. The light extraction efficiency of the LED with the common electrode of the traditional pyramid structure is 10%-20% higher than that of the LED with the common electrode of the traditional structure. But there is no high reflection mirror on the side of this traditional inverted pyramid structure ordinary electrode LED. The advantage of this kind of LED is that the side of the LED table forms a certain angle with the vertical plane, which is generally the critical angle for the device to emit light. In this way the light directed to the side is also utilized. However, this structure also has many problems. For example, the inverted pyramid structure is difficult to prepare, and it needs to be drilled with corrosive liquid to realize it. Moreover, the angle formed by the side surface and the vertical surface of the traditional inverted pyramid structure ordinary electrode LED table is difficult to accurately make the critical angle of light, so a lot of light is still not used. Even if the angle is made to be the critical angle of light, the light emitted by the LED is of all kinds, and there are any directions, and there is still a lot of light that cannot be used satisfactorily. If the light cannot be emitted from the light-emitting surface we want to use, then the light will be reflected and absorbed many times to form a large amount of heat, resulting in low light extraction efficiency and poor thermal reliability. In the traditional process of preparing the insulating layer, the insulating layer is grown at one time. If the
发明内容:Invention content:
本发明所要解决的问题是在LED侧面加上高反镜来解决传统LED侧面出光,不能有效提取器件所发出的光的问题,同时对LED侧面PN结进行保护,防止氧化,增加器件的可靠性。The problem to be solved by the present invention is to add a high reflection mirror on the side of the LED to solve the problem that the light emitted from the side of the traditional LED cannot effectively extract the light emitted by the device, and at the same time protect the PN junction on the side of the LED to prevent oxidation and increase the reliability of the device .
高光提取效率LED电极,其结构至少包括:P电极加厚电极1,高反镜保护层2,金属高反镜3,N电极4,N型半导体5,多量子阱有源区MQW6,P型半导体7,P电极欧姆接触层8,N电极加厚电极9,衬底10;由P型半导体7,多量子阱有源区MQW6,N型半导体5自上而下构成LED的台;P电极欧姆接触层8位于LED台顶部的P型半导体7表面上;N电极4位于LED台底部的N型半导体5之上,与LED台的侧壁不相接触;其特征在于:在LED台的侧壁上有一透明绝缘层11;台上表面面积小于下表面面积;LED台的侧壁与竖直平面成锐角角度;金属高反镜3覆盖在P电极欧姆接触层8上,并延展覆盖在透明绝缘层11之上,包围LED台的顶部和侧壁,但不与N电极4接触;金属高反镜3、透明绝缘层11和LED台三者之间折射率大小排列为高低高。LED electrode with high light extraction efficiency, its structure at least includes: P electrode thickened electrode 1, high reflective mirror
透明绝缘层11的折射率小于金属高反镜3,同时也比N型半导体5、多量子阱有源区6、P型半导体7的折射率都要小。透明绝缘层11厚度可以是器件发出光的四分之一光学波长,也可以是非四分之一光学波长,最佳为四分之一的光学波长。The refractive index of the
而且金属高反镜3、透明绝缘层11和LED台三者之间折射率关系构成高低高的结构,使光线相干叠加,从而有利于提高各种光的反射效率。LED台的侧壁与竖直平面成锐角角度,该角度的方向能使器件射向侧面的光线经金属高反镜3反射后从出光面射出。有了金属高反镜3后,即使LED的侧面与竖直面所成的角度不是器件所发光线的临界角,射向侧面的光线也能被很好地反射到出光面。同时透明绝缘层11可以对裸露的PN结进行保护,防止氧化退化提高器件可靠性。出光面为衬底10。Moreover, the refractive index relationship among the metal high-
高光提取效率LED电极的制备方法,其制备方法包括:A method for preparing LED electrodes with high light extraction efficiency, the preparation method comprising:
1)在一块生长好LED结构晶圆上,用普通光刻法在晶圆上用光刻胶掩膜出LED的台结构图型,然后用离子刻蚀系统ICP刻出LED台;刻出LED台后剥离去掉光刻胶;1) On a well-grown LED structure wafer, use ordinary photolithography to mask the LED table structure pattern on the wafer with photoresist, and then use the ion etching system ICP to carve out the LED table; Strip off the photoresist behind the stage;
2)样品用王水清洗后,用普通光刻法掩膜,用溅射或蒸发的方法在LED台顶部的P半导体7上镀一层P电极欧姆接触层8;2) After the sample is cleaned with aqua regia, mask with ordinary photolithography, and coat a P electrode
3)对P电极欧姆接触层8进行合金;3) alloying the P electrode
4)利用普通光刻法对P电极欧姆接触层8和LED台的侧壁进行胶保护,用溅射金属或蒸发金属的方法在LED台的底部N型半导体5上沉积N电极4;N电极4不与LED台的侧壁相接触;剥离光刻胶;4) Protect the P electrode
5)利用普通光刻法遮挡,然后用溅射或蒸发的方法在P电极欧姆层8和LED台的侧壁沉积一层金属高反镜3,金属高反镜3覆盖P电极欧姆层8的表面以及由P型半导体7、多量子阱有源区6、N型半导体5构成的LED台的侧壁;5) Utilize ordinary photolithography to shield, then deposit a layer of metal
6)在金属高反镜3上用溅射金属或蒸发金属的方法镀一层金属形成高反镜保护层2;或是用薄膜生长的方法生长一层绝缘层,再用光刻腐蚀方法,形成高反镜保护层2;6) Coating a layer of metal on the metal high-
7)在P电极欧姆接触层8的区域上方及N电极4上同时镀上金属,形成P电极加厚电极1和N电极加厚电极9;7) Plating metal on the area of the P electrode
8)解理,把两个器件间相连的N型半导体5和衬底10用激光划开得到如图5所示的LED的台;8) cleavage, the N-
其特征在于:在步骤1)刻出LED台之后,在步骤2)制备P电极欧姆接触层8之前,在LED台的侧壁上先制备一层透明绝缘层11;透明绝缘层11是用二步生长法进行:第一次在LED台的侧壁生长透明绝缘层后,用去离子水超声,露出透明绝缘层的针孔和空洞,然后在第一次生长的透明绝缘层表面再生长一层透明绝缘层,填补先前生长的透明绝缘层表面的针孔和空洞,形成透明绝缘层11。It is characterized in that: after step 1) engraving the LED stage, before step 2) preparing the P electrode
由于二次生长法去掉透明绝缘层11中的针孔和空洞,这样金属层覆盖在其上面时不会产生漏电现象,而由传统方法一次性生长出的绝缘层很容易产生漏电现象。由于透明绝缘层11生长的温度不高于LED的P型掺杂剂激活温度,所以分二步生长透明绝缘层11不会对器件可靠性产生不利影响。Since the pinholes and voids in the transparent insulating
附图说明Description of drawings
图1为传统结构普通电极LED的剖面图Figure 1 is a cross-sectional view of a traditional structure common electrode LED
P电极加厚电极1,高反镜保护层2,金属高反镜3,N电极4,N型半导体5,有源区多量子阱(MQW)6,P型半导体7,P电极欧姆接触层8,N电极加厚电极9,衬底10;P electrode thickened electrode 1, high reflective
图2为传统结构普通电极LED的俯视图Figure 2 is a top view of a traditional structure common electrode LED
P电极加厚电极1,高反镜保护层2,N型半导体5,N电极加厚电极9P electrode thickening electrode 1, high
图3为倒金字塔结构普通电极LED的剖面图Figure 3 is a cross-sectional view of a common electrode LED with an inverted pyramid structure
P电极加厚电极1,N电极4,N型半导体5,有源区多量子阱(MQW)6,P型半导体7,P电极欧姆接触层8,N电极加厚电极9,衬底10P electrode thickened electrode 1, N electrode 4, N-
图4为倒金字塔结构普通电极LED的俯视图Figure 4 is a top view of a common electrode LED with an inverted pyramid structure
P电极加厚电极1,高反镜保护层2,N型半导体5,N电极加厚电极9P electrode thickening electrode 1, high
图5为本发明电极结构LED的剖面图Fig. 5 is the sectional view of electrode structure LED of the present invention
P电极加厚电极4,高反镜保护层2,金属高反镜3,N电极4,N型半导体5,有源区多量子阱(MQW)6,P型半导体7,P电极欧姆接触层8,N电极加厚电极9,衬底10,透明绝缘层11P electrode thickening electrode 4, high reflection mirror
图6为本发明电极结构LED的俯视图Fig. 6 is the top view of the electrode structure LED of the present invention
P电极加厚电极1,高反镜保护层2,N型半导体5,N电极加厚电极9,透明绝缘层11P electrode thickening electrode 1, high
具体实施方式Detailed ways
如图5所示,本发明电极结构实施如下:As shown in Figure 5, the electrode structure of the present invention is implemented as follows:
1、加厚电极1和9的金属为Ti/Au膜系组合,也可是其他金属组合如Ti/Al/Ti/Au。Ti膜作为N电极4和Au膜的连接层,厚度为较佳厚度为Au膜的厚度为Al膜的厚度为为1. The metal of the thickened
2、金属高反镜3覆盖在P电极欧姆层8表面与LED台的侧壁的透明绝缘层11上。金属高反镜3在侧壁上的厚度为金属高反镜可以是Al镜或是Ag镜。2. The metal
3、在金属高反镜3的外部的高反镜保护层2可以是不活泼金属Au,也可以是其他不活泼金属。或者为绝缘层SiO2,SiNx等。高反镜保护层2在LED侧壁上的厚度范围为高反镜保护层2如果是绝缘体膜,在金属高反镜3与加厚电极1之间的接触区域没有绝缘体层,金属高反镜3与P电极加厚电极1直接接触。3. The high reflective mirror
4、N电极4为Ti/Al金属膜系组合。Ti膜作为N型半导体5与Al膜的连接层,厚度为Al膜的厚度为N电极4与LED台的侧壁相距10-30μm。4. The N electrode 4 is a combination of Ti/Al metal film system. The Ti film is used as the connection layer between the N-
5、P电极欧姆接触层8可以是金属Ni/Au,也可以是其他金属组合或者为透明导电膜如铟锡氧化物ITO膜等。Ni/Au金属或其他金属组合构成的P电极欧姆接触层8的总厚度为透明导电膜厚度为5. The
6、衬底10可以是蓝宝石,砷化镓,硅,或是碳化硅。6. The
7、N型半导体5是N型GaN,P型半导体7是P型GaN。7. The N-
8、透明绝缘层11可以是SiO2,也可以是SiNx等。透明绝缘层11在LED侧壁上的厚度范围为最佳厚度为LED器件所发光波长的光学厚度的四分之一。透明绝缘层11仅覆盖P型半导体7的边缘部分,范围为4-10μm。8. The transparent insulating
实施例1:Example 1:
如图5所示,本发明LED电极制备步骤如下:As shown in Figure 5, the preparation steps of the LED electrode of the present invention are as follows:
1)在一块生长好LED结构晶圆上,先用卡尔休斯(Karl Suss)光刻机,普通光刻法在晶圆上用光刻胶掩膜出300μm×300μm面积的LED的台结构图型。光刻胶厚4μm。然后用ICP等离子刻蚀系统刻出LED的台来。台高从P-GaN到N-GaN共700nm左右。刻出台后用丙酮超声剥离去掉光刻胶。台的侧面与竖直面自然形成20度角度。1) On a wafer with a grown LED structure, first use a Karl Suss lithography machine, and use a photoresist mask on the wafer to produce a 300μm×300μm area LED table structure diagram type. The photoresist is 4 μm thick. Then use the ICP plasma etching system to carve out the LED table. The table height is about 700nm from P-GaN to N-GaN. After engraving, the photoresist was removed by ultrasonic stripping with acetone. The side of the platform naturally forms an angle of 20 degrees with the vertical plane.
2)用离子增强化学气相沉积PECVD薄膜沉积技术在LED台的侧壁上300度分二步生长80nm(蓝光460的四分之一光学波长厚度)的SiO2(460nm光处,折射率为1.46)。先生长40nm SiO2后,把样品用水超声2分钟。然后再生长40nm。最后用普通光刻腐蚀法去掉LED台的侧面以外的SiO2。得到透明绝缘层11。2) Use ion-enhanced chemical vapor deposition PECVD film deposition technology to grow 80nm (1/4 optical wavelength thickness of blue light 460) SiO2 (at 460nm light, the refractive index is 1.46) on the side wall of the LED table at 300 degrees in two steps ). After growing 40 nm SiO2 , the samples were sonicated in water for 2 min. Then grow another 40nm. Finally, the SiO2 other than the sides of the LED table is removed by ordinary photolithography etching. The transparent insulating
3)样品用王水清洗5分钟后,用Denton Explorer-14溅射台溅射的方法,每秒的速率,在LED台顶部的P半导体层7上镀一层的Ni膜和的Au膜用作欧姆接触层8,用丙酮超声剥离光刻胶。3) After the sample is washed with aqua regia for 5 minutes, it is sputtered with a Denton Explorer-14 sputtering station, per second rate, a layer is plated on the
4)把样品在快速退火炉中合金,得到P电极欧姆接触层8。合金条件为500度1分钟,N2∶O2=2L∶0.5L。4) Alloying the sample in a rapid annealing furnace to obtain the P electrode
5)利用普通光刻法对P电极区和LED台的侧面进行胶保护,用DentonExplorer-14溅射台溅射的方法,在LED台的底部的N型半导体5上溅射Ti/Al金属膜用为N电极4。N电极与LED台的侧壁相距20μm。Ti膜的厚度溅射速率为每秒Al膜的厚度为溅射速率为每秒5) Use common photolithography to protect the P electrode area and the side of the LED table with glue, and sputter a Ti/Al metal film on the N-
6)利用普通光刻法对N电极遮挡,然后用Denton Explorer-14溅射的方法在P电极欧姆接触层8和LED台的侧面沉积一层的Ag金属,得到金属高反镜3。6) Utilize ordinary photolithography to shield the N electrode, and then use Denton Explorer-14 sputtering to deposit a layer on the side of the P electrode
7)用Denton Explorer-14溅射的方法在金属高反镜3上沉积Ti/Au金属层,高反镜金属保护层2。Ti的厚度为Au的厚度为金属高反镜3与高反镜保护层2与N电极保持10μm的距离。Ti的溅射速率为每秒Au的溅射速率为每秒7) Deposit a Ti/Au metal layer and a metal
8)在P电极区,同时在高反镜保护层2上和N电极4上溅射的Ti/Au加厚金属电极,同时得到P电极加厚电极1和N电极加厚电极9。Ti的溅射速率为每秒Au的溅射速率为每秒8) In the P electrode area, sputter on the high reflective mirror
9)解理。用激光划开两个器件间N型半导体5和衬底10相连的部分,得到如图5所示的LED。9) Cleavage. The part where the N-
用杭州远方PMS-50(PLUS)UV光功率仪器对两种结构的LED封装后测试,本发明结构的LED光总辐射功率为4.77mW,传统结构的LED光总辐射功率为3.95mW。本发明结构的LED比相同设备制备的传统倒金字塔结构普通电极LED光功率高20.7%。两种LED测试条件同为20mA恒流下测得。After encapsulating the LEDs of the two structures with the Hangzhou Yuanfang PMS-50 (PLUS) UV optical power instrument, the total radiant power of the LED with the structure of the present invention is 4.77mW, and the total radiant power of the LED with the traditional structure is 3.95mW. The light power of the LED with the structure of the invention is 20.7% higher than that of the traditional inverted pyramid structure common electrode LED prepared by the same equipment. The two LED test conditions are measured under the same 20mA constant current.
实施例2:Example 2:
如图5所示,本发明LED电极制备步骤如下:As shown in Figure 5, the preparation steps of the LED electrode of the present invention are as follows:
1)在一块生长好LED结构晶圆上,先用卡尔休斯(Karl Suss)光刻机,普通光刻法在晶圆上用光刻胶掩膜出300μm×300μm面积的LED的台结构图型。光刻胶厚3μm。然后用ICP等离子刻蚀系统刻出LED的台来。台高从P-GaN到N-GaN共700nm左右。刻出台后用丙酮超声剥离去掉光刻胶。台的侧面与竖直面自然形成18度左右的角度。1) On a wafer with a grown LED structure, first use a Karl Suss lithography machine, and use a photoresist mask on the wafer to produce a 300μm×300μm area LED table structure diagram type. The photoresist is 3 μm thick. Then use the ICP plasma etching system to carve out the LED table. The table height is about 700nm from P-GaN to N-GaN. After engraving, the photoresist was removed by ultrasonic stripping with acetone. The side of the platform and the vertical plane naturally form an angle of about 18 degrees.
2)用离子增强化学气相沉积PECVD薄膜沉积技术在LED台的侧壁上300度分二步生长57.5nm(蓝光460的四分之一光学波长厚度)的SiNx(460nm处,SiNx折射率约为2)。先生长30nmSiNx后,把样品用水超声2分钟。然后再生长27.5nm。得到透明绝缘层11。2) Use ion-enhanced chemical vapor deposition PECVD film deposition technology to grow 57.5nm (1/4 optical wavelength thickness of blue light 460) SiNx (at 460nm, SiNx refractive index about 2). After growing 30nmSiNx , the sample was sonicated with water for 2 minutes. Then grow another 27.5nm. The transparent insulating
3)样品用王水清洗5分钟后,用Denton Explorer-14溅射台溅射的方法,每秒的速率,在LED台顶部的P半导体层7上镀一层的Ni膜和的Au膜用作欧姆接触层8,用丙酮超声剥离光刻胶。3) After the sample is washed with aqua regia for 5 minutes, it is sputtered with a Denton Explorer-14 sputtering station, per second rate, a layer is plated on the
4)把样品在快速退火炉中合金,得到P电极欧姆接触层8。合金条件为500度1分钟,N2∶O2=2L∶0.5L。4) Alloying the sample in a rapid annealing furnace to obtain the P electrode
5)利用普通光刻法对P电极区和LED台的侧面进行胶保护,用DentonExplorer-14溅射台溅射的方法,在LED台的底部的N型半导体5上溅射Ti/Al金属膜用为N电极4。N电极与LED台的侧壁相距10μm。Ti膜的厚度溅射速率为每秒Al膜的厚度为溅射速率为每秒5) Use common photolithography to protect the P electrode area and the side of the LED table with glue, and sputter a Ti/Al metal film on the N-
6)利用普通光刻法对N电极遮挡,然后用Denton Explorer-14溅射的方法在P电极欧姆接触层8和LED台的侧面沉积一层的Al金属,得到金属高反镜3。6) Utilize ordinary photolithography to shield the N electrode, and then use Denton Explorer-14 sputtering to deposit a layer on the side of the P electrode
7)利用离子增强化学气相沉积PECVD在金属高反镜3上低温120度生长薄膜,用光刻腐蚀方法去掉金属高反镜3以外的所有SiO2,并用样方法去掉在金属高反镜3正上方的SiO2,留出一个通孔,以便金属高反镜3与P电极加厚电极1接触。这样得到高反镜保护层2。7) Use ion-enhanced chemical vapor deposition PECVD to grow on the metal
8)在P电极欧姆接触层正上方区域的高反镜保护层2上和N电极4上溅射的Ti/Au加厚金属电极,同时得到P电极加厚电极1和N电极加厚电极9。Ti的溅射速率为每秒Au的溅射速率为每秒8) Sputtering on the high reflective mirror
9)解理。用激光划开两个器件间N型半导体5和衬底10相连的部分,得到如图5所示的LED。9) Cleavage. The part where the N-
用杭州远方PMS-50(PLUS)UV光功率仪器对两种结构的LED封装后测试,本发明结构的LED光总辐射功率为4.65mW,传统结构的LED光总辐射功率为3.93mW。本发明结构的LED比相同设备制备的传统倒金字塔结构普通电极LED光功率高18.3%。两种LED测试条件同为20mA恒流下测得。After encapsulating the LEDs of the two structures with the Hangzhou Yuanfang PMS-50 (PLUS) UV optical power instrument, the total radiant power of the LED with the structure of the present invention is 4.65mW, and the total radiant power of the LED with the traditional structure is 3.93mW. The light power of the LED with the structure of the invention is 18.3% higher than that of the traditional inverted pyramid structure common electrode LED prepared by the same equipment. The two LED test conditions are measured under the same 20mA constant current.
实施例3:Example 3:
如图5所示,本发明LED电极制备步骤如下:As shown in Figure 5, the preparation steps of the LED electrode of the present invention are as follows:
1)在一块生长好LED结构晶圆上,先用卡尔休斯(Karl Suss)光刻机,普通光刻法在晶圆上用光刻胶掩膜出300μm×300μm面积的LED的台结构图型。光刻胶厚5μm。然后用ICP等离子刻蚀系统刻出LED的台来。台高从P-GaN到N-GaN共700nm左右。刻出台后用丙酮超声剥离去掉光刻胶。台的侧面与竖直面自然形成30度角度。1) On a wafer with a grown LED structure, first use a Karl Suss lithography machine, and use a photoresist mask on the wafer to produce a 300μm×300μm area LED table structure diagram type. The photoresist is 5 μm thick. Then use the ICP plasma etching system to carve out the LED table. The table height is about 700nm from P-GaN to N-GaN. After engraving, the photoresist was removed by ultrasonic stripping with acetone. The side of the platform naturally forms a 30-degree angle with the vertical plane.
2)用离子增强化学气相沉积PECVD薄膜沉积技术在LED台的侧壁上300度分两步生长262nm(绿光510的四分之三光学波长厚度)的SiO2(510nm处SiO2折射率为1.47)。先生长132nm SiO2后,把样品用水超声2分钟。然后再生长130nm。最后用普通光刻腐蚀法去掉LED台的侧面以外的SiO2。得到绝缘层11。2) Use ion-enhanced chemical vapor deposition PECVD film deposition technology to grow 262nm (3/4 optical wavelength thickness of green light 510) SiO2 on the side wall of the LED table at 300 degrees in two steps (the refractive index of SiO2 at 510nm is 1.47). After growing 132nm SiO2 , the samples were sonicated in water for 2 min. Then grow another 130nm. Finally, the SiO2 other than the sides of the LED table is removed by ordinary photolithography etching. The insulating
3)样品用王水清洗5分钟后,用Denton Discovery 550蒸发台蒸发的方法,每秒的速率,在LED台顶部的P型半导体7表面350度蒸发ITO膜,膜厚度为3) After the sample was washed with aqua regia for 5 minutes, it was evaporated on a Denton Discovery 550 evaporator, per second Evaporate the ITO film at 350 degrees on the surface of the P-
4)把样品在快速退火炉中合金,得到P电极欧姆接触层8。合金条件为500度1分钟,N2∶O2=2L∶0.5L。4) Alloying the sample in a rapid annealing furnace to obtain the P electrode
5)利用普通光刻法对P电极区和LED台的侧面进行胶保护,用DentonDiscovery 550蒸发台蒸发的方法,在LED台的底部的N型半导体5上蒸发Ti/Al金属膜用为N电极4。N电极与LED台的侧壁相距15μm。Ti膜的厚度蒸发速率为每秒Al膜的厚度为蒸发速率为每秒5) Use ordinary photolithography to protect the P electrode area and the side of the LED table with glue, and use the DentonDiscovery 550 evaporation table evaporation method to evaporate the Ti/Al metal film on the N-
6)利用普通光刻法对N电极遮挡,然后用Denton Discovery 550蒸发台蒸发的方法在P电极欧姆接触层8和透明绝缘层沉积11上蒸发一层的Ag金属,得到金属高反镜3。6) Use ordinary photolithography to shield the N electrode, and then evaporate a layer on the P electrode
7)用Denton Discovery 550蒸发台蒸发的方法在金属高反镜3上沉积Ti/Au金属层,得到高反镜金属保护层2。Ti的厚度为Au的厚度为金属高反镜3与高反镜保护层2与N电极保持20μm的距离。Ti的蒸发速率为每秒Au的蒸发速率为每秒7) Deposit a Ti/Au metal layer on the metal high-
8)在P电极区,同时在高反镜保护层2上和N电极4上蒸发的Ti/Al/Ti/Au加厚金属电极,同时得到P电极加厚电极1和N电极加厚电极9。Ti的蒸发速率为每秒Au的蒸发速率为每秒8) In the P electrode area, evaporate on the high reflective mirror
9)解理。用激光划开两个器件间N型半导体5和衬底10相连的部分,得到如图5所示的LED。9) Cleavage. The part where the N-
用杭州远方PMS-50(PLUS)UV光功率仪器对两种结构的LED封装后测试,本发明结构的LED光总辐射功率为3.04mW,传统结构的LED光总辐射功率为2.45mW。本发明结构的LED比相同设备制备的传统倒金字塔结构普通电极LED光功率高24%。两种LED测试条件同为20mA恒流下测得。After encapsulating the LEDs of the two structures with the Hangzhou Yuanfang PMS-50 (PLUS) UV optical power instrument, the total radiant power of the LED with the structure of the present invention is 3.04mW, and the total radiant power of the LED with the traditional structure is 2.45mW. The light power of the LED with the structure of the invention is 24% higher than that of the traditional inverted pyramid structure common electrode LED prepared by the same equipment. The two LED test conditions are measured under the same 20mA constant current.
实施例4:Example 4:
如图5所示,本发明LED电极制备步骤如下:As shown in Figure 5, the preparation steps of the LED electrode of the present invention are as follows:
1)在一块生长好LED结构晶圆上,先用卡尔休斯(Karl Suss)光刻机,普通光刻法在晶圆上用光刻胶掩膜出300μm×300μm面积的LED的台结构图型。光刻胶厚4μm。然后用ICP等离子刻蚀系统刻出LED的台来。LED台高从P-GaN到N-GaN共700nm左右。刻出台后用丙酮超声剥离去掉光刻胶。台的侧面与竖直面自然形成20度角度。1) On a wafer with a grown LED structure, first use a Karl Suss lithography machine, and use a photoresist mask on the wafer to produce a 300μm×300μm area LED table structure diagram type. The photoresist is 4 μm thick. Then use the ICP plasma etching system to carve out the LED table. The LED table height is about 700nm from P-GaN to N-GaN. After engraving, the photoresist was removed by ultrasonic stripping with acetone. The side of the platform naturally forms an angle of 20 degrees with the vertical plane.
2)用离子增强化学气相沉积PECVD薄膜沉积技术在LED台的侧壁上300度分二步生长240nm(蓝光460的四分之三光学波长厚度)的SiO2(460nm光处,折射率为1.46)。先生长120nm SiO2后,把样品用水超声2分钟。然后再生长120nm。最后用普通光刻腐蚀法去掉LED台的侧面以外的SiO2。得到透明绝缘层11。2) Use ion-enhanced chemical vapor deposition PECVD film deposition technology to grow 240nm (3/4 optical wavelength thickness of blue light 460) SiO2 (460nm light place, refractive index 1.46) on the side wall of the LED table at 300 degrees in two steps ). After growing 120 nm SiO2 , the samples were sonicated with water for 2 min. Then grow another 120nm. Finally, the SiO2 other than the sides of the LED table is removed by ordinary photolithography etching. The transparent insulating
3)样品用王水清洗5分钟后,用DentonExplorer-14溅射台溅射的方法,每秒的速率,在LED台顶部的P半导体层7上镀一层的Ni,的Pt和的Au膜用作欧姆接触层8,用丙酮超声剥离光刻胶。3) After the sample is cleaned with aqua regia for 5 minutes, it is sputtered with a DentonExplorer-14 sputtering station, per second rate, a layer is plated on the
4)把样品在快速退火炉中合金,得到P电极欧姆接触层8。合金条件为500度3分钟,N2∶O2=2L∶0.5L。4) Alloying the sample in a rapid annealing furnace to obtain the P electrode
5)利用普通光刻法对P电极区和LED台的侧面进行胶保护,用DentonExplorer-14溅射台溅射的方法,在LED台的底部的N型半导体5上溅射Ti/Al金属膜用为N电极4。N电极与LED台的侧壁相距20μm。Ti膜的厚度溅射速率为每秒Al膜的厚度为溅射速率为每秒5) Use common photolithography to protect the P electrode area and the side of the LED table with glue, and sputter a Ti/Al metal film on the N-
6)利用普通光刻法对N电极遮挡,然后用Denton Explorer-14溅射的方法在P电极欧姆接触层8和LED台的侧面沉积一层的Al金属,得到金属高反镜3。6) Utilize ordinary photolithography to block the N electrode, and then use Denton Explorer-14 sputtering to deposit a layer on the side of the P electrode
7)用Denton Explorer-14溅射的方法在金属高反镜3上沉积Ti/Au金属层,高反镜金属保护层2。Ti的厚度为Au的厚度为金属高反镜3与高反镜保护层2与N电极保持10μm的距离。Ti的溅射速率为每秒Au的溅射速率为每秒7) Deposit a Ti/Au metal layer and a metal
8)在P电极区,同时在高反镜保护层2上和N电极4上溅射的Ti/Al/Ti/Au加厚金属电极,同时得到P电极加厚电极1和N电极加厚电极9。Ti的溅射速率为每秒Al的溅射速率为每秒Au的溅射速率为每秒8) In the P electrode area, sputter on the high reflective mirror
9)解理。用激光划开两个器件间N型半导体5和衬底10相连的部分,得到如图5所示的LED。9) Cleavage. The part where the N-
用杭州远方PMS-50(PLUS)UV光功率仪器对两种结构的LED封装后测试,本发明结构的LED光总辐射功率为4.38mW,传统结构的LED光总辐射功率为3.75mW。本发明结构的LED比相同设备制备的传统倒金字塔结构普通电极LED光功率高16.8%。两种LED测试条件同为20mA恒流下测得。After encapsulating the LEDs of the two structures with the Hangzhou Yuanfang PMS-50 (PLUS) UV optical power instrument, the total radiant power of the LED with the structure of the present invention is 4.38mW, and the total radiant power of the LED with the traditional structure is 3.75mW. The light power of the LED with the structure of the invention is 16.8% higher than that of the traditional inverted pyramid structure common electrode LED prepared by the same equipment. The two LED test conditions are measured under the same 20mA constant current.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2005101321161ACN100409463C (en) | 2005-12-16 | 2005-12-16 | Preparation method of LED electrode with high light extraction efficiency |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2005101321161ACN100409463C (en) | 2005-12-16 | 2005-12-16 | Preparation method of LED electrode with high light extraction efficiency |
| Publication Number | Publication Date |
|---|---|
| CN1812146A CN1812146A (en) | 2006-08-02 |
| CN100409463Ctrue CN100409463C (en) | 2008-08-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2005101321161AExpired - Fee RelatedCN100409463C (en) | 2005-12-16 | 2005-12-16 | Preparation method of LED electrode with high light extraction efficiency |
| Country | Link |
|---|---|
| CN (1) | CN100409463C (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9601657B2 (en) | 2011-03-17 | 2017-03-21 | Epistar Corporation | Light-emitting device |
| CN104409599B (en)* | 2014-11-20 | 2017-04-19 | 华灿光电股份有限公司 | LED chip and manufacturing method thereof |
| KR102239627B1 (en)* | 2015-03-26 | 2021-04-12 | 엘지이노텍 주식회사 | Light emitting device package |
| CN112652690A (en)* | 2020-12-30 | 2021-04-13 | 深圳第三代半导体研究院 | Light emitting diode and manufacturing method thereof |
| CN112635629A (en)* | 2020-12-30 | 2021-04-09 | 深圳第三代半导体研究院 | Light emitting diode and manufacturing method thereof |
| CN112652688A (en)* | 2020-12-30 | 2021-04-13 | 深圳第三代半导体研究院 | Light emitting diode and manufacturing method thereof |
| CN114236334B (en)* | 2021-11-05 | 2023-10-10 | 严群 | Light excitation enhanced current injection LED electroluminescent performance detection system |
| CN114551683A (en)* | 2022-02-28 | 2022-05-27 | 湘能华磊光电股份有限公司 | A kind of preparation method of LED chip and obtained LED chip |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000031540A (en)* | 1999-06-18 | 2000-01-28 | Toyoda Gosei Co Ltd | Manufacture of gallium nitride based compound semiconductor light emitting element |
| US20030025212A1 (en)* | 2001-05-09 | 2003-02-06 | Bhat Jerome Chandra | Semiconductor LED flip-chip with high reflectivity dielectric coating on the mesa |
| JP2003258297A (en)* | 2002-02-27 | 2003-09-12 | Shiro Sakai | Gallium-nitride-based compound semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000031540A (en)* | 1999-06-18 | 2000-01-28 | Toyoda Gosei Co Ltd | Manufacture of gallium nitride based compound semiconductor light emitting element |
| US20030025212A1 (en)* | 2001-05-09 | 2003-02-06 | Bhat Jerome Chandra | Semiconductor LED flip-chip with high reflectivity dielectric coating on the mesa |
| JP2003258297A (en)* | 2002-02-27 | 2003-09-12 | Shiro Sakai | Gallium-nitride-based compound semiconductor device |
| Publication number | Publication date |
|---|---|
| CN1812146A (en) | 2006-08-02 |
| Publication | Publication Date | Title |
|---|---|---|
| US10559717B2 (en) | Light-emitting device and manufacturing method thereof | |
| CN108922950B (en) | High-brightness flip LED chip and manufacturing method thereof | |
| CN102185073B (en) | A flip-chip light-emitting diode and its manufacturing method | |
| CN100479208C (en) | Method for preparing power-micro structure LED tube core utilizing flip chip technology | |
| JP2017059858A (en) | Semiconductor light emitting device including window layer and light-directing structure | |
| TWI782286B (en) | Flip chip led and manufacturing method thereof | |
| KR100973259B1 (en) | Vertical Gallium Nitride LED Devices with Side Reflectors and Manufacturing Method Thereof | |
| CN112018223A (en) | Thin film flip structure Micro-LED chip with transfer printing of bonding layer and preparation method thereof | |
| TW201023407A (en) | Light emitting device | |
| CN103515504A (en) | LED chip and processing technology thereof | |
| KR101008268B1 (en) | Vertical structure light emitting diode and its manufacturing method for improving external quantum efficiency | |
| CN208637453U (en) | A high-brightness flip-chip LED chip | |
| WO2021119906A1 (en) | Light-emitting diode | |
| CN103367590A (en) | Gallium nitride-based light-emitting diode and production method thereof | |
| CN110718613A (en) | Light-emitting diode chip and method of making the same | |
| CN113284997B (en) | Flip LED chip and preparation method thereof | |
| CN114400276A (en) | A kind of manufacturing method of high voltage LED chip | |
| CN100409463C (en) | Preparation method of LED electrode with high light extraction efficiency | |
| KR20120030430A (en) | Light emitting semiconductor device and method for manufacturing | |
| CN109346564A (en) | A kind of manufacturing method of flip-chip light-emitting diode chip | |
| CN101286539A (en) | A gallium nitride-based small-chip LED array structure and preparation method | |
| US20240145621A1 (en) | Vertical led chip structure, method of manufacturing same and light-emitting device | |
| CN214176057U (en) | LED chip | |
| CN108493307A (en) | A kind of packed LED chip and preparation method thereof | |
| CN113644180A (en) | Flip-chip LED chip and preparation method thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| ASS | Succession or assignment of patent right | Owner name:BEIJING TAISHIXINGUANG SCIENCE CO., LTD. Free format text:FORMER OWNER: BEIJING POLYTECHNIC UNIV. Effective date:20081024 | |
| C41 | Transfer of patent application or patent right or utility model | ||
| TR01 | Transfer of patent right | Effective date of registration:20081024 Address after:Branch of Beijing economic and Technological Development Zone two Beijing street, No. 4 Building 2 layer in the south of 1-4 Patentee after:Beijing TimesLED Technology Co.,Ltd. Address before:No. 100 Ping Park, Beijing, Chaoyang District Patentee before:Beijing University of Technology | |
| C56 | Change in the name or address of the patentee | ||
| CP03 | Change of name, title or address | Address after:No. 1 North Ze street, Beijing Economic Development Zone, Beijing Patentee after:Beijing TimesLED Technology Co.,Ltd. Address before:Branch of Beijing economic and Technological Development Zone two Beijing street, No. 4 Building 2 layer in the south of 1-4 Patentee before:Beijing TimesLED Technology Co.,Ltd. | |
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20080806 Termination date:20151216 | |
| EXPY | Termination of patent right or utility model |