Movatterモバイル変換


[0]ホーム

URL:


CN100383823C - Hole filling method in point cloud of 3D scanning - Google Patents

Hole filling method in point cloud of 3D scanning
Download PDF

Info

Publication number
CN100383823C
CN100383823CCNB2006100853283ACN200610085328ACN100383823CCN 100383823 CCN100383823 CCN 100383823CCN B2006100853283 ACNB2006100853283 ACN B2006100853283ACN 200610085328 ACN200610085328 ACN 200610085328ACN 100383823 CCN100383823 CCN 100383823C
Authority
CN
China
Prior art keywords
center dot
centerdot
point
points
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100853283A
Other languages
Chinese (zh)
Other versions
CN1858801A (en
Inventor
达飞鹏
朱春红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haian Shenling Electrical Appliance Manufacturing Co Ltd
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast UniversityfiledCriticalSoutheast University
Priority to CNB2006100853283ApriorityCriticalpatent/CN100383823C/en
Publication of CN1858801ApublicationCriticalpatent/CN1858801A/en
Application grantedgrantedCritical
Publication of CN100383823CpublicationCriticalpatent/CN100383823C/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Images

Landscapes

Abstract

The present invention discloses method for filling point cloud holes in three-dimension scanning based on a triangular domain Bessel curved surface, which comprises physical model and three-dimensional data collection, data preprocessing, the reconstruction and the analysis of curves and curved surfaces, surface fitting, CAD model modeling, data programming and processing, parts, measurement of a database, and a CAD analog library. The present invention can obtain a curved surface accurately fitting a dispersed point set around the holes by using a surface fitting method so as to ensure high fitting precision when points are selected and the holes are filled on the curved surface.

Description

Translated fromChinese
三维扫描的点云孔洞填补方法Hole filling method in point cloud of 3D scanning

技术领域technical field

本发明涉及一种对三维图形的修补方法,尤其涉及一种三维扫描的点云孔洞填补方法。The invention relates to a method for repairing three-dimensional graphics, in particular to a method for filling holes in point clouds of three-dimensional scanning.

背景技术Background technique

逆向工程(Reverse Engineering,RE)技术是20世纪80年代后期出现在先进制造领域里的新技术,其一般包括四个基本环节:三维形体检测与转换(物理数据的获得)、数据预处理(点云处理、识别、多视拼接),CAD模型的建立(曲面重构)、CAM制件成型,其基本流程图如附图1所示。在三维形体检测与转换的过程中,通过三维数字化扫描仪对实物模型表面进行三维快速扫描测量,在满足离散采样速度和数据质量的前提下,获取产品的三维离散数据,点云孔洞的出现造成了这些数据的不完整,因此对孔洞进行补偿即对数据进行预处理是逆向工程中非常关键的承上启下的一环,直接影响重构成功与否和CAD模型的质量,对其后续环节起着非常关键的制约作用。本发明主要是涉及到在逆向工程的数字化过程中,用三维扫描系统(附图2)获取产品点云模型出现孔洞时的一种自动补偿方法。Reverse Engineering (Reverse Engineering, RE) technology is a new technology that appeared in the field of advanced manufacturing in the late 1980s. It generally includes four basic links: three-dimensional shape detection and conversion (obtaining physical data), data preprocessing (point Cloud processing, recognition, multi-view splicing), CAD model establishment (surface reconstruction), CAM part molding, the basic flow chart is shown in Figure 1. In the process of 3D shape detection and conversion, the 3D digital scanner is used to perform 3D rapid scanning measurement on the surface of the physical model, and the 3D discrete data of the product can be obtained under the premise of satisfying the discrete sampling speed and data quality. The incompleteness of these data is eliminated, so the compensation for holes, that is, the preprocessing of data, is a very critical link in reverse engineering, which directly affects the success of the reconstruction and the quality of the CAD model, and plays a very important role in the subsequent links. key constraints. The present invention mainly relates to an automatic compensation method when a hole appears in a product point cloud model acquired by a three-dimensional scanning system (accompanying drawing 2) during the digitalization process of reverse engineering.

近年来,点云孔洞的填补算法在国内外均取得了很大的进展,已发表了相当数量的文献,其中一些算法获得了较为广泛的应用,如基于能量优化和细分、三角网格模型、网格曲面模型中孔洞的填补算法。这些算法需先对三维扫描直接获得的点云模型做一定的前期处理或者对点云孔洞进行边界识别,实时性不强,复杂度也比较高。在实际的工程应用中,对出现的问题应能及时解决。In recent years, point cloud hole filling algorithms have made great progress at home and abroad, and a considerable number of documents have been published, some of which have been widely used, such as energy optimization and subdivision, triangular mesh model , Hole filling algorithm in mesh surface model. These algorithms need to do some pre-processing on the point cloud model directly obtained by 3D scanning or identify the boundary of the point cloud hole, the real-time performance is not strong, and the complexity is relatively high. In practical engineering applications, problems should be solved in time.

文献“Minimal energy surfaces using parametric splines.”(GregoryE.Fasshauer,Larry L.Schumarker.Computer Aided Geometric Design,1996,13:45~79)通过求解以“变形能量函数”为基础的优化目标函数,实现对孔洞的填补,保证了一定的光顺性,然而这类方法大多需要细分曲面,并且对多个子曲面片进行拼接,因此对曲面边界的连续性要求较高,通常很难达到曲面间的二阶连续。由于现有的三角网格模型的相关算法比较成熟,现有的算法大多都是基于此模型的,例如文献“A study of stereolithography file errors and repair”(LeongK F,Chua C K,Ng Y M.International Journal of Advanced Manufacturing,1996,12:415~422)将孔洞填补归结为一个空间多边形的三角剖分问题。但大多在构造新三角片时仅仅采用原有的孔洞多边形顶点,没有增加新的三角片顶点,因而难以获得较好的用于填补孔洞的三角片形状,填补效果不够理想。并且这类算法对于复杂的点云数据编程建立三角网格模型运算量较大,在填补孔洞的过程中还需要改变三角网格的拓扑结构,因此具有对三角网格模型修改和再设计能力不足的缺点,复杂度高,这些缺点都限制了它在实践中的应用。对一类多边形孔洞的填充算法不适用于一般的点云模型。对于一般曲面网格的填充算法均需要准确的获得孔洞边界信息,难度大,不易实现。通过对点云孔洞周围散乱点集进行曲面拟合补偿孔洞的算法过程中,散乱点的参数化必不可少。通常有均匀参数化、向心参数化和累积弦长参数化方法,而这些方法主要针对呈拓扑矩形阵列的数据点,对无规则分布的点云数据,需要对其排序,难度也比较大。The literature "Minimal energy surfaces using parametric splines." (GregoryE.Fasshauer, Larry L.Schumarker.Computer Aided Geometric Design, 1996, 13: 45~79) realizes the optimization objective function based on the "deformation energy function" The filling of the holes ensures a certain level of smoothness. However, most of these methods require surface subdivision and splicing of multiple sub-surface pieces. Therefore, the continuity of the surface boundaries is high, and it is usually difficult to achieve two-dimensionality between surfaces. order continuous. Since the relevant algorithms of the existing triangular mesh model are relatively mature, most of the existing algorithms are based on this model, for example, the literature "A study of stereolithography file errors and repair" (LeongK F, Chua C K, Ng Y M. International Journal of Advanced Manufacturing, 1996, 12: 415~422) attributed hole filling to a triangulation problem of a spatial polygon. However, most of them only use the original hole polygon vertices when constructing new triangles, without adding new triangle vertices, so it is difficult to obtain a better triangle shape for filling holes, and the filling effect is not ideal. Moreover, this type of algorithm has a large amount of computation for programming complex point cloud data to establish a triangular mesh model. In the process of filling holes, the topology of the triangular mesh needs to be changed, so it has insufficient ability to modify and redesign the triangular mesh model. The shortcomings of high complexity limit its application in practice. The filling algorithm for a class of polygonal holes is not suitable for general point cloud models. For the filling algorithm of general surface mesh, it is necessary to obtain the boundary information of holes accurately, which is difficult and difficult to realize. The parameterization of scattered points is essential in the algorithm process of compensating holes by surface fitting to the set of scattered points around holes in the point cloud. There are usually uniform parameterization, centripetal parameterization, and cumulative chord length parameterization methods, and these methods are mainly aimed at data points in a topological rectangular array. For irregularly distributed point cloud data, they need to be sorted, which is relatively difficult.

传统的三角曲面插值算法也得到了较为广泛的应用,同时也获得了较好的效果。例如文献“An Adaptive Method for Smooth Surface Approximation to Scattered3D Points.”(Park H,Kim K.Computer Aided Design,1995,27(12):929~939)中提出的构造光滑曲面拟合散乱点的自适应插值算法。这类插值算法虽然速度比较快,但有其致命的缺点,即:1只能处理单值的非封闭曲面;2要假定偏导矢在域边界曲线上呈线性分布;3重构的曲面依赖于估算出的偏导矢,所以曲面插值方法对离散点的逼近效果并不好,并且计算量大效率低。The traditional triangular surface interpolation algorithm has also been widely used and achieved good results. For example, the paper "An Adaptive Method for Smooth Surface Approximation to Scattered3D Points." (Park H, Kim K. Computer Aided Design, 1995, 27(12): 929~939) proposes an adaptive method for fitting scattered points on a smooth surface. Interpolation algorithm. Although this type of interpolation algorithm is relatively fast, it has its fatal shortcomings, namely: 1 can only deal with single-valued non-closed surfaces; 2 it must assume that the partial derivative vector is linearly distributed on the domain boundary curve; 3 the reconstructed surface depends on Because of the estimated partial derivative vector, the surface interpolation method does not have a good approximation effect on discrete points, and the calculation load is large and the efficiency is low.

在实际的应用过程中,用三维扫描系统得到的通常是具有海量散乱点的点云原始模型。此时就不可避免的存在孔洞现象,对这些孔洞进行及时的填补是关键。为此,本发明中使用一种新算法对孔洞进行补偿。如何对散乱点参数化以及提高曲面的拟合精度是此类算法中的难点。本发明中提出的对散乱点进行参数化的方法以及对曲面的迭代逼近优化方法能达到对孔洞的光滑拟合填充。In the actual application process, the original point cloud model with a large number of scattered points is usually obtained by the 3D scanning system. At this time, there will inevitably be holes, and timely filling of these holes is the key. For this reason, a new algorithm is used in the present invention to compensate for holes. How to parameterize the scattered points and improve the fitting accuracy of the surface is the difficulty in this kind of algorithm. The method for parameterizing scattered points and the iterative approximation optimization method for curved surfaces proposed in the invention can achieve smooth fitting and filling of holes.

发明内容Contents of the invention

本发明提供一种能够提供曲面拟合精确度的三维扫描的点云孔洞填补方法。The invention provides a point cloud hole filling method of three-dimensional scanning that can provide surface fitting accuracy.

本发明采用如下技术方案:The present invention adopts following technical scheme:

一种基于三角域贝塞尔曲面的三维扫描的点云孔洞填补方法:A point cloud hole filling method based on 3D scanning of triangular Bezier surfaces:

第一步:在点云孔洞周围且在屏幕坐标平面内设定一个三角形ABC,该三角形ABC的区域范围能使点云孔洞及其周围的点向屏幕坐标平面的投影落入三角形ABC内,并将投影落入三角形ABC内的点作为补孔时拟合曲面的点Ps(s=0,1,…,m-1),根据拟合曲面的点Ps在三角形ABC平面的投影Ps’位置计算其曲面参数化坐标(us,vs,ws),us=(ΔAPs’B面积)/(ΔABC面积)、vs=(ΔAPs’C面积)/(ΔABC面积)、ws=(ΔB Ps’C面积)/(ΔABC面积),将拟合曲面的点Ps(s=0,1,…,m-1)的坐标及其曲面参数化坐标(us,vs,ws)代入n次Bezier曲面方程并用最小二乘法得到n次Bezier曲面的控制点,从而得到初步拟合的曲面S(u,v,w);Step 1: Set a triangle ABC around the point cloud hole and in the screen coordinate plane. The area of the triangle ABC can make the projection of the point cloud hole and its surrounding points to the screen coordinate plane fall into the triangle ABC, and The point that the projection falls into the triangle ABC is used as the point Ps (s=0, 1, ..., m-1) of the fitted surface when filling the hole, according to the projection Ps of the point Ps of the fitted surface on the triangle ABC plane 'Position is calculated by its surface parameterized coordinates (us , vs , ws ), us = (ΔAPs 'B area)/(ΔABC area), vs = (ΔAPs 'C area)/(ΔABC area) , ws = (ΔB Ps 'C area)/(ΔABC area), the coordinates of the point Ps (s=0, 1,..., m-1) of the fitted surface and its surface parameterized coordinates (us , vs , ws ) into the nth degree Bezier surface equation and use the least square method to obtain the control points of the nth degree Bezier surface, so as to obtain the preliminary fitting surface S(u, v, w);

第二步:求出各个拟合曲面的点Ps(s=0,1,…,m-1)到曲面的距离向量d(u,v,w)及曲面分别对对应点参数方向的偏微分Su(u,v,w),Sv(u,v,w),Sw(u,v,w),令:Step 2: Calculate the distance vector d(u, v, w) from the point Ps (s=0, 1, ..., m-1) of each fitted surface to the surface and the deviation of the surface to the parameter direction of the corresponding point Differentiate Su (u, v, w), Sv (u, v, w), Sw (u, v, w), let:

ff((uu,,vv,,ww))==dd((uu,,vv,,ww))·&Center Dot;SSuu((uu,,vv,,ww))==00gg((uu,,vv,,ww))==dd((uu,,vv,,ww))·&Center Dot;SSvv((uu,,vv,,ww))==00hh((uu,,vv,,ww))==dd((uu,,vv,,ww))·&Center Dot;SSww((uu,,vv,,ww))==00

拟合曲面的点Ps的参数化坐标为(us,vs,ws),以(us,vs,ws)为初始估计值,根据牛顿迭代法求解以上方程组,有:The parameterized coordinates of the point Ps of the fitted surface are (us , vs , ws ), taking (us , vs , ws ) as the initial estimated value, and solving the above equations according to the Newton iterative method, there are:

T=κTTT

式中:In the formula:

σ=(δu,δv,δw),其中,δu,δv,δw为曲面u,v,w三个方向上的迭代步长。σ=(δu, δv, δw), where δu, δv, δw are the iteration step sizes in the three directions of surface u, v, w.

κ=-(f(us,vs,ws),g(us,vs,ws),h(us,vs,ws))κ=-(f(us , vs , ws ), g(us , vs , ws ), h(us , vs , ws ))

Hh==ffuuffvvffwwgguuggvvggwwhhuuhhvvhhww==||||SSuu||||22++dd··SSuuu uSSvv··SSuu++dd·&Center Dot;SSuvuvSSww··SSuu++dd··SSuwuwSSuu··SSvv++dd··SSvuv u||||SSvv||||22++dd··SSvvvvSSww··SSvv++dd··SSvwvwSSuu·&Center Dot;SSww++dd··SSwuwuSSvv·&Center Dot;SSww++dd··SSwvwv||||SSww||||22++dd·&Center Dot;SSwwww

式中,d=d(us,vs,ws);fu,fv,fw,gu,gv,gw,hu,hv,hw分别表示在点(us,vs,ws)处相应的向量对u,v,w的一阶偏导数;Suu,Suv,Suw,Svv,Svu,Svw,Sww,Swu,Swv是曲面S(u,v,w)在点(us,vs,ws)处分别对u,v,w的二阶偏导数。In the formula, d=d(us , vs , ws ); fu , fv , fw , gu , gv , gw , hu , hv ,hw respectively represent , vs , ws ) corresponding to the first-order partial derivative of the vector pair u, v, w; Suu , Suv , Suw , Svv , Svu , Svw , Sww , Swu , Swv are The second order partial derivatives of surface S(u, v, w) at point (us , vs , ws ) with respect to u, v, w respectively.

则可得:Then you can get:

||||SSuu||||22++dd··SSuuu uSSvv··SSuu++dd··SSuvuvSSww··SSuu++dd··SSuwuwSSuu··SSvv++dd·&Center Dot;SSvuv u||||SSvv||||22++dd·&Center Dot;SSvvvvSSww·&Center Dot;SSvv++dd·&Center Dot;SSvwvwSSuu·&Center Dot;SSww++dd·&Center Dot;SSwuwuSSvv·&Center Dot;SSww++dd·&Center Dot;SSwvwv||||SSww||||22++dd·&Center Dot;SSwwwwδuδuδvδvδwδw==--ff((uusthe s,,vvsthe s,,wwsthe s))gg((uusthe s,,vvsthe s,,wwsthe s))hh((uusthe s,,vvsthe s,,wwsthe s))

根据三角Bezier曲面的定义可知δu+δv+δw=0,即δw=-δu-δv,因此得到如下迭代方程组:According to the definition of triangular Bezier surface, it can be known that δu+δv+δw=0, that is, δw=-δu-δv, so the following iterative equations are obtained:

||||SSuu||||22--SSww·&Center Dot;SSuu++dd·&Center Dot;((SSuuu u--SSuwuw))SSvv·&Center Dot;SSuu--SSww·&Center Dot;SSuu++dd·&Center Dot;((SSuvuv--SSuwuw))SSuu·&Center Dot;SSvv--SSww·&Center Dot;SSvv++dd·&Center Dot;((SSvuv u--SSvwvw))||||SSvv||||22--SSww·&Center Dot;SSvv++dd·&Center Dot;((SSvvvv--SSvwvw))SSuu·&Center Dot;SSww--||||SSww||||22++dd·&Center Dot;((SSwuwu--SSwwww))SSvv··SSww--||||SSww||||22++dd·&Center Dot;((SSwvwv--SSwwww))δuδ uδvδv==--ff((uusthe s,,vvsthe s,,wwsthe s))gg((uusthe s,,vvsthe s,,wwsthe s))hh((uusthe s,,vvsthe s,,wwsthe s))

其中,δu,δv为u,v两个方向上的迭代步长。Suu,Suv,Suw,Svv,Svu,Svw,Sww,Swu,Swv是曲面S(u,v,w)在点(us,vs,ws)处分别对u,v,w的二阶偏导数,迭代求解直到1/m∑s=0m-1||d(us+δu,vs+δv,ws+δw)-d(us,vs,ws)||≤ϵ,ε为预置曲面拟合精度,从而得到最终确定的三角Bezier曲面S’(u,v,w);Among them, δu and δv are the iteration step sizes in the two directions of u and v. Suu , Suv , Suw , Svv , Svu , Svw , Sww , Swu , Swv are surfaces S(u, v, w) at points (us , vs , ws ) respectively For the second-order partial derivatives of u, v, w, iteratively solve until 1 / m ∑ the s = 0 m - 1 | | d ( u the s + δu , v the s + δv , w the s + δw ) - d ( u the s , v the s , w the s ) | | ≤ ϵ , ε is the preset surface fitting accuracy, so as to obtain the final triangular Bezier surface S'(u, v, w);

第三步:在所述的三角Bezier曲面S’(u,v,w)上取线,再在线上取点,用于填补点云孔洞。Step 3: Take a line on the triangular Bezier surface S'(u, v, w), and then take points on the line to fill the hole in the point cloud.

本发明主要用于对三维扫描系统中各种具有复杂曲面形状的点云原始模型中孔洞进行填补的应用场合。利用本发明中的曲面拟合算法,即可得到一张精确逼近孔洞周围散乱点的曲面,随后在面上取点可以即可实现对孔洞的光滑填补。该方法主要有以下优点:The invention is mainly used in the application occasion of filling holes in various point cloud original models with complex curved surface shapes in a three-dimensional scanning system. Using the surface fitting algorithm in the present invention, a curved surface that accurately approximates the scattered points around the hole can be obtained, and then the holes can be filled smoothly by taking points on the surface. This method mainly has the following advantages:

(1)由于传统的曲面插值方法对离散点的逼近效果并不好,本发明采用曲面拟合的方法能得到一张精确拟合孔洞周围散乱点集的曲面,从而在曲面上取点补孔时能保证较高的拟合精度。(1) Since the traditional surface interpolation method does not have a good approximation effect on discrete points, the present invention adopts the surface fitting method to obtain a curved surface that accurately fits the scattered point sets around the hole, thereby taking points on the curved surface to fill holes It can guarantee a high fitting accuracy.

(2)采用基于三角域上的曲面拟合方法,比四边域的曲面更容易表现无规则的表面,因此对具有复杂表面的物体,在补孔时更容易控制填补孔洞的曲面的形状,保证了补完孔的表面具有一定的光顺性和保形性。(2) Using the surface fitting method based on the triangular domain, it is easier to express the irregular surface than the surface of the quadrilateral domain. Therefore, for objects with complex surfaces, it is easier to control the shape of the surface that fills the hole when filling the hole. Guarantee In order to ensure that the surface of the filled hole has a certain degree of smoothness and shape retention.

(3)三角网格模型、网格曲面模型中孔洞的填补算法,这些算法需先对三维扫描直接获得的点云模型做一定的前期处理或者对点云孔洞进行边界识别,实时性不强,复杂度也比较高相比较多数算法中的网格化处理,本发明主要针对三维扫描系统得到的原始点云模型,不需要任何的网格化处理,适用性广,速度快。(3) Hole filling algorithms in triangular mesh models and mesh surface models. These algorithms need to do some pre-processing on the point cloud model directly obtained by 3D scanning or identify the boundary of the point cloud holes, and the real-time performance is not strong. The complexity is also relatively high. Compared with the grid processing in most algorithms, the present invention is mainly aimed at the original point cloud model obtained by the 3D scanning system, does not require any grid processing, and has wide applicability and high speed.

(4)拟合曲面时,交互选取孔洞周围的散乱点,无需对点云孔洞进行边界识别,所以当孔洞边界形状比较复杂时,也同样适用。(4) When fitting the surface, the scattered points around the hole are selected interactively, and there is no need to recognize the boundary of the hole in the point cloud, so it is also applicable when the shape of the hole boundary is complex.

(5)对散乱点参数化时,无需拟合孔洞的边界曲线,由于避免了孔洞的边界识别,因此对于绝大多数具有任意形状的孔洞也同样适用。(5) When parameterizing scattered points, there is no need to fit the boundary curve of the hole. Since the recognition of the boundary of the hole is avoided, it is also applicable to most holes with arbitrary shapes.

(6)由于对散乱点进行曲面拟合采用了初步拟合和迭代逼近优化两步方法,能够使拟合的曲面获得更高的精度。(6) Since the two-step method of preliminary fitting and iterative approximation optimization is adopted for surface fitting of scattered points, the fitted surface can obtain higher precision.

(7)操作过程比较简单,只要交互选定孔洞周围的离散点,接下来的的步骤都可自动完成,速度快。并且该方法具有很强的通用性。(7) The operation process is relatively simple, as long as the discrete points around the hole are interactively selected, the next steps can be completed automatically, and the speed is fast. And the method has strong versatility.

此外要注意的是,选取散乱点时,尽量在孔洞周围大范围内选取,可以避免自适应增加散乱点数量,以进一步提高算法的效率。In addition, it should be noted that when selecting scattered points, try to select them in a wide range around the hole, which can avoid adaptively increasing the number of scattered points, so as to further improve the efficiency of the algorithm.

附图说明Description of drawings

图1是逆向工程流程图。Figure 1 is a flow chart of reverse engineering.

图2是光栅式三维扫描系统组成图。Figure 2 is a composition diagram of the raster type three-dimensional scanning system.

图3是算法整体流程图。Figure 3 is the overall flowchart of the algorithm.

图4是选取圆盖点云中的孔洞附近的点集实例示意图。Fig. 4 is a schematic diagram of an example of selecting a point set near a hole in a dome point cloud.

图5是散乱点参数化流程图Figure 5 is a flow chart of parameterization of scattered points

图6是对圆盖点云中的孔洞附近的点集拟合曲面实例示意图。。Fig. 6 is a schematic diagram of an example of fitting a surface to a point set near a hole in a dome point cloud. .

图7是曲面初步拟合流程图。Figure 7 is a flow chart of the preliminary fitting of the curved surface.

图8是对圆盖点云中的孔洞填补实例示意图。Fig. 8 is a schematic diagram of an example of hole filling in a dome point cloud.

图9是曲面迭代逼近优化流程图。Fig. 9 is a flowchart of surface iterative approximation optimization.

具体实施方式Detailed ways

一种基于三角域贝塞尔曲面的三维扫描的点云孔洞填补方法:A point cloud hole filling method based on 3D scanning of triangular Bezier surfaces:

第一步:在点云孔洞周围且在屏幕坐标平面内设定一个三角形ABC,该三角形ABC的区域范围能使点云孔洞及其周围的点向屏幕坐标平面的投影落入三角形ABC内,并将投影落入三角形ABC内的点作为补孔时拟合曲面的点Ps(s=0,1,…,m-1),根据拟合曲面的点Ps在三角形ABC平面的投影Ps’位置计算其曲面参数化坐标(us,vs,ws),us=(ΔAPs’B面积)/(ΔABC面积)、vs=(ΔAPs’C面积)/(ΔABC面积)、ws=(ΔB Ps’C面积)/(ΔABC面积),将拟合曲面的点Ps(s=0,1,…,m-1)的坐标及其曲面参数化坐标(us,vs,ws)代入n次Bezier曲面方程并用最小二乘法得到n次Bezier曲面的控制点,从而得到初步拟合的曲面S(u,v,w);Step 1: Set a triangle ABC around the point cloud hole and in the screen coordinate plane. The area of the triangle ABC can make the projection of the point cloud hole and its surrounding points to the screen coordinate plane fall into the triangle ABC, and The point that the projection falls into the triangle ABC is used as the point Ps (s=0, 1, ..., m-1) of the fitted surface when filling the hole, according to the projection Ps of the point Ps of the fitted surface on the triangle ABC plane 'Position is calculated by its surface parameterized coordinates (us , vs , ws ), us = (ΔAPs 'B area)/(ΔABC area), vs = (ΔAPs 'C area)/(ΔABC area) , ws = (ΔB Ps 'C area)/(ΔABC area), the coordinates of the point Ps (s=0, 1,..., m-1) of the fitted surface and its surface parameterized coordinates (us , vs , ws ) into the nth degree Bezier surface equation and use the least square method to obtain the control points of the nth degree Bezier surface, so as to obtain the preliminary fitting surface S(u, v, w);

第二步:求出各个拟合曲面的点Ps(s=0,1,…,m-1)到曲面的距离向量d(u,v,w)及曲面分别对对应点参数方向的偏微分Su(u,v,w),Sv(u,v,w),Sw(u,v,w),令:Step 2: Calculate the distance vector d(u, v, w) from the point Ps (s=0, 1, ..., m-1) of each fitted surface to the surface and the deviation of the surface to the parameter direction of the corresponding point Differentiate Su (u, v, w), Sv (u, v, w), Sw (u, v, w), let:

ff((uu,,vv,,ww))==dd((uu,,vv,,ww))·&Center Dot;SSuu((uu,,vv,,ww))==00gg((uu,,vv,,ww))==dd((uu,,vv,,ww))·&Center Dot;SSvv((uu,,vv,,ww))==00hh((uu,,vv,,ww))==dd((uu,,vv,,ww))·&Center Dot;SSww((uu,,vv,,ww))==00

拟合曲面的点Ps的参数化坐标为(us,vs,ws),以(us,vs,ws)为初始估计值,根据牛顿迭代法求解以上方程组,有:The parameterized coordinates of the point Ps of the fitted surface are (us , vs , ws ), taking (us , vs , ws ) as the initial estimated value, and solving the above equations according to the Newton iterative method, there are:

T=κTTT

式中:In the formula:

σ=(δu,δv,δw)σ = (δu, δv, δw)

其中,δu,δv,δw为曲面u,v,w三个方向上的迭代步长。Among them, δu, δv, and δw are the iteration steps in the three directions of surface u, v, and w.

κ=-(f(us,vs,ws),g(us,vs,ws),h(us,vs,ws))κ=-(f(us , vs , ws ), g(us , vs , ws ), h(us , vs , ws ))

Hh==ffuuffvvffwwgguuggvvggwwhhuuhhvvhhww==||||SSuu||||22++dd·&Center Dot;SSuuu uSSvv·&Center Dot;SSuu++dd·&Center Dot;SSuvuvSSww·&Center Dot;SSuu++dd·&Center Dot;SSuwuwSSuu·&Center Dot;SSvv++dd·&Center Dot;SSvuv u||||SSvv||||22++dd·&Center Dot;SSvvvvSSww·&Center Dot;SSvv++dd·&Center Dot;SSvwvwSSuu·&Center Dot;SSww++dd·&Center Dot;SSwuwuSSvv·&Center Dot;SSww++dd·&Center Dot;SSwvwv||||SSww||||22++dd··SSwwww

式中,d=d(us,vs,ws);fu,fv,fw,gu,gv,gw,hu,hv,hw分别表示在点(us,vs,ws)处相应的向量对u,v,w的一阶偏导数;Suu,Suv,Suw,Svv,Svu,Svw,Sww,Swu,Swv是曲面S(u,v,w)在点(us,vs,ws)处分别对u,v,w的二阶偏导数。In the formula, d=d(us , vs , ws ); fu , fv , fw , gu , gv , gw , hu , hv ,hw respectively represent , vs , ws ) corresponding to the first-order partial derivative of the vector pair u, v, w; Suu , Suv , Suw , Svv , Svu , Svw , Sww , Swu , Swv are The second order partial derivatives of surface S(u, v, w) at point (us , vs , ws ) with respect to u, v, w respectively.

则可得:Then you can get:

||||SSuu||||22++dd··SSuuu uSSvv··SSuu++dd··SSuvuvSSww··SSuu++dd··SSuwuwSSuu··SSvv++dd··SSvuv u||||SSvv||||22++dd··SSvvvvSSww··SSvv++dd··SSvwvwSSuu··SSww++dd··SSwuwuSSvv··SSww++dd··SSwvwv||||SSww||||22++dd··SSwwwwδuδ uδvδvδwδw==--ff((uusthe s,,vvsthe s,,wwsthe s))gg((uusthe s,,vvsthe s,,wwsthe s))hh((uusthe s,,vvsthe s,,wwsthe s))

根据三角Bezier曲面的定义可知δu+δv+δw=0,即δw=-δu-δv,因此得到如下迭代方程组:According to the definition of triangular Bezier surface, it can be known that δu+δv+δw=0, that is, δw=-δu-δv, so the following iterative equations are obtained:

||||SSuu||||22--SSww·&Center Dot;SSuu++dd··((SSuuu u--SSuwuw))SSvv·&Center Dot;SSuu--SSww··SSuu++dd··((SSuvuv--SSuwuw))SSuu·&Center Dot;SSvv--SSww··SSvv++dd··((SSvuv u--SSvwvw))||||SSvv||||22--SSww··SSvv++dd··((SSvvvv--SSvwvw))SSuu··SSww--||||SSww||||22++dd··((SSwuwu--SSwwww))SSvv··SSww--||||SSww||||22++dd··((SSwvwv--SSwwww))δuδ uδvδ v==--ff((uusthe s,,vvsthe s,,wwsthe s))gg((uusthe s,,vvsthe s,,wwsthe s))hh((uusthe s,,vvsthe s,,wwsthe s))

其中,δu,δv为u,v两个方向上的迭代步长。Suu,Suv,Suw,Svv,Svu,Svw,Sww,Swu,Swv是曲面S(u,v,w)在点(us,vs,ws)处分别对u,v,w的二阶偏导数,迭代求解直到1/m∑s=0m-1||d(us+δu,vs+δv,ws+δw)-d(us,vs,ws)||≤ϵ,ε为预置曲面拟合精度,从而得到最终确定的三角Bezier曲面S’(u,v,w);Among them, δu and δv are the iteration step sizes in the two directions of u and v. Suu , Suv , Suw , Svv , Svu , Svw , Sww , Swu , Swv are surfaces S(u, v, w) at points (us , vs , ws ) respectively For the second-order partial derivatives of u, v, w, iteratively solve until 1 / m ∑ the s = 0 m - 1 | | d ( u the s + δu , v the s + δ v , w the s + δw ) - d ( u the s , v the s , w the s ) | | ≤ ϵ , ε is the preset surface fitting accuracy, so as to obtain the final triangular Bezier surface S'(u, v, w);

第三步:在所述的三角Bezier曲面S’(u,v,w)上取线,再在线上取点,用于填补点云孔洞。Step 3: Take a line on the triangular Bezier surface S'(u, v, w), and then take points on the line to fill the hole in the point cloud.

下面参照附图,对本发明加以详细描述:Below with reference to accompanying drawing, the present invention is described in detail:

在逆向工程中,面对的是密集的点云散乱数据。拟合曲面时,如果曲面的对象边界和形状极其复杂时,一般不便直接运用常规的曲面构造方法,而Bezier曲面由于其构造灵活,边界适应性好,具有构造复杂形状的潜力,而且其本身具有良好的性质:光滑性、局部性和保形性。基于三角域曲面的拟合方法最适合表现无规则型面的物体,特别是人面,地貌等自然物体以及玩具等产品,基于四边域参数曲面的拟合方法,通常要求数据点是有序的,这个条件比较苛刻,综合以上,因此本发明采用三角域上的Bezier曲面对孔洞部分进行拟合填充。总体算法流程见附图3。In reverse engineering, what is faced is dense point cloud scattered data. When fitting a surface, if the object boundary and shape of the surface are extremely complex, it is generally inconvenient to use the conventional surface construction method directly, but the Bezier surface has the potential to construct complex shapes due to its flexible structure and good boundary adaptability, and it has its own Good properties: smoothness, locality and shape retention. The fitting method based on triangular domain surfaces is most suitable for objects with irregular shapes, especially natural objects such as human faces and landforms, and toys and other products. The fitting method based on quadrilateral domain parametric surfaces usually requires that the data points are in order , this condition is relatively harsh, and based on the above, the present invention uses the Bezier surface on the triangular domain to fit and fill the hole part. The overall algorithm flow is shown in Figure 3.

本发明主要包括以下步骤:The present invention mainly comprises the following steps:

1)散乱点的选定及参数化过程1) Selection and parameterization process of scattered points

在圆盖点云孔洞屏幕二维坐标系附近选择不共线的三点A、B、C,构成需要初步拟合的三角Bezier曲面片的三个角点,将孔洞周围的点向这三点所构成的三角形平面投影,如果点落在三角形平面内,则认为是拟合曲面时所需的点Ps(s=0,1,…,m-1),见附图4。Select three non-collinear points A, B, and C near the two-dimensional coordinate system of the hole screen of the dome point cloud to form the three corner points of the triangular Bezier surface patch that needs to be initially fitted, and move the points around the hole to these three points For the formed triangular plane projection, if the point falls within the triangular plane, it is considered as the point Ps (s=0, 1, . . . , m-1) required for fitting the curved surface.

根据选取的点Ps在三角形ABC平面的投影位置计算其曲面参数化坐标。即如果Ps在三角形平面ABC内相对应的投影点为Ps’,那么Ps的参数化坐标(us,vs,ws)分别为us=(ΔAPs’B面积)/(ΔABC面积)、vs=(ΔAPs’C面积)/(ΔABC面积)、ws=(ΔB Ps’C面积)/(ΔABC面积)。算法流程图见附图5。According to the projected position of the selected point Ps on the triangle ABC plane, its surface parameterized coordinates are calculated. That is, if the corresponding projection point of Ps in the triangular plane ABC is Ps ', then the parameterized coordinates (us , vs , ws ) of Ps are us = (ΔAPs 'B area)/( ΔABC area), vs =(ΔAPs 'C area)/(ΔABC area), ws =(ΔB Ps 'C area)/(ΔABC area). The flowchart of the algorithm is shown in Figure 5.

2)最小二乘自适应初步拟合2) Least square adaptive preliminary fitting

三角域ABC上n次Bezier曲面的表达式为:The expression of n degree Bezier surface on triangular domain ABC is:

SS((uu,,vv,,ww))==∑∑ii==00nno∑∑jj==00nno--iiBBijkijknno((uu,,vv,,ww))bbijkijk

式中Bijkn(u,v,w)=n!i!j!k!uivjwk≥00≤u,v,w≤l,u+v+w=l0≤i,j,k≤n,i+j+k=nIn the formula B ijk no ( u , v , w ) = no ! i ! j ! k ! u i v j w k &Greater Equal; 0 0 ≤ u , v , w ≤ l , u + v + w = l 0 ≤ i , j , k ≤ no , i + j + k = no

根据上步已知,可以求得三角域上n次Bezier曲面的表达式中Ps的参数化坐标(us,vs,ws),According to the knowledge in the previous step, the parameterized coordinates (us , vs , ws ) of Ps in the expression of the nth Bezier surface on the triangular domain can be obtained,

(n+1)(n+2)/2个控制顶点为n次Bezier曲面的表达式中的未知量,所以只要求出(n+1)(n+2)/2个控制顶点坐标bijk(0≤i,j,k≤n,i+j+k=n),即可确定出一个三角Bezier曲面。(n+1)(n+2)/2 control vertices are the unknowns in the expression of nth Bezier surface, so only (n+1)(n+2)/2 control vertex coordinates bijk are required (0≤i, j, k≤n, i+j+k=n), a triangular Bezier surface can be determined.

根据三角Bezier曲面的性质可知三角Bezier曲面的三个角点正好是其控制多面体网格的三个控制顶点,那么所选三角形的三个顶点A、B、C即可做为三个已知控制顶点b00n,b0n0,bn00,把Ps(s=0,1,…,m-1)的坐标代入三角Bezier曲面方程,构成以(n+1)(n+2)/2-3个未知控制顶点为未知量的m个线性方程组。在所选三角形内部的三维坐标点数m一般大于(n+1)(n+2)/2-3,在不满足此条件即待求方程组系数矩阵奇异时,以三角形ABC的重心为基点,扩大三角形ABC的面积来增加m的个数。最后采用最小二乘法求解此过约束方程组,确定出曲面其它的未知控制顶点,得到初步拟合的曲面S(u,v,w),见附图6。算法流程图见附图7。According to the properties of the triangular Bezier surface, the three corner points of the triangular Bezier surface are just the three control vertices of its control polyhedral mesh, then the three vertices A, B, and C of the selected triangle can be used as the three known control vertices Vertices b00n , b0n0 , bn00 , put the coordinates of Ps (s=0, 1,..., m-1) into the triangular Bezier surface equation, and form the equation of (n+1)(n+2)/2-3 A system of m linear equations whose unknown control vertices are unknown quantities. The number of three-dimensional coordinate points m inside the selected triangle is generally greater than (n+1)(n+2)/2-3. When this condition is not satisfied, that is, when the coefficient matrix of the system of equations to be obtained is singular, the center of gravity of the triangle ABC is used as the base point. Expand the area of triangle ABC to increase the number of m. Finally, the least square method is used to solve the over-constrained equations, determine other unknown control vertices of the surface, and obtain a preliminary fitting surface S(u, v, w), see Figure 6. The flowchart of the algorithm is shown in Figure 7.

3)曲面逼近优化3) Surface approximation optimization

经过最小二乘初步拟合后,散乱点集Ps与曲面S(u,v,w)的距离误差还比较大,因此需要进一步修正控制顶点,改变控制多面体的形状,从而改变曲面的形状,使曲面逼近点集。本发明采用了以牛顿迭代法为基础的迭代逼近算法,提高拟合精度,最终确定出曲面S’(u,v,w),见附图8。After preliminary fitting by least squares, the distance error between the scattered point set Ps and the surface S(u, v, w) is relatively large, so it is necessary to further correct the control vertices and change the shape of the control polyhedron, thereby changing the shape of the surface. Make a surface approximate to a set of points. The present invention adopts an iterative approximation algorithm based on Newton's iterative method to improve the fitting accuracy and finally determine the curved surface S'(u, v, w), see Figure 8.

具体步骤如下:Specific steps are as follows:

(1)求出各个散乱点到曲面的距离向量d(u,v,w)及曲面分别对对应点参数方向的偏微分Su(u,v,w),Sv(u,v,w),Sw(u,v,w),组成待求方程组如下:(1) Calculate the distance vector d(u, v, w) from each scattered point to the surface and the partial differential of the surface to the parameter direction of the corresponding point Su (u, v, w), Sv (u, v, w ), Sw (u, v, w), form the system of equations to be obtained as follows:

ff((uu,,vv,,ww))==dd((uu,,vv,,ww))·&Center Dot;SSuu((uu,,vv,,ww))==00gg((uu,,vv,,ww))==dd((uu,,vv,,ww))·&Center Dot;SSvv((uu,,vv,,ww))==00hh((uu,,vv,,ww))==dd((uu,,vv,,ww))·&Center Dot;SSww((uu,,vv,,ww))==00

(2)采用基于牛顿迭代法的方法求解此方程组,最终可求得的迭代方程组为:(2) Using the method based on Newton's iterative method to solve this system of equations, the final iterative system of equations that can be obtained is:

||||SSuu||||22--SSww·&Center Dot;SSuu++dd·&Center Dot;((SSuuu u--SSuwuw))SSvv·&Center Dot;SSuu--SSww·&Center Dot;SSuu++dd·&Center Dot;((SSuvuv--SSuwuw))SSuu··SSvv--SSww··SSvv++dd··((SSvuv u--SSvwvw))||||SSvv||||22--SSww··SSvv++dd··((SSvvvv--SSvwvw))SSuu·&Center Dot;SSww--||||SSww||||22++dd·&Center Dot;((SSwuwu--SSwwww))SSvv·&Center Dot;SSww--||||SSww||||22++dd··((SSwvwv--SSwwww))δuδ uδvδv==--ff((uusthe s,,vvsthe s,,wwsthe s))gg((uusthe s,,vvsthe s,,wwsthe s))hh((uusthe s,,vvsthe s,,wwsthe s))

(3)迭代求解以上方程组,当拟合曲面的点数少于迭代方程组的未知数个数时,及方程组系数奇异时,同样以三角形ABC的重心为基点,自适应扩大三角ABC的面积来增加m的个数,重复(2)。(3) Iteratively solve the above equations. When the number of points of the fitted surface is less than the number of unknowns of the iterative equations, and the coefficients of the equations are singular, the center of gravity of the triangle ABC is also used as the base point to adaptively expand the area of the triangle ABC. Increase the number of m, repeat (2).

算法流程图见附图9。The flowchart of the algorithm is shown in Figure 9.

4)面上取点补孔4) Take points on the surface to fill holes

在最终拟合好的Bezier曲面上取点填充孔洞,首先在曲面上取线,再在线上取点,实现孔洞的光滑填补。Take points on the final fitted Bezier surface to fill holes, first take lines on the surface, and then take points on the lines to achieve smooth filling of holes.

Claims (3)

Translated fromChinese
1.一种基于三角域贝塞尔曲面的三维扫描的点云孔洞填补方法,其特征在于:1. a kind of point cloud hole filling method based on the three-dimensional scanning of triangular domain Bezier surface, it is characterized in that:第一步:在点云孔洞周围且在屏幕坐标平面内设定一个三角形ABC,该三角形ABC的区域范围能使点云孔洞及其周围的点向屏幕坐标平面的投影落入三角形ABC内,并将投影落入三角形ABC内的点作为补孔时拟合曲面的点Ps,s=0,1,...,m-1,根据拟合曲面的点Ps在三角形ABC平面的投影Ps’位置计算其曲面参数化坐标(us,vs,ws),us=(ΔAPs’B面积)/(ΔABC面积)、vs=(ΔAPs’C面积)/(ΔABC面积)、ws=(ΔB Ps’C面积)/(ΔABC面积),将拟合曲面的点Ps,s=0,1,...,m-1的坐标及其曲面参数化坐标(us,vs,ws)代入n次Bezier曲面方程并用最小二乘法得到n次Bezier曲面的控制点,从而得到初步拟合的曲面S(u,v,w);Step 1: Set a triangle ABC around the point cloud hole and in the screen coordinate plane. The area of the triangle ABC can make the projection of the point cloud hole and its surrounding points to the screen coordinate plane fall into the triangle ABC, and The point that the projection falls into the triangle ABC is used as the point Ps of the fitting surface when filling the hole, s=0, 1,..., m-1, according to the projection P of the point Ps of the fitting surface on the plane of the triangle ABCs ' position calculates its surface parameterized coordinates (us , vs , ws ), us = (ΔAPs 'B area)/(ΔABC area), vs = (ΔAPs 'C area)/(ΔABC area ), ws =(ΔB Ps 'C area)/(ΔABC area), the point Ps of the fitting surface, s=0, 1,..., m-1 coordinates and its surface parameterization coordinates ( us , vs , ws ) are substituted into the nth degree Bezier surface equation and the control points of the nth degree Bezier surface are obtained by the least square method, so as to obtain the preliminary fitting surface S(u, v, w);第二步:求出各个拟合曲面的点Ps,s=0,1,...,m-1到曲面的距离向量d(u,v,w)及曲面分别对对应点参数方向的偏微分Su(u,v,w),Sv(u,v,w),Sw(u,v,w),令:Step 2: Calculate the distance vector d(u, v, w) of each point Ps of each fitting surface, s=0, 1, ..., m-1 to the surface and the parameter direction of the corresponding point of the surface respectively Partial differential Su (u, v, w), Sv (u, v, w), Sw (u, v, w), let:ff((uu,,vv,,ww))==dd((uu,,vv,,ww))··SSuu((uu,,vv,,ww))==00gg((uu,,vv,,ww))==dd((uu,,vv,,ww))··SSvv((uu,,vv,,ww))==00hh((uu,,vv,,ww))==dd((uu,,vv,,ww))··SSww((uu,,vv,,ww))==00拟合曲面的点Ps的参数化坐标为(us,vs,ws),以(us,vs,ws)为初始估计值,根据牛顿迭代法求解以上方程组,有:The parameterized coordinates of the point Ps of the fitted surface are (us , vs , ws ), taking (us , vs , ws ) as the initial estimated value, and solving the above equations according to the Newton iterative method, there are:T=κTTT式中:In the formula:σ=(δu,δv,δw),其中,δu,δv,δw为曲面u,v,w三个方向上的迭代步长;σ=(δu, δv, δw), wherein, δu, δv, δw are the iterative step sizes in the three directions of surface u, v, and w;κ=-(f(us,vs,ws),g(us,vs,ws),h(us,vs,ws))κ=-(f(us , vs , ws ), g(us , vs , ws ), h(us , vs , ws ))Hh==ffuuffvvffwwgguuggvvggwwhhuuhhvvhhww==||||SSuu||||22++dd··SSuuu uSSvv··SSuu++dd·&Center Dot;SSuvuvSSww·&Center Dot;SSuu++dd·&Center Dot;SSuwuwSSuu·&Center Dot;SSvv++dd·&Center Dot;SSvuv u||||SSvv||||22++dd·&Center Dot;SSvvvvSSww·&Center Dot;SSvv++dd·&Center Dot;SSvwvwSSuu·&Center Dot;SSww++dd·&Center Dot;SSwuwuSSvv·&Center Dot;SSww++dd·&Center Dot;SSwvwv||||SSww||||22++dd·&Center Dot;SSwwww式中,d=d(us,vs,ws);fu,fv,fw,gu,gv,gw,hu,hv,hw分别表示在点(us,vs,ws)处相应的向量对u,v,w的一阶偏导数;Suu,Suv,Suw,Svv,Svu,Svw,Sww,Swu,Swv是曲面S(u,v,w)在点(us,vs,ws)处分别对u,v,w的二阶偏导数,则可得:In the formula, d=d(us , vs , ws ); fu , fv , fw , gu , gv , gw , hu , hv ,hw respectively represent , vs , ws ) corresponding to the first-order partial derivative of the vector pair u, v, w; Suu , Suv , Suw , Svv , Svu , Svw , Sww , Swu , Swv are The second order partial derivatives of the surface S(u, v, w) at the point (us , vs , ws ) with respect to u, v, w respectively, then we can get:||||SSuu||||22++dd·&Center Dot;SSuuu uSSvv·&Center Dot;SSuu++dd·&Center Dot;SSuvuvSSww·&Center Dot;SSuu++dd·&Center Dot;SSuwuwSSuu·&Center Dot;SSvv++dd·&Center Dot;SSvuv u||||SSvv||||22++dd··SSvvvvSSww··SSvv++dd··SSvwvwSSuu··SSww++dd··SSwuwuSSvv··SSww++dd··SSwvwv||||SSww||||22++dd··SSwwwwδδuuδδvvδδww==--ff((uusthe s,,vvsthe s,,wwsthe s))gg((uusthe s,,vvsthe s,,wwsthe s))hh((uusthe s,,vvsthe swwsthe s))根据三角Bezier曲面的定义可知δu+δv+δw=0,即δw=-δu-δv,因此得到如下迭代方程组:According to the definition of triangular Bezier surface, it can be known that δu+δv+δw=0, that is, δw=-δu-δv, so the following iterative equations are obtained:||||SSuu||||22--SSww·&Center Dot;SSuu++dd··((SSuuu u--SSuwuw))SSvv·&Center Dot;SSuu--SSww··SSuu++dd·&Center Dot;((SSuvuv--SSuwuw))SSuu·&Center Dot;SSvv--SSww·&Center Dot;SSvv++dd··((SSvuv u--SSvwvw))||||SSvv||||22--SSww··SSvv++dd·&Center Dot;((SSvvvv--SSvwvw))SSuu·&Center Dot;SSww--||||SSww||||22++dd··((SSwuwu--SSwwww))SSvv··SSww--||||SSww||||22++dd·&Center Dot;((SSwvwv--SSwwww))δδuuδδuu==--ff((uusthe s,,vvsthe s,,wwsthe s))gg((uusthe s,,vvsthe s,,wwsthe s))hh((uusthe s,,vvsthe s,,wwsthe s))其中,δu,δv为u,v两个方向上的迭代步长,Suu,Suv,Suw,Svv,Svu,Svw,Sww,Swu,Swv是曲面S(u,v,w)在点(us,vs,ws)处分别对u,v,w的二阶偏导数,迭代求解直到1/mΣs=0m-1||d(us+δu,vs+δv,ws+δw)-d(us,vs,ws)||≤ϵ,ε为预置曲面拟合精度,从而得到最终确定的三角Bezier曲面S’(u,v,w);Among them, δu and δv are the iterative step sizes in the directions of u and v, and Suu , Suv , Suw , Svv , Svu , Svw , Sww , Swu , and Swv are surface S(u, v, w) at the point (us , vs , ws ) respectively with respect to the second order partial derivatives of u, v, w, iteratively solve until 1 / m Σ the s = 0 m - 1 | | d ( u the s + δu , v the s + δv , w the s + δw ) - d ( u the s , v the s , w the s ) | | ≤ ϵ , ε is the preset surface fitting accuracy, so as to obtain the final triangular Bezier surface S'(u, v, w);第三步:在所述的三角Bezier曲面S’(u,v,w)上基于曲率的等参数取线,再在线上等参数取点,用于填补点云孔洞。Step 3: On the triangular Bezier surface S'(u, v, w), take a line based on curvature isoparameters, and then take points on the line and other parameters to fill the hole in the point cloud.2.根据权利要求1所述的三维扫描的点云孔洞填补方法,其特征在于拟合曲面的点数少于曲面控制顶点数时,扩大所设定三角形ABC的面积,使拟合曲面的点数大于曲面控制顶点数。2. The point cloud hole filling method of three-dimensional scanning according to claim 1, wherein when the number of points of the fitted curved surface is less than the number of control vertices of the curved surface, the area of the set triangle ABC is expanded so that the number of points of the fitted curved surface is greater than The surface controls the number of vertices.3.根据权利要求1所述的三维扫描的点云孔洞填补方法,其特征在于拟合曲面的点数少于迭代方程组的未知数个数时,扩大所设定三角形ABC的面积,使拟合曲面的点数大于或等于迭代方程组的未知数个数。3. The point cloud hole filling method of three-dimensional scanning according to claim 1, wherein when the number of points of the fitting surface is less than the number of unknowns of the iterative equation system, the area of the set triangle ABC is expanded so that the fitting surface The number of points is greater than or equal to the number of unknowns in the iterative equation system.
CNB2006100853283A2006-06-082006-06-08 Hole filling method in point cloud of 3D scanningExpired - Fee RelatedCN100383823C (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CNB2006100853283ACN100383823C (en)2006-06-082006-06-08 Hole filling method in point cloud of 3D scanning

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CNB2006100853283ACN100383823C (en)2006-06-082006-06-08 Hole filling method in point cloud of 3D scanning

Publications (2)

Publication NumberPublication Date
CN1858801A CN1858801A (en)2006-11-08
CN100383823Ctrue CN100383823C (en)2008-04-23

Family

ID=37297708

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CNB2006100853283AExpired - Fee RelatedCN100383823C (en)2006-06-082006-06-08 Hole filling method in point cloud of 3D scanning

Country Status (1)

CountryLink
CN (1)CN100383823C (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8384717B2 (en)*2010-02-162013-02-26Siemens Product Lifecycle Management Software Inc.Method and system for B-rep face and edge connectivity compression
CN102501012B (en)*2011-11-022014-02-26沈阳飞机工业(集团)有限公司 Processing method of curved π-shaped parts
CN102737407A (en)*2012-05-242012-10-17深圳市旭东数字医学影像技术有限公司Fitting optimization method of triangular mesh data and system for achieving fitting optimization method
CN102750738A (en)*2012-05-292012-10-24中山大学Three-dimensional geologic body self-generating technology based on plane drilling
FR3008507B1 (en)*2013-07-092017-04-14Snecma METHOD FOR MODELING A NON-AXISYMETRIC SURFACE
CN105069833A (en)*2015-07-292015-11-18苏州华漫信息服务有限公司Three-dimensional model repair method capable of retaining texture information data
CN107464223B (en)*2017-07-192020-01-14西安理工大学Point cloud hole repairing method based on slices
CN107610061B (en)*2017-08-302020-02-14西安理工大学Edge-preserving point cloud hole repairing method based on two-dimensional projection
CN109870126A (en)*2017-12-052019-06-11宁波盈芯信息科技有限公司A kind of area computation method and a kind of mobile phone for being able to carry out areal calculation
CN110570504B (en)*2019-09-062020-12-01北京航天宏图信息技术股份有限公司Closed symbol drawing method and device, electronic equipment and storage medium
CN113538695A (en)*2021-07-192021-10-22杭州群核信息技术有限公司Method and device for quickly discretizing complex curved surface with arbitrary boundary and storage medium
CN114782582B (en)*2022-03-152025-05-13上海仁静信息技术有限公司 Method for drawing curves in graphics and related equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20050099637A1 (en)*1996-04-242005-05-12Kacyra Ben K.Integrated system for quickly and accurately imaging and modeling three-dimensional objects
CN1740739A (en)*2005-09-212006-03-01天津大学 Fast Color 3D Mapping Method Based on Line-structured Laser Passive Scanning
EP1662228A1 (en)*2004-11-192006-05-31Harman Becker Automotive Systems GmbHScanning of three-dimensional objects
CN1783143A (en)*2005-09-092006-06-07天津大学First-phase treating algorithm for color three dimension dot clowd data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20050099637A1 (en)*1996-04-242005-05-12Kacyra Ben K.Integrated system for quickly and accurately imaging and modeling three-dimensional objects
EP1662228A1 (en)*2004-11-192006-05-31Harman Becker Automotive Systems GmbHScanning of three-dimensional objects
CN1783143A (en)*2005-09-092006-06-07天津大学First-phase treating algorithm for color three dimension dot clowd data
CN1740739A (en)*2005-09-212006-03-01天津大学 Fast Color 3D Mapping Method Based on Line-structured Laser Passive Scanning

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
三维散乱点集的曲面三角剖分. 张永春等.中国图象图形学报,第8卷第12期. 2003*
杂乱点云的快速曲线拟合算法研究. 雷明涛等.计算机工程与科学,第26卷第1期. 2004*

Also Published As

Publication numberPublication date
CN1858801A (en)2006-11-08

Similar Documents

PublicationPublication DateTitle
CN100383823C (en) Hole filling method in point cloud of 3D scanning
CN1885349A (en)Point cloud hole repairing method for three-dimensional scanning
Shimada et al.Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis
US20240153123A1 (en)Isogeometric Analysis Method Based on a Geometric Reconstruction Model
JP4934789B2 (en) Interpolation processing method and interpolation processing apparatus
CN100561521C (en) Hole-filling method of marker points based on neural network in 3D scanning point cloud
JP5436416B2 (en) Approximation processing method and approximation processing apparatus
Gao et al.Grid generation on free-form surface using guide line advancing and surface flattening method
CN104361632A (en)Triangular mesh hole-filling method based on Hermite radial basis function
CN102306397A (en)Method for meshing point cloud data
CN1945626A (en)Method for filling dot cloud hole based on B sample strip curve three dimension scan
CN108230452B (en) A Model Hole Filling Method Based on Texture Synthesis
CN116704147B (en)Electromagnetic exploration three-dimensional modeling method for complex geological structure
CN101105864B (en) A Dynamic Reconstruction Method of 3D Geological Body Based on Topological Reasoning of Sequence Sections
CN101889753B (en)Interactive deformation and measurement simulation method for manually measuring girth of nonrigid limb
KR100414058B1 (en)Remeshing optimizing method and apparatus for polyhedral surface
CN111445569A (en)Sedimentary geological evolution dynamic simulation method
CN114004054B (en)Three-dimensional aided design and visualization system and method based on ceramic product
LeeAutomatic metric 3D surface mesh generation using subdivision surface geometrical model. Part 1: Construction of underlying geometrical model
CN110648391B (en)Point cloud processing three-dimensional reconstruction method
CN101546351A (en)Geometric parameterization modeling method for optimizing variable-complexity shape
CN117315078A (en)Isogeometric analysis parameterized migration method based on discrete geometric mapping
CN117333630A (en) A local implicit incremental update and automatic reconstruction method for 3D geological models
CN115937460A (en)Optimal transmission-based feature-preserving surface reconstruction method
Wang et al.Adaptive T-spline surface approximation of triangular meshes

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
ASSSuccession or assignment of patent right

Owner name:SHENLING ELECTRIC MANUFACTURING CO., LTD., HAIAN

Free format text:FORMER OWNER: SOWTHEAST UNIV.

Effective date:20131018

Owner name:SOWTHEAST UNIV.

Effective date:20131018

C41Transfer of patent application or patent right or utility model
CORChange of bibliographic data

Free format text:CORRECT: ADDRESS; FROM: 210096 NANJING, JIANGSU PROVINCE TO: 226600 NANTONG, JIANGSU PROVINCE

TR01Transfer of patent right

Effective date of registration:20131018

Address after:226600 Haian, Jiangsu province Haian Zhenhai Road, No. 88, South Road, No.

Patentee after:Haian Shenling Electrical Appliance Manufacturing Co., Ltd.

Patentee after:Southeast University

Address before:210096 Jiangsu city Nanjing Province four pailou No. 2

Patentee before:Southeast University

CF01Termination of patent right due to non-payment of annual fee
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20080423

Termination date:20160608


[8]ページ先頭

©2009-2025 Movatter.jp