Movatterモバイル変換


[0]ホーム

URL:


CA2821992A1 - Engineered nucleic acids and methods of use thereof - Google Patents

Engineered nucleic acids and methods of use thereof
Download PDF

Info

Publication number
CA2821992A1
CA2821992A1CA2821992ACA2821992ACA2821992A1CA 2821992 A1CA2821992 A1CA 2821992A1CA 2821992 ACA2821992 ACA 2821992ACA 2821992 ACA2821992 ACA 2821992ACA 2821992 A1CA2821992 A1CA 2821992A1
Authority
CA
Canada
Prior art keywords
protein
nucleic acid
cell
nucleotide sequence
interest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2821992A
Other languages
French (fr)
Inventor
Jason Schrum
Gregory J. Sieczkiewicz
Kenechi Ejebe
Sayda Elbashir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ModernaTx Inc
Original Assignee
Moderna Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filedlitigationCriticalhttps://patents.darts-ip.com/?family=45893552&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2821992(A1)"Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Moderna Therapeutics IncfiledCriticalModerna Therapeutics Inc
Publication of CA2821992A1publicationCriticalpatent/CA2821992A1/en
Abandonedlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Provided are compositions and methods for delivering biological moieties such as modified nucleic acids into cells to modulate protein expression. Such compositions and methods include the use of modified messenger RNAs, and are useful for production of proteins.

Description

2 PCT/US2011/054636 Engineered Nucleic Acids and Methods of Use Thereof Cross-Reference to Related Applications [0001] The present application claims the benefit of U.S. Provisional Application Number 61/404,413, filed October 1, 2010, the disclosure of which is considered part of (and is incorporated herein by reference in) the disclosure of this application.
Background of the Invention [0002] Naturally occurring RNAs are synthesized from four basic ribonucleotides: ATP, CTP, UTP and GTP, but may contain post-transcriptionally modified nucleotides.
Further, approximately one hundred different nucleoside modifications have been identified in RNA
(Rozenski, J, Crain, P, and McCloskey, J. (1999). The RNA Modification Database: 1999 update. Nucl Acids Res 27: 196-197). The role of nucleoside modifications on the immuno-stimulatory potential and on the translation efficiency of RNA, however, is unclear.
[0003] There are multiple problems with prior methodologies of effecting protein expression.
For example, heterologous DNA introduced into a cell can be inherited by daughter cells (whether or not the heterologous DNA has integrated into the chromosome) or by offspring.
Introduced DNA can integrate into host cell genomic DNA at some frequency, resulting in alterations and/or damage to the host cell genomic DNA. In addition, multiple steps must occur before a protein is made. Once inside the cell, DNA must be transported into the nucleus where it is transcribed into RNA. The RNA transcribed from DNA must then enter the cytoplasm where it is translated into protein. This need for multiple processing steps creates lag times before the generation of a protein of interest. Further, it is difficult to obtain DNA expression in cells; frequently DNA enters cells but is not expressed or not expressed at reasonable rates or concentrations. This can be a particular problem when DNA is introduced into cells such as primary cells or modified cell lines.
[0004] There is a need in the art for biological modalities to address the modulation of intracellular translation of nucleic acids.
[0005] Unless explained otherwise, all technical and scientif same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described herein. The materials, methods, and examples are illustrative only and not intended to be limiting. Other features of the disclosure are apparent from the following detailed description and the claims.
Summary of the Invention moom Described herein are methods of producing proteins, polypeptides, and peptides. For example, the method includes introducing a nucleic acid (e.g., a modified nucleic acid described herein) encoding a protein, polypeptide, or peptide of interest into a cell (e.g., a human cell), under conditions that the protein, polypeptide, or peptide of interest is produced (e.g., translated) in the cell. In some embodiments, the nucleic acid comprises one or more nucleoside modifications (e.g., one or more nucleoside modifications described herein).
In some embodiments, the nucleic acid is capable of evading an innate immune response of a cell into which the nucleic acid is introduced. In some embodiments, the protein, polypeptide, or peptide is a therapeutic protein described herein. In some embodiments, the protein, polypeptide, or peptide comprises one or more post-translational modifications (e.g., post-translational modifications present in human cells). Compositions and kits for protein production are also described herein. Further described herein are cells and cultures with altered protein levels (e.g., generated by a method described herein).
[0007] In one aspect, the disclosure features a method of producing a protein (e.g., a heterologous protein) of interest in a cell, the method comprising the steps:
(i) providing a target cell capable of protein translation; and (ii) introducing into the target cell a composition comprising a first isolated nucleic acid comprising a translatable region encoding the protein of interest and a nucleoside modification, under conditions such that the protein of interest is produced in the cell. In some embodiments, the method further comprises the step of substantially purifying the protein of interest from the cell. In some embodiments, the protein of interest is a secreted protein.

[0008] In another aspect, the disclosure features a method of heterologous protein) of interest in a cell, the method comprising the steps:
(i) providing a target cell capable of protein translation; and (ii) introducing into the target cell a composition comprising: (a) a first isolated nucleic acid comprising a translatable region encoding the protein of interest and a nucleoside modification; and (b) a second nucleic acid comprising an inhibitory nucleic acid, under conditions such that the protein of interest is produced in the cell. In some embodiments, the method further comprises the step of substantially purifying the protein of interest from the cell. In some embodiments, the protein of interest is a secreted protein.
[0009] In one aspect, the disclosure features a method of increasing the production of a recombinantly expressed protein of interest in a cell, comprising the steps:
(i) providing a target cell comprising a recombinant nucleic acid encoding the protein of interest;
and (ii) introducing into the target cell a composition comprising a first isolated nucleic acid comprising a translatable region encoding a translation effector protein and a nucleoside modification under conditions such that the effector protein is produced in the cell, thereby increasing the production of the recombinantly expressed protein in the cell.
[0010] In some embodiments, the target cell is a mammalian cell. In some embodiments, the target cell is a yeast cell. In some embodiments, the target cell is a bacterial cell, an insect cell, or a plant cell. In some embodiments, the protein of interest is a secreted protein. In some embodiments, the protein of interest is a transmembrane protein. In some embodiments, the protein of interest is an antibody or an antigen-binding fragment thereof. In some embodiments, the protein of interest is a growth factor or cytokine. In some embodiments, the protein of interest is a peptide or peptidomimetic. In some embodiments, the translation effector protein is ceramide transfer protein (CERT). In some embodiments, the translation effector protein is translated in the target cell in an amount effective to increase efficiency of translation of the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to reduce efficiency of translation of proteins in the cell other than the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to reduce formation of inclusion bodies containing the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an amount effective to reduce intracellular degradation of the recombinantly expressed protein. In some embodiments, the translation effector protein is translated in the target cell in an an secretion of the recombinantly expressed protein.
[0011] In another aspect, the disclosure features a method for altering the level of a protein of interest in a target cell, the method comprising the steps of: (i) modulating the activity of at least one translation effector molecule in the target cell; and (ii) culturing the cell. In some embodiments, the target cell does not contain a recombinant nucleic acid. In some embodiments, the method further comprises the step of isolating the protein of interest.
[0012] In another aspect, the disclosure features a method for modulating the level of a protein of interest in a target cell, comprising the steps of: i) modulating the activity of at least one translation effector molecule in the target cell, wherein the modulation comprises introducing into the target cell a first isolated nucleic acid comprising a translatable region encoding the translation effector protein and a nucleoside modification; and ii) culturing the cell.
[0013] In one aspect, the disclosure features an animal cell (e.g., a mammalian cell) with an altered protein level, generated by the steps of: (i) introducing into the cell an effective amount of a first isolated nucleic acid comprising a translatable region encoding a translation effector protein and a nucleoside modification; and (ii) culturing the cell. In some embodiments, the effective amount of the first isolated nucleic acid introduced into the cell is titrated against a desired amount of protein translated from the translatable region.
[0014] In one aspect, the disclosure features a high density culture comprising a plurality of the cells described herein. In some embodiments, the culture comprises a batch process. In some embodiments, the culture comprises a continuous feed process.
[0015] In one aspect, the disclosure features a composition for protein production, the composition comprising a first isolated nucleic acid comprising a translatable region and a nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease, and a mammalian cell suitable for translation of the translatable region of the first nucleic acid. In some embodiments, the mammalian cell comprises a recombinant nucleic acid.
[0016] In another aspect, the disclosure features a composition for protein production, the composition comprising: (i) a first isolated nucleic acid comprising a translatable region and a nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease; (ii) a second nucleic acid comprising an inhibitory nucleic acid;
and (iii) a mammalian cell suitable for translation of the translatable region of the first nucleic acid, wherein the mammalian cell comprises a target nucleic acid capable of being nucleic acid. In some embodiments, the mammalian cell comprises a recombinant nucleic acid.
[0017] In one aspect, the disclosure features a kit for protein production, the kit comprising a first isolated nucleic acid comprising a translatable region and a nucleic acid modification, wherein the nucleic acid is capable of evading an innate immune response of a cell into which the first isolated nucleic acid is introduced, and packaging and instructions therefor.
[0018] In another aspect, the disclosure features a kit for protein production, the kit comprising: (i) a first isolated nucleic acid comprising a translatable region, provided in an amount effective to produce a desired amount of a protein encoded by the translatable region when introduced into a target cell; (ii) a second nucleic acid comprising an inhibitory nucleic acid, provided in an amount effective to substantially inhibit the innate immune response of the cell; and (iii) packaging and instructions therefor.
[0019] In yet another aspect, the disclosure features a kit for protein production, the kit comprising a first isolated nucleic acid comprising a translatable region and a nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease, and packaging and instructions therefor.
[0020] In one aspect, the disclosure features a kit for protein production, the kit comprising a first isolated nucleic acid comprising a translatable region and at least two different nucleoside modifications, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease, and packaging and instructions therefor.
[0021] In another aspect, the disclosure features a kit for protein production, the kit comprising: (i) a first isolated nucleic acid comprising a translatable region; (ii) a second nucleic acid comprising an inhibitory nucleic acid; and (iii) packaging and instructions therefor.
[0022] In yet another aspect, the disclosure features a kit for protein production, the kit comprising: (i) a first isolated nucleic acid comprising a translatable region and at least one nucleoside modification, wherein the nucleic acid exhibits reduced degradation by a cellular nuclease; (ii) a second nucleic acid comprising an inhibitory nucleic acid;
and (iii) packaging and instructions therefor.
[0023] In one aspect, the disclosure features a kit for protein production, comprising a first isolated nucleic acid encoding a translatable region encoding a protein, wherein the first nucleic acid comprises a nucleic acid modification, wherein the first nucleic acid displays decreased degradation in a cell into which the first isolated nucleic acid is i nucleic acid not comprising a nucleic acid modification, and packaging and instructions therefor.
[0024] In another aspect, the disclosure features a kit for protein production, comprising a first isolated nucleic acid encoding a translatable region encoding a protein, wherein the first nucleic acid comprises a nucleic acid modification, wherein the first nucleic acid displays is more stable in a cell into which the first isolated nucleic acid is introduced as compared to a nucleic acid not comprising a nucleic acid modification, and packaging and instructions therefor.
[0025] In one aspect, the disclosure features a kit for immunoglobulin protein production, comprising a first isolated nucleic acid comprising i) a translatable region encoding the immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid is capable of evading an innate immune response of a cell into which the first isolated nucleic acid is introduced, wherein the translatable region is substantially devoid of cytidine and uracil nucleotides, and packaging and instructions therefor.
[0026] In another aspect, the disclosure features a mammalian cell generated by use of a kit described herein.
[0027] In yet another aspect, the disclosure features an isolated immunoglobulin protein produced from a production cell comprising a first isolated nucleic acid comprising i) a translatable region encoding the immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid is capable of evading an innate immune response of the cell, wherein the translatable region is substantially devoid of either cytidine or uracil nucleotides or the combination of cytidine and uracil nucleotides.
[0028] In one aspect, the disclosure features a pharmaceutical preparation comprising an effective amount of a protein described herein.
[0029] In another aspect, the disclosure features a pharmaceutical preparation comprising an effective amount of a first nucleic acid comprising i) a translatable region encoding an immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid exhibits reduced degradation by a cellular nuclease and is capable of evading an innate immune response of a cell into which the first nucleic acid is introduced, wherein the translatable region is substantially devoid of cytidine and uracil nucleotides.
[0030] Embodiments of the aforesaid methods, cells, cultures, compositions, preparations, and kits may include one or more of the following features:
6 [0031] In some embodiments, the first isolated nucleic acid c (mRNA). In some embodiments, the mRNA comprises at least one nucleoside selected from the group consisting of pyridin-4-one ribonucleoside, 5-aza-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyluridine, 1-taurinomethyl-pseudouridine, 5-taurinomethy1-2-thio-uridine, 1-taurinomethy1-4-thio-uridine, 5-methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methyl-pseudouridine, 1-methyl-l-deaza-pseudouridine, 2-thio-1-methyl-l-deaza-pseudouridine, dihydrouridine, dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxyuridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, and 4-methoxy-2-thio-pseudouridine. In some embodiments, the mRNA
comprises at least one nucleoside selected from the group consisting of 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio- 1-methyl- 1-deaza-pseudoisocytidine, 1-methyl- 1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, and 4-methoxy-l-methyl-pseudoisocytidine. In some embodiments, the mRNA comprises at least one nucleoside selected from the group consisting of 2-aminopurine, 2, 6-diaminopurine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine, 7-deaza-8-aza-2-aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine, N6-glycinylcarbamoyladeno sine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethyladenosine, 7-methyladenine, 2-methylthio-adenine, and 2-methoxy-adenine. In some embodiments, mRNA comprises at least one nucleoside selected from the group consisting of inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deaza-guanosine, 7-deaza-8-aza-guanosine, 6-thio-guano sine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, 8-
7 oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methy1-6-thio-gual guanosine, and N2,N2-dimethy1-6-thio-guanosine.
Brief Description of the Drawings [0032] Figure 1 depicts bar graphs of an Enzyme-linked immunosorbent assay (ELISA) detection of Human G-CSF of in vitro transfected Chinese Hamster Ovary with modRNA
encoding human G-CSF at 12 and 24 hours post-transfection.
[0033] Figure 2 depicts bar graphs of an Enzyme-linked immunosorbent assay (ELISA) for Human IgG of in vitro transfected Chinese Hamster Ovary cells with the Heavy and Light chains of modRNA encoding Trastuzumab at 12, 24, and 36 hours post-transfection.
[0034] Figure 3 depicts bar graphs of an Enzyme-linked immunosorbent assay (ELISA) for detection of Human IgG of in vitro transfected Human Embryonic Kidneys cells (HEK293) with Heavy and Light chains of modRNA encoding Trastuzumab at 36 hours post-transfection.
R1,R2,R3 are triplicate transfection experiments performed in a 24-well plate and normalized to untreated samples.
[0035] Figure 4 depicts an image of a western blot detection of in vitro transfected Chinese Hamster Ovary cells with the Heavy and Light chains of modRNA encoding Trastuzumab at 24 hours post-transfection. HC and LC indicate the Heavy Chain and Light Chain of Trastuzumab respectively.
[0036] Figure 5 depicts images from cell immune-staining of in vitro-transfected Chinese Hamster Ovary cells with the Heavy and Light chains of modRNA encoding both Trastuzumab and Rituximab at 13 hours post-transfection.
[0037] Figure 6 depicts images of a binding immunoblot assay of modRNA
encoding Trastuzumab and Rituximab. The black boxes display the protein of interest.
Detailed Description of the Invention [0038] Methods of producing proteins, polypeptides, and peptides are described herein. The disclosure provides, at least in part, methods of producing a protein, polypeptide, or peptide (e.g., a heterologous protein) of interest in a cell, methods increasing the production of a protein, polypeptide, or peptide (e.g., a recombinantly expressed protein) of interest in a cell, and
8 methods of altering the level of a protein, polypeptide, or peptidc example, the methods can include the step of introducing a nucleic acid (e.g., a modified nucleic acid described herein) encoding a protein, polypeptide, or peptide of interest into a cell (e.g., a human cell), under conditions that the protein, polypeptide, or peptide of interest is produced (e.g., translated) in the cell. In some embodiments, the nucleic acid comprises one or more nucleoside modifications (e.g., one or more nucleoside modifications described herein). In some embodiments, the nucleic acid is capable of evading an innate immune response of a cell into which the nucleic acid is introduced, thus increasing the efficiency of protein production in the cell. In some embodiments, the protein is a therapeutic protein described herein. In some embodiments, the protein comprises one or more post-translational modifications (e.g., post-translational modifications present in human cells). Compositions and kits for protein production are also described herein. Further described herein are cells and cultures with altered protein levels (e.g., generated by a method described herein).
[0039] In general, exogenous nucleic acids, particularly viral nucleic acids, introduced into cells induce an innate immune response, resulting in interferon (IFN) production and cell death.
However, it is of great interest for recombinant protein production to deliver a nucleic acid, e.g., a ribonucleic acid (RNA) inside a cell, e.g., in cell culture, in vitro, in vivo, or ex vivo, such as to cause intracellular translation of the nucleic acid and production of the encoded protein.
Provided herein in part are nucleic acids encoding useful polypeptides capable of modulating a cell's function and/or activity, and methods of making and using these nucleic acids and polypeptides. As described herein, these nucleic acids are capable of reducing the innate immune activity of a population of cells into which they are introduced, thus increasing the efficiency of protein production in that cell population. Further, one or more additional advantageous activities and/or properties of the nucleic acids and proteins of the invention are described.
[0040] Methods of protein production.
[0041] The methods provided herein are useful for enhancing protein product yield in a cell culture process. In a cell culture containing a plurality of host cells, introduction of the modified mRNAs described herein results in increased protein production efficiency relative to a corresponding unmodified nucleic acid. Such increased protein production efficiency can be demonstrated, e.g., by showing increased cell transfection, increased protein translation from the
9 nucleic acid, decreased nucleic acid degradation, and/or reduced host cell. Protein production can be measured by ELISA, and protein activity can be measured by various functional assays known in the art. The protein production may be generated in a continuous or a fed-batch process.
[0042] Cell culture and growth.
[0043] In the methods of the disclosure, the cells are cultured. Cells may be cultured in suspension or as adherent cultures. Cells may be cultured in a variety of vessels including, for example, bioreactors, cell bags, wave bags, culture plates, flasks, hyperflasks and other vessels well known to those of ordinary skill in the art. Cells may be cultured in IMDM (Invitrogen, Catalog number 12440-53) or any other suitable media including chemically defined media formulations. Ambient conditions suitable for cell culture, such as temperature and atmospheric composition, are also well known to those skilled in the art. The methods of the disclosure may be used with any cell that is suitable for use in protein production. In one embodiment, the cells are selected from the group consisting of animal cells (e.g., mammalian cells), bacterial cells, plant, microbial, algal, and fungal cells. In some embodiments, the cells are mammalian cells, such human, mouse, rat, goat, horse, rabbit, hamster or cow cells. For instance, the cells may be from any established cell line, including but not limited to HeLa, NSO, SP2/0, HEK 293T, Vero, Caco, Caco-2, MDCK, COS-1, COS-7, K562, Jurkat, CHO-K1, DG44, CHOK1SV, CHO-S, Huvec, CV-1, HuH-7, NIH3T3, HEK293, 293, A549, HepG2, IMR-90, MCF-7, U-20S, Per.C6, SF9, SF21, or Chinese Hamster Ovary (CHO) cells. In certain embodiments, the cells are fungal cells, such as cells selected from the group consisting of: Chrysosporium cells, Aspergillus cells, Trichoderma cells, Dictyostelium cells, Candida cells, Saccharomyces cells, Schizosaccharomyces cells, and Penicillium cells. In certain other embodiments, the cells are bacterial cells, such as E. coli, B. subtilis, or BL21 cells. Primary and secondary cells to be transfected by the present method can be obtained from a variety of tissues and include all cell types which can be maintained in culture. For example, primary and secondary cells which can be transfected by the present method include fibroblasts, keratinocytes, epithelial cells (e.g., mammary epithelial cells, intestinal epithelial cells), endothelial cells, glial cells, neural cells, formed elements of the blood (e.g., lymphocytes, bone marrow cells), muscle cells and precursors of these somatic cell types. Primary cells can be obtained from a donor of the same species or another species (e.g., mouse, rat, rabbit, cat, dog, pig, cow, bird, sheep, goat, horse).

[0044] The cells of the present disclosure are useful for in vii products which can be purified and delivered by conventional routes of administration. With or without amplification, these cells can be subject to large-scale cultivation for harvest of intracellular or extracellular protein products.
[0045] Methods of cellular nucleic acid delivery.
[0046] Methods of the present disclosure enhance nucleic acid delivery into a cell population, in vivo, ex vivo, or in culture. For example, a cell culture containing a plurality of host cells (e.g., eukaryotic cells such as yeast or mammalian cells) is contacted with a composition that contains an enhanced nucleic acid having at least one nucleoside modification and, optionally, a translatable region. The composition also generally contains a transfection reagent or other compound that increases the efficiency of enhanced nucleic acid uptake into the host cells. The enhanced nucleic acid exhibits enhanced retention in the cell population, relative to a corresponding unmodified nucleic acid. The retention of the enhanced nucleic acid is greater than the retention of the unmodified nucleic acid. In some embodiments, it is at least about 50%, 75%, 90%, 95%, 100%, 150%, 200%, or more than 200% greater than the retention of the unmodified nucleic acid. Such retention advantage may be achieved by one round of transfection with the enhanced nucleic acid, or may be obtained following repeated rounds of transfection.
[0047] Introduction of modified or transient RNAs into cells for protein production.
[0048] Transiently transfected cells may be generated by methods of transfection, electroporation, cationic agents, polymers, or lipid-based delivery molecules well known to those of ordinary skill in the art. The modified transient RNAs can be introduced into the cultured cells in either traditional batch like steps or continuous flow through steps if appropriate. The methods and compositions of the present disclosure may be used to produce cells with increased production of one or more protein of interest. Cells can be transfected or otherwise introduced with one or more RNA. The cells may be transfected with the two or more RNA
constructs simultaneously or sequentially. In certain embodiments, multiple rounds of the methods described herein may be used to obtain cells with increased expression of one or more RNAs or proteins of interest. For example, cells may be transfected with one or more RNA constructs that encode an RNA or protein of interest and isolated according to the methods described herein.
The isolated cells may then be subjected to further rounds of transfection with one or more other RNA that encode an RNA or protein of interest and isolated onc( for example, for generating cells with increased expression of a complex of proteins, RNAs or proteins in the same or related biological pathway, RNAs or proteins that act upstream or downstream of each other, RNAs or proteins that have a modulating, activating or repressing function to each other, RNAs or proteins that are dependent on each other for function or activity, or RNAs or proteins that share homology (e.g., sequence, structural, or functional homology). For example, this method may be used to generate a cell line with increased expression of the heavy and light chains of an immunoglobulin protein (e.g., IgA, IgD, IgE, IgG, and IgM) or antigen-binding fragments thereof. The immunoglobulin proteins may be fully human, humanized, or chimeric immunoglobulin proteins. An RNA that is transfected into a cell of the disclosure may comprise a sequence that is an RNA encoding a protein of interest. Any protein may be produced according to the methods described herein. Examples of proteins that may be produced according the methods of the disclosure include, without limitation, peptide hormones (e.g., insulin), glycoprotein hormones (e.g., erythropoietin), antibiotics, cytokines, enzymes, vaccines (e.g., HIV vaccine, HPV vaccine, HBV vaccine), anticancer therapeutics (e.g., Mud), and therapeutic antibodies. In a particular embodiment the RNA
encodes an immunoglobulin protein or an antigen-binding fragment thereof, such as an immunoglobulin heavy chain, an immunoglobulin light chain, a single chain Fv, a fragment of an antibody, such as Fab, Fab', or (FaN)2, or an antigen binding fragment of an immunoglobulin.
In a specific embodiment, the RNA encodes erythropoietin. In another specific embodiment, the RNA
encodes one or more immunoglobulin proteins, or fragments thereof, that bind to and, optionally, antagonize or agonize a cell surface receptor: the epidermal growth factor receptor (EGFR), HER2, or c-ErbB-1, such as ErbituxTM (cetuximab).
[0049] Isolation or purification of proteins.
[0050] The methods described herein can further comprise the step of isolating or purifying the proteins, polypeptides, or peptides produced by the methods described herein. Those of ordinary skill in the art can easily make a determination of the proper manner to purify or isolate the protein of interest from the cultured cells. Generally, this is done through a capture method using affinity binding or non-affinity purification. If the protein of interest is not secreted by the cultured cells, then a lysis of the cultured cells would be performed prior to purification or isolation as described above. One can use unclarified cell culture fluid containing the protein of interest along with cell culture media components as well as cell foam compounds and other nutrients and supplements, cells, cellular debris, host cell proteins, DNA, viruses and the like in the present disclosure. Moreover, the process can be conducted, if desired, in the bioreactor itself. The fluid may either be preconditioned to a desired stimulus such as pH, temperature or other stimulus characteristic or the fluid can be conditioned upon addition of the polymer(s) or the polymer(s) can be added to a carrier liquid that is properly conditioned to the required parameter for the stimulus condition required for that polymer to be solubilized in the fluid. The polymer(s) is allowed to circulate thoroughly with the fluid and then the stimulus is applied (change in pH, temperature, salt concentration, etc) and the desired protein and polymer(s) precipitate out of solution. The polymer and desired protein(s) is separated from the rest of the fluid and optionally washed one or more times to remove any trapped or loosely bound contaminants. The desired protein is then recovered from the polymer(s) such as by elution and the like. Typically, the elution is done under a set of conditions such that the polymer remains in its solid (precipitated) form and retains any impurities to it during the selective elution of the desired protein.
Alternatively, the polymer and protein as well as any impurities can be solubilized in a new fluid such as water or a buffered solution and the protein be recovered by a means such as affinity, ion exchange, hydrophobic, or some other type of chromatography that has a preference and selectivity for the protein over that of the polymer or impurities. The eluted protein is then recovered and if desired subjected to additional processing steps, either traditional batch like steps or continuous flow through steps if appropriate.
[0051] Additionally, it is useful to optimize the expression of a specific polypeptide in a cell line or collection of cell lines of potential interest, particularly an engineered protein such as a protein variant of a reference protein having a known activity. In one embodiment, provided is a method of optimizing expression of an engineered protein in a target cell, by providing a plurality of target cell types, and independently contacting with each of the plurality of target cell types a modified mRNA encoding an engineered polypeptide. Additionally, culture conditions may be altered to increase protein production efficiency. Subsequently, the presence and/or level of the engineered polypeptide in the plurality of target cell types is detected and/or quantitated, allowing for the optimization of an engineered polypeptide's expression by selection of an efficient target cell and cell culture conditions relating thereto. Such methods are particularly useful when the engineered polypeptide contains one or more po has substantial tertiary structure, situations which often complicate efficient protein production.
[0052] "Proteins of interest" or "desired proteins" include those provided herein and fragments, mutants, variants, and alterations thereof. Especially, desired proteins/polypeptides or proteins of interest are for example, but not limited to insulin, insulin-like growth factor, human growth hormone (hGH), tissue plasminogen activator (tPA), cytokines, such as interleukins (IL), e.g., IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, interferon (IFN) alpha, IFN beta, IFN gamma, IFN
omega or IFN tau, tumor necrosis factor (TNF), such as TNF alpha and TNF beta, TNF gamma, TNF-related apoptosis-inducing ligand (TRAIL); granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), macrophage colony-stimulating factor (M-CSF), monocyte chemotactic protein-1 (MCP-1), and vascular endothelial growth factor (VEGF). Also included is the production of erythropoietin or any other hormone growth factors. The method according to the disclosure can also be advantageously used for production of antibodies or fragments thereof. Such fragments include e.g., Fab fragments (Fragment antigen-binding). Fab fragments consist of the variable regions of both chains which are held together by the adjacent constant region. These may be formed by protease digestion, e.g., with papain, from conventional antibodies, but similar Fab fragments may also be produced in the mean time by genetic engineering. Further antibody fragments include F(ab')2 fragments, which may be prepared by proteolytic cleaving with pepsin.
[0053] The protein of interest is typically recovered from the culture medium as a secreted polypeptide, or it can be recovered from host cell lysates if expressed without a secretory signal.
It is necessary to purify the protein of interest from other recombinant proteins and host cell proteins in a way that substantially homogenous preparations of the protein of interest are obtained. As a first step, cells and/or particulate cell debris are removed from the culture medium or lysate. The product of interest thereafter is purified from contaminant soluble proteins, polypeptides and nucleic acids, for example, by fractionation on immunoaffinity or ion-exchange columns, ethanol precipitation, reverse phase HPLC, Sephadex chromatography, chromatography on silica or on a cation exchange resin such as DEAE. In general, methods teaching a skilled person how to purify a protein heterologous expressed by host cells, are well known in the art. Such methods are for example described by (Harris and Angal, Protein Purification Methods: A Practical Approach, Oxford University Protein Purification: Principles and Practice, Springer, 1988).
[0054] Methods of the present disclosure enhance nucleic acid delivery into a cell population, in vivo, ex vivo, or in culture. For example, a cell culture containing a plurality of host cells (e.g., eukaryotic cells such as yeast or mammalian cells) is contacted with a composition that contains an enhanced nucleic acid having at least one nucleoside modification and, optionally, a translatable region. The composition also generally contains a transfection reagent or other compound that increases the efficiency of enhanced nucleic acid uptake into the host cells. The enhanced nucleic acid exhibits enhanced retention in the cell population, relative to a corresponding unmodified nucleic acid. The retention of the enhanced nucleic acid is greater than the retention of the unmodified nucleic acid. In some embodiments, it is at least about 50%, 75%, 90%, 95%, 100%, 150%, 200%, or more than 200% greater than the retention of the unmodified nucleic acid. Such retention advantage may be achieved by one round of transfection with the enhanced nucleic acid, or may be obtained following repeated rounds of transfection.
[0055] In some embodiments, the enhanced nucleic acid is delivered to a target cell population with one or more additional nucleic acids. Such delivery may be at the same time, or the enhanced nucleic acid is delivered prior to delivery of the one or more additional nucleic acids. The additional one or more nucleic acids may be modified nucleic acids or unmodified nucleic acids. It is understood that the initial presence of the enhanced nucleic acids does not substantially induce an innate immune response of the cell population and, moreover, that the innate immune response will not be activated by the later presence of the unmodified nucleic acids. In this regard, the enhanced nucleic acid may not itself contain a translatable region, if the protein desired to be present in the target cell population is translated from the unmodified nucleic acids.
[0056] Antagonist Protein Expression.
[0057] Methods and compositions described herein can be used to produced proteins that are capable of attenuating or blocking the endogenous agonist biological response and/or antagonizing a receptor or signaling molecule in a mammalian subject. For example, IL-12 and IL-23 receptor signaling is enhanced in chronic autoimmune disorders such as multiple sclerosis and inflammatory diseases such as rheumatoid arthritis, psoriasis, lupus erythematosus, ankylosing spondylitis and Crohn's disease (Kikly K, Liu L, Na Opin. Immunol. 18 (6): 670-5). In another embodiment, a nucleic acid encodes an antagonist for chemokine receptors. Chemokine receptors CXCR-4 and CCR-5 are required for HIV
entry into host cells (Arenzana-Seisdedos F et al, (1996) Nature. Oct 3; 383 (6599):400).
[0058] Targeting Moieties. In embodiments of the disclosure, modified nucleic acids are provided to express a protein-binding partner or a receptor on the surface of the cell, which functions to target the cell to a specific tissue space or to interact with a specific moiety, either in vivo or in vitro. Suitable protein-binding partners include antibodies and functional fragments thereof, scaffold proteins, or peptides. Additionally, modified nucleic acids can be employed to direct the synthesis and extracellular localization of lipids, carbohydrates, or other biological moieties.
[0059] Permanent Gene Expression Silencing. A method for epigenetically silencing gene expression in a mammalian subject, comprising a nucleic acid where the translatable region encodes a polypeptide or polypeptides capable of directing sequence-specific histone H3 methylation to initiate heterochromatin formation and reduce gene transcription around specific genes for the purpose of silencing the gene. For example, a gain-of-function mutation in the Janus Kinase 2 gene is responsible for the family of Myeloproliferative Diseases.
[0060] Mechanism details. Fission yeast require two RNAi complexes for siRNA-mediated heterochromatin assembly: the RNA-induced transcriptional silencing (RITS) complex and the RNA-directed RNA polymerase complex (RDRC) (Motamedi et al. Cell 2004, 119, 789-802).
In fission yeast, the RITS complex contains the siRNA binding Argonaute family protein Ago 1, a chromodomain protein Chpl, and Tas3. The fission yeast RDRC complex is composed of an RNA-dependent RNA Polymerase Rdpl, a putative RNA helicase Hrrl, and a polyA
polymerase family protein Cid12. These two complexes require the Dicer ribonuclease and C1r4 histone H3 methyltransferase for activity. Together, Agol binds siRNA molecules generated through Dicer-mediated cleavage of Rdpl co-transcriptionally generated dsRNA transcripts and allows for the sequence-specific direct association of Chpl, Tas3, Hrr 1, and C1r4 to regions of DNA destined for methylation and histone modification and subsequent compaction into transcriptionally silenced heterochromatin. While this mechanism functions in cis- with centromeric regions of DNA, sequence-specific trans silencing is possible through co-transfection with double-stranded siRNAs for specific regions of DNA and concomitant RNAi-dirc ribonuclease Eril (Buhler et al. Cell 2006, 125, 873-886).
[0061] Production of polvpeptide variants.
[0062] Methods and compositions described herein can be used for production of polypeptide variants. Provided herein are nucleic acids that encode variant polypeptides, which have a certain identity with a reference polypeptide sequence. The term "identity" as known in the art, refers to a relationship between the sequences of two or more peptides, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between peptides, as determined by the number of matches between strings of two or more amino acid residues. "Identity" measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (i.e., "algorithms"). Identity of related peptides can be readily calculated by known methods. Such methods include, but are not limited to, those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988;
Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part 1, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M.
Stockton Press, New York, 1991; and Carillo et al., SIAM J. Applied Math. 48, 1073 (1988).
[0063] In some embodiments, the polypeptide variant has the same or a similar activity as the reference polypeptide. Alternatively, the variant has an altered activity (e.g., increased or decreased) relative to a reference polypeptide. Generally, variants of a particular polynucleotide or polypeptide of the disclosure will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art.
[0064] As recognized by those skilled in the art, protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of this disclosure.
For example, provided herein is any protein fragment of a reference protein (meaning a polypeptide sequence at least one amino acid residue shorter than a reference polypeptide sequence but otherwise identical) about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or greater than 100 amino acids in length. In another example, any protein that about 30, about 40, about 50, or about 100 amino acids, which are about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, about 95%, or about 100% identical to any of the sequences described herein, can be utilized in accordance with the disclosure.
In certain embodiments, a protein sequence to be utilized in accordance with the disclosure includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences provided or referenced herein.
[0065] Production of polypeptide libraries.
[0066] Methods and compositions described herein can be used for production of polypeptide libraries. Provided herein are polynucleotide libraries containing nucleoside modifications, wherein the polynucleotides individually contain a first nucleic acid sequence encoding a polypeptide, such as an antibody, protein binding partner, scaffold protein, and other polypeptides known in the art. Typically, the polynucleotides are mRNA in a form suitable for direct introduction into a target cell host, which in turn synthesizes the encoded polypeptide.
[0067] In certain embodiments, multiple variants of a protein, each with different amino acid modification(s), are produced and tested to determine the best variant in terms of pharmacokinetics, stability, biocompatibility, and/or biological activity, or a biophysical property such as expression level. Such a library may contain about 10, 102, 103, 104, 105, 106, 107, 108, 109, or over 109 possible variants (including substitutions, deletions of one or more residues, and insertion of one or more residues).
[0068] Production of polypeptide-nucleic acid complexes.
[0069] Methods and compositions described herein can be used for production of polypeptide-nucleic acid complexes. Proper protein translation involves the physical aggregation of a number of polypeptides and nucleic acids associated with the mRNA. Provided by the disclosure are protein-nucleic acid complexes, containing a translatable mRNA having one or more nucleoside modifications (e.g., at least two different nucleoside modifications) and one or more polypeptides bound to the mRNA. Generally, the proteins are provided in an amount effective to prevent or reduce an innate immune response of a cell into which the complex is introduced.
[0070] Production of untranslatable modified nucleic acids.

[0071] Methods and compositions described herein can be th untranslatable modified nucleic acids. As described herein, provided are mRNAs having sequences that are substantially not translatable. Such mRNA is effective as a vaccine when administered to a mammalian subject.
[0072] Also provided are modified nucleic acids that contain one or more noncoding regions.
Such modified nucleic acids are generally not translated, but are capable of binding to and sequestering one or more translational machinery component such as a ribosomal protein or a transfer RNA (tRNA), thereby effectively reducing protein expression in the cell. The modified nucleic acid may contain a small nucleolar RNA (sno-RNA), microRNA (miRNA), small interfering RNA (siRNA), small hairpin RNA (shRNA), or Piwi-interacting RNA
(piRNA).
[0073] Modified nucleic acids.
[0074] This disclosure provides methods of producing proteins using nucleic acids, including RNAs such as messenger RNAs (mRNAs) that contain one or more modified nucleosides (termed "modified nucleic acids"), which have useful properties including the lack of a substantial induction of the innate immune response of a cell into which the mRNA is introduced. Because these modified nucleic acids enhance the efficiency of protein production, intracellular retention of nucleic acids, and viability of contacted cells, as well as possess reduced immunogenicity, these nucleic acids having these properties are termed "enhanced nucleic acids"
herein.
[0075] The term "nucleic acid," in its broadest sense, includes any compound and/or substance that is or can be incorporated into an oligonucleotide chain.
Exemplary nucleic acids for use in accordance with the present disclosure include, but are not limited to, one or more of DNA, RNA including messenger mRNA (mRNA), hybrids thereof, RNA interference (RNAi)-inducing agents, RNAi agents, small interfering RNAs (siRNAs), small hairpin RNAs (shRNAs), microRNAs (miRNAs), antisense RNAs, ribozymes, catalytic DNA, RNAs that induce triple helix formation, aptamers, vectors, etc., described in detail herein.
[0076] Provided are modified nucleic acids containing a translatable region and one, two, or more than two different nucleoside modifications. In some embodiments, the modified nucleic acid exhibits reduced degradation in a cell into which the nucleic acid is introduced, relative to a corresponding unmodified nucleic acid. For example, the degradation rate of the modified nucleic acid is reduced by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or greater than 90%, compared to the degradation rate of the corresponding Exemplary nucleic acids include ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), or a hybrid thereof. In typical embodiments, the modified nucleic acid includes messenger RNAs (mRNAs). As described herein, the nucleic acids of the disclosure do not substantially induce an innate immune response of a cell into which the mRNA is introduced.
[0077] In some embodiments, modified nucleosides include pyridin-4-one ribonucleoside, 5-aza-uridine, 2-thio-5-aza-uridine, 2-thiouridine, 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxyuridine, 3-methyluridine, 5-carboxymethyl-uridine, 1-carboxymethyl-pseudouridine, 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyluridine, 1-taurinomethyl-pseudouridine, 5-taurinomethy1-2-thio-uridine, 1-taurinomethy1-4-thio-uridine, 5-methyl-uridine, 1-methyl-pseudouridine, 4-thio-1-methyl-pseudouridine, 2-thio-1-methyl-pseudouridine, 1-methyl-l-deaza-pseudouridine, 2-thio-1-methy1-1-deaza-pseudouridine, dihydrouridine, dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxyuridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, and 4-methoxy-2-thio-pseudouridine.
[0078] In some embodiments, modified nucleosides include 5-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine, N4-acetylcytidine, 5-formylcytidine, N4-methylcytidine, 5-hydroxymethylcytidine, 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine, 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio- 1-methyl- 1-deaza-pseudoisocytidine, 1-methyl- 1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, and 4-methoxy-1-methyl-pseudoisocytidine.
[0079] In other embodiments, modified nucleosides include 2-aminopurine, 2, diaminopurine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine, 7-deaza-8-aza-2-aminopurine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyladenosine, N6-methyladenosine, N6-isopentenyladenosine, N6-(cis-hydroxyisopentenyl)adenosine, 2-methylthio-N6-(cis-hydroxyisopentenyl) adenosine, N6-glycinylcarbamoyladeno sine, N6-threonylcarbamoyladenosine, 2-methylthio-N6-threonyl carbamoyladenosine, N6,N6-dimethyladenosine, 7-methyladenine, 2-methylthio-adenine, and 2-methoxy-adenine.

[0080] In specific embodiments, a modified nucleoside is 5'-Adenosine, 5'-0-(1-Thiophosphate)-Cytidine, 5'-0-(1-Thiophosphate)-Guanosine, 5'-0-(1-Thiophosphate)-Uridine or 5'-0-(1-Thiophosphate)-Pseudouridine.

NN
1\1"-OH OH
5'-0-(1-Thiophosphate)-Adenosine OH OH
5'-0-(1-Thiophosphate)-Cytidine ),H, OH OH
5'-0-(1-Thiophosphate)-Guanosine NH
"====,N0 I

OH OH
5'-0-(1-Thiophosphate)-Uridine NANH

OH OH
5'-0-(1-Thiophosphate)-Pseudouridine [0081] The a-thio substituted phosphate moiety is provided to coiner mummy
10 rciNpvaiiu DNA polymers through the unnatural phosphorothioate backbone linkages.
Phosphorothioate DNA and RNA have increased nuclease resistance and subsequently a longer half-life in a cellular environment. Phosphorothioate linked nucleic acids are expected to also reduce the innate immune response through weaker binding/activation of cellular innate immune molecules.
[0082] In certain embodiments it is desirable to intracellularly degrade a modified nucleic acid introduced into the cell, for example if precise timing of protein production is desired.
Thus, the disclosure provides a modified nucleic acid containing a degradation domain, which is capable of being acted on in a directed manner within a cell.
[0083] In other embodiments, modified nucleosides include inosine, 1-methyl-inosine, wyosine, wybutosine, 7-deaza-guanosine, 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine, 6-thio-7-methyl-guanosine, 7-methylinosine, 6-methoxy-guanosine, 1-methylguanosine, N2-methylguanosine, N2,N2-dimethylguanosine, 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methy1-6-thio-guanosine, N2-methyl-6-thio-guanosine, and N2,N2-dimethy1-6-thio-guanosine.
[0084] Other components of nucleic acid are optional, and are beneficial in some embodiments. For example, a 5' untranslated region (UTR) and/or a 3'UTR are provided, wherein either or both may independently contain one or more different nucleoside modifications. In such embodiments, nucleoside modifications may also be present in the translatable region. Also provided are nucleic acids containing a Kozak sequence.
[0085] Additionally, provided are nucleic acids containing one or more intronic nucleotide sequences capable of being excised from the nucleic acid.
[0086] Further, provided are nucleic acids containing an internal ribosome entry site (IRES).
An IRES may act as the sole ribosome binding site, or may serve as one of multiple ribosome binding sites of an mRNA. An mRNA containing more than one functional ribosome binding site may encode several peptides or polypeptides that are translated independently by the ribosomes ("multicistronic mRNA"). When nucleic acids are provided with an IRES, further optionally provided is a second translatable region. Examples of IRES
sequences that can be used according to the disclosure include without limitation, those from picornaviruses (e.g.
FMDV), pest viruses (CFFV), polio viruses (PV), encephalomyocarditis viruses (ECMV), foot-and-mouth disease viruses (FMDV), hepatitis C viruses (HCV),1 (CSFV), murine leukemia virus (MLV), simian immune deficiency viruses (SIV) or cricket paralysis viruses (CrPV).
[0087] Prevention or reduction of innate cellular immune response activation using modified nucleic acids.
[0088] The modified nucleic acids described herein are capable of evading an innate immune response of a cell into which the nucleic acids are introduced, thus increasing the efficiency of protein production in the cell. The term "innate immune response" includes a cellular response to exogenous single stranded nucleic acids, generally of viral or bacterial origin, which involves the induction of cytokine expression and release, particularly the interferons, and cell death.
Protein synthesis is also reduced during the innate cellular immune response.
While it is advantageous to eliminate the innate immune response in a cell, the disclosure provides modified mRNAs that substantially reduce the immune response, including interferon signaling, without entirely eliminating such a response. In some embodiments, the immune response is reduced by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99%, 99.9%, or greater than 99.9%, as compared to the immune response induced by a corresponding unmodified nucleic acid. Such a reduction can be measured by expression or activity level of Type 1 interferons or the expression of interferon-regulated genes such as the toll-like receptors (e.g., TLR7 and TLR8). Reduction of innate immune response can also be measured by decreased cell death following one or more administrations of modified RNAs to a cell population;
e.g., cell death is about 10%, 25%, 50%, 75%, 85%, 90%, 95%, or over 95% less than the cell death frequency observed with a corresponding unmodified nucleic acid. Moreover, cell death may affect fewer than about 50%, 40%, 30%, 20%, 10%,5%, 1%, 0.1%, 0.01%, or fewer than 0.01% of cells contacted with the modified nucleic acids.
[0089] The disclosure provides for the repeated introduction (e.g., transfection) of modified nucleic acids into a target cell population, e.g., in vitro, ex vivo, or in vivo. The step of contacting the cell population may be repeated one or more times (such as two, three, four, five, or more than five times). In some embodiments, the step of contacting the cell population with the modified nucleic acids is repeated a number of times sufficient such that a predetermined efficiency of protein translation in the cell population is achieved. Given the reduced cytotoxicity of the target cell population provided by the nucleic repeated transfections are achievable in a diverse array of cell types.
[0090] Modified nucleic acid synthesis.
[0091] Nucleic acids for use in accordance with the disclosure may be prepared according to any available technique including, but not limited to chemical synthesis, enzymatic synthesis, which is generally termed in vitro transcription, enzymatic or chemical cleavage of a longer precursor, etc. Methods of synthesizing RNAs are known in the art (see, e.g., Gait, M.J. (ed.) Oligonucleotide synthesis: a practical approach, Oxford [Oxfordshire], Washington, DC: IRL
Press, 1984; and Herdewijn, P. (ed.) Oligonucleotide synthesis: methods and applications, Methods in Molecular Biology, v. 288 (Clifton, N.J.) Totowa, N.J.: Humana Press, 2005; both of which are incorporated herein by reference).
[0092] Modified nucleic acids need not be uniformly modified along the entire length of the molecule. Different nucleotide modifications and/or backbone structures may exist at various positions in the nucleic acid. One of ordinary skill in the art will appreciate that the nucleotide analogs or other modification(s) may be located at any position(s) of a nucleic acid such that the function of the nucleic acid is not substantially decreased. A modification may also be a 5' or 3' terminal modification. The nucleic acids may contain at a minimum one and at maximum 100%
modified nucleotides, or any intervening percentage, such as at least about 50% modified nucleotides, at least about 80% modified nucleotides, or at least about 90%
modified nucleotides.
[0093] Generally, the length of a modified mRNA of the present disclosure is suitable for protein, polypeptide, or peptide production in a cell (e.g., a human cell).
For example, the mRNA is of a length sufficient to allow translation of at least a dipeptide in a cell. In one embodiment, the length of the modified mRNA is greater than 30 nucleotides. In another embodiment, the length is greater than 35 nucleotides. In another embodiment, the length is at least 40 nucleotides. In another embodiment, the length is at least 45 nucleotides. In another embodiment, the length is at least 55 nucleotides. In another embodiment, the length is at least 60 nucleotides. In another embodiment, the length is at least 60 nucleotides.
In another embodiment, the length is at least 80 nucleotides. In another embodiment, the length is at least 90 nucleotides. In another embodiment, the length is at least 100 nucleotides.
In another embodiment, the length is at least 120 nucleotides. In another embodiment, the length is at least 140 nucleotides. In another embodiment, the length is at least 160 nucleotides. In another embodiment, the length is at least 180 nucleotides. In another er 200 nucleotides. In another embodiment, the length is at least 250 nucleotides. In another embodiment, the length is at least 300 nucleotides. In another embodiment, the length is at least 350 nucleotides. In another embodiment, the length is at least 400 nucleotides. In another embodiment, the length is at least 450 nucleotides. In another embodiment, the length is at least 500 nucleotides. In another embodiment, the length is at least 600 nucleotides. In another embodiment, the length is at least 700 nucleotides. In another embodiment, the length is at least 800 nucleotides. In another embodiment, the length is at least 900 nucleotides. In another embodiment, the length is at least 1000 nucleotides. In another embodiment, the length is at least 1100 nucleotides. In another embodiment, the length is at least 1200 nucleotides. In another embodiment, the length is at least 1300 nucleotides. In another embodiment, the length is at least 1400 nucleotides. In another embodiment, the length is at least 1500 nucleotides. In another embodiment, the length is at least 1600 nucleotides. In another embodiment, the length is at least 1800 nucleotides. In another embodiment, the length is at least 2000 nucleotides. In another embodiment, the length is at least 2500 nucleotides. In another embodiment, the length is at least 3000 nucleotides. In another embodiment, the length is at least 4000 nucleotides. In another embodiment, the length is at least 5000 nucleotides, or greater than 5000 nucleotides.
[0094] Uses of modified nucleic acids.
[0095] The proteins, polypeptides, or peptides produced by the methods described herein can be used as therapeutic agents to treat or prevent one or more diseases or conditions described herein.
[0096] Therapeutic Agents. Provided are compositions, methods, kits, and reagents for treatment or prevention of disease or conditions in humans and other animals (e.g., mammals).
The active therapeutic agents of the disclosure include polypeptides translated from modified nucleic acids, cells containing modified nucleic acids or polypeptides translated from the modified nucleic acids, and cells contacted with cells containing modified nucleic acids or polypeptides translated from the modified nucleic acids.
[0097] Provided are methods of inducing translation of a recombinant polypeptide in a cell population using the modified nucleic acids described herein. Such translation can be in vivo, ex vivo, in culture, or in vitro. The cell population is contacted with an effective amount of a composition containing a nucleic acid that has at least one nucleoside modification, and a translatable region encoding the recombinant polypeptide. The r conditions such that the nucleic acid is localized into one or more cells of the cell population and the recombinant polypeptide is translated in the cell from the nucleic acid.
[0098] An effective amount of the composition is provided based, at least in part, on the target tissue, target cell type, means of administration, physical characteristics of the protein translated from the modified nucleic acid (e.g., size), and other determinants.
[0099] Compositions containing modified nucleic acids are formulated for administration intramuscularly, transarterially, intraperitoneally, intravenously, intranasally, subcutaneously, endoscopically, transdermally, or intrathecally. In some embodiments, the composition is formulated for extended release.
[00100] The subject to whom the therapeutic agent is administered suffers from or is at risk of developing a disease, disorder, or deleterious condition. Provided are methods of identifying, diagnosing, and classifying subjects on these bases, which may include clinical diagnosis, biomarker levels, genome-wide association studies (GWAS), and other methods known in the art.
[00101] In certain embodiments, the administered recombinant polypeptide translated from the modified nucleic acid described herein provide a functional activity which is substantially absent in the cell in which the recombinant polypeptide is administered. For example, the missing functional activity may be enzymatic, structural, or gene regulatory in nature.
[00102] In other embodiments, the administered recombinant polypeptide replaces a polypeptide (or multiple polypeptides) that is substantially absent in the cell in which the recombinant polypeptide is administered. Such absence may be due to genetic mutation of the encoding gene or regulatory pathway thereof. Alternatively, the recombinant polypeptide functions to antagonize the activity of an endogenous protein present in, on the surface of, or secreted from the cell. Usually, the activity of the endogenous protein is deleterious to the subject, for example, due to mutation of the endogenous protein resulting in altered activity or localization. Additionally, the recombinant polypeptide antagonizes, directly or indirectly, the activity of a biological moiety present in, on the surface of, or secreted from the cell. Examples of antagonized biological moieties include lipids (e.g., cholesterol), a lipoprotein (e.g., low density lipoprotein), a nucleic acid, a carbohydrate, or a small molecule toxin.

[00103] The recombinant proteins described herein are enginc cell, potentially within a specific compartment such as the nucleus, or are engineered for secretion from the cell or translocation to the plasma membrane of the cell.
[00104] As described herein, a useful feature of the modified nucleic acids of the disclosure is the capacity to reduce the innate immune response of a cell to an exogenous nucleic acid, e.g., to increase protein production. Provided are methods for performing the titration, reduction or elimination of the immune response in a cell or a population of cells. In some embodiments, the cell is contacted with a first composition that contains a first dose of a first exogenous nucleic acid including a translatable region and at least one nucleoside modification, and the level of the innate immune response of the cell to the first exogenous nucleic acid is determined.
Subsequently, the cell is contacted with a second composition, which includes a second dose of the first exogenous nucleic acid, the second dose containing a lesser amount of the first exogenous nucleic acid as compared to the first dose. Alternatively, the cell is contacted with a first dose of a second exogenous nucleic acid. The second exogenous nucleic acid may contain one or more modified nucleosides, which may be the same or different from the first exogenous nucleic acid or, alternatively, the second exogenous nucleic acid may not contain modified nucleosides. The steps of contacting the cell with the first composition and/or the second composition may be repeated one or more times. Additionally, efficiency of protein production (e.g., protein translation) in the cell is optionally determined, and the cell may be re-transfected with the first and/or second composition repeatedly until a target protein production efficiency is achieved.
[00105] Therapeutics for diseases and conditions. Provided are methods for treating or preventing a symptom of diseases characterized by missing or aberrant protein activity, by replacing the missing protein activity or overcoming the aberrant protein activity.
[00106] Diseases characterized by dysfunctional or aberrant protein activity include, but not limited to, cancer and proliferative diseases, genetic diseases (e.g., cystic fibrosis), autoimmune diseases, diabetes, neurodegenerative diseases, cardiovascular diseases, and metabolic diseases.
The present disclosure provides a method for treating such conditions or diseases in a subject by introducing protein or cell-based therapeutics produced by a method using the modified nucleic acids provided herein, wherein the modified nucleic acids encode for a protein that antagonizes or otherwise overcomes the aberrant protein activity present in the cell of the subject. Specific examples of a dysfunctional protein are the missense mutation v:
transmembrane conductance regulator (CFTR) gene, which produce a dysfunctional protein variant of CFTR protein, which causes cystic fibrosis.
[00107] Multiple diseases are characterized by missing (or substantially diminished such that proper protein function does not occur) protein activity. Such proteins may not be present, or are essentially non-functional. The present disclosure provides a method for treating such conditions or diseases in a subject by introducing nucleic acid or cell-based therapeutics containing the modified nucleic acids provided herein, wherein the modified nucleic acids encode for a protein that replaces the protein activity missing from the target cells of the subject. Specific examples of a dysfunctional protein are the nonsense mutation variants of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which produce a nonfunctional protein variant of CFTR protein, which causes cystic fibrosis.
[00108] Thus, provided are methods of treating cystic fibrosis in a mammalian subject by contacting a cell of the subject with a modified nucleic acid having a translatable region that encodes a functional CFTR polypeptide, under conditions such that an effective amount of the CTFR polypeptide is present in the cell. Typical target cells are epithelial cells, such as the lung, and methods of administration are determined in view of the target tissue;
i.e., for lung delivery, the RNA molecules are formulated for administration by inhalation.
[00109] In another embodiment, the present disclosure provides a method for treating hyperlipidemia in a subject, by introducing into a cell population of the subject with Sortilin (a protein recently characterized by genomic studies) produced by a method described herein using a modified mRNA molecule encoding Sortilin, thereby ameliorating the hyperlipidemia in a subject. The SORT] gene encodes a trans-Golgi network (TGN) transmembrane protein called Sortilin. Genetic studies have shown that one of five individuals has a single nucleotide polymorphism, rs12740374, in the 1p13 locus of the SORT1 gene that predisposes them to having low levels of low-density lipoprotein (LDL) and very-low-density lipoprotein (VLDL).
Each copy of the minor allele, present in about 30% of people, alters LDL
cholesterol by 8 mg/dL, while two copies of the minor allele, present in about 5% of the population, lowers LDL
cholesterol 16 mg/dL. Carriers of the minor allele have also been shown to have a 40%
decreased risk of myocardial infarction. Functional in vivo studies in mice describes that overexpression of SORT] in mouse liver tissue led to significantly lower LDL-cholesterol levels, as much as 80% lower, and that silencing SORT1 increased LDI
200% (Musunuru K et al. From noncoding variant to phenotype via SORT] at the 1p13 cholesterol locus. Nature 2010; 466: 714-721).
[00110] Pharmaceutical Compositions [0079] The present disclosure provides proteins generated from modified mRNAs and proteins produced by the methods described herein can be used in pharmaceutical compositions.
Pharmaceutical compositions may optionally comprise one or more additional therapeutically active substances. In accordance with some embodiments, a method of administering pharmaceutical compositions comprising one or more proteins to be delivered to a subject in need thereof is provided. In some embodiments, compositions are administered to humans. For the purposes of the present disclosure, the phrase "active ingredient"
generally refers to a protein or protein-containing complex as described herein.
[0080] Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts. Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and/or perform such modification with merely ordinary, if any, experimentation. Subjects to which administration of the pharmaceutical compositions is contemplated include, but are not limited to, humans and/or other primates; mammals, including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, dogs, mice, and/or rats; and/or birds, including commercially relevant birds such as chickens, ducks, geese, and/or turkeys.
[0081] Formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, shaping and/or packaging the product into a desired single- or multi-dose unit.
[0082] A pharmaceutical composition in accordance with the disclosure may be prepared, packaged, and/or sold in bulk, as a single unit dose, and/or as a plurality of single unit doses. As used herein, a "unit dose" is discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of tl equal to the dosage of the active ingredient which would be administered to a subject and/or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
[0083] Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100% (w/w) active ingredient.
[0084] Pharmaceutical compositions may be formulated to additionally comprise a pharmaceutically acceptable excipient, which, as used herein, includes any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, solid binders, lubricants and the like, as suited to the particular dosage form desired. Remington's The Science and Practice of Pharmacy, 21st Edition, A. R. Gennaro (Lippincott, Williams &
Wilkins, Baltimore, MD, 2006; incorporated herein by reference) discloses various excipients used in formulating pharmaceutical compositions and known techniques for the preparation thereof.
Except insofar as any conventional excipient medium is incompatible with a substance or its derivatives, such as by producing any undesirable biological effect or otherwise interacting in a deleterious manner with any other component(s) of the pharmaceutical composition, its use is contemplated to be within the scope of this disclosure.
[0085] In some embodiments, a pharmaceutically acceptable excipient is at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% pure. In some embodiments, an excipient is approved for use in humans and for veterinary use. In some embodiments, an excipient is approved by United States Food and Drug Administration. In some embodiments, an excipient is pharmaceutical grade. In some embodiments, an excipient meets the standards of the United States Pharmacopoeia (USP), the European Pharmacopoeia (EP), the British Pharmacopoeia, and/or the International Pharmacopoeia.
[0086] Pharmaceutically acceptable excipients used in the manufacture of pharmaceutical compositions include, but are not limited to, inert diluents, dispersing and/or granulating agents, surface active agents and/or emulsifiers, disintegrating agents, binding agents, preservatives, buffering agents, lubricating agents, and/or oils. Such excipients pharmaceutical compositions. Excipients such as cocoa butter and suppository waxes, coloring agents, coating agents, sweetening, flavoring, and/or perfuming agents can be present in the composition, according to the judgment of the formulator.
[0087] Exemplary diluents include, but are not limited to, calcium carbonate, sodium carbonate, calcium phosphate, dicalcium phosphate, calcium sulfate, calcium hydrogen phosphate, sodium phosphate lactose, sucrose, cellulose, microcrystalline cellulose, kaolin, mannitol, sorbitol, inositol, sodium chloride, dry starch, cornstarch, powdered sugar, etc., and/or combinations thereof.
[0088] Exemplary granulating and/or dispersing agents include, but are not limited to, potato starch, corn starch, tapioca starch, sodium starch glycolate, clays, alginic acid, guar gum, citrus pulp, agar, bentonite, cellulose and wood products, natural sponge, cation-exchange resins, calcium carbonate, silicates, sodium carbonate, cross-linked poly(vinyl-pyrrolidone) (crospovidone), sodium carboxymethyl starch (sodium starch glycolate), carboxymethyl cellulose, cross-linked sodium carboxymethyl cellulose (croscarmellose), methylcellulose, pregelatinized starch (starch 1500), microcrystalline starch, water insoluble starch, calcium carboxymethyl cellulose, magnesium aluminum silicate (Veegum), sodium lauryl sulfate, quaternary ammonium compounds, etc., and/or combinations thereof.
[0089] Exemplary surface active agents and/or emulsifiers include, but are not limited to, natural emulsifiers (e.g., acacia, agar, alginic acid, sodium alginate, tragacanth, chondrux, cholesterol, xanthan, pectin, gelatin, egg yolk, casein, wool fat, cholesterol, wax, and lecithin), colloidal clays (e.g., bentonite [aluminum silicate] and Veegum [magnesium aluminum silicate]), long chain amino acid derivatives, high molecular weight alcohols (e.g., stearyl alcohol, cetyl alcohol, oleyl alcohol, triacetin monostearate, ethylene glycol distearate, glyceryl monostearate, and propylene glycol monostearate, polyvinyl alcohol), carbomers (e.g. carboxy polymethylene, polyacrylic acid, acrylic acid polymer, and carboxyvinyl polymer), carrageenan, cellulosic derivatives (e.g., carboxymethylcellulose sodium, powdered cellulose, hydroxymethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, methylcellulose), sorbitan fatty acid esters (e.g., polyoxyethylene sorbitan monolaurate [Tween 20], polyoxyethylene sorbitan [Tween 60], polyoxyethylene sorbitan monooleate [Tween 80], sorbitan monopalmitate [Span 40], sorbitan monostearate [Span 60], sorbitan tristearate [Span 65], glyceryl monooleate, sorbitan monooleate [Span 80]), polyoxye polyoxyethylene monostearate [Myrj 45], polyoxyethylene hydrogenated castor oil, polyethoxylated castor oil, polyoxymethylene stearate, and Solutol ), sucrose fatty acid esters, polyethylene glycol fatty acid esters (e.g., Cremophorc)), polyoxyethylene ethers, (e.g., polyoxyethylene lauryl ether [Brij 30]), poly(vinyl-pyrrolidone), diethylene glycol monolaurate, triethanolamine oleate, sodium oleate, potassium oleate, ethyl oleate, oleic acid, ethyl laurate, sodium lauryl sulfate, Pluronic F 68, Poloxamer 188, cetrimonium bromide, cetylpyridinium chloride, benzalkonium chloride, docusate sodium, etc. and/or combinations thereof.
[0090] Exemplary binding agents include, but are not limited to, starch (e.g., cornstarch and starch paste); gelatin; sugars (e.g., sucrose, glucose, dextrose, dextrin, molasses, lactose, lactitol, mannitol,); natural and synthetic gums (e.g., acacia, sodium alginate, extract of Irish moss, panwar gum, ghatti gum, mucilage of isapol husks, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropyl cellulose, hydroxypropyl methylcellulose, microcrystalline cellulose, cellulose acetate, poly(vinyl-pyrrolidone), magnesium aluminum silicate (Veegum ), and larch arabogalactan); alginates; polyethylene oxide;
polyethylene glycol;
inorganic calcium salts; silicic acid; polymethacrylates; waxes; water;
alcohol; etc.; and combinations thereof.
[0091] Exemplary preservatives may include, but are not limited to, antioxidants, chelating agents, antimicrobial preservatives, antifungal preservatives, alcohol preservatives, acidic preservatives, and/or other preservatives. Exemplary antioxidants include, but are not limited to, alpha tocopherol, ascorbic acid, acorbyl palmitate, butylated hydroxyanisole, butylated hydroxytoluene, monothioglycerol, potassium metabisulfite, propionic acid, propyl gallate, sodium ascorbate, sodium bisulfite, sodium metabisulfite, and/or sodium sulfite. Exemplary chelating agents include ethylenediaminetetraacetic acid (EDTA), citric acid monohydrate, disodium edetate, dipotassium edetate, edetic acid, fumaric acid, malic acid, phosphoric acid, sodium edetate, tartaric acid, and/or trisodium edetate. Exemplary antimicrobial preservatives include, but are not limited to, benzalkonium chloride, benzethonium chloride, benzyl alcohol, bronopol, cetrimide, cetylpyridinium chloride, chlorhexidine, chlorobutanol, chlorocresol, chloroxylenol, cresol, ethyl alcohol, glycerin, hexetidine, imidurea, phenol, phenoxyethanol, phenylethyl alcohol, phenylmercuric nitrate, propylene glycol, and/or thimerosal. Exemplary antifungal preservatives include, but are not limited to, butyl paraben, methyl paraben, ethyl paraben, propyl paraben, benzoic acid, hydroxybenzoic acid, pot sorbate, sodium benzoate, sodium propionate, and/or sorbic acid. Exemplary alcohol preservatives include, but are not limited to, ethanol, polyethylene glycol, phenol, phenolic compounds, bisphenol, chlorobutanol, hydroxybenzoate, and/or phenylethyl alcohol. Exemplary acidic preservatives include, but are not limited to, vitamin A, vitamin C, vitamin E, beta-carotene, citric acid, acetic acid, dehydroacetic acid, ascorbic acid, sorbic acid, and/or phytic acid. Other preservatives include, but are not limited to, tocopherol, tocopherol acetate, deteroxime mesylate, cetrimide, butylated hydroxyanisol (BHA), butylated hydroxytoluened (BHT), ethylenediamine, sodium lauryl sulfate (SLS), sodium lauryl ether sulfate (SLES), sodium bisulfite, sodium metabisulfite, potassium sulfite, potassium metabisulfite, Glydant Plus , Phenonip , methylparaben, Germall 115, Germaben II, NeoloneTM, KathonTM, and/or Euxyl .
[0092] Exemplary buffering agents include, but are not limited to, citrate buffer solutions, acetate buffer solutions, phosphate buffer solutions, ammonium chloride, calcium carbonate, calcium chloride, calcium citrate, calcium glubionate, calcium gluceptate, calcium gluconate, D-gluconic acid, calcium glycerophosphate, calcium lactate, propanoic acid, calcium levulinate, pentanoic acid, dibasic calcium phosphate, phosphoric acid, tribasic calcium phosphate, calcium hydroxide phosphate, potassium acetate, potassium chloride, potassium gluconate, potassium mixtures, dibasic potassium phosphate, monobasic potassium phosphate, potassium phosphate mixtures, sodium acetate, sodium bicarbonate, sodium chloride, sodium citrate, sodium lactate, dibasic sodium phosphate, monobasic sodium phosphate, sodium phosphate mixtures, tromethamine, magnesium hydroxide, aluminum hydroxide, alginic acid, pyrogen-free water, isotonic saline, Ringer's solution, ethyl alcohol, etc., and/or combinations thereof.
[0093] Exemplary lubricating agents include, but are not limited to, magnesium stearate, calcium stearate, stearic acid, silica, talc, malt, glyceryl behanate, hydrogenated vegetable oils, polyethylene glycol, sodium benzoate, sodium acetate, sodium chloride, leucine, magnesium lauryl sulfate, sodium lauryl sulfate, etc., and combinations thereof.
[0094] Exemplary oils include, but are not limited to, almond, apricot kernel, avocado, babassu, bergamot, black current seed, borage, cade, camomile, canola, caraway, carnauba, castor, cinnamon, cocoa butter, coconut, cod liver, coffee, corn, cotton seed, emu, eucalyptus, evening primrose, fish, flaxseed, geraniol, gourd, grape seed, hazel nut, hyssop, isopropyl myristate, jojoba, kukui nut, lavandin, lavender, lemon, litsea cul mango seed, meadowfoam seed, mink, nutmeg, olive, orange, orange roughy, palm, palm kernel, peach kernel, peanut, poppy seed, pumpkin seed, rapeseed, rice bran, rosemary, safflower, sandalwood, sasquana, savoury, sea buckthorn, sesame, shea butter, silicone, soybean, sunflower, tea tree, thistle, tsubaki, vetiver, walnut, and wheat germ oils.
Exemplary oils include, but are not limited to, butyl stearate, caprylic triglyceride, capric triglyceride, cyclomethicone, diethyl sebacate, dimethicone 360, isopropyl myristate, mineral oil, octyldodecanol, oleyl alcohol, silicone oil, and/or combinations thereof.
[0095] Liquid dosage forms for oral and parenteral administration include, but are not limited to, pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups, and/or elixirs. In addition to active ingredients, liquid dosage forms may comprise inert diluents commonly used in the art such as, for example, water or other solvents, solubilizing agents and emulsifiers such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethylformamide, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, oral compositions can include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and/or perfuming agents. In certain embodiments for parenteral administration, compositions are mixed with solubilizing agents such as Cremophor , alcohols, oils, modified oils, glycols, polysorbates, cyclodextrins, polymers, and/or combinations thereof.
[0096] Injectable preparations, for example, sterile injectable aqueous or oleaginous suspensions may be formulated according to the known art using suitable dispersing agents, wetting agents, and/or suspending agents. Sterile injectable preparations may be sterile injectable solutions, suspensions, and/or emulsions in nontoxic parenterally acceptable diluents and/or solvents, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, U.S.P., and isotonic sodium chloride solution. Sterile, fixed oils are conventionally employed as a solvent or suspending medium.
For this purpose any bland fixed oil can be employed including synthetic mono-or diglycerides.
Fatty acids such as oleic acid can be used in the preparation of injectables.

[0097] Injectable compositions can be sterilized, for exampli bacterial-retaining filter, and/or by incorporating sterilizing agents in the form of sterile solid compositions which can be dissolved or dispersed in sterile water or other sterile injectable medium prior to use.
[0098] In order to prolong the effect of an active ingredient, it is often desirable to slow the absorption of the active ingredient from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material with poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form.
Alternatively, delayed absorption of a parenterally administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle. Injectable depot forms are made by forming microencapsule matrices of the drug in biodegradable polymers such as polylactide-polyglycolide.
Depending upon the ratio of drug to polymer and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable compositions are formulated or prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissues.
[0099] Compositions for rectal or vaginal administration are typically suppositories which can be prepared by mixing compositions with suitable non-irritating excipients such as cocoa butter, polyethylene glycol or a suppository wax which are solid at ambient temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active ingredient.
[00100] Solid dosage forms for oral administration include capsules, tablets, pills, powders, and granules. In such solid dosage forms, an active ingredient is mixed with at least one inert, pharmaceutically acceptable excipient such as sodium citrate or dicalcium phosphate and/or fillers or extenders (e.g., starches, lactose, sucrose, glucose, mannitol, and silicic acid), binders (e.g., carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidinone, sucrose, and acacia), humectants (e.g. glycerol), disintegrating agents (e.g., agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate), solution retarding agents (e.g., paraffin), absorption accelerators (e.g., quaternary ammonium compounds), wetting agents (e.g., cetyl alcohol and glycerol monostearate), absorbents (e.g., kaolin and bentonite clay), and lubricants (e.g., talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate), and mixtures thereof. In the case of capsules, tab may comprise buffering agents.
[00101] Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. Solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. They may optionally comprise opacifying agents and can be of a composition that they release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. Solid compositions of a similar type may be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
[00102] Dosage forms for topical and/or transdermal administration of a composition may include ointments, pastes, creams, lotions, gels, powders, solutions, sprays, inhalants and/or patches. Generally, an active ingredient is admixed under sterile conditions with a pharmaceutically acceptable excipient and/or any needed preservatives and/or buffers as may be required. Additionally, the present disclosure contemplates the use of transdermal patches, which often have the added advantage of providing controlled delivery of a compound to the body. Such dosage forms may be prepared, for example, by dissolving and/or dispensing the compound in the proper medium. Alternatively or additionally, rate may be controlled by either providing a rate controlling membrane and/or by dispersing the compound in a polymer matrix and/or gel.
[00103] Suitable devices for use in delivering intradermal pharmaceutical compositions described herein include short needle devices such as those described in U.S.
Patents 4,886,499;
5,190,521; 5,328,483; 5,527,288; 4,270,537; 5,015,235; 5,141,496; and 5,417,662. Intradermal compositions may be administered by devices which limit the effective penetration length of a needle into the skin, such as those described in PCT publication WO 99/34850 and functional equivalents thereof. Jet injection devices which deliver liquid compositions to the dermis via a liquid jet injector and/or via a needle which pierces the stratum corneum and produces a jet which reaches the dermis are suitable. Jet injection devices are described, for example, in U.S.

Patents 5,480,381; 5,599,302; 5,334,144; 5,993,412; 5,649,912;
5,383,851; 5,893,397; 5,466,220; 5,339,163; 5,312,335; 5,503,627; 5,064,413;
5,520,639;
4,596,556; 4,790,824; 4,941,880; 4,940,460; and PCT publications WO 97/37705 and WO
97/13537. Ballistic powder/particle delivery devices which use compressed gas to accelerate vaccine in powder form through the outer layers of the skin to the dermis are suitable.
Alternatively or additionally, conventional syringes may be used in the classical mantoux method of intradermal administration.
[00104] Compositions formulated for topical administration include, but are not limited to, liquid and/or semi liquid preparations such as liniments, lotions, oil in water and/or water in oil emulsions such as creams, ointments and/or pastes, and/or solutions and/or suspensions.
Topically-administrable compositions may be formulated, for example, to comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of active ingredient may be as high as the solubility limit of the active ingredient in the solvent.
Compositions formulated for topical administration may further comprise one or more of the additional ingredients described herein.
[00105] A pharmaceutical composition may be formulated, prepared, packaged, and/or sold for pulmonary administration via the buccal cavity. Such a composition may be formulated to comprise dry particles which comprise the active ingredient and which have a diameter in the range from about 0.5 nm to about 7 nm or from about 1 nm to about 6 nm. Such compositions are conveniently in the form of dry powders for administration using a device comprising a dry powder reservoir to which a stream of propellant may be directed to disperse the powder and/or using a self propelling solvent/powder dispensing container such as a device comprising the active ingredient dissolved and/or suspended in a low-boiling propellant in a sealed container.
Such powders comprise particles wherein at least 98% of the particles by weight have a diameter greater than 0.5 nm and at least 95% of the particles by number have a diameter less than 7 nm.
Alternatively, at least 95% of the particles by weight have a diameter greater than 1 nm and at least 90% of the particles by number have a diameter less than 6 nm. Dry powder compositions may include a solid fine powder diluent such as sugar and are conveniently provided in a unit dose form.
[00106] Low boiling propellants generally include liquid propellants having a boiling point of below 65 F at atmospheric pressure. Generally the propellant may constitute about 50% to about 99.9% (w/w) of the composition, and active ingredient ma 20% (w/w) of the composition. A propellant may further comprise additional ingredients such as a liquid non-ionic and/or solid anionic surfactant and/or a solid diluent (which may have a particle size of the same order as particles comprising the active ingredient).
[00107] Pharmaceutical compositions formulated for pulmonary delivery may provide an active ingredient in the form of droplets of a solution and/or suspension.
Such compositions may be formulated, prepared, packaged, and/or sold as aqueous and/or dilute alcoholic solutions and/or suspensions, optionally sterile, comprising active ingredient, and may conveniently be administered using any nebulization and/or atomization device. Such compositions may further comprise one or more additional ingredients including, but not limited to, a flavoring agent such as saccharin sodium, a volatile oil, a buffering agent, a surface active agent, and/or a preservative such as methylhydroxybenzoate. Droplets provided by this route of administration may have an average diameter in the range from about 0.1 nm to about 200 nm.
[00108] Formulations described herein as being useful for pulmonary delivery are useful for intranasal delivery of a pharmaceutical composition. Another composition formulated for intranasal administration is a coarse powder comprising the active ingredient and having an average particle from about 0.2 lam to 500 pm. Such a composition is formulated for administration in the manner in which snuff is taken, i.e. by rapid inhalation through the nasal passage from a container of the powder held close to the nose.
[00109] Compositions formulated for nasal administration may, for example, comprise from about as little as 0.1% (w/w) and as much as 100% (w/w) of active ingredient, and may comprise one or more of the additional ingredients described herein. A pharmaceutical composition may be formulated, prepared, packaged, and/or sold for buccal administration. Such compositions may, for example, be formulated in the form of tablets and/or lozenges made using conventional methods, and may contain, for example, 0.1% to 20% (w/w) active ingredient, the balance comprising an orally dissolvable and/or degradable composition and, optionally, one or more of the additional ingredients described herein. Alternately, compositions formulated for buccal administration may comprise a powder and/or an aerosolized and/or atomized solution and/or suspension comprising active ingredient. Such powdered, aerosolized, and/or aerosolized compositions, when dispersed, may have an average particle and/or droplet size in the range from about 0.1 nm to about 200 nm, and may further comprise o ingredients described herein.
[00110] A pharmaceutical composition may be formulated, prepared, packaged, and/or sold for ophthalmic administration. Such compositions may, for example, be formulated in the form of eye drops including, for example, a 0.1/1.0% (w/w) solution and/or suspension of the active ingredient in an aqueous or oily liquid excipient. Such drops may further comprise buffering agents, salts, and/or one or more other of any additional ingredients described herein. Other opthalmically-administrable compositions which are useful include those which comprise the active ingredient in microcrystalline form and/or in a liposomal preparation.
Ear drops and/or eye drops are contemplated as being within the scope of this disclosure.
[00111] General considerations in the formulation and/or manufacture of pharmaceutical agents may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (incorporated herein by reference).
[00112] Administration.
[00113] The present disclosure provides methods comprising administering proteins or compositions produced by the methods described herein to a subject in need thereof. Proteins or complexes, or pharmaceutical, imaging, diagnostic, or prophylactic compositions thereof, may be administered to a subject using any amount and any route of administration effective for preventing, treating, diagnosing, or imaging a disease, disorder, and/or condition (e.g., a disease, disorder, and/or condition relating to working memory deficits). The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. Compositions in accordance with the disclosure are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of the compositions of the present disclosure will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective, prophylactially effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed;
the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combinati specific compound employed; and like factors well known in the medical arts.
[00114] Proteins to be delivered and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof may be administered to animals, such as mammals (e.g., humans, domesticated animals, cats, dogs, mice, rats, etc.). In some embodiments, pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof are administered to humans.
[00115] Proteins to be delivered and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof in accordance with the present disclosure may be administered by any route. In some embodiments, proteins and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof, are administered by one or more of a variety of routes, including oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, subcutaneous, intraventricular, transdermal, interdermal, rectal, intravaginal, intraperitoneal, topical (e.g., by powders, ointments, creams, gels, lotions, and/or drops), mucosal, nasal, buccal, enteral, vitreal, intratumoral, sublingual; by intratracheal instillation, bronchial instillation, and/or inhalation; as an oral spray, nasal spray, and/or aerosol, and/or through a portal vein catheter. In some embodiments, proteins or complexes, and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof, are administered by systemic intravenous injection. In specific embodiments, proteins or complexes and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof may be administered intravenously and/or orally. In specific embodiments, proteins or complexes, and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof, may be administered in a way which allows the protein or complex to cross the blood-brain barrier, vascular barrier, or other epithelial barrier.
[00116] However, the disclosure encompasses the delivery of proteins or complexes, and/or pharmaceutical, prophylactic, diagnostic, or imaging compositions thereof, by any appropriate route taking into consideration likely advances in the sciences of drug delivery.
[00117] In general the most appropriate route of administration will depend upon a variety of factors including the nature of the protein or complex comprising proteins associated with at least one agent to be delivered (e.g., its stability in the environment of the gastrointestinal tract, bloodstream, etc.), the condition of the patient (e.g., whether the patient is able to tolerate particular routes of administration), etc. The disclosure encompasses the delivery of the pharmaceutical, prophylactic, diagnostic, or imaging compositio taking into consideration likely advances in the sciences of drug delivery.
[00118] In certain embodiments, compositions in accordance with the disclosure may be administered at dosage levels sufficient to deliver from about 0.0001 mg/kg to about 100 mg/kg, from about 0.01 mg/kg to about 50 mg/kg, from about 0.1 mg/kg to about 40 mg/kg, from about 0.5 mg/kg to about 30 mg/kg, from about 0.01 mg/kg to about 10 mg/kg, from about 0.1 mg/kg to about 10 mg/kg, or from about 1 mg/kg to about 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic, diagnostic, prophylactic, or imaging effect. The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks. In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations).
[00119] Proteins or complexes may be used in combination with one or more other therapeutic, prophylactic, diagnostic, or imaging agents. By "in combination with," it is not intended to imply that the agents must be administered at the same time and/or formulated for delivery together, although these methods of delivery are within the scope of the disclosure.
Compositions can be administered concurrently with, prior to, or subsequent to, one or more other desired therapeutics or medical procedures. In general, each agent will be administered at a dose and/or on a time schedule determined for that agent. In some embodiments, the disclosure encompasses the delivery of pharmaceutical, prophylactic, diagnostic, or imaging compositions in combination with agents that improve their bioavailability, reduce and/or modify their metabolism, inhibit their excretion, and/or modify their distribution within the body. In certain embodiments, provided are combination therapeutics containing one or more modified nucleic acids containing translatable regions that encode for a protein or proteins that boost a mammalian subject's immunity along with a protein that induces antibody-dependent cellular toxitity. For example, provided are therapeutics containing one or more nucleic acids that encode trastuzumab and granulocyte-colony stimulating factor (G-CSF). In particular, such combination therapeutics are useful in Her2+ breast cancer patients who develop induced resistance to trastuzumab. (See, e.g., Albrecht, Immunotherapy. 2(6):795-8 (2010)).

[00120] It will further be appreciated that therapeutically, pro]
imaging active agents utilized in combination may be administered together in a single composition or administered separately in different compositions. In general, it is expected that agents utilized in combination with be utilized at levels that do not exceed the levels at which they are utilized individually. In some embodiments, the levels utilized in combination will be lower than those utilized individually.
[00121] The particular combination of therapies (therapeutics or procedures) to employ in a combination regimen will take into account compatibility of the desired therapeutics and/or procedures and the desired therapeutic effect to be achieved. It will also be appreciated that the therapies employed may achieve a desired effect for the same disorder (for example, a composition useful for treating cancer in accordance with the disclosure may be administered concurrently with a chemotherapeutic agent), or they may achieve different effects (e.g., control of any adverse effects).
[00122] Kits.
[00123] The disclosure provides a variety of kits for conveniently and/or effectively carrying out methods of the present disclosure. For example, described herein are kits for protein production using a modified nucleic acid described herein. Typically kits will comprise sufficient amounts and/or numbers of components to allow a user to perform multiple treatments of a subject(s) and/or to perform multiple experiments.
Definitions [00124] Therapeutic Agent: The term "therapeutic agent" refers to any agent that, when administered to a subject, has a therapeutic, diagnostic, and/or prophylactic effect and/or elicits a desired biological and/or pharmacological effect.
[00125] Animal: As used herein, the term "animal" refers to any member of the animal kingdom. In some embodiments, "animal" refers to humans at any stage of development. In some embodiments, "animal" refers to non-human animals at any stage of development. In certain embodiments, the non-human animal is a mammal (e.g., a rodent, a mouse, a rat, a rabbit, a monkey, a dog, a cat, a sheep, cattle, a primate, or a pig). In some embodiments, animals include, but are not limited to, mammals, birds, reptiles, amphibians, fish, and worms. In some embodiments, the animal is a transgenic animal, genetically-engineered animal, or a clone.

[00126] Approximately: As used herein, the term "approxima one or more values of interest, refers to a value that is similar to a stated reference value. In certain embodiments, the term "approximately" or "about" refers to a range of values that fall within 25%, 20%, 19%, 18%, 17%, 16%, 15%, 14%, 13%, 12%, 11%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or less in either direction (greater than or less than) of the stated reference value unless otherwise stated or otherwise evident from the context (except where such number would exceed 100% of a possible value).
[00127] Associated with: As used herein, the terms "associated with,"
"conjugated," "linked,"
"attached," and "tethered," when used with respect to two or more moieties, means that the moieties are physically associated or connected with one another, either directly or via one or more additional moieties that serves as a linking agent, to form a structure that is sufficiently stable so that the moieties remain physically associated under the conditions in which the structure is used, e.g., physiological conditions.
[00128] Biologically active: As used herein, the phrase "biologically active"
refers to a characteristic of any substance that has activity in a biological system and/or organism. For instance, a substance that, when administered to an organism, has a biological effect on that organism, is considered to be biologically active. In particular embodiments, where a nucleic acid is biologically active, a portion of that nucleic acid that shares at least one biological activity of the whole nucleic acid is typically referred to as a "biologically active"
portion.
[00129] Conserved: As used herein, the term "conserved" refers to nucleotides or amino acid residues of a polynucleotide sequence or amino acid sequence, respectively, that are those that occur unaltered in the same position of two or more related sequences being compared.
Nucleotides or amino acids that are relatively conserved are those that are conserved amongst more related sequences than nucleotides or amino acids appearing elsewhere in the sequences.
In some embodiments, two or more sequences are said to be "completely conserved" if they are 100% identical to one another. In some embodiments, two or more sequences are said to be "highly conserved" if they are at least 70% identical, at least 80% identical, at least 90%
identical, or at least 95% identical to one another. In some embodiments, two or more sequences are said to be "highly conserved" if they are about 70% identical, about 80%
identical, about 90% identical, about 95%, about 98%, or about 99% identical to one another. In some embodiments, two or more sequences are said to be "conserved" if they are at least 30%

identical, at least 40% identical, at least 50% identical, at least 6( identical, at least 80% identical, at least 90% identical, or at least 95%
identical to one another.
In some embodiments, two or more sequences are said to be "conserved" if they are about 30%
identical, about 40% identical, about 50% identical, about 60% identical, about 70% identical, about 80% identical, about 90% identical, about 95% identical, about 98%
identical, or about 99% identical to one another.
[00130] Expression: As used herein, "expression" of a nucleic acid sequence refers to one or more of the following events: (1) production of an RNA template from a DNA
sequence (e.g., by transcription); (2) processing of an RNA transcript (e.g., by splicing, editing, 5' cap formation, and/or 3' end processing); (3) translation of an RNA into a polypeptide or protein;
and (4) post-translational modification of a polypeptide or protein.
[00131] Ex vivo: As used herein, "ex vivo" refers to events that which occur outside an organism, e.g., in or on tissue in an artificial environment outside the organism, e.g., with the minimum alteration of natural conditions.
[00132] Functional: As used herein, a "functional" biological molecule is a biological molecule in a form in which it exhibits a property and/or activity by which it is characterized.
[00133] Homology: As used herein, the term "homology" refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA
molecules and/or RNA molecules) and/or between polypeptide molecules. In some embodiments, polymeric molecules are considered to be "homologous" to one another if their sequences are at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% identical. In some embodiments, polymeric molecules are considered to be "homologous" to one another if their sequences are at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, or at least 99% similar. The term "homologous" necessarily refers to a comparison between at least two sequences (nucleotides sequences or amino acid sequences). In accordance with the disclosure, two nucleotide sequences are considered to be homologous if the polypeptides they encode are at least about 50% identical, at least about 60% identical, at least about 70%
identical, at least about 80% identical, or at least about 90% identical for at least one stretch of at least about 20 amino acids. In some embodiments, homologous nucleotide sequences to encode a stretch of at least 4-5 uniquely specified amino acids. Both the identity and the approximate spacing of these amino acids relative to one another must be considered for nucleotide sequences to be considered homologous. For nucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. In accordance with the disclosure, two protein sequences are considered to be homologous if the proteins are at least about 50% identical, at least about 60%
identical, at least about 70% identical, at least about 80% identical, or at least about 90%
identical for at least one stretch of at least about 20 amino acids.
[00134] Identity: As used herein, the term "identity" refers to the overall relatedness between polymeric molecules, e.g., between nucleic acid molecules (e.g. DNA molecules and/or RNA
molecules) and/or between polypeptide molecules. Calculation of the percent identity of two nucleic acid sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and non-identical sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For example, the percent identity between two nucleotide sequences can be determined using methods such as those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; each of 1, reference. For example, the percent identity between two nucleotide sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The percent identity between two nucleotide sequences can, alternatively, be determined using the GAP program in the GCG
software package using an NWSgapdna.CMP matrix. Methods commonly employed to determine percent identity between sequences include, but are not limited to those disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference.
Techniques for determining identity are codified in publicly available computer programs.
Exemplary computer software to determine homology between two sequences include, but are not limited to, GCG program package, Devereux, J., et al., Nucleic Acids Research, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA Atschul, S. F. et al., J. Molec. Biol., 215, 403 (1990)).
[00135] Inhibit expression of a gene: As used herein, the phrase "inhibit expression of a gene" means to cause a reduction in the amount of an expression product of the gene. The expression product can be an RNA transcribed from the gene (e.g., an mRNA) or a polypeptide translated from an mRNA transcribed from the gene. Typically a reduction in the level of an mRNA results in a reduction in the level of a polypeptide translated therefrom. The level of expression may be determined using standard techniques for measuring mRNA or protein.
[00136] In vitro: As used herein, the term "in vitro" refers to events that occur in an artificial environment, e.g., in a test tube or reaction vessel, in cell culture, in a Petri dish, etc., rather than within an organism (e.g., animal, plant, or microbe).
[00137] In vivo: As used herein, the term "in vivo" refers to events that occur within an organism (e.g., animal, plant, or microbe).
[00138] Isolated: As used herein, the term "isolated" refers to a substance or entity that has been (1) separated from at least some of the components with which it was associated when initially produced (whether in nature or in an experimental setting), and/or (2) produced, prepared, and/or manufactured by the hand of man. Isolated substances and/or entities may be separated from at least about 10%, about 20%, about 30%, about 40%, about 50%, about 60%, about 70%, about 80%, about 90%, or more of the other components with which they were initially associated. In some embodiments, isolated agents are more than about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, abou about 98%, about 99%, or more than about 99% pure. As used herein, a substance is "pure" if it is substantially free of other components.
[00139] Preventing: As used herein, the term "preventing" refers to partially or completely delaying onset of a particular disease, disorder, and/or condition; partially or completely delaying onset of one or more symptoms, features, or clinical manifestations of a particular disease, disorder, and/or condition (e.g., prior to an identifiable disease, disorder, and/or condition);
partially or completely delaying progression from a latent disease, disorder, and/or condition to an active disease, disorder, and/or condition; and/or decreasing the risk of developing pathology associated with a particular disease, disorder, and/or condition.
[00140] Similarity: As used herein, the term "similarity" refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA
molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of percent similarity of polymeric molecules to one another can be performed in the same manner as a calculation of percent identity, except that calculation of percent similarity takes into account conservative substitutions as is understood in the art.
[00124] Subject: As used herein, the term "subject" or "patient" refers to any organism to which a composition in accordance with the disclosure may be administered, e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes. Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, non-human primates, and humans) and/or plants.
[00125] Substantially: As used herein, the term "substantially" refers to the qualitative condition of exhibiting total or near-total extent or degree of a characteristic or property of interest. One of ordinary skill in the biological arts will understand that biological and chemical phenomena rarely, if ever, go to completion and/or proceed to completeness or achieve or avoid an absolute result. The term "substantially" is therefore used herein to capture the potential lack of completeness inherent in many biological and chemical phenomena.
[00126] Suffering from: An individual who is "suffering from" a disease, disorder, and/or condition has been diagnosed with or displays one or more symptoms of a disease, disorder, and/or condition.

[00127] Susceptible to: An individual who is "susceptible to"
condition has not been diagnosed with and/or may not exhibit symptoms of the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition (for example, cancer) may be characterized by one or more of the following: (1) a genetic mutation associated with development of the disease, disorder, and/or condition; (2) a genetic polymorphism associated with development of the disease, disorder, and/or condition;
(3) increased and/or decreased expression and/or activity of a protein and/or nucleic acid associated with the disease, disorder, and/or condition; (4) habits and/or lifestyles associated with development of the disease, disorder, and/or condition; (5) a family history of the disease, disorder, and/or condition; and (6) exposure to and/or infection with a microbe associated with development of the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition will develop the disease, disorder, and/or condition. In some embodiments, an individual who is susceptible to a disease, disorder, and/or condition will not develop the disease, disorder, and/or condition.
[00128] Therapeutically effective amount: As used herein, the term "therapeutically effective amount" means an amount of an agent to be delivered (e.g., nucleic acid, drug, therapeutic agent, diagnostic agent, prophylactic agent, etc.) that is sufficient, when administered to a subject suffering from or susceptible to a disease, disorder, and/or condition, to treat, improve symptoms of, diagnose, prevent, and/or delay the onset of the disease, disorder, and/or condition.
[00129] Transcription factor: As used herein, the term "transcription factor"
refers to a DNA-binding protein that regulates transcription of DNA into RNA, for example, by activation or repression of transcription. Some transcription factors effect regulation of transcription alone, while others act in concert with other proteins. Some transcription factor can both activate and repress transcription under certain conditions. In general, transcription factors bind a specific target sequence or sequences highly similar to a specific consensus sequence in a regulatory region of a target gene. Transcription factors may regulate transcription of a target gene alone or in a complex with other molecules.
[00130] Treating: As used herein, the term "treating" refers to partially or completely alleviating, ameliorating, improving, relieving, delaying onset of, inhibiting progression of, reducing severity of, and/or reducing incidence of one or more symptoms, features, or clinical manifestations of a particular disease, disorder, and/or condition. For example, "treating" cancer may refer to inhibiting survival, growth, and/or spread of a tumo administered to a subject who does not exhibit signs of a disease, disorder, and/or condition (e.g., prior to an identifiable disease, disorder, and/or condition), and/or to a subject who exhibits only early signs of a disease, disorder, and/or condition for the purpose of decreasing the risk of developing pathology associated with the disease, disorder, and/or condition.
In some embodiments, treatment comprises delivery of a protein associated with a therapeutically active nucleic acid to a subject in need thereof.
[00131] Unmodified: As used herein, "unmodified" refers to a nucleic acid prior to being modified.
Examples [00132] Example 1: Synthesis of modified mRNA
[00133] Modified mRNAs (modRNAs) according to the invention were made using standard laboratory methods and materials. The open reading frame (ORF) of the gene of interest is flanked by a 5' untranslated region (UTR) containing a strong Kozak translational initiation signal and an alpha-globin 3' UTR terminating with an oligo(dT) sequence for templated addition of a polyA tail. The modRNAs were modified with pseudouridine (iv) and 5-methyl-cytidine (5meC) to reduce the cellular innate immune response. Kariko K et al. Immunity 23:165-75 (2005), Kariko K et al. Mol Ther 16:1833-40 (2008), Anderson BR et al. NAR
(2010).
[00134] The cloning, gene synthesis and vector sequencing was performed by DNA2.0 Inc.
(Menlo Park, CA). Vector sequences and insert sequences are set forth in SEQ
ID NOs: 5-8. The ORFs were restriction digested using XbaI or HindIII and used for cDNA
synthesis using tailed-PCR. This tailed-PCR cDNA product was used as the template for the modified mRNA
synthesis reaction using 25mM each modified nucleotide mix (modified U/C was manufactured by TriLink Biotech, San Diego, CA, unmodifed A/G was purchased from Epicenter Biotechnologies, Madison, WI) and CellScript MegaScriptTM (Epicenter Biotechnologies, Madison, WI) complete mRNA synthesis kit. The in vitro transcription reaction was run for 3-4 hours at 37 C. PCR reaction used HiFi PCR 2X Master MixTM (Kapa Biosystems, Woburn, MA). The In vitro transcribed mRNA product was run on an agarose gel and visualized. mRNA
was purified with Ambion/Applied Biosystems (Austin, TX) MEGAClear RNATM
purification kit. PCR used PureLinkTM PCR purification kit (Invitrogen, Carlsbad, CA) or PCR cleanup kit (Qiagen, Valencia, CA). The product was quantified on Nanodr( (ThermoFisher, Waltham, MA). Quality, UV absorbance quality and visualization of the product was performed on an 1.2% agarose gel. The product was resuspended in TE
buffer.
[00135] Modified RNAs incorporating adenosine analogs were poly (A) tailed using yeast Poly (A) Polymerase (Affymetrix, Santa Clara, CA). PCR reaction used HiFi PCR
2X Master MixTM (Kapa Biosystems, Woburn, MA). Modified RNAs were post-transcriptionally capped using recombinant Vaccinia Virus Capping Enzyme (New England BioLabs, Ipswich, MA) and a recombinant 2'-o-methyltransferase (Epicenter Biotechnologies, Madison, WI) to generate the 5'-guanosine Capl structure. Cap 2 structure and Cap 3 structure may be generated using additional 2'-o-methyltransferases. The in vitro transcribed mRNA product was run on an agarose gel and visualized. Modified RNA was purified with Ambion/Applied Biosystems (Austin, TX) MEGAClear RNATM purification kit. PCR used PureLinkTM PCR
purification kit (Invitrogen, Carlsbad, CA). The product was quantified on NanodropTM UV
Absorbance (ThermoFisher, Waltham, MA). Quality, UV absorbance quality and visualization of the product was performed on an 1.2% agarose gel. The product was resuspended in TE
buffer.
[00136] Exemplary capping structures. 5'-capping of modified RNA may be completed concomitantly during the in vitro-transcription reaction using the following chemical RNA cap analogs to generate the 5'-guanosine cap structure according to manufacturer protocols: 3'-0-Me-m7G(5')ppp(5')G; G(5')ppp(5')A; G(5')ppp(5')G; m7G(5')ppp(5')A;
m7G(5')ppp(5')G (New England BioLabs, Ipswich, MA). 5'-capping of modified RNA may be completed post-transcriptionally using a Vaccinia Virus Capping Enzyme to generate the "Cap 0" structure:
m7G(5')ppp(5')G (New England BioLabs, Ipswich, MA). Cap 1 structure may be generated using both Vaccinia Virus Capping Enzyme and a 2'-0 methyl-transferase to generate:
m7G(5')ppp(5')G-2'-0-methyl. Cap 2 structure may be generated from the Cap 1 structure followed by the 2'-0-methylation of the 5'-antepenultimate nucleotide using a 2'-0 methyl-transferase. Cap 3 structure may be generated from the Cap 2 structure followed by the 2'-0-methylation of the 5'-preantepenultimate nucleotide using a 2'-0 methyl-transferase. Enzymes are preferably derived from a recombinant source.
[00137] When transfected into mammalian cells, the modified mRNAs may have a stability of between 12-18 hours or more than 18 hours, e.g., 24, 36, 48, 60, 72 or greater than 72 hours.

[00138] Example 2: De novo Generation of a Mammalian Cc Expressing Human G-CSF as a Therapeutic Agent in Model Bioreactor [00139] The nucleic acid sequence for the precursor of human granulocyte colony stimulating factor (G-CSF) is set forth in SEQ ID NO: 1:
[00140]
agcttttggaccctcgtacagaagctaatacgactcactatagggaaataagagagaaaagaagagtaagaagaaatat aa g agcc accatggccggtcccgcg acccaaagccccatg aaacttatggccctgc agttgctgctttggcactcggccctctgg acagtcc a agaagcgactcctctcggacctgcctcatcgttgccgcagtcattccttttgaagtgtctggagcaggtgcgaaagatt cagggcgatggag ccgcactccaagagaagctctgcgcgacatacaaactttgccatcccgaggagctcgtactgctcgggcacagcttggg gattccctgggc tcctctctcgtcctgtccgtcgcaggctttgcagttggcagggtgcctttcccagctccactccggtttgttcttgtat cagggactgctgcaag cccttg aggg aatctcgccag aattgggcccg acgctggacacgttgcagctcg acgtggcgg atttcgc aacaaccatctggcagc ag a tggaggaactggggatggcacccgcgctgcagcccacgcagggggcaatgccggcctttgcgtccgcgtttcagcgcag ggcgggtgg agtcctcgtagcgagccaccttcaatcatttttggaagtctcgtaccgggtgctgagacatcttgcgcagccgtgaagc gctgccttctgcgg ggcttgccttctggccatgcccttcttctctcccttgcacctgtacctcttggtctttgaataaagcctgagtaggaag gcggccgctcgagcat gcatctagagggcccaattcgccctattcgaagtcg (SEQ ID NO: 1) [00141] The nucleic acid sequence for G-CSF mRNA is set forth in SEQ ID NO: 2:

agcuuuuggacccucguacagaagcuaauacgacucacuauagggaaauaagagagaaaagaagaguaagaagaaauau aaga gccaccauggccggucccgcgacccaaagccccaugaaacuuauggcccugcaguugcugcuuuggcacucggcccucu ggac aguccaagaagcgacuccucucggaccugccucaucguugccgcagucauuccuuuugaagugucuggagcaggugcga aag auucagggcgauggagccgcacuccaagagaagcucugcgcgacauacaaacuuugccaucccgaggagcucguacugc ucgg gcacagcuuggggauucccugggcuccucucucguccuguccgucgcaggcuuugcaguuggcagggugccuuucccag cu ccacuccgguuuguucuuguaucagggacugcugcaagcccuugagggaaucucgccagaauugggcccgacgcuggac acg uugcagcucgacguggcggauuucgcaacaaccaucuggcagcagauggaggaacuggggauggcacccgcgcugcagc cca cgcagggggcaaugccggccuuugcguccgcguuucagcgcagggcggguggaguccucguagcgagccaccuucaauc auu uuuggaagucucguaccgggugcug agacaucuugcgc agccgug aagcgcugccuucugcggggcuugccuucuggcc au gcccuucuucucucccuugcaccuguaccucuuggucuuugaauaaagccugaguaggaaggcggccgcucgagcaugc auc uagagggcccaauucgcccuauucgaagucg (SEQ ID NO: 2) [00142] The nucleic acid sequence for an exemplary G-CSF modified mRNA
(modRNA) is set forth in SEQ ID NO: 3:
ag5meCivivivivgga5meC5meC5meCiv5meCgiva5meCagaag5meCivaaiva5meCga5meCiv5meCa5 meCivaivagggaaaivaagagagaaaagaagagivaagaagaaaivaivaagag5meC5meCa5meC5meCaygg5me C
5meCggiv5meC5meC5meCg5meCga5meC5meC5meCaaag5meC5meC5meC5meCaivgaaa5meC

ivivaing5meC5meC5meCivg5meCagivivg5meCivg5meCivivivgg5 C5meCiv5meCivgga5meCagiv5meC5meCaagaag5meCga5meCiv5meC5meCiv5meCiv5meCgga5 meC5meCivg5meC5meCiv5meCay5meCgivivg5meC5meCg5meCagiv5meCaiviv5meC5meCiviviv ivgaagivgiv5meCyggag5meCaggivg5meCgaaagaiviv5meCaggg5meCgayggag5meC5meCg5meCa 5meCiv5meC5meCaagagaag5meCiv5meCivg5meCg5meCga5meCaiva5meCaaa5meCivivivg5me C5meCay5meC5meC5meCgaggag5meCiv5meCgiva5meCivg5meCiv5meCggg5meCa5meCag5 meCivivggggaiviv5meC5meC5meCivggg5meCiv5meC5meCiv5meCiv5meCiv5meCgiv5meC5meC
ivgiv5meC5meCgiv5meCg5meCagg5meCivivivg5meCagivivgg5meCagggivg5meC5meCiviviv5me C5meC5meCag5meCiv5meC5meCa5meCiv5meC5meCggivivivgiviv5meCivivgivaiv5meCaggga5m eCivg5meCivg5meCaag5meC5meC5meCivivgagggaaw5meCiv5meCg5meC5meCagaaivivggg5me C5meC5meCga5meCg5meCivgga5meCa5meCgivivg5meCag5meCiv5meCga5meCgivgg5meCgg aiviviv5meCg5meC aa5meC aa5meC5meC aiv5meCivgg5meCag5meC ag ayggagg aa5meCivgggg ay gg5meCa5meC5meC5meCg5meCg5meCivg5meCag5meC5meC5meCa5meCg5meCaggggg5me Caaivg5meC5meCgg5meC5meCivivivg5meCgiv5meC5meCg5meCgiviviv5meCag5meCg5meCag gg5meCgggivggagiv5meC5meCiv5meCgivag5meCgag5meC5meCa5meC5meCiviv5meCaaw5me Caivivivivivggaagiv5meCiv5meCgiva5meC5meCgggivg5meCivgaga5meCay5meCivivg5meCg5m e Cag5meC5meCgivgaag5meCg5meCivg5meC5meCiviv5meCivg5meCgggg5meCivivg5meC5meC
iviv5meCivgg5meC5meCaivg5meC5meC5meCiviv5meCiviv5meCiv5meCiv5meC5meC5meCivivg 5meCa5meC5meCivgiva5meC5meCiv5meCivivggiv5meCivivivgaaivaaag5meC5meCivgagivagga ag g5meCgg5meC5meCg5meCiv5meCgag5meCaivg5meCay5meCivagaggg5meC5meC5meCaaiviv 5meCg5meC5meC5meCivaiviv5meCgaagiv5meCg (SEQ ID NO: 3) [00143] Figure 1 shows an Enzyme-linked immunosorbent assay (ELISA) for Human Granulocyte-Colony Stimulating Factor (G-CSF) from Chinese Hamster Ovary Cells (CHO) transfected with modRNA for G-CSF. The CHO cells were grown in CD CHO Medium with Supplement of L-Glutamine, Hypoxanthine and Thymidine. 2 x 106 Cells were transfected with 24ug modRNA complexed with RNAiMax from Invitrogen in a 75cm2 culture flask from Corning with 7m1 of medium. The RNA:RNAiMAX complex was formed by first incubating the RNA with CD CHO Medium in a 5X volumetric dilution for 10 minutes at room temperature. In a second vial, RNAiMAX reagent was incubated with CD CHO
Medium in a 10X volumetric dilution for 10 minutes at room temperature. The RNA vial was then mixed with the RNAiMAX vial and incubated for 20-30 at room temperature before being added to the cells in a drop-wise fashion. The concentration of secreted huG-measured at 12 and 24 hours post-transfection. Cell supernatants were stored at -20 C.
Secretion of Human Granulocyte-Colony Stimulating Factor (G-CSF) from transfected Human Embryonic Kidney cells was quantified using an ELISA kit from Invitrogen following the manufacturers recommended instructions. These data show that huG-CSF modRNA
(SEQ ID
NO: 3) is capable of being translated in CHO cells, and that huG-CSF is secreted out of the cells and released into the extracellular environment. Furthermore these data demonstrate that transfection of cells with modRNA huG-CSF for the production of secreted protein can be scaled up to a bioreactor or large cell culture conditions.
[00144] Example 3: De novo Generation of a Mammalian Commercial Production Cell Line Expressing Humanized IgG Antibodies (Trastuzumab and Rituximab) as a Therapeutic Agent in Model Bioreactor [00145] The nucleic acid sequence for the Heavy Chain of Rituximab is set forth in SEQ ID
NO: 4:
[00146] CTCGTACAGAAGCTAATACGACTCACTATAGGGAA
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAG
AGCCACCATGGCCGTGATGGCGCCGAGGACCCTGG
TGCTCTTGCTCACGGGTGCCTTGGCCCTCACGCAA
ACATGGGCGGGACAGGCGTACTTGCAGCAGTCAGG
GGCAGAACTCGTAAGGCCCGGAGCGTCGGTGAAGA
TGTCGTGTAAAGCGTCGGGCTATACTTTCACATCG
TACAACATGCACTGGGTCAAACAGACGCCCCGACA
AGGGCTGGAGTGGATTGGAGCTATCTACCCCGGTA
ACGGGGATACGTCGTACAACCAGAAGTTTAAGGGG
AAGGCGACTCTTACTGTCGACAAGTCGTCCTCCAC
CGCCTATATGCAGCTGTCGAGCCTGACTTCGGAAG
ATTCAGCGGTGTACTTTTGTGCGCGCGTGGTCTAT
TACTCAAATTCGTATTGGTATTTCGATGTGTGGGG
TACGGGGACCACTGTGACCGTGTCAGGACCCTCGG
TATTCCCCCTCGCGCCTAGCTCAAAGTCCACCTCC
GGGGGAACAGCCGCCTTGGGTTGCTTGGTAAAGGA

CTATTTCCCCGAGCCCGTCACAGTGAGCTGGAACT
CCGGGGCACTGACATCGGGAGTGCACACGTTTCCC
GCGGTACTTCAGTCATCAGGACTCTACTCGCTGTC
AAGCGTGGTCACGGTGCCTTCATCCTCCCTTGGAA
CGCAGACTTACATCTGCAACGTGAATCATAAGCCT
AGCAATACCAAGGTCGACAAGAAAGCCGAACCCAA
ATCATGTGATAAAACACACACGTGTCCTCCCTGCC
CCGCACCGGAGCTTCTCGGGGGACCGAGCGTGTTC
TTGTTTCCACCTAAGCCGAAAGATACGCTTATGAT
CTCCCGGACCCCCGAAGTAACTTGCGTAGTAGTAG
ACGTAAGCCACGAGGACCCCGAAGTGAAATTCAAT
TGGTACGTCGACGGAGTGGAGGTCCATAATGCGAA
AACAAAGCCGAGAGAGGAACAGTACAATTCCACAT
ACCGCGTCGTAAGCGTCTTGACAGTATTGCATCAG
GATTGGCTGAACGGAAAGGAATACAAGTGCAAAGT
ATCAAACAAAGCACTTCCGGCACCGATTGAAAAGA
CGATCTCAAAAGCAAAAGGGCAACCTCGGGAGCCA
CAAGTCTATACTCTCCCGCCGTCGCGCGATGAATT
GACCAAAAACCAGGTGTCCCTTACATGTCTCGTAA
AGGGTTTTTACCCGTCAGACATCGCCGTCGAGTGG
GAGTCAAACGGTCAGCCGGAGAATAACTATAAGAC
GACCCCACCAGTCTTGGACAGCGATGGCTCCTTCT
TCTTGTATTCAAAGCTGACGGTGGACAAATCGAGA
TGGCAGCAGGGTAATGTGTTTTCGTGCAGCGTCAT
GCACGAGGCGCTTCATAATCATTACACTCAAAAGT
CCCTGTCGCTGTCGCCCGGAAAGCACCATCACCAC
CACCATTGAAGCGCTGCCTTCTGCGGGGCTTGCCT
TCTGGCCATGCCCTTCTTCTCTCCCTTGCACCTGT
ACCTCTTGGTCTTTGAATAAAGCCTGAGTAGGAAG
GCGGCCGCTCGAGCATGCATCTAGA (SEQ ID NO: 4) [00147] The nucleic acid sequence for the mRNA for the Hea forth in SEQ ID NO: 5:
[00148] CUCGUACAGAAGCUAAUACGACUCACUAUAGGGAA
AUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAG
AGCCACCAUGGCCGUGAUGGCGCCGAGGACCCUGG
UGCUCUUGCUCACGGGUGCCUUGGCCCUCACGCAA
ACAUGGGCGGGACAGGCGUACUUGCAGCAGUCAGG
GGCAGAACUCGUAAGGCCCGGAGCGUCGGUGAAGA
UGUCGUGUAAAGCGUCGGGCUAUACUUUCACAUCG
UACAACAUGCACUGGGUCAAACAGACGCCCCGACA
AGGGCUGGAGUGGAUUGGAGCUAUCUACCCCGGUA
ACGGGGAUACGUCGUACAACCAGAAGUUUAAGGGG
AAGGCGACUCUUACUGUCGACAAGUCGUCCUCCAC
CGCCUAUAUGCAGCUGUCGAGCCUGACUUCGGAAG
AUUCAGCGGUGUACUUUUGUGCGCGCGUGGUCUAU
UACUCAAAUUCGUAUUGGUAUUUCGAUGUGUGGGG
UACGGGGACCACUGUGACCGUGUCAGGACCCUCGG
UAUUCCCCCUCGCGCCUAGCUCAAAGUCCACCUCC
GGGGGAACAGCCGCCUUGGGUUGCUUGGUAAAGGA
CUAUUUCCCCGAGCCCGUCACAGUGAGCUGGAACU
CCGGGGCACUGACAUCGGGAGUGCACACGUUUCCC
GCGGUACUUCAGUCAUCAGGACUCUACUCGCUGUC
AAGCGUGGUCACGGUGCCUUCAUCCUCCCUUGGAA
CGCAGACUUACAUCUGCAACGUGAAUCAUAAGCCU
AGCAAUACCAAGGUCGACAAGAAAGCCGAACCCAA
AUCAUGUGAUAAAACACACACGUGUCCUCCCUGCC
CCGCACCGGAGCUUCUCGGGGGACCGAGCGUGUUC
UUGUUUCCACCUAAGCCGAAAGAUACGCUUAUGAU
CUCCCGGACCCCCGAAGUAACUUGCGUAGUAGUAG
ACGUAAGCCACGAGGACCCCGAAGUGAAAUUCAAU
UGGUACGUCGACGGAGUGGAGGUCCAUAAUGCGAA

AACAAAGCCGAGAGAGGAACAGUACAAUUCCACAU
ACCGCGUCGUAAGCGUCUUGACAGUAUUGCAUCAG
GAUUGGCUGAACGGAAAGGAAUACAAGUGCAAAGU
AUCAAACAAAGCACUUCCGGCACCGAUUGAAAAGA
CGAUCUCAAAAGCAAAAGGGCAACCUCGGGAGCCA
CAAGUCUAUACUCUCCCGCCGUCGCGCGAUGAAUU
GACCAAAAACCAGGUGUCCCUUACAUGUCUCGUAA
AGGGUUUUUACCCGUCAGACAUCGCCGUCGAGUGG
GAGUCAAACGGUCAGCCGGAGAAUAACUAUAAGAC
GACCCCACCAGUCUUGGACAGCGAUGGCUCCUUCU
UCUUGUAUUCAAAGCUGACGGUGGACAAAUCGAGA
UGGCAGCAGGGUAAUGUGUUUUCGUGCAGCGUCAU
GCACGAGGCGCUUCAUAAUCAUUACACUCAAAAGU
CCCUGUCGCUGUCGCCCGGAAAGCACCAUCACCAC
CACCAUUGAAGCGCUGCCUUCUGCGGGGCUUGCCU
UCUGGCCAUGCCCUUCUUCUCUCCCUUGCACCUGU
ACCUCUUGGUCUUUGAAUAAAGCCUGAGUAGGAAG
GCGGCCGCUCGAGCAUGCAUCUAGA (SEQ ID NO: 5) [00149] The nucleic acid sequence for the nucleic acid sequence for the Light Chain of Rituximab is set forth in SEQ ID NO: 6:
[00150] CTCGTACAGAAGCTAATACGACTCACTATAGGGAA
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAG
AGCCACCATGGCTGTCATGGCCCCGAGAACACTTG
TGCTGTTGTTGACAGGAGCGCTCGCACTCACACAG
ACTTGGGCCGGTCAGATTGTGCTCAGCCAGTCGCC
AGCGATCCTTTCGGCCTCCCCTGGTGAGAAAGTAA
CGATGACGTGCCGAGCCTCCTCAAGCGTGTCATAC
ATGCATTGGTATCAGCAGAAGCCTGGGTCGTCGCC
CAAGCCCTGGATCTACGCCCCGTCCAATCTTGCGT
CAGGGGTCCCGGCACGGTTCAGCGGATCGGGGTCG
GGTACATCGTATTCACTCACGATTAGCCGCGTAGA

GGCCGAGGACGCGGCGACTTACTACTGTCAGCAAT
GGTCCTTTAATCCACCCACGTTTGGAGCGGGCACC
AAGCTCGAACTTAAAAGAACGGTCGCCGCACCCTC
AGTGTTTATCTTCCCGCCCTCGGACGAACAACTTA
AGTCGGGGACCGCTTCCGTGGTGTGCTTGCTGAAC
AATTTCTATCCTCGGGAAGCTAAAGTGCAATGGAA
AGTCGATAACGCATTGCAGAGCGGAAACTCACAAG
AGTCGGTAACTGAGCAGGATAGCAAGGATTCGACA
TACTCGCTGAGCAGCACGCTGACGTTGTCCAAGGC
GGACTACGAGAAACACAAGGTATATGCGTGTGAAG
TCACCCACCAGGGATTGTCATCGCCGGTCACCAAA
TCATTCAACAGGTGATAAAGCGCTGCCTTCTGCGG
GGCTTGCCTTCTGGCCATGCCCTTCTTCTCTCCCT
TGCACCTGTACCTCTTGGTCTTTGAATAAAGCCTG
AGTAGGAAGGCGGCCGCTCGAGCATGCATCTAGA
(SEQ ID NO: 6) [00151] The nucleic acid sequence for the mRNA of the Light Chain of Rituximab is set forth in SEQ ID NO: 7.
[00152] CUCGUACAGAAGCUAAUACGACUCACUAUAGGGAA
AUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAG
AGCCACCAUGGCUGUCAUGGCCCCGAGAACACUUG
UGCUGUUGUUGACAGGAGCGCUCGCACUCACACAG
ACUUGGGCCGGUCAGAUUGUGCUCAGCCAGUCGCC
AGCGAUCCUUUCGGCCUCCCCUGGUGAGAAAGUAA
CGAUGACGUGCCGAGCCUCCUCAAGCGUGUCAUAC
AUGCAUUGGUAUCAGCAGAAGCCUGGGUCGUCGCC
CAAGCCCUGGAUCUACGCCCCGUCCAAUCUUGCGU
CAGGGGUCCCGGCACGGUUCAGCGGAUCGGGGUCG
GGUACAUCGUAUUCACUCACGAUUAGCCGCGUAGA
GGCCGAGGACGCGGCGACUUACUACUGUCAGCAAU
GGUCCUUUAAUCCACCCACGUUUGGAGCGGGCACC

AAGCUCGAACUUAAAAGAACGGUCGCCGCACCCUC
AGUGUUUAUCUUCCCGCCCUCGGACGAACAACUUA
AGUCGGGGACCGCUUCCGUGGUGUGCUUGCUGAAC
AAUUUCUAUCCUCGGGAAGCUAAAGUGCAAUGGAA
AGUCGAUAACGCAUUGCAGAGCGGAAACUCACAAG
AGUCGGUAACUGAGCAGGAUAGCAAGGAUUCGACA
UACUCGCUGAGCAGCACGCUGACGUUGUCCAAGGC
GGACUACGAGAAACACAAGGUAUAUGCGUGUGAAG
UCACCCACCAGGGAUUGUCAUCGCCGGUCACCAAA
UCAUUCAACAGGUGAUAAAGCGCUGCCUUCUGCGG
GGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCU
UGCACCUGUACCUCUUGGUCUUUGAAUAAAGCCUG
AGUAGGAAGGCGGCCGCUCGAGCAUGCAUCUAGA
(SEQ ID NO: 7) [00153] The nucleic acid sequence for the nucleic acid sequence for the Heavy Chain of Trastuzumab is set forth in SEQ ID NO: 8:
[00154] CTCGTACAGAAGCTAATACGACTCACTATAGGGAA
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAG
AGCCACCATGGCCGTGATGGCGCCGCGGACCCTGG
TCCTCCTGCTGACCGGCGCCCTCGCCCTGACGCAG
ACCTGGGCCGGGGAGGTGCAGCTGGTCGAGAGCGG
CGGGGGCCTCGTGCAGCCGGGCGGGTCGCTGCGGC
TGAGCTGCGCCGCGAGCGGGTTCAACATCAAGGAC
ACCTACATCCACTGGGTGCGCCAGGCCCCCGGCAA
GGGCCTCGAGTGGGTCGCCCGGATCTACCCCACGA
ACGGGTACACCCGCTACGCCGACAGCGTGAAGGGC
CGGTTCACCATCAGCGCGGACACCTCGAAGAACAC
GGCCTACCTGCAGATGAACAGCCTGCGCGCCGAGG
ACACCGCCGTGTACTACTGCAGCCGGTGGGGCGGC
GACGGGTTCTACGCCATGGACTACTGGGGGCAGGG
CACCCTCGTCACCGTGAGCAGCGCGTCGACGAAGG

GGCCCAGCGTGTTCCCGCTGGCCCCCAGCAGCAAG
AGCACCAGCGGCGGGACCGCCGCCCTGGGCTGCCT
CGTCAAGGACTACTTCCCCGAGCCCGTGACCGTGT
CGTGGAACAGCGGCGCGCTGACGAGCGGGGTCCAC
ACCTTCCCGGCCGTGCTGCAGAGCAGCGGCCTCTA
CTCGCTGAGCAGCGTGGTCACCGTGCCCAGCAGCA
GCCTGGGGACCCAGACGTACATCTGCAACGTGAAC
CACAAGCCCTCGAACACCAAGGTCGACAAGAAGGT
GGAGCCCCCGAAGAGCTGCGACAAGACCCACACCT
GCCCGCCCTGCCCCGCCCCCGAGCTCCTGGGCGGG
CCCAGCGTGTTCCTGTTCCCGCCCAAGCCCAAGGA
CACGCTCATGATCAGCCGCACCCCCGAGGTCACCT
GCGTGGTGGTCGACGTGAGCCACGAGGACCCCGAG
GTGAAGTTCAACTGGTACGTCGACGGCGTGGAGGT
GCACAACGCCAAGACCAAGCCGCGGGAGGAGCAGT
ACAACTCGACGTACCGCGTCGTGAGCGTGCTGACC
GTCCTGCACCAGGACTGGCTCAACGGCAAGGAGTA
CAAGTGCAAGGTGAGCAACAAGGCCCTGCCCGCGC
CCATCGAGAAGACCATCAGCAAGGCCAAGGGGCAG
CCCCGGGAGCCGCAGGTGTACACCCTGCCCCCCAG
CCGCGACGAGCTCACGAAGAACCAGGTCAGCCTGA
CCTGCCTGGTGAAGGGCTTCTACCCCTCGGACATC
GCCGTGGAGTGGGAGAGCAACGGGCAGCCGGAGAA
CAACTACAAGACCACCCCGCCCGTCCTCGACAGCG
ACGGCAGCTTCTTCCTGTACAGCAAGCTGACGGTG
GACAAGTCGCGGTGGCAGCAGGGCAACGTGTTCAG
CTGCAGCGTCATGCACGAGGCCCTCCACAACCACT
ACACCCAGAAGAGCCTGAGCCTGAGCCCCGGGAAG
CATCATCATCATCATCATTGAAGCGCTGCCTTCTG
CGGGGCTTGCCTTCTGGCCATGCCCTTCTTCTCTC
CCTTGCACCTGTACCTCTTGGTCTTTGAATAAAGC

CTGAGTAGGAAGGCGGCCGCTCGAGCATGCATCTA
GA (SEQ ID NO: 8) [00155] The nucleic acid sequence of the mRNA for the Heavy Chain of Trastuzumab is set forth in SEQ ID NO: 9:
[00156] CUCGUACAGAAGCUAAUACGACUCACUAUAGGGAA
AUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAG
AGCCACCAUGGCCGUGAUGGCGCCGCGGACCCUGG
UCCUCCUGCUGACCGGCGCCCUCGCCCUGACGCAG
ACCUGGGCCGGGGAGGUGCAGCUGGUCGAGAGCGG
CGGGGGCCUCGUGCAGCCGGGCGGGUCGCUGCGGC
UGAGCUGCGCCGCGAGCGGGUUCAACAUCAAGGAC
ACCUACAUCCACUGGGUGCGCCAGGCCCCCGGCAA
GGGCCUCGAGUGGGUCGCCCGGAUCUACCCCACGA
ACGGGUACACCCGCUACGCCGACAGCGUGAAGGGC
CGGUUCACCAUCAGCGCGGACACCUCGAAGAACAC
GGCCUACCUGCAGAUGAACAGCCUGCGCGCCGAGG
ACACCGCCGUGUACUACUGCAGCCGGUGGGGCGGC
GACGGGUUCUACGCCAUGGACUACUGGGGGCAGGG
CACCCUCGUCACCGUGAGCAGCGCGUCGACGAAGG
GGCCCAGCGUGUUCCCGCUGGCCCCCAGCAGCAAG
AGCACCAGCGGCGGGACCGCCGCCCUGGGCUGCCU
CGUCAAGGACUACUUCCCCGAGCCCGUGACCGUGU
CGUGGAACAGCGGCGCGCUGACGAGCGGGGUCCAC
ACCUUCCCGGCCGUGCUGCAGAGCAGCGGCCUCUA
CUCGCUGAGCAGCGUGGUCACCGUGCCCAGCAGCA
GCCUGGGGACCCAGACGUACAUCUGCAACGUGAAC
CACAAGCCCUCGAACACCAAGGUCGACAAGAAGGU
GGAGCCCCCGAAGAGCUGCGACAAGACCCACACCU
GCCCGCCCUGCCCCGCCCCCGAGCUCCUGGGCGGG
CCCAGCGUGUUCCUGUUCCCGCCCAAGCCCAAGGA
CACGCUCAUGAUCAGCCGCACCCCCGAGGUCACCU

GCGUGGUGGUCGACGUGAGCCACGAGGACCCCGAG
GUGAAGUUCAACUGGUACGUCGACGGCGUGGAGGU
GCACAACGCCAAGACCAAGCCGCGGGAGGAGCAGU
ACAACUCGACGUACCGCGUCGUGAGCGUGCUGACC
GUCCUGCACCAGGACUGGCUCAACGGCAAGGAGUA
CAAGUGCAAGGUGAGCAACAAGGCCCUGCCCGCGC
CCAUCGAGAAGACCAUCAGCAAGGCCAAGGGGCAG
CCCCGGGAGCCGCAGGUGUACACCCUGCCCCCCAG
CCGCGACGAGCUCACGAAGAACCAGGUCAGCCUGA
CCUGCCUGGUGAAGGGCUUCUACCCCUCGGACAUC
GCCGUGGAGUGGGAGAGCAACGGGCAGCCGGAGAA
CAACUACAAGACCACCCCGCCCGUCCUCGACAGCG
ACGGCAGCUUCUUCCUGUACAGCAAGCUGACGGUG
GACAAGUCGCGGUGGCAGCAGGGCAACGUGUUCAG
CUGCAGCGUCAUGCACGAGGCCCUCCACAACCACU
ACACCCAGAAGAGCCUGAGCCUGAGCCCCGGGAAG
CAUCAUCAUCAUCAUCAUUGAAGCGCUGCCUUCUG
CGGGGCUUGCCUUCUGGCCAUGCCCUUCUUCUCUC
CCUUGCACCUGUACCUCUUGGUCUUUGAAUAAAGC
CUGAGUAGGAAGGCGGCCGCUCGAGCAUGCAUCUA
GA (SEQ ID NO: 9) [00157] The nucleic acid sequence for the nucleic acid sequence for the Light Chain of Trastuzumab is set forth in SEQ ID NO: 10:
[00158] CTCGTACAGAAGCTAATACGACTCACTATAGGGAA
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAG
AGCCACCATGGCCGTGATGGCGCCGCGGACCCTGG
TCCTCCTGCTGACCGGCGCCCTCGCCCTGACGCAG
ACCTGGGCCGGGGACATCCAGATGACCCAGAGCCC
GTCGAGCCTGAGCGCCAGCGTGGGCGACCGGGTCA
CGATCACCTGCCGCGCGAGCCAGGACGTGAACACC
GCCGTGGCCTGGTACCAGCAGAAGCCCGGGAAGGC

CCCCAAGCTCCTGATCTACTCGGCGAGCTTCCTGT
ACAGCGGCGTCCCCAGCCGGTTCAGCGGGTCGCGC
AGCGGCACCGACTTCACGCTCACCATCAGCAGCCT
GCAGCCGGAGGACTTCGCCACCTACTACTGCCAGC
AGCACTACACCACGCCCCCCACCTTCGGGCAGGGC
ACCAAGGTGGAGATCAAGCGGACCGTGGCCGCCCC
CAGCGTCTTCATCTTCCCGCCCAGCGACGAGCAGC
TGAAGTCGGGCACGGCCAGCGTGGTGTGCCTCCTG
AACAACTTCTACCCCCGCGAGGCGAAGGTCCAGTG
GAAGGTGGACAACGCCCTGCAGAGCGGGAACAGCC
AGGAGAGCGTGACCGAGCAGGACTCGAAGGACAGC
ACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAA
GGCCGACTACGAGAAGCACAAGGTCTACGCCTGCG
AGGTGACCCACCAGGGGCTCTCGAGCCCCGTGACC
AAGAGCTTCAACCGGGGCGAGTGCTGAAGCGCTGC
CTTCTGCGGGGCTTGCCTTCTGGCCATGCCCTTCT
TCTCTCCCTTGCACCTGTACCTCTTGGTCTTTGAA
TAAAGCCTGAGTAGGAAGGCGGCCGCTCGAGCATG
CATCTAGA (SEQ ID NO: 10) [00159] The nucleic acid sequence for the mRNA of the Light Chain of Trastuzumab is set forth in SEQ ID NO: 11:
[00160] CUCGUACAGAAGCUAAUACGACUCACUAUAGGGAAAUAAGAGAGAAAA
GAAGAGUAAGAAGAAAUAUAAGAGCCACCAUGGCCGUGAUGGCGCCGCGGACCC
UGGUCCUCCUGCUGACCGGCGCCCUCGCCCUGACGCAGACCUGGGCCGGGGACAU
CCAGAUGACCCAGAGCCCGUCGAGCCUGAGCGCCAGCGUGGGCGACCGGGUCACG
AUCACCUGCCGCGCGAGCCAGGACGUGAACACCGCCGUGGCCUGGUACCAGCAGA
AGCCCGGGAAGGCCCCCAAGCUCCUGAUCUACUCGGCGAGCUUCCUGUACAGCGG
CGUCCCCAGCCGGUUCAGCGGGUCGCGCAGCGGCACCGACUUCACGCUCACCAUC
AGCAGCCUGCAGCCGGAGGACUUCGCCACCUACUACUGCCAGCAGCACUACACCA
CGCCCCCCACCUUCGGGCAGGGCACCAAGGUGGAGAUCAAGCGGACCGUGGCCGC
CCCCAGCGUCUUCAUCUUCCCGCCCAGCGACGAGCAGCUGAAGUCGGGCACGGCC

AGCGUGGUGUGCCUCCUGAACAACUUCUACCCCCGCC
AGGUGGACAACGCCCUGCAGAGCGGGAACAGCCAGGAGAGCGUGACCGAGCAGGA
CUCGAAGGACAGCACCUACAGCCUCAGCAGCACCCUGACGCUGAGCAAGGCCGAC
UACGAGAAGCACAAGGUCUACGCCUGCGAGGUGACCCACCAGGGGCUCUCGAGCC
CCGUGACCAAGAGCUUCAACCGGGGCGAGUGCUGAAGCGCUGCCUUCUGCGGGGC
UUGCCUUCUGGCCAUGCCCUUCUUCUCUCCCUUGCACCUGUACCUCUUGGUCUUU
GAAUAAAGCCUGAGUAGGAAGGCGGCCGCUCGAGCAUGCAUCUAGA (SEQ ID NO:
11) [00161] The nucleic acid sequence for nucleotide sequence of the wild type CERT protein is set forth in SEQ ID NO: 12:
[00162] atgtcggata atcagagctg gaactcgtcg ggctcggagg aggatccaga gacggagtct gggccgcctg tggagcgctg cggggtcctc agtaagtgga caaactacat tcatgggtgg caggatcgtt gggtagtttt gaaaaataat gctctgagtt actacaaatc tgaagatgaa acagagtatg gctgcagagg atccatctgt cttagcaagg ctgtcatcac acctcacgat tttgatgaat gtcgatttga tattagtgta aatgatagtg tttggtatct tcgtgctcag gatccagatc atagacagca atggatagat gccattgaac agcacaagac tgaatctgga tatggatctg aatccagctt gcgtcgacat ggctcaatgg tgtccctggt gtctggagca agtggctact ctgcaacatc cacctcttca ttcaagaaag gccacagttt acgtgagaag ttggctgaaa tggaaacatt tagagacatc ttatgtagac aagttgacac gctacagaag tactttgatg cctgtgctga tgctgtctct aaggatgaac ttcaaaggga taaagtggta gaagatgatg aagatgactt tcctacaacg cgttctgatg gtgacttctt gcatagtacc aacggcaata aagaaaagtt atttccacat gtgacaccaa aaggaattaa tggtatagac tttaaagggg aagcgataac ttttaaagca actactgctg gaatccttgc aacactttct cattgtattg aactaatggt taaacgtgag gacagctggc agaagagact ggataaggaa actgagaaga aaagaagaac agaggaagca tataaaaatg caatgacaga acttaagaaa aaatcccact ttggaggacc agattatgaa gaaggcccta acagtctgat taatgaagaa gagttctttg atgctgttga agctgctctt gacagacaag ataaaataga agaacagtca cagagtgaaa aggtgagatt acattggcct acatccttgc cctctggaga tgccttttct tctgtgggga cacatagatt tgtccaaaag gttgaagaga tggtgcagaa ccacatgact tactcattac aggatgtagg cggagatgcc aattggcagt tggttgtaga agaaggagaa atgaaggtat acagaagaga agtagaagaa aatgggattg ttctggatcc tttaaaagct acccatgcag ttaaaggcgt cacaggacat gaagtctgca attatttctg gaatgttgac gttcgcaatg actgggaaac aactatagaa aactttcatg tggtggaaac attagctgat aatgcaatca tcatttatca aacacacaag agggtgtggc ctgettctca gcgagacgta ttatatcttt ctgtcattcg aaagatacca gccttgactg aaaatgaccc tgaaacttgg atagtttgta atttttctgt ggatcatgac agtgctcctc taaacaaccg atgtgtccgt gccaaaataa atgttgctat gatttgtcaa accttggtaa gcccaccaga gggaaaccag gaaattagca gggacaacat tctatgcaag attacatatg tagctaatgt gaaccctgga ggatgggcac cagcctcagt gttaagggca gtggcaaagc gagagtatcc taaatttcta aaacgtttta cttcttacgt ccaagaaaaa actgcaggaa agcctatttt gttctag (SEQ ID NO: 12) [00163] The protein sequence for the wild type CERT protein is set forth in SEQ ID NO: 13:
[00164] Met Ser Asp Asn Gin Ser Trp Asn Ser Ser Gly Ser Glu Glu Asp Pro Glu Thr Glu Ser Gly Pro Pro Val Glu Arg Cys Gly Val Leu Ser Lys Trp Thr Asn Tyr Be His Gly Trp Gin Asp Arg Trp Val Val Leu Lys Asn Asn Ala Leu Ser Tyr Tyr Lys Ser Glu Asp Glu Thr Glu Tyr Gly Cys Arg Gly Ser Ile Cys Leu Ser Lys Ala Val Ile Thr Pro His Asp Phe Asp Glu Cys Arg Phe Asp Ile Ser Val Asn Asp Ser Val Trp Tyr Leu Arg Ala Gin Asp Pro Asp His Arg Gin Gin Trp Ile Asp Ala Ile Glu Gin His Lys Thr Glu Ser Gly Tyr Gly Ser Glu Ser Ser Leu Arg Arg His Gly Ser Met Val Ser Leu Val Ser Gly Ala Ser Gly Tyr Ser Ala Thr Ser Thr Ser Ser Phe Lys Lys Gly His Ser Leu Arg Glu Lys Leu Ala Glu Met Glu Thr Phe Arg Asp Ile Leu Cys Arg Gin Val Asp Thr Leu Gin Lys Tyr Phe Asp Ala Cys Ala Asp Ala Val Ser Lys Asp Glu Leu Gin Arg Asp Lys Val Val Glu Asp Asp Glu Asp Asp Phe Pro Thr Thr Arg Ser Asp Gly Asp Phe Leu His Ser Thr Asn Gly Asn Lys Glu Lys Leu Phe Pro His Val Thr Pro Lys Gly Ile Asn Gly Ile Asp Phe Lys Gly Glu Ala Ile Thr Phe Lys Ala Thr Thr Ala Gly Ile Leu Ala Thr Leu Ser His Cys Ile Glu Leu Met Val Lys Arg Glu Asp Ser Trp Gin Lys Arg Leu Asp Lys Glu Thr Glu Lys Lys Arg Arg Thr Glu Glu Ala Tyr Lys Asn Ala Met Thr Glu Leu Lys Lys Lys Ser His Phe Gly Gly Pro Asp Tyr Glu Glu Gly Pro Asn Ser Leu Be Asn Glu Glu Glu Phe Phe Asp Ala Val Glu Ala Ala Leu Asp Arg Gin Asp Ly Glu Glu Gin Ser Gin Ser Glu Lys Val Arg Leu His Trp Pro Thr Ser Leu Pro Ser Gly Asp Ala Phe Ser Ser Val Gly Thr His Arg Phe Val Gin Lys Val Glu Glu Met Val Gin Asn His Met Thr Tyr Ser Leu Gin Asp Val Gly Gly Asp Ala Asn Trp Gin Leu Val Val Glu Glu Gly Glu Met Lys Val Tyr Arg Arg Glu Val Glu Glu Asn Gly Ile Val Leu Asp Pro Leu Lys Ala Thr His Ala Val Lys Gly Val Thr Gly His Glu Val Cys Asn Tyr Phe Trp Asn Val Asp Val Arg Asn Asp Trp Glu Thr Thr Ile Glu Asn Phe His Val Val Glu Thr Leu Ala Asp Asn Ala Ile Ile Ile Tyr Gin Thr His Lys Arg Val Trp Pro Ala Ser Gin Arg Asp Val Leu Tyr Leu Ser Val Ile Arg Lys Ile Pro Ala Leu Thr Glu Asn Asp Pro Glu Thr Trp Ile Val Cys Asn Phe Ser Val Asp His Asp Ser Ala Pro Leu Asn Asn Arg Cys Val Arg Ala Lys Ile Asn Val Ala Met Ile Cys Gin Thr Leu Val Ser Pro Pro Glu Gly Asn Gin Glu Be Ser Arg (SEQ ID NO: 13) [00165] The nucleic acid sequence for the nucleotide sequence of the Ser 132A
Cert mutant is set forth as SEQ ID NO: 14:
[00166] atgtcggata atcagagctg gaactcgtcg ggctcggagg aggatccaga gacggagtct gggccgcctg tggagcgctg cggggtcctc agtaagtgga caaactacat tcatgggtgg caggatcgtt gggtagtttt gaaaaataat gctctgagtt actacaaatc tgaagatgaa acagagtatg gctgcagagg atccatctgt cttagcaagg ctgtcatcac acctcacgat tttgatgaat gtcgatttga tattagtgta aatgatagtg tttggtatct tcgtgctcag gatccagatc atagacagca atggatagat gccattgaac agcacaagac tgaatctgga tatggatctg aatccagctt gcgtcgacat ggcgcaatgg tgtccctggt gtctggagca agtggctact ctgcaacatc cacctcttca ttcaagaaag gccacagttt acgtgagaag ttggctgaaa tggaaacatt tagagacatc ttatgtagac aagttgacac gctacagaag tactttgatg cctgtgctga tgctgtctct aaggatgaac ttcaaaggga taaagtggta gaagatgatg aagatgactt tcctacaacg cgttctgatg gtgacttctt gcatagtacc aacggcaata aagaaaagtt atttccacat gtgacaccaa aaggaattaa tggtatagac tttaaagggg aagcgataac ttttaaagca actactgctg gaatccttgc aacactttct cattgtattg aactaatggt taaacgtgag gacagctggc agaagagact ggataaggaa actgagaaga aaagaagaac agaggaagca tataaaaatg caatgacaga acttaa4 aaatcccact ttggaggacc agattatgaa gaaggcccta acagtctgat taatgaagaa gagttctttg atgctgttga agctgctctt gacagacaag ataaaataga agaacagtca cagagtgaaa aggtgagatt acattggcct acatccttgc cctctggaga tgccttttct tctgtgggga cacatagatt tgtccaaaag gttgaagaga tggtgcagaa ccacatgact tactcattac aggatgtagg cggagatgcc aattggcagt tggttgtaga agaaggagaa atgaaggtat acagaagaga agtagaagaa aatgggattg ttctggatcc tttaaaagct acccatgcag ttaaaggcgt cacaggacat gaagtctgca attatttctg gaatgttgac gttcgcaatg actgggaaac aactatagaa aactttcatg tggtggaaac attagctgat aatgcaatca tcatttatca aacacacaag agggtgtggc ctgcttctca gcgagacgta ttatatcttt ctgtcattcg aaagatacca gccttgactg aaaatgaccc tgaaacttgg atagtttgta atttttctgt ggatcatgac agtgctcctc taaacaaccg atgtgtccgt gccaaaataa atgttgctat gatttgtcaa accttggtaa gcccaccaga gggaaaccag gaaattagca gggacaacat tctatgcaag attacatatg tagctaatgt gaaccctgga ggatgggcac cagcctcagt gttaagggca gtggcaaagc gagagtatcc taaatttcta aaacgtttta cttcttacgt ccaagaaaaa actgcaggaa agcctatttt gttctag (SEQ ID NO: 14) The protein sequence of the Ser132A Cert mutant is set forth as SEQ ID NO. 15:
Met Ser Asp Asn Gin Ser Trp Asn Ser Ser Gly Ser Glu Glu Asp Pro Glu Thr Glu Ser Gly Pro Pro Val Glu Arg Cys Gly Val Leu Ser Lys Trp Thr Asn Tyr Be His Gly Trp Gin Asp Arg Trp Val Val Leu Lys Asn Asn Ala Leu Ser Tyr Tyr Lys Ser Glu Asp Glu Thr Glu Tyr Gly Cys Arg Gly Ser Ile Cys Leu Ser Lys Ala Val Ile Thr Pro His Asp Phe Asp Glu Cys Arg Phe Asp Ile Ser Val Asn Asp Ser Val Trp Tyr Leu Arg Ala Gin Asp Pro Asp His Arg Gin Gin Trp Ile Asp Ala Ile Glu Gin His Lys Thr Glu Ser Gly Tyr Gly Ser Glu Ser Ser Leu Arg Arg His Gly Ala Met Val Ser Leu Val Ser Gly Ala Ser Gly Tyr Ser Ala Thr Ser Thr Ser Ser Phe Lys Lys Gly His Ser Leu Arg Glu Lys Leu Ala Glu Met Glu Thr Phe Arg Asp Ile Leu Cys Arg Gin Val Asp Thr Leu Gin Lys Tyr Phe Asp Ala Cys Ala Asp Ala Val Ser Lys Asp Glu Leu Gin Arg Asp Lys Val Val Glu Asp Asp Glu Asp Asp Phe Pro Thr Thr Arg Ser Asp Gly Asp Phe Leu His Ser Thr Asn Gly Asn Lys Glu Lys Leu Phe Pro His Val Thr Pro Lys Gly Ile Asn Gly Ile A
Phe Lys Gly Glu Ala Ile Thr Phe Lys Ala Thr Thr Ala Gly Ile Leu Ala Thr Leu Ser His Cys Ile Glu Leu Met Val Lys Arg Glu Asp Ser Trp Gin Lys Arg Leu Asp Lys Glu Thr Glu Lys Lys Arg Arg Thr Glu Glu Ala Tyr Lys Asn Ala Met Thr Glu Leu Lys Lys Lys Ser His Phe Gly Gly Pro Asp Tyr Glu Glu Gly Pro Asn Glu Phe Phe Asp Ala Val Glu Ala Ala Leu Asp Arg Gin Asp Lys Ile Glu Glu Gin Ser Gin Ser Glu Lys Val Arg Leu His Trp Pro Thr Ser Leu Pro Ser Gly Asp Ala Phe Ser Ser Val Gly Thr His Arg Phe Val Gin Lys Val Glu Glu Met Val Gin Asn His Met Thr Tyr Ser Leu Gin Asp Val Gly Gly Asp Ala Asn Trp Gin Leu Val Val Glu Glu Gly Glu Met Lys Val Tyr Arg Arg Glu Val Glu Glu Asn Gly Ile Val Leu Asp Pro Leu Lys Ala Thr His Ala Val Lys Gly Val Thr Gly His Glu Val Cys Asn Tyr Phe Trp Asn Val Asp Val Arg Asn Asp Trp Glu Thr Thr Ile Glu Asn Phe His Val Val Glu Thr Leu Ala Asp Asn Ala Ile Ile Ile Tyr Gin Thr His Lys Arg Val Trp Pro Ala Ser Gin Arg Asp Val Leu Tyr Leu Ser Val Ile Arg Lys Ile Pro Ala Leu Thr Glu Asn Asp Pro Glu Thr Trp Ile Val Cys Asn Phe Ser Val Asp His Asp Ser Ala Pro Leu Asn Asn Arg Cys Val Arg Ala Lys Ile Asn Val Ala Met Ile Cys Gin Thr Leu Val Ser Pro Pro Glu Gly Asn Gin Glu Be Ser Arg Asp Asn Ile Leu Cys Lys Be Thr Tyr Val Ala Asn Val Asn Pro Gly Gly Trp Ala Pro Ala Ser Val Leu Arg Ala Val Ala Lys Arg Glu Tyr Pro Lys Phe Leu Lys Arg Phe Thr Ser Tyr Val Gin Glu Lys Thr Ala Gly Lys Pro Ile Leu Phe (SEQ ID NO: 15) [00167] ELISA Detection of Human IgG Antibodies [00168] Figure 2 and Figure 3 show an Enzyme-linked immunosorbent assay (ELISA) for Human IgG from Chinese Hamster Ovary's (CHO) and Human Embryonic Kidney (HEK, HER-2 Negative) 293 cells transfected with human IgG modRNA , respectively.
The Human Embryonic Kidney (HEK) 293 were grown in CD 293 Medium with Supplement of L-Glutamine from Invitrogen until they reached a confluence of 80-90%. The CHO cells were grown in CD
CHO Medium with Supplement of L-Glutamine, Hypoxanthine and Thymidine. In Figure 2, 2 x 106 cells were transfected with 24ug modRNA complexed with I
75cm2 culture flask from Corning in 7m1 of medium. In Figure 3, 80,000 cells were transfected with lug modRNA complexed with RNAiMax from Invitrogen in a 24-well plate. The RNA:RNAiMAX complex was formed by first incubating the RNA with CD 293 or CD
CHO
Medium in a 5X volumetric dilution for 10 minutes at room temperature. In a second vial, RNAiMAX reagent was incubated with CD 293 Medium or CD CHO Medium in a 10X
volumetric dilution for 10 minutes at room temperature. The RNA vial was then mixed with the RNAiMAX vial and incubated for 20-30 at room temperature before being added to the cells in a drop-wise fashion. In Figure 2, the concentration of secreted human IgG in the culture medium was measured at 12, 24, 36 hours post-transfection. In Figure 3, secreted human IgG was measured at 36 hours. The culture supernatants were stored at 4 degrees.
Secretion of Trastuzumab from transfected Human Embryonic Kidney 293 cells was quantified using an ELISA kit from Abcam following the manufacturers recommended instructions.
This data show that a Humanized IgG antibody (Trastuzumab) modRNA (SEQ ID NOs: 6 and 7) is capable of being translated in Human Embryonic Kidney Cells and that Trastuzumab is secreted out of the cells and released into the extracellular environment. Furthermore these data demonstrate that transfection of cells with modRNA encoding Trastuzumab for the production of secreted protein can be scaled up to a bioreactor or large cell culture conditions.
[00169] Western Detection of modRNA produced human IgG antibody.
[00170] Figure 4 shows a Western Blot of CHO-K1 cells co-transfected with 1 lug each of Heavy and Light Chain of Trastuzumab modRNA. In order to detect translation of protein product, cells were grown using standard protocols in 24-well plates, and cell supernatants or cell lysates were collected at 24 hours post-transfection and separated on a 12%
SDS-Page gel and transferred onto a nitrocellulose membrane using the iBlot by Invitrogen.
After incubation with a rabbit polyclonal antibody to Human IgG conjugated to DyLight 594 (ab96904, abcam, Cambridge, MA) and a secondary goat polyclonal antibody to Rb IgG which was conjugated to alkaline phosphatase, the antibody was detected using Novex alkaline phosphatase chromogenic substrate by Invitrogen.
[00171] Cell Immuno Staining of modRNA produced Trastuzumab and Rituximab [00172] Figure 5 shows CHO-K1 cells co-transfected with 50Ong each of Heavy and Light Chain of Trastuzumab or Rituximab. Cells were grown in F-12K Medium from Gibco and 10 %

FBS. Cells were fixed with 4% paraformaldehyde in PBS and pc X-100 in PBS for 5-10 minutes at room temperature. Cells were then washed 3X
with room temperature PBS. Trastuzumab and Rituximab staining was performed using rabbit polyclonal antibody to Human IgG conjugated to DyLight 594 (ab96904, abcam, Cambridge, MA) according to the manufacturer's recommended dilutions. Nuclear DNA staining was performed with DAPI dye from Invitrogen. The protein for Trastuzumab and Rituximab is translated and localized to the cytoplasm upon modRNA transfection. The pictures were taken 13 hours post-transfection.
[00173] Binding Immunoblot Assay for modRNA produced Trastuzumab and Rituximab [00174] Figure 6 shows a Binding Immunoblot detection assay for Trastuzumab and Rituximab. Varying concentrations of the ErB2 peptide (ab40048, abcam, Cambridge, MA), [00175] antigen for Trastuzumab and the CD20 peptide (ab97360, abcam, Cambridge, MA), antigen for Rituximab were run at varying concentrations (10Ong/u1 to Ong/ul) on a 12% SDS-Page gel and transferred onto a membrane using the iBlot from Invitrogen. The membranes were incubated for 1 hour with their respective cell supernatants from CHO-K 1 cells co-transfected with 50Ong each of Heavy and Light Chain of Trastuzumab or Rituximab. The membranes were blocked with 1% BSA and a secondary anti-human IgG antibody conjugated to alkaline phosphatase ( abcam, Cambridge, MA) was added. Antibody detection was conducted using the Novex alkaline phosphatase chromogenic substrate by Invitrogen. This data show that a humanized IgG antibodies generated from modRNA are capable of recognizing and binding to their respective antigens.
[00176] Cell Proliferation Assay [00177] The SK-BR-3 cell line, an adherent cell line derived from a human breast adenocarcinoma, which overexpress the HER2/neu receptor can be used to compare the antiproliferative properties of modRNA generated Trastuzumab. Varying concentrations of purified Trastuzumab generated from modRNA and trastuzumab can be added to cell cultures, and their effects on cell growth can be assessed in triplicate cytotoxicity and viability assays.
[00178] SKOV-3 Tumor Model [00179] The anti-cancer effects of modRNA generated Trastuzumab can be determined by consecutive injections of 1) modRNA Trastuzumab , 2) trastuzumab, and 3) modRNA

Trastuzumab + modRNA GCSF over a period of 28 days in SKI
reduction in tumor growth size can be monitored over time.
[00180] Example 4. Overexpression of Ceramide Transfer Protein to Increase Therapeutic Antibody Protein Production in Established CHO Cell Lines [00181] a) Batch Culture [00182] An antibody producing CHO cell line (CHO DG44) secreting a humanized therapeutic IgG antibody is transfected a single time with lipid cationic delivery agent alone (control) or a synthetic mRNA transcript encoding wild type ceramide transfer protein (CERT) or a non-phosphorylation competent Ser132A CERT mutant. CERT is an essential cytosolic protein in mammalian cells that transfers the sphingolipid ceramide from the endoplasmic reticulum to the Golgi complex where it is converted to sphingomyelin (Hanada et al., 2003).
Overexpression of CERT significantly enhances the transport of secreted proteins to the plasma membrane and improves the production of proteins that are transported via the secretory pathway from eukaryotic cells thereby enhancing secretion of proteins in the culture medium. Synthetic mRNA transcripts are pre-mixed with a lipid cationic delivery agent at a 2-5:1 carrier:RNA ratio.
The initial seeding density is about 2x105 viable cells/mL. The synthetic mRNA
transcript is delivered after initial culture seeding during the exponential culture growth phase to achieve a final synthetic mRNA copy number between 10x102 and 10x103 per cell. The basal cell culture medium used for all phases of cell inoculum generation and for growth of cultures in bioreactors is modified CD-CHO medium containing glutamine, sodium bicarbonate, insulin and methotrexate. The pH of the medium is adjusted to 7.0 with 1 N HC1 or 1N NaOH
after addition of all components. Culture run times end on days 7, 14, 21 or 28+. Production-level 50 L scale reactors (stainless steel reactor with two marine impellers) may be used and are scalable to >10,000 L stainless steel reactors (described in commonly-assigned patent application U.S. Ser.
No. 60/436,050, filed Dec. 23, 2002, and U.S. Ser. No. 10/740,645). A data acquisition system (Intellution Fix 32) records temperature, pH, and dissolved oxygen (DO) throughout runs. Gas flows are controlled via rotameters. Air is sparged into the reactor via a submerged frit (5 Ina pore size) and through the reactor head space for CO2 removal. Molecular oxygen is sparged through the same frit for DO control. CO2 is sparged through same frit as used for pH control.
Samples of cells are removed from the reactor on a daily basis. A sample used for cell counting is stained with trypan blue (Sigma, St. Louis, Mo.). Cell count and cell viability determination are performed via hemocytometry using a microscope. For anal:
samples are centrifuged for 20 minutes at 2000 rpm (4 C) for cell separation.
Supernatant is analyzed for the following parameters: titer, sialic acid, glucose, lactate, glutamine, glutamate, pH, p02, pCO2, ammonia, and, optionally, lactate dehydrogenase (LDH).
Additional back-up samples are frozen at -20 C. To measure secreted humanized IgG antibody titers, supernatant is taken from seed-stock cultures of all stable cell pools, the IgG titer is determined by ELISA and divided by the mean number of cells to calculate the specific productivity.
The highest values are the cell pools with the Ser132A CERT mutant (SEQ ID No.14), followed by wild type CERT
(SEQ ID No.12. In both, IgG expression is markedly enhanced compared to carrier-alone or untransfected cells.
[00183] b) Continuous or Batch-Fed Culture [00184] An antibody producing CHO cell line (CHO DG44) secreting humanized IgG

antibody is transfected with lipid cationic delivery agent alone (control) or a synthetic mRNA
transcript encoding wild type ceramide transfer protein or a non-phosphorylation competent Ser132A CERT mutant. Synthetic mRNA transcripts are pre-mixed with a lipid cationic delivery agent at a 2-5:1 carrier:RNA ratio. The initial seeding density was about 2x105 viable cells/mL. Synthetic mRNA transcript is delivered after initial culture seeding during the exponential culture growth phase to achieve a final synthetic mRNA copy number between 10x102 and 10x103 per cell. The basal cell culture medium used for all phases of cell inoculum generation and for growth of cultures in bioreactors was modified CD-CHO
medium containing glutamine, sodium bicarbonate, insulin and methotrexate. The pH of the medium is adjusted to 7.0 with 1 N HC1 or 1N NaOH after addition of all components. Bioreactors of 5 L scale (glass reactor with one marine impeller) are used to obtain maximum CERT protein production and secreted humanized IgG antibody curves. For continuous or fed-batch cultures, the culturing run time is increased by supplementing the culture medium one or more times daily (or continuously) with fresh medium during the run. In the a continuous and fed-batch feeding regimens, the cultures receive feeding medium as a continuously-supplied infusion, or other automated addition to the culture, in a timed, regulated, and/or programmed fashion so as to achieve and maintain the appropriate amount of synthetic mRNA:carrier in the culture. The typical method is a feeding regimen of a once per day bolus feed with feeding medium containing synthetic mRNA:carrier on each day of the culture run, from the beginning of the culture run to the day of harvesting the cells. The daily feed amc Production-level 50 L scale reactors (stainless steel reactor with two marine impellers) were used and are scalable to >10,000 L stainless steel reactors. A data acquisition system (Intellution Fix 32) record temperature, pH, and dissolved oxygen (DO) throughout runs. Gas flows are controlled via rotameters. Air is sparged into the reactor via a submerged frit (5 lim pore size) and through the reactor head space for CO2 removal. Molecular oxygen was sparged through the same frit for DO control. CO2 is sparged through same frit as used for pH
control. Samples of cells are removed from the reactor on a daily basis. A sample used for cell counting is typically stained with trypan blue (Sigma, St. Louis, Mo.). Cell count and cell viability determination are performed via hemocytometry using a microscope. For analysis of metabolites, additional samples are centrifuged for 20 minutes at 2000 rpm (4 C) for cell separation.
Supernatant is analyzed for the following parameters: titer, sialic acid, glucose, lactate, glutamine, glutamate, pH, p02, pCO2, ammonia, and, optionally, lactate dehydrogenase (LDH).
Additional back-up samples are frozen at -20 C. To measure secreted humanized IgG antibody titers, supernatant is taken from seed-stock cultures of all stable cell pools, the IgG titer is determined by ELISA and divided by the mean number of cells to calculate the specific productivity.
The highest values are the cell pools with the Ser132A CERT mutant (SEQ ID NO: 14), followed by wild type CERT
(SEQ ID NO: 10 or 12). In both, IgG expression is markedly enhanced compared to carrier-alone or untransfected cells.
Equivalents and Scope [00149] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments, described herein. The scope of the present disclosure is not intended to be limited to the above Description, but rather is as set forth in the appended claims.
[00150] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments in accordance with the disclosure described herein. The scope of the present disclosure is not intended to be limited to the above Description, but rather is as set forth in the appended claims.
[00151] In the claims articles such as "a," "an," and "the" may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include "or" between one or more members of a group are c, than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context.
The disclosure includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The disclosure includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process. Furthermore, it is to be understood that the disclosure encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, descriptive terms, etc., from one or more of the listed claims is introduced into another claim. For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of using the composition for any of the purposes disclosed herein are included, and methods of making the composition according to any of the methods of making disclosed herein or other methods known in the art are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.
[00152] Where elements are presented as lists, e.g., in Markush group format, it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should it be understood that, in general, where the disclosure, or aspects of the disclosure, is/are referred to as comprising particular elements, features, etc., certain embodiments of the disclosure or aspects of the disclosure consist, or consist essentially of, such elements, features, etc. For purposes of simplicity those embodiments have not been specifically set forth in haec verba herein. It is also noted that the term "comprising" is intended to be open and permits the inclusion of additional elements or steps.
[00153] Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or subrange within the stated ranges in different embodiments of the disclosure, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise.
[00154] In addition, it is to be understood that any particular embodiment of the present disclosure that falls within the prior art may be explicitly excluded from any one or more of the claims. Since such embodiments are deemed to be known to onc may be excluded even if the exclusion is not set forth explicitly herein. Any particular embodiment of the compositions of the disclosure (e.g., any protein; any nucleic acid; any method of production; any method of use; etc.) can be excluded from any one or more claims, for any reason, whether or not related to the existence of prior art.
[00155] All cited sources, for example, references, publications, databases, database entries, and art cited herein, are incorporated into this application by reference, even if not expressly stated in the citation. In case of conflicting statements of a cited source and the instant application, the statement in the instant application shall control.
[00156] Other embodiments are in the claims.

Claims (31)

What is claimed is:
1. A kit for immunoglobulin protein production, comprising a first isolated nucleic acid comprising i) a translatable region encoding the immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid is capable of evading an innate immune response of a cell into which the first isolated nucleic acid is introduced, wherein the translatable region is substantially devoid of cytidine and uracil nucleotides, and packaging and instructions therefor.
2. The kit of claim 1, wherein the immunoglobulin protein comprises a polypeptide selected from the group consisting of a full-length antibody, a heavy chain polypeptide, a light chain polypeptide, an Fab domain, or a single chain variable fragment (ScFv) polypeptide, and the first isolated nucleic acid comprises a messenger ribonucleic acid comprising 5-methyl-cytidine and pseudouridine.
3. The kit of claim 1, wherein the first isolated nucleic acid comprises a nucleotide sequence selected from the group consisting of:
a) the nucleotide sequence of SEQ ID NOs: 4 and/or 6 [rituximab];
b) a nucleotide sequence at least 95% identical to the nucleotide sequence of a);
c) a nucleotide sequence encoding the polypeptide of SEQ ID NOs: 5 and/or 7 [rituximab];
d) a nucleotide sequence at least 95% identical to the nucleotide sequence of c);
e) a nucleotide sequence encoding a polypeptide at least 95% identical to SEQ ID NOs: 5 and/or 7 [rituximab];
f) a nucleotide sequence at least 95% identical to the nucleotide sequence of e);
g) a nucleotide sequence comprising a fragment of any one of a) ¨ f); and h) a codon-optimized variant of the nucleotide sequence of any one of a) ¨
g).
4. The kit of claim 3, wherein the immunoglobulin protein immunospecifically binds to a CD20 polypeptide.
5. The kit of claim 3, wherein the immunoglobulin protein 5 dependent cellular cytotoxicity of CD20+ cells when contacted therewith.
6. The kit of claim 3, wherein the immunoglobulin protein is produced for use in the treatment of a leukemia, a lymphoma, an organ transplant rejection, or an autoimmune disease or disorder.
7. A mammalian cell generated by use of the kit of claim 1.
8. The kit of claim 1, wherein the first isolated nucleic acid comprises a nucleotide sequence selected from the group consisting of:
a) the nucleotide sequence of SEQ ID NOs: 8 and/or 10;
b) a nucleotide sequence at least 95% identical to the nucleotide sequence of a);
c) a nucleotide sequence encoding the polypeptide of SEQ ID NOs: 9 and/or 11;
d) a nucleotide sequence at least 95% identical to the nucleotide sequence of c);
e) a nucleotide sequence encoding a polypeptide at least 95% identical to SEQ ID NOs: 9 and/or 11;
f) a nucleotide sequence at least 95% identical to the nucleotide sequence of e); and g) a nucleotide sequence comprising a fragment at least 30 nucleotides in length of any one of a) ¨ f).
9. The kit of claim 8, wherein the immunoglobulin protein immunospecifically binds to a HER-2/neu receptor polypeptide.
10. The kit of claim 8, wherein the immunoglobulin protein specifically induces antibody-dependent cellular cytotoxicity, apoptosis, cell cycle arrest or a combination thereof, of HER2/neu+ cells when contacted therewith.
11. The kit of claim 8, wherein the immunoglobulin protein is produced for use in the treatment of a HER2/neu+ breast cancer.
12. An isolated immunoglobulin protein produced from a prc isolated nucleic acid comprising i) a translatable region encoding the immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid is capable of evading an innate immune response of the cell, wherein the translatable region is substantially devoid of either cytidine or uracil nucleotides or the combination of cytidine and uracil nucleotides.
13. The protein of claim 12, wherein the production cell is a cell isolated from a human subject.
14. A pharmaceutical preparation comprising an effective amount of the protein of claim 13.
15. A pharmaceutical preparation comprising an effective amount of a first nucleic acid comprising i) a translatable region encoding an immunoglobulin protein and ii) a nucleic acid modification, wherein the first nucleic acid exhibits reduced degradation by a cellular nuclease and is capable of evading an innate immune response of a cell into which the first nucleic acid is introduced, wherein the translatable region is substantially devoid of cytidine and uracil nucleotides.
16. The pharmaceutical preparation of claim 15, wherein the first nucleic acid exhibits reduced degradation by a cellular nuclease.
17. A method of producing a heterologous protein of interest in a cell, comprising the step:
i) providing a target cell capable of protein translation; and ii) introducing into the target cell a composition comprising a first isolated nucleic acid comprising a translatable region encoding the heterologous protein of interest and a nucleoside modification, under conditions such that the protein of interest is produced in the cell.
18. The method of claim 17, further comprising the step of substantially purifying the protein of interest from the cell.
19. The method of claim 17, wherein the protein of interest is
20. The method of claim 17, wherein the protein of interest is an immunoglobulin protein.
21. The method of claim 17, wherein the protein of interest is an intracellular protein.
22. A method of increasing the production of a recombinantly expressed protein of interest in a cell, comprising the step:
i) providing a target cell comprising a heterologous nucleic acid encoding the protein of interest; and ii) introducing into the target cell a composition comprising a first isolated nucleic acid comprising a translatable region encoding a translation effector protein and a nucleoside modification under conditions such that the effector protein is produced in the cell, thereby increasing the production of the recombinantly expressed protein in the cell.
23. The method of claim 22, wherein the protein of interest is an immunoglobulin protein.
The method of claim 22, wherein the protein of interest is a secreted protein.
24. The method of claim 22, wherein the protein if interest is an intracellular protein.
25. The method of claim 22, wherein the target cell is a mammalian cell.
26. The method of claim 22, wherein the target cell is a yeast cell.
27. The method of claim 22, wherein the target cell is a bacterial cell, an insect cell, or a plant cell.
28. The method of claim 22, wherein the translation effector protein is ceramide transfer protein (CERT).
29. A method for modulating the level of a protein of interest steps of:
i) modulating the activity of at least one translation effector molecule in the target cell, wherein the modulation comprises introducing into the target cell a first isolated nucleic acid comprising a translatable region encoding the translation effector protein and a nucleoside modification; and ii) culturing the cell.
30. A kit for protein production, comprising a first isolated nucleic acid encoding a translatable region encoding a protein, wherein the first nucleic acid comprises a nucleic acid modification, wherein the first nucleic acid displays decreased degradation in a cell into which the first isolated nucleic acid is introduced as compared to a nucleic acid not comprising a nucleic acid modification, and packaging and instructions therefor.
31. A kit for protein production, comprising a first isolated nucleic acid encoding a translatable region encoding a protein, wherein the first nucleic acid comprises a nucleic acid modification, wherein the first nucleic acid displays is more stable in a cell into which the first isolated nucleic acid is introduced as compared to a nucleic acid not comprising a nucleic acid modification, and packaging and instructions therefor.
CA2821992A2010-10-012011-10-03Engineered nucleic acids and methods of use thereofAbandonedCA2821992A1 (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US40441310P2010-10-012010-10-01
US61/404,4132010-10-01
PCT/US2011/054636WO2012045082A2 (en)2010-10-012011-10-03Engineered nucleic acids and methods of use thereof

Publications (1)

Publication NumberPublication Date
CA2821992A1true CA2821992A1 (en)2012-04-05

Family

ID=45893552

Family Applications (3)

Application NumberTitlePriority DateFiling Date
CA2821992AAbandonedCA2821992A1 (en)2010-10-012011-10-03Engineered nucleic acids and methods of use thereof
CA3162352APendingCA3162352A1 (en)2010-10-012011-10-03Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
CA2813466APendingCA2813466A1 (en)2010-10-012011-10-03Modified nucleosides, nucleotides, and nucleic acids that disrupt major groove binding partner interactions

Family Applications After (2)

Application NumberTitlePriority DateFiling Date
CA3162352APendingCA3162352A1 (en)2010-10-012011-10-03Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
CA2813466APendingCA2813466A1 (en)2010-10-012011-10-03Modified nucleosides, nucleotides, and nucleic acids that disrupt major groove binding partner interactions

Country Status (27)

CountryLink
US (12)US20120237975A1 (en)
EP (8)EP2857499A1 (en)
JP (1)JP2013543381A (en)
CN (3)CN104531812A (en)
AU (2)AU2011308496A1 (en)
BR (1)BR112013007862A2 (en)
CA (3)CA2821992A1 (en)
CY (1)CY1125421T1 (en)
DE (1)DE19177059T1 (en)
DK (2)DK3590949T3 (en)
ES (4)ES2925251T3 (en)
FI (1)FI4108671T3 (en)
HR (2)HRP20220796T1 (en)
HU (2)HUE069586T2 (en)
IL (1)IL225493A0 (en)
LT (2)LT4108671T (en)
MX (1)MX2013003681A (en)
NZ (1)NZ608972A (en)
PL (2)PL4108671T3 (en)
PT (2)PT4108671T (en)
RS (2)RS63430B1 (en)
RU (1)RU2013120302A (en)
SG (2)SG10201508149TA (en)
SI (2)SI4108671T1 (en)
SM (2)SMT202400513T1 (en)
WO (2)WO2012045082A2 (en)
ZA (2)ZA201303161B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2018217897A1 (en)*2017-05-232018-11-29David WeinerCompositions and method for inducing an immune response

Families Citing this family (240)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE10347710B4 (en)2003-10-142006-03-30Johannes-Gutenberg-Universität Mainz Recombinant vaccines and their use
US9012219B2 (en)2005-08-232015-04-21The Trustees Of The University Of PennsylvaniaRNA preparations comprising purified modified RNA for reprogramming cells
DE102005046490A1 (en)2005-09-282007-03-29Johannes-Gutenberg-Universität MainzNew nucleic acid molecule comprising promoter, a transcriptable nucleic acid sequence, a first and second nucleic acid sequence for producing modified RNA with transcriptional stability and translational efficiency
HUE038039T2 (en)2009-12-012018-09-28Translate Bio IncDelivery of mrna for the augmentation of proteins and enzymes in human genetic diseases
HUE047165T2 (en)2009-12-072020-04-28Univ PennsylvaniaRna preparations comprising purified modified rna for reprogramming cells
US9006417B2 (en)2010-06-302015-04-14Protiva Biotherapeutics, Inc.Non-liposomal systems for nucleic acid delivery
CA2804396C (en)2010-07-062021-06-29Novartis AgLiposomes with lipids having an advantageous pka-value for rna delivery
DK2591114T3 (en)2010-07-062016-08-29Glaxosmithkline Biologicals SaImmunization of large mammals with low doses of RNA
PT3243526T (en)2010-07-062020-03-04Glaxosmithkline Biologicals Sa DISTRIBUTION OF RNA TO DISPOLISH MULTIPLE IMMUNITY ROUTES
CA2807552A1 (en)2010-08-062012-02-09Moderna Therapeutics, Inc.Engineered nucleic acids and methods of use thereof
RS63329B1 (en)2010-08-312022-07-29Glaxosmithkline Biologicals SaPegylated liposomes for delivery of immunogen-encoding rna
PL4108671T3 (en)2010-10-012025-02-24Modernatx, Inc. MODIFIED NUCLEOSIDES, NUCLEOTIDES AND NUCLEIC ACIDS AND THEIR USES
ES2716243T3 (en)2010-10-112019-06-11Glaxosmithkline Biologicals Sa Antigen Supply Platforms
WO2012075040A2 (en)2010-11-302012-06-07Shire Human Genetic Therapies, Inc.mRNA FOR USE IN TREATMENT OF HUMAN GENETIC DISEASES
EP3235508B1 (en)*2011-03-162020-12-30SanofiCompositions comprising a dual v region antibody-like protein
DE12722942T1 (en)2011-03-312021-09-30Modernatx, Inc. RELEASE AND FORMULATION OF MANIPULATED NUCLEIC ACIDS
HUE046152T2 (en)2011-05-242020-02-28Biontech Rna Pharmaceuticals GmbhIndividualized vaccines for cancer
PL2717893T3 (en)2011-06-082019-12-31Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
WO2013006838A1 (en)2011-07-062013-01-10Novartis AgImmunogenic combination compositions and uses thereof
US9464124B2 (en)2011-09-122016-10-11Moderna Therapeutics, Inc.Engineered nucleic acids and methods of use thereof
KR102014061B1 (en)2011-10-032019-08-28모더나 세라퓨틱스, 인코포레이티드Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US8497124B2 (en)2011-12-052013-07-30Factor Bioscience Inc.Methods and products for reprogramming cells to a less differentiated state
MX382822B (en)2011-12-052025-03-13Factor Bioscience Inc METHODS AND PRODUCTS FOR CELL TRANSFECTION.
AU2012352455B2 (en)2011-12-122016-01-21The Trustees Of The University Of PennsylvaniaProteins comprising MRSA PBP2a and fragments thereof, nucleic acids encoding the same, and compositions and their use to prevent and treat MRSA infections
CA3018046A1 (en)2011-12-162013-06-20Moderna Therapeutics, Inc.Modified nucleoside, nucleotide, and nucleic acid compositions
WO2013143555A1 (en)2012-03-262013-10-03Biontech AgRna formulation for immunotherapy
US9572897B2 (en)2012-04-022017-02-21Modernatx, Inc.Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9303079B2 (en)2012-04-022016-04-05Moderna Therapeutics, Inc.Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
HK1206636A1 (en)2012-04-022016-01-15Modernatx, Inc.Modified polynucleotides for the production of oncology-related proteins and peptides
US9283287B2 (en)2012-04-022016-03-15Moderna Therapeutics, Inc.Modified polynucleotides for the production of nuclear proteins
WO2013185067A1 (en)2012-06-082013-12-12Shire Human Genetic Therapies, Inc.Nuclease resistant polynucleotides and uses thereof
JP6561378B2 (en)2012-06-082019-08-21トランスレイト バイオ, インコーポレイテッド Transpulmonary delivery of mRNA to non-pulmonary target cells
WO2014028429A2 (en)2012-08-142014-02-20Moderna Therapeutics, Inc.Enzymes and polymerases for the synthesis of rna
US20150307542A1 (en)2012-10-032015-10-29Moderna Therapeutics, Inc.Modified nucleic acid molecules and uses thereof
BR122019025681B1 (en)2012-11-012023-04-18Factor Bioscience Inc METHOD FOR INSERTING A NUCLEIC ACID SEQUENCE INTO A SECURE LOCATION OF A GENOME OF A CELL
SMT202200337T1 (en)2012-11-262022-09-14Modernatx IncTerminally modified rna
WO2014082729A1 (en)2012-11-282014-06-05Biontech AgIndividualized vaccines for cancer
CA2897941A1 (en)2013-01-172014-07-24Moderna Therapeutics, Inc.Signal-sensor polynucleotides for the alteration of cellular phenotypes
WO2014124457A1 (en)*2013-02-112014-08-14University Of Louisville Research Foundation, Inc.Methods for producing antibodies
WO2014159813A1 (en)2013-03-132014-10-02Moderna Therapeutics, Inc.Long-lived polynucleotide molecules
EP2971010B1 (en)2013-03-142020-06-10ModernaTX, Inc.Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
MX2015011947A (en)*2013-03-142015-12-01Shire Human Genetic TherapiesMethods and compositions for delivering mrna coded antibodies.
AU2014236396A1 (en)2013-03-142015-08-13Shire Human Genetic Therapies, Inc.Methods for purification of messenger RNA
IL290953B2 (en)2013-03-142024-01-01Ethris GmbhCftr mrna compositions and related methods and uses
EP4279610A3 (en)2013-03-152024-01-03ModernaTX, Inc.Ribonucleic acid purification
HUE071526T2 (en)2013-03-152025-09-28Translate Bio IncSynergistic enhancement of the delivery of nucleic acids via blended formulations
WO2014152027A1 (en)2013-03-152014-09-25Moderna Therapeutics, Inc.Manufacturing methods for production of rna transcripts
US8980864B2 (en)2013-03-152015-03-17Moderna Therapeutics, Inc.Compositions and methods of altering cholesterol levels
WO2014144767A1 (en)2013-03-152014-09-18Moderna Therapeutics, Inc.Ion exchange purification of mrna
US10077439B2 (en)2013-03-152018-09-18Modernatx, Inc.Removal of DNA fragments in mRNA production process
DE102013005361A1 (en)2013-03-282014-10-02Eberhard Karls Universität Tübingen Medizinische Fakultät polyribonucleotide
WO2014180490A1 (en)2013-05-102014-11-13Biontech AgPredicting immunogenicity of t cell epitopes
PT3019619T (en)2013-07-112021-11-11Modernatx Inc COMPOSITIONS COMPRISING SYNTHETIC POLYNUCLEOTIDES ENCODING SYNTHETIC CRISPR AND SGARN-RELATED PROTEINS AND METHODS OF USE
US20160194368A1 (en)*2013-09-032016-07-07Moderna Therapeutics, Inc.Circular polynucleotides
EP3052106A4 (en)*2013-09-302017-07-19ModernaTX, Inc.Polynucleotides encoding immune modulating polypeptides
WO2015051169A2 (en)2013-10-022015-04-09Moderna Therapeutics, Inc.Polynucleotide molecules and uses thereof
BR112016007255A2 (en)2013-10-032017-09-12Moderna Therapeutics Inc polynucleotides encoding low density lipoprotein receptor
CN106413811A (en)2013-10-222017-02-15夏尔人类遗传性治疗公司Mrna therapy for argininosuccinate synthetase deficiency
KR102096796B1 (en)2013-10-222020-05-27샤이어 휴먼 지네틱 테라피즈 인크.Lipid formulations for delivery of messenger rna
EP4036241A1 (en)2013-10-222022-08-03Translate Bio, Inc.Cns delivery of mrna and uses thereof
EA201992208A1 (en)2013-10-222020-07-31Транслейт Био, Инк. TREATMENT OF PHENYLKETONURIA USING mRNA
JP2017500865A (en)2013-12-192017-01-12ノバルティス アーゲー Compositions and formulations of leptin mRNA
FI3690056T3 (en)2014-01-312023-03-19Factor Bioscience Inc METHODS AND PRODUCTS FOR MANUFACTURE AND EXPORT OF NUCLEIC ACID
LT3981437T (en)*2014-04-232025-01-10Modernatx, Inc.Nucleic acid vaccines
SG11201608725YA (en)2014-04-252016-11-29Shire Human Genetic TherapiesMethods for purification of messenger rna
CA3211902A1 (en)2014-05-302015-12-03Translate Bio, Inc.Biodegradable lipids for delivery of nucleic acids
US10286086B2 (en)2014-06-192019-05-14Modernatx, Inc.Alternative nucleic acid molecules and uses thereof
PE20171238A1 (en)2014-06-242017-08-24Shire Human Genetic Therapies STEREOCHEMICALLY ENRICHED COMPOSITIONS FOR NUCLEIC ACIDS ADMINISTRATION
EP3164112A1 (en)2014-07-022017-05-10Shire Human Genetic Therapies, Inc.Encapsulation of messenger rna
AU2015289656A1 (en)2014-07-162017-02-16Modernatx, Inc.Circular polynucleotides
WO2016045732A1 (en)2014-09-252016-03-31Biontech Rna Pharmaceuticals GmbhStable formulations of lipids and liposomes
GB201418965D0 (en)*2014-10-242014-12-10Ospedale San Raffaele And Fond Telethon
WO2016077125A1 (en)2014-11-102016-05-19Moderna Therapeutics, Inc.Alternative nucleic acid molecules containing reduced uracil content and uses thereof
EP3884964A1 (en)2014-12-052021-09-29Translate Bio, Inc.Messenger rna therapy for treatment of articular disease
WO2016128060A1 (en)2015-02-122016-08-18Biontech AgPredicting t cell epitopes useful for vaccination
EP4406585A3 (en)2015-02-132024-10-23Factor Bioscience Inc.Nucleic acid products and methods of administration thereof
WO2016130943A1 (en)2015-02-132016-08-18Rana Therapeutics, Inc.Hybrid oligonucleotides and uses thereof
CA2979695A1 (en)2015-03-192016-09-22Translate Bio, Inc.Mrna therapy for pompe disease
WO2016180430A1 (en)2015-05-082016-11-17Curevac AgMethod for producing rna
DE202016009003U1 (en)2015-05-292021-05-28Curevac Real Estate Gmbh Composition comprising in vitro transcribed RNA obtainable by a method for the production and purification of RNA with at least one step with a tangential flow filtration
ES2937963T3 (en)2015-07-212023-04-03Modernatx Inc Infectious disease vaccines
US11364292B2 (en)2015-07-212022-06-21Modernatx, Inc.CHIKV RNA vaccines
HK1256498A1 (en)2015-07-302019-09-27Modernatx, Inc.Concatemeric peptide epitope rnas
WO2017031232A1 (en)2015-08-172017-02-23Modernatx, Inc.Methods for preparing particles and related compositions
ES2908449T3 (en)2015-09-172022-04-29Modernatx Inc Polynucleotides that contain a stabilizing tail region
WO2017049286A1 (en)2015-09-172017-03-23Moderna Therapeutics, Inc.Polynucleotides containing a morpholino linker
EP3359670B2 (en)2015-10-052024-02-14ModernaTX, Inc.Methods for therapeutic administration of messenger ribonucleic acid drugs
WO2017059902A1 (en)2015-10-072017-04-13Biontech Rna Pharmaceuticals Gmbh3' utr sequences for stabilization of rna
MA56219A (en)2015-10-142022-04-20Translate Bio Inc MODIFICATION OF RNA-RELATED ENZYMES FOR ENHANCED PRODUCTION
EP4349405A3 (en)2015-10-222024-06-19ModernaTX, Inc.Respiratory virus vaccines
JP6925688B2 (en)2015-10-222021-08-25モデルナティーエックス, インコーポレイテッド Nucleic acid vaccine for varicella-zoster virus (VZV)
EP3364950A4 (en)2015-10-222019-10-23ModernaTX, Inc. VACCINES AGAINST TROPICAL DISEASES
JP2018531290A (en)2015-10-222018-10-25モデルナティーエックス, インコーポレイテッド Sexually transmitted disease vaccine
WO2017070613A1 (en)2015-10-222017-04-27Modernatx, Inc.Human cytomegalovirus vaccine
EP3368089A4 (en)2015-10-262019-05-29Translate Bio Ma, Inc. NANOPARTICLE FORMULATIONS FOR ADMINISTRATION OF NUCLEIC ACID COMPLEXES
WO2017098468A1 (en)2015-12-092017-06-15Novartis AgLabel-free analysis of rna capping efficiency using rnase h, probes and liquid chromatography/mass spectrometry
CA3007955A1 (en)2015-12-102017-06-15Modernatx, Inc.Lipid nanoparticles for delivery of therapeutic agents
US10465190B1 (en)2015-12-232019-11-05Modernatx, Inc.In vitro transcription methods and constructs
US20210206818A1 (en)2016-01-222021-07-08Modernatx, Inc.Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof
TW201738256A (en)*2016-04-042017-11-01日產化學工業股份有限公司Production method of protein
AU2017248189B2 (en)2016-04-082021-04-29Translate Bio, Inc.Multimeric coding nucleic acid and uses thereof
US20180126003A1 (en)*2016-05-042018-05-10Curevac AgNew targets for rna therapeutics
EP3241905A1 (en)*2016-05-062017-11-08Miltenyi Biotec GmbHMethod for introducing nucleic acids into a cell
CN115837014A (en)2016-05-182023-03-24摩登纳特斯有限公司 Polynucleotide encoding relaxin
EP3458107B1 (en)2016-05-182024-03-13ModernaTX, Inc.Polynucleotides encoding jagged1 for the treatment of alagille syndrome
WO2017218524A1 (en)2016-06-132017-12-21Rana Therapeutics, Inc.Messenger rna therapy for the treatment of ornithine transcarbamylase deficiency
WO2017223176A1 (en)2016-06-242017-12-28Modernatx, Inc.Methods and apparatus for filtration
US20190161730A1 (en)2016-07-072019-05-30Rubius Therapeutics, Inc.Compositions and methods related to therapeutic cell systems expressing exogenous rna
US10576167B2 (en)2016-08-172020-03-03Factor Bioscience Inc.Nucleic acid products and methods of administration thereof
WO2018035380A1 (en)2016-08-172018-02-22Solstice Biologics, Ltd.Polynucleotide constructs
EP4166666A1 (en)2016-09-142023-04-19ModernaTX, Inc.High purity rna compositions and methods for preparation thereof
US11390899B2 (en)*2016-09-262022-07-19SOLA Biosciences, LLCCell-associated secretion-enhancing fusion proteins
MA46584A (en)2016-10-212019-08-28Modernatx Inc HUMAN CYTOMEGALOVIRUS VACCINE
AU2017347837A1 (en)2016-10-262019-06-06Modernatx, Inc.Messenger ribonucleic acids for enhancing immune responses and methods of use thereof
MA46766A (en)2016-11-112019-09-18Modernatx Inc INFLUENZA VACCINE
EP3551193A4 (en)2016-12-082020-08-19Modernatx, Inc. NUCLEIC ACID VACCINES AGAINST RESPIRATORY VIRUS
WO2018111967A1 (en)2016-12-132018-06-21Modernatx, Inc.Rna affinity purification
AU2018207440B2 (en)2017-01-112022-06-02The Board Of Trustees Of The Leland Stanford Junior UniversityR-spondin (RSPO) surrogate molecules
CN110234662A (en)2017-01-262019-09-13瑟罗泽恩公司Tissue specificity WNT signal enhancing molecule and its purposes
US10093706B2 (en)2017-01-302018-10-09Indiana University Research And Technology CorporationDominant positive hnRNP-E1 polypeptide compositions and methods
US20190351039A1 (en)2017-02-012019-11-21Modernatx, Inc.Immunomodulatory therapeutic mrna compositions encoding activating oncogene mutation peptides
WO2018151816A1 (en)2017-02-162018-08-23Modernatx, Inc.High potency immunogenic compositions
WO2018157154A2 (en)2017-02-272018-08-30Translate Bio, Inc.Novel codon-optimized cftr mrna
TW201842921A (en)2017-02-282018-12-16法商賽諾菲公司Therapeutic rna
US11464848B2 (en)2017-03-152022-10-11Modernatx, Inc.Respiratory syncytial virus vaccine
WO2018170270A1 (en)2017-03-152018-09-20Modernatx, Inc.Varicella zoster virus (vzv) vaccine
WO2018170256A1 (en)2017-03-152018-09-20Modernatx, Inc.Herpes simplex virus vaccine
WO2018170245A1 (en)2017-03-152018-09-20Modernatx, Inc.Broad spectrum influenza virus vaccine
EP3595676A4 (en)2017-03-172021-05-05Modernatx, Inc.Zoonotic disease rna vaccines
US11905525B2 (en)2017-04-052024-02-20Modernatx, Inc.Reduction of elimination of immune responses to non-intravenous, e.g., subcutaneously administered therapeutic proteins
CN106929513A (en)*2017-04-072017-07-07东南大学The nano antibody of mRNA codings and its application
US11173190B2 (en)2017-05-162021-11-16Translate Bio, Inc.Treatment of cystic fibrosis by delivery of codon-optimized mRNA encoding CFTR
EP3625345B1 (en)2017-05-182023-05-24ModernaTX, Inc.Modified messenger rna comprising functional rna elements
WO2018224166A1 (en)2017-06-092018-12-13Biontech Rna Pharmaceuticals GmbhMethods for predicting the usefulness of disease specific amino acid modifications for immunotherapy
US11786607B2 (en)2017-06-152023-10-17Modernatx, Inc.RNA formulations
WO2019006455A1 (en)2017-06-302019-01-03Solstice Biologics, Ltd.Chiral phosphoramidite auxiliaries and methods of their use
WO2019010224A1 (en)*2017-07-032019-01-10Torque Therapeutics, Inc.Fusion molecules targeting immune regulatory cells and uses thereof
EP3668979A4 (en)2017-08-182021-06-02Modernatx, Inc. METHOD OF HPLC ANALYSIS
US11866696B2 (en)2017-08-182024-01-09Modernatx, Inc.Analytical HPLC methods
CN111212905A (en)2017-08-182020-05-29摩登纳特斯有限公司RNA polymerase variants
US11744801B2 (en)2017-08-312023-09-05Modernatx, Inc.Methods of making lipid nanoparticles
MA50253A (en)2017-09-142020-07-22Modernatx Inc ZIKA VIRUS RNA VACCINES
WO2019087113A1 (en)2017-11-012019-05-09Novartis AgSynthetic rnas and methods of use
WO2019126593A1 (en)2017-12-202019-06-27Translate Bio, Inc.Improved composition and methods for treatment of ornithine transcarbamylase deficiency
EP3735270A1 (en)2018-01-052020-11-11Modernatx, Inc.Polynucleotides encoding anti-chikungunya virus antibodies
US11911453B2 (en)2018-01-292024-02-27Modernatx, Inc.RSV RNA vaccines
EP3746052A1 (en)2018-01-302020-12-09Modernatx, Inc.Compositions and methods for delivery of agents to immune cells
WO2019200171A1 (en)2018-04-112019-10-17Modernatx, Inc.Messenger rna comprising functional rna elements
CN119286871A (en)2018-04-192025-01-10查美特制药公司 Synthetic RIG-I-like receptor agonists
EP3841208A1 (en)2018-08-242021-06-30Translate Bio, Inc.Methods for purification of messenger rna
JP7450945B2 (en)2018-08-302024-03-18テナヤ セラピューティクス, インコーポレイテッド Cardiac cell reprogramming using myocardin and ASCL1
US20230081530A1 (en)2018-09-142023-03-16Modernatx, Inc.Methods and compositions for treating cancer using mrna therapeutics
CA3113025A1 (en)2018-09-192020-03-26Modernatx, Inc.Peg lipids and uses thereof
AU2019345067A1 (en)2018-09-192021-04-08Modernatx, Inc.High-purity peg lipids and uses thereof
EP3852728B1 (en)2018-09-202024-09-18ModernaTX, Inc.Preparation of lipid nanoparticles and methods of administration thereof
US12331320B2 (en)2018-10-102025-06-17The Research Foundation For The State University Of New YorkGenome edited cancer cell vaccines
US20220001026A1 (en)2018-11-082022-01-06Modernatx, Inc.Use of mrna encoding ox40l to treat cancer in human patients
WO2020106946A1 (en)2018-11-212020-05-28Translate Bio, Inc.TREATMENT OF CYSTIC FIBROSIS BY DELIVERY OF NEBULIZED mRNA ENCODING CFTR
US11351242B1 (en)2019-02-122022-06-07Modernatx, Inc.HMPV/hPIV3 mRNA vaccine composition
US11851694B1 (en)2019-02-202023-12-26Modernatx, Inc.High fidelity in vitro transcription
AU2020224103A1 (en)2019-02-202021-09-16Modernatx, Inc.Rna polymerase variants for co-transcriptional capping
US12070495B2 (en)2019-03-152024-08-27Modernatx, Inc.HIV RNA vaccines
JP2022531461A (en)2019-05-072022-07-06モデルナティエックス インコーポレイテッド Polynucleotides that disrupt immune cell activity and how to use them
US20230086537A1 (en)2019-05-072023-03-23Modernatx, Inc.Differentially expressed immune cell micrornas for regulation of protein expression
EP3986480A1 (en)2019-06-242022-04-27ModernaTX, Inc.Messenger rna comprising functional rna elements and uses thereof
MA56539A (en)2019-06-242022-04-27Modernatx Inc ENDONUCLEASE RESISTANT MESSENGER RNA AND USES THEREOF
KR20220039719A (en)2019-07-032022-03-29팩터 바이오사이언스 인크. Cationic lipids and uses thereof
US20230137971A1 (en)2019-07-112023-05-04Tenaya Therapeutics Inc.Cardiac cell reprogramming with micrornas and other factors
US10501404B1 (en)2019-07-302019-12-10Factor Bioscience Inc.Cationic lipids and transfection methods
WO2021050986A1 (en)2019-09-112021-03-18Modernatx, Inc.Lnp-formulated mrna therapeutics and use thereof for treating human subjects
CA3155202A1 (en)2019-10-232021-04-29Arthur M. KriegSynthetic rig-i-like receptor agonists
US11241493B2 (en)2020-02-042022-02-08Curevac AgCoronavirus vaccine
US12194089B2 (en)2020-02-042025-01-14CureVac SECoronavirus vaccine
EP4114421A1 (en)2020-03-022023-01-11Tenaya Therapeutics, Inc.Gene vector control by cardiomyocyte-expressed micrornas
BR112022017713A2 (en)*2020-03-042022-11-16Flagship Pioneering Innovations Vi Llc METHODS AND COMPOSITIONS TO MODULATE A GENOME
EP4132478A1 (en)2020-04-092023-02-15Finncure OyMimetic nanoparticles for preventing the spreading and lowering the infection rate of novel coronaviruses
US12194157B2 (en)2020-04-092025-01-14Finncure OyCarrier for targeted delivery to a host
TW202508622A (en)2020-04-222025-03-01德商拜恩迪克公司Coronavirus vaccine
WO2021243207A1 (en)2020-05-282021-12-02Modernatx, Inc.Use of mrnas encoding ox40l, il-23 and il-36gamma for treating cancer
CA3187138A1 (en)*2020-06-262021-12-30Carisma Therapeutics Inc.Mrna transfection of immune cells
BR112023001955A2 (en)2020-08-062023-04-11Modernatx Inc COMPOSITIONS FOR THE DELIVERY OF PAYLOAD MOLECULES TO THE AIRWAY EPITHELIUM
US11406703B2 (en)2020-08-252022-08-09Modernatx, Inc.Human cytomegalovirus vaccine
US12419948B2 (en)2020-08-312025-09-23The Broad Institute, Inc.Immunogenic compositions and use thereof
KR20230109668A (en)2020-11-162023-07-20서로젠 오퍼레이팅, 인크. Liver-Specific Wnt Signaling Enhancer Molecules and Uses Thereof
CA3200234A1 (en)2020-11-252022-06-02Daryl C. DrummondLipid nanoparticles for delivery of nucleic acids, and related methods of use
IL303457A (en)2020-12-092023-08-01BioNTech SE Production of RNA
KR20230164648A (en)2020-12-222023-12-04큐어백 에스이 RNA vaccines against SARS-CoV-2 variants
EP4274607A1 (en)2021-01-112023-11-15ModernaTX, Inc.Seasonal rna influenza virus vaccines
WO2022155404A1 (en)*2021-01-142022-07-21Translate Bio, Inc.Methods and compositions for delivering mrna coded antibodies
AU2021421391A1 (en)2021-01-242023-07-20Michael David FORRESTInhibitors of atp synthase - cosmetic and therapeutic uses
US12343375B2 (en)2021-02-092025-07-01University Of Louisville Research Foundation, Inc.Spray dried formulation of a cholera toxin B subunit variant
US11524023B2 (en)2021-02-192022-12-13Modernatx, Inc.Lipid nanoparticle compositions and methods of formulating the same
AU2022242828A1 (en)2021-03-232023-10-12Recode Therapeutics, Inc.Polynucleotide compositions, related formulations, and methods of use thereof
WO2022212191A1 (en)*2021-04-012022-10-06Modernatx, Inc.Mucosal expression of antibody structures and isotypes by mrna
US20220363937A1 (en)2021-05-142022-11-17Armstrong World Industries, Inc.Stabilization of antimicrobial coatings
TW202320736A (en)2021-07-262023-06-01美商現代公司Processes for preparing lipid nanoparticle compositions
CN118019526A (en)2021-07-262024-05-10摩登纳特斯有限公司 Methods for preparing lipid nanoparticle compositions for delivering payload molecules to airway epithelium
CN113736768B (en)*2021-08-182023-06-23新发药业有限公司Pseudo uridine synthetase mutant, mutant gene and application thereof in preparation of vitamin B2
CN117999355A (en)2021-08-242024-05-07生物技术欧洲股份公司In vitro transcription technology
WO2023064469A1 (en)2021-10-132023-04-20Modernatx, Inc.Compositions of mrna-encoded il15 fusion proteins and methods of use thereof
US20240417805A1 (en)2021-10-212024-12-19Curevac Netherlands B.V.Cancer neoantigens
JP2024539512A (en)2021-10-222024-10-28セイル バイオメディシンズ インコーポレイテッド MRNA Vaccine Compositions
US20250049727A1 (en)2021-11-122025-02-13Modernatx, Inc.Compositions for the delivery of payload molecules to airway epithelium
CA3238764A1 (en)2021-11-232023-06-01Siddharth PatelA bacteria-derived lipid composition and use thereof
US12186387B2 (en)2021-11-292025-01-07BioNTech SECoronavirus vaccine
JP2025500373A (en)2021-12-202025-01-09セイル バイオメディシンズ インコーポレイテッド Composition for MRNA treatment
TW202345863A (en)2022-02-092023-12-01美商現代公司Mucosal administration methods and formulations
WO2023196898A1 (en)2022-04-072023-10-12The United States Of America, As Represented By The Secretary, Department Of Health And Human ServicesBeta globin mimetic peptides and their use
WO2023196988A1 (en)2022-04-072023-10-12Modernatx, Inc.Methods of use of mrnas encoding il-12
IL316370A (en)2022-04-152024-12-01Smartcella Solutions Ab Compositions and methods for exosome-mediated delivery of messenger RNA factors
IL317109A (en)2022-05-252025-01-01Akagera Medicines IncLipid nanoparticles for delivery of nucleic acids and methods of use thereof
WO2024002985A1 (en)2022-06-262024-01-04BioNTech SECoronavirus vaccine
WO2024010841A2 (en)2022-07-062024-01-11Molecular Axiom, LlcCompositions and methods for treating pancreatic cancer
EP4577553A2 (en)*2022-08-262025-07-02TriLink BioTechnologies, LLCEfficient method for making highly purified 5'-capped oligonucleotides
WO2024083345A1 (en)2022-10-212024-04-25BioNTech SEMethods and uses associated with liquid compositions
EP4608442A1 (en)2022-10-282025-09-03GlaxoSmithKline Biologicals S.A.Nucleic acid based vaccine
WO2024102434A1 (en)2022-11-102024-05-16Senda Biosciences, Inc.Rna compositions comprising lipid nanoparticles or lipid reconstructed natural messenger packs
WO2024107827A1 (en)2022-11-162024-05-23The Broad Institute, Inc.Therapeutic exploitation of sting channel activity
CN120380160A (en)*2022-12-232025-07-25赛诺菲巴斯德有限公司Optimized tailing of messenger RNA
WO2024158824A1 (en)2023-01-232024-08-02Yale UniversityAntibody oligonucleotide conjugates
WO2024159172A1 (en)2023-01-272024-08-02Senda Biosciences, Inc.A modified lipid composition and uses thereof
WO2024178305A1 (en)2023-02-242024-08-29Modernatx, Inc.Compositions of mrna-encoded il-15 fusion proteins and methods of use thereof for treating cancer
WO2024189583A1 (en)2023-03-152024-09-19Kyoto Prefectural Public University CorporationPeptide expression constructs and uses thereof
WO2024197307A1 (en)2023-03-232024-09-26Modernatx, Inc.Peg targeting compounds for delivery of therapeutics
WO2024197309A1 (en)2023-03-232024-09-26Modernatx, Inc.Peg targeting compounds for delivery of therapeutics
WO2024197310A1 (en)2023-03-232024-09-26Modernatx, Inc.Peg targeting compounds for delivery of therapeutics
WO2024220712A2 (en)2023-04-192024-10-24Sail Biomedicines, Inc.Vaccine compositions
WO2024220752A2 (en)2023-04-192024-10-24Sail Biomedicines, Inc.Rna therapeutic compositions
WO2024220625A1 (en)2023-04-192024-10-24Sail Biomedicines, Inc.Delivery of polynucleotides from lipid nanoparticles comprising rna and ionizable lipids
WO2024238726A1 (en)2023-05-162024-11-21Omega Therapeutics, Inc.Methods and compositions for modulating methylation of a target gene
WO2024238723A1 (en)2023-05-162024-11-21Omega Therapeutics, Inc.Methods and compositions for modulating pcsk9 expression
WO2025019742A1 (en)2023-07-192025-01-23Omega Therapeutics, Inc.Methods and compositions for modulating ctnnb1 expression
WO2025059215A1 (en)2023-09-122025-03-20Aadigen, LlcMethods and compositions for treating or preventing cancer
WO2025072383A1 (en)2023-09-252025-04-03The Broad Institute, Inc.Viral open reading frames, uses thereof, and methods of detecting the same
WO2025068553A1 (en)2023-09-282025-04-03Universität BaselCatalytic moieties for treating cancer
WO2025076013A1 (en)2023-10-012025-04-10Vaccine Company, Inc.Engineered middle east respiratory syndrome proteins and related methods
WO2025097055A2 (en)2023-11-022025-05-08The Broad Institute, Inc.Compositions and methods of use of t cells in immunotherapy
WO2025129158A1 (en)2023-12-152025-06-19The Broad Institute, Inc.Engineered arc delivery vesicles and uses thereof
WO2025144938A1 (en)2023-12-262025-07-03Emmune, Inc.Systems for nucleic acid transfer
WO2025194138A1 (en)2024-03-142025-09-18Tessera Therapeutics, Inc.St1cas9 compositions and methods for modulating a genome

Family Cites Families (1162)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2008526A (en)1932-11-031935-07-16Wappler Frederick CharlesMethod and means for treating living tissue
US3467096A (en)1966-04-121969-09-16Ferrell S HornMultiple hypodermic syringe arrangement
BE757653A (en)1969-10-211971-04-16Ugine Kuhlmann NEW DRUGS DERIVED FROM NUCLEIC ACIDS AND METHODS FOR THEIR PREPARATION
BE786542A (en)1971-07-221973-01-22Dow Corning SUCTION DEVICE ALLOWING TO OBTAIN CELL SAMPLES
US3906092A (en)1971-11-261975-09-16Merck & Co IncStimulation of antibody response
US4270537A (en)1979-11-191981-06-02Romaine Richard AAutomatic hypodermic syringe
US4399216A (en)1980-02-251983-08-16The Trustees Of Columbia UniversityProcesses for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US5132418A (en)1980-02-291992-07-21University Patents, Inc.Process for preparing polynucleotides
US4458066A (en)1980-02-291984-07-03University Patents, Inc.Process for preparing polynucleotides
US4500707A (en)1980-02-291985-02-19University Patents, Inc.Nucleosides useful in the preparation of polynucleotides
US4411657A (en)1980-05-191983-10-25Anibal GalindoHypodermic needle
US4668777A (en)1981-03-271987-05-26University Patents, Inc.Phosphoramidite nucleoside compounds
US4973679A (en)1981-03-271990-11-27University Patents, Inc.Process for oligonucleo tide synthesis using phosphormidite intermediates
US4415732A (en)1981-03-271983-11-15University Patents, Inc.Phosphoramidite compounds and processes
US4401796A (en)1981-04-301983-08-30City Of Hope Research InstituteSolid-phase synthesis of polynucleotides
US4373071A (en)1981-04-301983-02-08City Of Hope Research InstituteSolid-phase synthesis of polynucleotides
US4474569A (en)1982-06-281984-10-02Denver Surgical Developments, Inc.Antenatal shunt
US4588585A (en)1982-10-191986-05-13Cetus CorporationHuman recombinant cysteine depleted interferon-β muteins
US4737462A (en)1982-10-191988-04-12Cetus CorporationStructural genes, plasmids and transformed cells for producing cysteine depleted muteins of interferon-β
US4816567A (en)1983-04-081989-03-28Genentech, Inc.Recombinant immunoglobin preparations
US4579849A (en)1984-04-061986-04-01Merck & Co., Inc.N-alkylguanine acyclonucleosides as antiviral agents
US4957735A (en)1984-06-121990-09-18The University Of Tennessee Research CorporationTarget-sensitive immunoliposomes- preparation and characterization
US4959314A (en)1984-11-091990-09-25Cetus CorporationCysteine-depleted muteins of biologically active proteins
US5036006A (en)1984-11-131991-07-30Cornell Research Foundation, Inc.Method for transporting substances into living cells and tissues and apparatus therefor
US5116943A (en)1985-01-181992-05-26Cetus CorporationOxidation-resistant muteins of Il-2 and other protein
CA1288073C (en)1985-03-071991-08-27Paul G. AhlquistRna transformation vector
US4596556A (en)1985-03-251986-06-24Bioject, Inc.Hypodermic injection apparatus
EP0204401A1 (en)1985-04-091986-12-10Biogen, Inc.Method of improving the yield of polypeptides produced in a host cell by stabilizing mRNA
US5017691A (en)1986-07-031991-05-21Schering CorporationMammalian interleukin-4
US5153319A (en)1986-03-311992-10-06University Patents, Inc.Process for preparing polynucleotides
US4879111A (en)1986-04-171989-11-07Cetus CorporationTreatment of infections with lymphokines
CA1283827C (en)1986-12-181991-05-07Giorgio CirelliAppliance for injection of liquid formulations
GB8704027D0 (en)1987-02-201987-03-25Owen Mumford LtdSyringe needle combination
US4941880A (en)1987-06-191990-07-17Bioject, Inc.Pre-filled ampule and non-invasive hypodermic injection device assembly
US4940460A (en)1987-06-191990-07-10Bioject, Inc.Patient-fillable and non-invasive hypodermic injection device assembly
US4790824A (en)1987-06-191988-12-13Bioject, Inc.Non-invasive hypodermic injection device
US6090591A (en)1987-07-312000-07-18The Board Of Trustees Of The Leland Stanford Junior UniversitySelective amplification of target polynucleotide sequences
IE72468B1 (en)1987-07-311997-04-09Univ Leland Stanford JuniorSelective amplification of target polynucleotide sequences
WO1989006700A1 (en)1988-01-211989-07-27Genentech, Inc.Amplification and detection of nucleic acid sequences
CA1340807C (en)1988-02-241999-11-02Lawrence T. MalekNucleic acid amplification process
JP2650159B2 (en)1988-02-241997-09-03アクゾ・ノベル・エヌ・ベー Nucleic acid amplification method
WO1989007947A1 (en)1988-03-041989-09-08Cancer Research Campaign Technology LimitedImprovements relating to antigens
US5339163A (en)1988-03-161994-08-16Canon Kabushiki KaishaAutomatic exposure control device using plural image plane detection areas
FI895955A7 (en)1988-04-151989-12-13Protein Design Labs Inc IL-2 receptor-specific "chimeric" antibodies
US5168038A (en)1988-06-171992-12-01The Board Of Trustees Of The Leland Stanford Junior UniversityIn situ transcription in cells and tissues
US5021335A (en)1988-06-171991-06-04The Board Of Trustees Of The Leland Stanford Junior UniversityIn situ transcription in cells and tissues
US5130238A (en)1988-06-241992-07-14Cangene CorporationEnhanced nucleic acid amplification process
US5759802A (en)1988-10-261998-06-02Tonen CorporationProduction of human serum alubumin A
FR2638359A1 (en)1988-11-031990-05-04Tino Dalto SYRINGE GUIDE WITH ADJUSTMENT OF DEPTH DEPTH OF NEEDLE IN SKIN
US5262530A (en)1988-12-211993-11-16Applied Biosystems, Inc.Automated system for polynucleotide synthesis and purification
US5047524A (en)1988-12-211991-09-10Applied Biosystems, Inc.Automated system for polynucleotide synthesis and purification
US5530101A (en)1988-12-281996-06-25Protein Design Labs, Inc.Humanized immunoglobulins
US6867195B1 (en)1989-03-212005-03-15Vical IncorporatedLipid-mediated polynucleotide administration to reduce likelihood of subject's becoming infected
US5693622A (en)1989-03-211997-12-02Vical IncorporatedExpression of exogenous polynucleotide sequences cardiac muscle of a mammal
AU5344190A (en)1989-03-211990-10-22Vical, Inc.Expression of exogenous polynucleotide sequences in a vertebrate
US6214804B1 (en)1989-03-212001-04-10Vical IncorporatedInduction of a protective immune response in a mammal by injecting a DNA sequence
US5703055A (en)1989-03-211997-12-30Wisconsin Alumni Research FoundationGeneration of antibodies through lipid mediated DNA delivery
US6673776B1 (en)1989-03-212004-01-06Vical IncorporatedExpression of exogenous polynucleotide sequences in a vertebrate, mammal, fish, bird or human
US5012818A (en)1989-05-041991-05-07Joishy Suresh KTwo in one bone marrow surgical needle
IE66597B1 (en)1989-05-101996-01-24Akzo NvMethod for the synthesis of ribonucleic acid (RNA)
US5332671A (en)1989-05-121994-07-26Genetech, Inc.Production of vascular endothelial cell growth factor and DNA encoding same
US5240855A (en)1989-05-121993-08-31Pioneer Hi-Bred International, Inc.Particle gun
CA2020958C (en)1989-07-112005-01-11Daniel L. KacianNucleic acid sequence amplification methods
US5545522A (en)1989-09-221996-08-13Van Gelder; Russell N.Process for amplifying a target polynucleotide sequence using a single primer-promoter complex
FR2740360B1 (en)1995-10-251997-12-26Rhone Poulenc Chimie WATER REDISPERSABLE GRANULES COMPRISING AN ACTIVE MATERIAL IN LIQUID FORM
NO904633L (en)1989-11-091991-05-10Molecular Diagnostics Inc AMPLIFICATION OF NUCLEIC ACIDS BY TRANSCRIPABLE HAIRNEL PROBE.
US5312335A (en)1989-11-091994-05-17Bioject Inc.Needleless hypodermic injection device
US5215899A (en)1989-11-091993-06-01Miles Inc.Nucleic acid amplification employing ligatable hairpin probe and transcription
US5064413A (en)1989-11-091991-11-12Bioject, Inc.Needleless hypodermic injection device
US5633076A (en)1989-12-011997-05-27Pharming BvMethod of producing a transgenic bovine or transgenic bovine embryo
US5697901A (en)1989-12-141997-12-16Elof ErikssonGene delivery by microneedle injection
US5194370A (en)1990-05-161993-03-16Life Technologies, Inc.Promoter ligation activated transcription amplification of nucleic acid sequences
AU649066B2 (en)1990-07-251994-05-12Syngene, Inc.Circular extension for generating multiple nucleic acid complements
US5489677A (en)1990-07-271996-02-06Isis Pharmaceuticals, Inc.Oligonucleoside linkages containing adjacent oxygen and nitrogen atoms
US5190521A (en)1990-08-221993-03-02Tecnol Medical Products, Inc.Apparatus and method for raising a skin wheal and anesthetizing skin
US6140496A (en)1990-10-092000-10-31Benner; Steven AlbertPrecursors for deoxyribonucleotides containing non-standard nucleosides
US5527288A (en)1990-12-131996-06-18Elan Medical Technologies LimitedIntradermal drug delivery device and method for intradermal delivery of drugs
US6100024A (en)1991-02-082000-08-08Promega CorporationMethods and compositions for nucleic acid detection by target extension and probe amplification
EP0610201B2 (en)1991-03-182007-09-26New York UniversityMonoclonal and chimeric antibodies specific for human tumor necrosis factor
US5426180A (en)1991-03-271995-06-20Research Corporation Technologies, Inc.Methods of making single-stranded circular oligonucleotides
ES2134212T3 (en)1991-04-251999-10-01Chugai Pharmaceutical Co Ltd HUMAN ANTIBODY RECONSTITUTED AGAINST THE RECEIVER OF INTERLEUKIN 6 HUMAN.
US5169766A (en)1991-06-141992-12-08Life Technologies, Inc.Amplification of nucleic acid molecules
US5199441A (en)1991-08-201993-04-06Hogle Hugh HFine needle aspiration biopsy apparatus and method
GB9118204D0 (en)1991-08-231991-10-09Weston Terence ENeedle-less injector
SE9102652D0 (en)1991-09-131991-09-13Kabi Pharmacia Ab INJECTION NEEDLE ARRANGEMENT
US5298422A (en)1991-11-061994-03-29Baylor College Of MedicineMyogenic vector systems
US5824307A (en)1991-12-231998-10-20Medimmune, Inc.Human-murine chimeric antibodies against respiratory syncytial virus
JPH07503372A (en)1992-01-231995-04-13バイカル・インコーポレイテッド In vitro gene transfer
US5328483A (en)1992-02-271994-07-12Jacoby Richard MIntradermal injection device with medication and needle guard
JP3368603B2 (en)1992-02-282003-01-20オリンパス光学工業株式会社 Gene therapy treatment device
US6174666B1 (en)1992-03-272001-01-16The United States Of America As Represented By The Department Of Health And Human ServicesMethod of eliminating inhibitory/instability regions from mRNA
US6132419A (en)1992-05-222000-10-17Genetronics, Inc.Electroporetic gene and drug therapy
US5514545A (en)1992-06-111996-05-07Trustees Of The University Of PennsylvaniaMethod for characterizing single cells based on RNA amplification for diagnostics and therapeutics
US6670178B1 (en)1992-07-102003-12-30Transkaryotic Therapies, Inc.In Vivo production and delivery of insulinotropin for gene therapy
US5383851A (en)1992-07-241995-01-24Bioject Inc.Needleless hypodermic injection device
WO1994003637A1 (en)1992-07-311994-02-17Syntex (Usa) Inc.Method for introducing defined sequences at the 3' end of polynucleotides
US5273525A (en)1992-08-131993-12-28Btx Inc.Injection and electroporation apparatus for drug and gene delivery
US5240885A (en)1992-09-211993-08-31Corning IncorporatedRare earth-doped, stabilized cadmium halide glasses
US5569189A (en)1992-09-281996-10-29Equidyne Systems, Inc.hypodermic jet injector
US5334144A (en)1992-10-301994-08-02Becton, Dickinson And CompanySingle use disposable needleless injector
WO1994009838A1 (en)1992-11-041994-05-11Denver Biomaterials, Inc.Apparatus for removal of pleural effusion fluid
EP0752248B1 (en)1992-11-132000-09-27Idec Pharmaceuticals CorporationTherapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
US5736137A (en)1992-11-131998-04-07Idec Pharmaceuticals CorporationTherapeutic application of chimeric and radiolabeled antibodies to human B lymphocyte restricted differentiation antigen for treatment of B cell lymphoma
EP0678122B1 (en)1993-01-121999-07-28Biogen, Inc.Recombinant anti-vla4 antibody molecules
FR2703253B1 (en)1993-03-301995-06-23Centre Nat Rech Scient APPLICATOR OF ELECTRIC PULSES FOR TREATING BIOLOGICAL TISSUES.
US7135312B2 (en)1993-04-152006-11-14University Of RochesterCircular DNA vectors for synthesis of RNA and DNA
US5773244A (en)1993-05-191998-06-30Regents Of The University Of CaliforniaMethods of making circular RNA
US5851829A (en)1993-07-161998-12-22Dana-Farber Cancer InstituteMethod of intracellular binding of target molecules
US5672491A (en)1993-09-201997-09-30The Leland Stanford Junior UniversityRecombinant production of novel polyketides
US6432711B1 (en)1993-11-032002-08-13Diacrin, Inc.Embryonic stem cells capable of differentiating into desired cell lines
US6096503A (en)1993-11-122000-08-01The Scripps Research InstituteMethod for simultaneous identification of differentially expresses mRNAs and measurement of relative concentrations
US7435802B2 (en)1994-01-252008-10-14Elan Pharaceuticals, Inc.Humanized anti-VLA4 immunoglobulins
US5840299A (en)1994-01-251998-11-24Athena Neurosciences, Inc.Humanized antibodies against leukocyte adhesion molecule VLA-4
DE69533295T3 (en)1994-02-162009-07-16The Government Of The United States Of America, As Represented By The Secretary, The Department Of Health And Human Services Melanoma-associated antigens, epitopes thereof and melanoma-containing vaccines
IL112820A0 (en)1994-03-071995-05-26Merck & Co IncCoordinate in vivo gene expression
WO1995024176A1 (en)1994-03-071995-09-14Bioject, Inc.Ampule filling device
US5466220A (en)1994-03-081995-11-14Bioject, Inc.Drug vial mixing and transfer device
AU704549B2 (en)1994-03-181999-04-29Lynx Therapeutics, Inc.Oligonucleotide N3'-P5' phosphoramidates: synthesis and compounds; hybridization and nuclease resistance properties
WO1995026204A1 (en)1994-03-251995-10-05Isis Pharmaceuticals, Inc.Immune stimulation by phosphorothioate oligonucleotide analogs
US5457041A (en)1994-03-251995-10-10Science Applications International CorporationNeedle array and method of introducing biological substances into living cells using the needle array
US6074642A (en)1994-05-022000-06-13Alexion Pharmaceuticals, Inc.Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis
US6265635B1 (en)1994-05-182001-07-24Plantec Biotechnologie Gmbh Forschung & EntwicklungDNA sequences coding for enzymes capable of facilitating the synthesis of linear α-1,4 glucans in plants, fungi and microorganisms
JPH10501136A (en)1994-06-021998-02-03カイロン コーポレイション Nucleic acid immunization using a virus-based infection / transfection system
GB9412230D0 (en)1994-06-171994-08-10Celltech LtdInterleukin-5 specific recombiant antibodies
US6239116B1 (en)1994-07-152001-05-29University Of Iowa Research FoundationImmunostimulatory nucleic acid molecules
EP0771208B1 (en)1994-08-122005-10-19Immunomedics, Inc.Immunoconjugates and humanized antibodies specific for b-cell lymphoma and leukemia cells
US5641665A (en)1994-11-281997-06-24Vical IncorporatedPlasmids suitable for IL-2 expression
US5665545A (en)1994-11-281997-09-09Akzo Nobel N.V.Terminal repeat amplification method
US5588960A (en)1994-12-011996-12-31Vidamed, Inc.Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence
US5807718A (en)1994-12-021998-09-15The Scripps Research InstituteEnzymatic DNA molecules
US6057494A (en)1995-01-062000-05-02Centrum Voor Plantenveredelings-En ReproduktieonderzoekDNA sequences encoding carbohydrate polymer synthesizing enzymes and method for producing transgenic plants
US5599302A (en)1995-01-091997-02-04Medi-Ject CorporationMedical injection system and method, gas spring thereof and launching device using gas spring
US5795587A (en)1995-01-231998-08-18University Of PittsburghStable lipid-comprising drug delivery complexes and methods for their production
US5824497A (en)1995-02-101998-10-20Mcmaster UniversityHigh efficiency translation of mRNA molecules
DE69629326D1 (en)1995-02-152003-09-11Joseph Eldor Spinal needle with several holes
EP0735144B1 (en)1995-03-282002-06-05Japan Science and Technology CorporationMethod for molecular indexing of genes using restriction enzymes
US5869230A (en)1995-03-301999-02-09Beth Israel Hospital AssociationGene transfer into the kidney
US5986054A (en)1995-04-281999-11-16The Hospital For Sick Children, Hsc Research And Development Limited PartnershipGenetic sequences and proteins related to alzheimer's disease
FR2733762B1 (en)1995-05-021997-08-01Genset Sa METHOD FOR THE SPECIFIC COUPLING OF THE HAIR OF THE 5 'END OF A RNAM FRAGMENT AND PREPARATION OF RNAM AND COMPLETE DNA
US5700642A (en)1995-05-221997-12-23Sri InternationalOligonucleotide sizing using immobilized cleavable primers
US5730723A (en)1995-10-101998-03-24Visionary Medical Products Corporation, Inc.Gas pressured needle-less injection device and method
US6111095A (en)1995-06-072000-08-29Merck & Co., Inc.Capped synthetic RNA, analogs, and aptamers
US6051429A (en)1995-06-072000-04-18Life Technologies, Inc.Peptide-enhanced cationic lipid transfections
US5889136A (en)1995-06-091999-03-30The Regents Of The University Of ColoradoOrthoester protecting groups in RNA synthesis
US5766903A (en)1995-08-231998-06-16University Technology CorporationCircular RNA and uses thereof
US6265389B1 (en)1995-08-312001-07-24Alkermes Controlled Therapeutics, Inc.Microencapsulation and sustained release of oligonucleotides
WO1997011085A1 (en)1995-09-191997-03-27University Of MassachusettsInhibited biological degradation of oligodeoxynucleotides
US5830879A (en)1995-10-021998-11-03St. Elizabeth's Medical Center Of Boston, Inc.Treatment of vascular injury using vascular endothelial growth factor
US6265387B1 (en)1995-10-112001-07-24Mirus, Inc.Process of delivering naked DNA into a hepatocyte via bile duct
US6132988A (en)1995-10-272000-10-17Takeda Chemical Industries, Ltd.DNA encoding a neuronal cell-specific receptor protein
CU22584A1 (en)1995-11-171999-11-03Centro Inmunologia Molecular PHARMACEUTICAL COMPOSITIONS CONTAINING A MONOCLONAL ANTIBODY THAT RECOGNIZES THE CD6 HUMAN LEUKOCYTARY DIFFERENTIATION ANTIGEN AND ITS USES FOR THE DIAGNOSIS AND TREATMENT OF PSORIASIS
US6090382A (en)1996-02-092000-07-18Basf AktiengesellschaftHuman antibodies that bind human TNFα
US5962271A (en)1996-01-031999-10-05Cloutech Laboratories, Inc.Methods and compositions for generating full-length cDNA having arbitrary nucleotide sequence at the 3'-end
US5893397A (en)1996-01-121999-04-13Bioject Inc.Medication vial/syringe liquid-transfer apparatus
US6395292B2 (en)1996-02-022002-05-28Alza CorporationSustained delivery of an active agent using an implantable system
US6261584B1 (en)1996-02-022001-07-17Alza CorporationSustained delivery of an active agent using an implantable system
AU1874397A (en)1996-02-161997-09-02Stichting Rega VzwHexitol containing oligonucleotides and their use in antisense strategies
US6534312B1 (en)1996-02-222003-03-18Merck & Co., Inc.Vaccines comprising synthetic genes
US6090391A (en)1996-02-232000-07-18AvironRecombinant tryptophan mutants of influenza
US6300487B1 (en)1996-03-192001-10-09Cell Therapuetics, Inc.Mammalian lysophosphatidic acid acyltransferase
SE9601245D0 (en)1996-03-291996-03-29Pharmacia Ab Chimeric superantigens and their use
TW517061B (en)1996-03-292003-01-11Pharmacia & Amp Upjohn AbModified/chimeric superantigens and their use
GB9607549D0 (en)1996-04-111996-06-12Weston Medical LtdSpring-powered dispensing device
US5712127A (en)1996-04-291998-01-27Genescape Inc.Subtractive amplification
US5853719A (en)1996-04-301998-12-29Duke UniversityMethods for treating cancers and pathogen infections using antigen-presenting cells loaded with RNA
US7329741B2 (en)1996-06-052008-02-12Chiron CorporationPolynucleotides that hybridize to DP-75 and their use
WO1997046680A1 (en)1996-06-051997-12-11Chiron CorporationDna encoding dp. 75 and a process for its use
EP0912607A2 (en)1996-06-211999-05-06Merck & Co., Inc.Vaccines comprising synthetic genes
EP0925088A2 (en)1996-06-281999-06-30Sontra Medical, L.P.Ultrasound enhancement of transdermal transport
US5677124A (en)1996-07-031997-10-14Ambion, Inc.Ribonuclease resistant viral RNA standards
US5939262A (en)1996-07-031999-08-17Ambion, Inc.Ribonuclease resistant RNA preparation and utilization
US7288266B2 (en)1996-08-192007-10-30United States Of America As Represented By The Secretary, Department Of Health And Human ServicesLiposome complexes for increased systemic delivery
US5849546A (en)1996-09-131998-12-15Epicentre Technologies CorporationMethods for using mutant RNA polymerases with reduced discrimination between non-canonical and canonical nucleoside triphosphates
US6114148C1 (en)1996-09-202012-05-01Gen Hospital CorpHigh level expression of proteins
US6433155B1 (en)1996-09-242002-08-13Tanox, Inc.Family of genes encoding apoptosis-related peptides, peptides encoded thereby and methods of use thereof
US6214966B1 (en)1996-09-262001-04-10Shearwater CorporationSoluble, degradable poly(ethylene glycol) derivatives for controllable release of bound molecules into solution
EP0930893B1 (en)1996-10-112005-04-13The Regents of The University of CaliforniaImmunostimulatory polynucleotide/immunomodulatory molecule conjugates
EP0839912A1 (en)1996-10-301998-05-06Instituut Voor Dierhouderij En Diergezondheid (Id-Dlo)Infectious clones of RNA viruses and vaccines and diagnostic assays derived thereof
GB9623051D0 (en)1996-11-061997-01-08Schacht Etienne HDelivery of DNA to target cells in biological systems
US5980887A (en)1996-11-081999-11-09St. Elizabeth's Medical Center Of BostonMethods for enhancing angiogenesis with endothelial progenitor cells
US6143559A (en)*1996-11-182000-11-07Arch Development CorporationMethods for the production of chicken monoclonal antibodies
US5759179A (en)1996-12-311998-06-02Johnson & Johnson Medical, Inc.Needle and valve assembly for use with a catheter
ES2268763T3 (en)1997-01-212007-03-16The General Hospital Corporation SELECTION OF PROTEINS USING ARN-PROTEIN FUSIONS.
EP0855184A1 (en)1997-01-231998-07-29Grayson B. Dr. LipfordPharmaceutical composition comprising a polynucleotide and an antigen especially for vaccination
US6696291B2 (en)1997-02-072004-02-24Merck & Co., Inc.Synthetic HIV gag genes
US6228640B1 (en)1997-02-072001-05-08Cem CezayirliProgrammable antigen presenting cell of CD34 lineage
JP2001512308A (en)1997-02-072001-08-21メルク エンド カンパニー インコーポレーテッド Synthetic HIV GAG gene
US6251665B1 (en)1997-02-072001-06-26Cem CezayirliDirected maturation of stem cells and production of programmable antigen presenting dentritic cells therefrom
US6406705B1 (en)1997-03-102002-06-18University Of Iowa Research FoundationUse of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6306393B1 (en)1997-03-242001-10-23Immunomedics, Inc.Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US6261281B1 (en)1997-04-032001-07-17Electrofect AsMethod for genetic immunization and introduction of molecules into skeletal muscle and immune cells
US5914269A (en)1997-04-041999-06-22Isis Pharmaceuticals, Inc.Oligonucleotide inhibition of epidermal growth factor receptor expression
AU6972798A (en)1997-04-181998-11-13University Of Medicine And Dentistry Of New JerseyInhibition of hiv-1 replication by a tat rna-binding domain peptide analog
US5958688A (en)1997-04-281999-09-28The Trustees Of The University Of PennsylvaniaCharacterization of mRNA patterns in neurites and single cells for medical diagnosis and therapeutics
US6235883B1 (en)1997-05-052001-05-22Abgenix, Inc.Human monoclonal antibodies to epidermal growth factor receptor
US5989911A (en)1997-05-091999-11-23University Of MassachusettsSite-specific synthesis of pseudouridine in RNA
US5993412A (en)1997-05-191999-11-30Bioject, Inc.Injection apparatus
US6124091A (en)1997-05-302000-09-26Research Corporation Technologies, Inc.Cell growth-controlling oligonucleotides
EP0986572B2 (en)1997-06-062007-06-13Dynavax Technologies CorporationImmunostimulatory oligonucleotides, compositions thereof and methods of use thereof
US6589940B1 (en)1997-06-062003-07-08Dynavax Technologies CorporationImmunostimulatory oligonucleotides, compositions thereof and methods of use thereof
WO1999001579A1 (en)1997-07-011999-01-14Isis Pharmaceuticals, Inc.Compositions and methods for the delivery of oligonucleotides via the alimentary canal
US5994511A (en)1997-07-021999-11-30Genentech, Inc.Anti-IgE antibodies and methods of improving polypeptides
WO1999004820A2 (en)1997-07-211999-02-04Pharmacia & Upjohn AbCytolysis of target cells by superantigen conjugates inducing t-cell activation
WO1999006073A1 (en)1997-07-311999-02-11St. Elizabeth's Medical Center Of Boston, Inc.Method for the treatment of grafts
PT2044950E (en)1997-09-182012-09-18Univ PennsylvaniaAttenuated vif dna immunization cassettes for genetic vaccines
US20030083272A1 (en)1997-09-192003-05-01Lahive & Cockfield, LlpSense mrna therapy
US6004573A (en)1997-10-031999-12-21Macromed, Inc.Biodegradable low molecular weight triblock poly(lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties
CA2305785A1 (en)1997-10-071999-04-15University Of Maryland Biotechnology InstituteMethod for introducing and expressing rna in animal cells
CN1179048C (en)1997-10-202004-12-08Gtc生物治疗学公司Modified MSP-1 nucleic acid sequences and methods for increasing mRNA levels and protein expression in cellular systems
US6019747A (en)1997-10-212000-02-01I-Flow CorporationSpring-actuated infusion syringe
JP2001520889A (en)1997-10-242001-11-06バレンティス,インコーポレイティド Methods for preparing polynucleotide transfection complexes
JP2001523480A (en)1997-11-202001-11-27バイカル インコーポレイテッド Treatment of cancer with cytokine-expressed polynucleotides and their compositions
US7655777B2 (en)1997-11-242010-02-02Monsanto Technology LlcNucleic acid molecules associated with the tocopherol pathway
US6517869B1 (en)1997-12-122003-02-11Expression Genetics, Inc.Positively charged poly(alpha-(omega-aminoalkyl)lycolic acid) for the delivery of a bioactive agent via tissue and cellular uptake
WO1999029758A1 (en)1997-12-121999-06-17Samyang CorporationPositively-charged poly[alpha-(omega-aminoalkyl)glycolic acid] for the delivery of a bioactive agent via tissue and cellular uptake
JP2002500010A (en)1997-12-232002-01-08カイロン コーポレイション Human Genes and Gene Expression Products I
US6383811B2 (en)1997-12-302002-05-07Mirus CorporationPolyampholytes for delivering polyions to a cell
US6835393B2 (en)1998-01-052004-12-28University Of WashingtonEnhanced transport using membrane disruptive agents
JP2002500075A (en)1998-01-082002-01-08ソントラ メディカル, インコーポレイテッド Transdermal transport enhanced by ultrasound transmission
US8287483B2 (en)1998-01-082012-10-16Echo Therapeutics, Inc.Method and apparatus for enhancement of transdermal transport
IT1298087B1 (en)1998-01-081999-12-20Fiderm S R L DEVICE FOR CHECKING THE PENETRATION DEPTH OF A NEEDLE, IN PARTICULAR APPLICABLE TO A SYRINGE FOR INJECTIONS
US6365346B1 (en)1998-02-182002-04-02Dade Behring Inc.Quantitative determination of nucleic acid amplification products
US5955310A (en)1998-02-261999-09-21Novo Nordisk Biotech, Inc.Methods for producing a polypeptide in a bacillus cell
US6432925B1 (en)1998-04-162002-08-13John Wayne Cancer InstituteRNA cancer vaccine and methods for its use
US6429301B1 (en)1998-04-172002-08-06Whitehead Institute For Biomedical ResearchUse of a ribozyme to join nucleic acids and peptides
GB9808327D0 (en)1998-04-201998-06-17Chiron SpaAntidiotypic compounds
US6395253B2 (en)1998-04-232002-05-28The Regents Of The University Of MichiganMicrospheres containing condensed polyanionic bioactive agents and methods for their production
EP2116600B1 (en)1998-04-232013-09-18Takara Bio Inc.Method for synthesizing DNA
US20020064517A1 (en)1998-04-302002-05-30Stewart A. Cederholm-WilliamsFibrin sealant as a transfection/transformation vehicle for gene therapy
US20090208418A1 (en)2005-04-292009-08-20Innexus Biotechnology Internaltional Ltd.Superantibody synthesis and use in detection, prevention and treatment of disease
CA2329147A1 (en)1998-05-201999-11-25Feng LiuA hepatocyte targeting polyethylene glyco-grafted poly-l-lysine polymeric gene carrier
US6503231B1 (en)1998-06-102003-01-07Georgia Tech Research CorporationMicroneedle device for transport of molecules across tissue
US7091192B1 (en)1998-07-012006-08-15California Institute Of TechnologyLinear cyclodextrin copolymers
EP1117720A4 (en)1998-07-132001-11-14Expression Genetics IncPolyester analogue of poly-l-lysine as a soluble, biodegradable gene delivery carrier
US6222030B1 (en)1998-08-032001-04-24Agilent Technologies, Inc.Solid phase synthesis of oligonucleotides using carbonate protecting groups and alpha-effect nucleophile deprotection
KR101023367B1 (en)1998-08-112011-03-18바이오겐 아이덱 인크. Drugs Comprising Anti-CD20 Antibodies for Treating Cell-Cell Lymphomas
GB9817662D0 (en)1998-08-131998-10-07Crocker Peter JSubstance delivery
US20090148906A1 (en)1998-09-292009-06-11Shire Human Genetic Therapies, Inc. A Delaware CorporationOptimized messenger rna
US6924365B1 (en)1998-09-292005-08-02Transkaryotic Therapies, Inc.Optimized messenger RNA
EP1133513A4 (en)1998-11-032002-07-03Univ Yale MOLECULAR SENSORS CONSISTING OF SEVERAL DOMAINS OF POLYNUCLEOTIDES
ES2338287T3 (en)1998-11-092010-05-05Biogen Idec Inc. TREATMENT OF ANTI-CD20 PATIENTS ANTIBODIES RECEIVING TRANSPLANTS OF OSEA MEDULA GRAFT OR MOTHER PERIPHERAL BLOOD CELLS.
EP2055313B1 (en)1998-11-092015-04-29Biogen Idec Inc.Treatment of hematologic malignancies associated with circulating tumor cells using chimeric anti-CD20 antibody
WO2000027340A2 (en)1998-11-122000-05-18The Children's Medical Center CorporationUSE OF t-RNA AND FRAGMENTS FOR INHIBITING ANGIOGENESIS AND COMPOSITIONS THEREOF
US6210931B1 (en)1998-11-302001-04-03The United States Of America As Represented By The Secretary Of AgricultureRibozyme-mediated synthesis of circular RNA
US20040171980A1 (en)1998-12-182004-09-02Sontra Medical, Inc.Method and apparatus for enhancement of transdermal transport
WO2000039327A1 (en)1998-12-232000-07-06Human Genome Sciences, Inc.Peptidoglycan recognition proteins
CA2364921A1 (en)1999-02-222000-08-31European Molecular Biology LaboratoryTranslation system
US6255476B1 (en)1999-02-222001-07-03Pe Corporation (Ny)Methods and compositions for synthesis of labelled oligonucleotides and analogs on solid-supports
US7629311B2 (en)1999-02-242009-12-08Edward Lewis TobinickMethods to facilitate transmission of large molecules across the blood-brain, blood-eye, and blood-nerve barriers
JP2002537102A (en)1999-02-262002-11-05カイロン コーポレイション Microemulsion with adsorbed polymer and fine particles
WO2000029561A2 (en)1999-03-292000-05-25Statens Serum InstitutNucleotide construct with optimised codons for an hiv genetic vaccine based on a primary, early hiv isolate and synthetic envelope
US7217762B1 (en)1999-04-092007-05-15Invitrogen CorporationProcess for the preparation of monodisperse polymer particles
EP1637160A3 (en)1999-05-072006-05-03Genentech, Inc.Treatment of autoimmune diseases with antagonists which bind to B cell surface markers
KR20020011985A (en)1999-05-072002-02-09파르마솔 게엠베하Lipid particles on the basis of mixtures of liquid and solid lipids and method for producing same
US6346382B1 (en)1999-06-012002-02-12Vanderbilt UniversityHuman carbamyl phosphate synthetase I polymorphism and diagnostic methods related thereto
US6743211B1 (en)1999-11-232004-06-01Georgia Tech Research CorporationDevices and methods for enhanced microneedle penetration of biological barriers
US6611707B1 (en)1999-06-042003-08-26Georgia Tech Research CorporationMicroneedle drug delivery device
WO2000075356A1 (en)1999-06-042000-12-14Lin Shi LungRna polymerase chain reaction
US6303573B1 (en)1999-06-072001-10-16The Burnham InstituteHeart homing peptides and methods of using same
AU776268B2 (en)1999-06-082004-09-02Aventis PasteurImmunostimulant oligonucleotide
EP2289551A1 (en)1999-06-092011-03-02Immunomedics, Inc.Immunotherapy of autoimmune disorders using antibodies which target B-cells
US6949245B1 (en)1999-06-252005-09-27Genentech, Inc.Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
BR0012099A (en)1999-06-302003-07-29Advanced Cell Tech Inc Cytoplasmic transfer to de-differentiate recipient cells
US6514948B1 (en)1999-07-022003-02-04The Regents Of The University Of CaliforniaMethod for enhancing an immune response
BR0012325A (en)1999-07-092002-05-21American Home Prod Methods and compositions for preventing the formation of abnormal RNA during the transcription of a plasmid sequence
US8557244B1 (en)1999-08-112013-10-15Biogen Idec Inc.Treatment of aggressive non-Hodgkins lymphoma with anti-CD20 antibody
KR20020047132A (en)1999-08-242002-06-21메다렉스, 인코포레이티드Human ctla-4 antibodies and their uses
US20050112141A1 (en)2000-08-302005-05-26Terman David S.Compositions and methods for treatment of neoplastic disease
US20040106567A1 (en)1999-09-072004-06-03Hagstrom James E.Intravascular delivery of non-viral nucleic acid
EP1818409A1 (en)1999-09-092007-08-15CureVac GmbHTransfer of mRNAusing polycationic compounds
AU7398200A (en)1999-09-172001-04-24Aventis Pasteur LimitedChlamydia antigens and corresponding dna fragments and uses thereof
US6623457B1 (en)1999-09-222003-09-23Becton, Dickinson And CompanyMethod and apparatus for the transdermal administration of a substance
WO2002064799A2 (en)1999-09-282002-08-22Transkaryotic Therapies, Inc.Optimized messenger rna
IL148922A0 (en)1999-10-062002-09-12Quark Biotech IncMethod for enrichment of natural antisense messenger rna
US7060291B1 (en)1999-11-242006-06-13Transave, Inc.Modular targeted liposomal delivery system
US6613026B1 (en)1999-12-082003-09-02Scimed Life Systems, Inc.Lateral needle-less injection apparatus and method
US6277974B1 (en)1999-12-142001-08-21Cogent Neuroscience, Inc.Compositions and methods for diagnosing and treating conditions, disorders, or diseases involving cell death
US6245929B1 (en)1999-12-202001-06-12General Electric CompanyCatalyst composition and method for producing diaryl carbonates, using bisphosphines
JP4758583B2 (en)1999-12-222011-08-31バセル テクノロジー カンパニー ビー.ブイ. Alpha-olefin polymerization catalyst system containing aromatic silane compound
WO2001051092A2 (en)2000-01-072001-07-19University Of WashingtonEnhanced transport of agents using membrane disruptive agents
WO2001051661A2 (en)2000-01-132001-07-19Amsterdam Support Diagnostics B.V.A universal nucleic acid amplification system for nucleic acids in a sample
AU2001231245A1 (en)2000-01-312001-08-07The Regents Of The University Of CaliforniaImmunomodulatory polynucleotides in treatment of an infection by an intracellular pathogen
CA2395811A1 (en)2000-01-312001-08-02Human Genome Sciences, Inc.Nucleic acids, proteins, and antibodies
WO2001062827A2 (en)2000-02-222001-08-30Shearwater CorporationN-maleimidyl polymer derivatives
WO2001062801A2 (en)2000-02-242001-08-30Washington UniversityHumanized antibodies that sequester amyloid beta peptide
BR0108962A (en)2000-03-032002-12-24Valentis Inc Nucleic acid formulations for gene distribution and methods of use
WO2001075166A2 (en)2000-03-312001-10-11Genentech, Inc.Compositions and methods for detecting and quantifying gene expression
BR0109705A (en)2000-03-312005-01-11Idec Pharma Corp Combined use of anti-cytokine and anticd20 antibodies or antagonists for the treatment of B-cell lymphoma
US6565572B2 (en)2000-04-102003-05-20Sdgi Holdings, Inc.Fenestrated surgical screw and method
US6368801B1 (en)2000-04-122002-04-09Molecular Staging, Inc.Detection and amplification of RNA using target-mediated ligation of DNA by RNA ligase
JP2003530838A (en)2000-04-122003-10-21ヒューマン ゲノム サイエンシズ インコーポレイテッド Albumin fusion protein
US20010046496A1 (en)2000-04-142001-11-29Brettman Lee R.Method of administering an antibody
US6375972B1 (en)2000-04-262002-04-23Control Delivery Systems, Inc.Sustained release drug delivery devices, methods of use, and methods of manufacturing thereof
US7871598B1 (en)2000-05-102011-01-18Novartis AgStable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use
US20040229271A1 (en)2000-05-192004-11-18Williams Richard B.Compositions and methods for the identification and selection of nucleic acids and polypeptides
WO2001092523A2 (en)2000-05-302001-12-06Curagen CorporationHuman polynucleotides and polypeptides encoded thereby
JP2004530629A (en)2000-06-072004-10-07バイオシネクサス インコーポレーテッド Immunostimulatory RNA / DNA hybrid molecule
ATE343589T1 (en)2000-06-232006-11-15Wyeth Corp MODOFIED MORBILLIVIRUS V PROTEINS
US20040005667A1 (en)2000-07-032004-01-08Giuloi RattiImmunisation against chlamydia pneumoniae
US6440096B1 (en)2000-07-142002-08-27Becton, Dickinson And Co.Microdevice and method of manufacturing a microdevice
BR0112637A (en)2000-07-212003-06-10Glaxo Group Ltd Codon-optimized Papilloma Virus Sequences
US6902734B2 (en)2000-08-072005-06-07Centocor, Inc.Anti-IL-12 antibodies and compositions thereof
US6696038B1 (en)2000-09-142004-02-24Expression Genetics, Inc.Cationic lipopolymer as biocompatible gene delivery agent
US20040142474A1 (en)2000-09-142004-07-22Expression Genetics, Inc.Novel cationic lipopolymer as a biocompatible gene delivery agent
AU2001290078A1 (en)2000-09-202002-04-02Ruggero Della BittaStem cell therapy
US6733994B2 (en)2000-10-042004-05-11The Trustees Of The University Of PennsylvaniaHighly expressible genes
US6998115B2 (en)2000-10-102006-02-14Massachusetts Institute Of TechnologyBiodegradable poly(β-amino esters) and uses thereof
US7202226B2 (en)2000-10-232007-04-10Detroit R & DAugmentation of wound healing by elF-4E mRNA and EGF mRNA
US20030077604A1 (en)2000-10-272003-04-24Yongming SunCompositions and methods relating to breast specific genes and proteins
US20020132788A1 (en)2000-11-062002-09-19David LewisInhibition of gene expression by delivery of small interfering RNA to post-embryonic animal cells in vivo
US7521054B2 (en)2000-11-172009-04-21The United States Of America As Represented By The Department Of Health And Human ServicesReduction of the nonspecific animal toxicity of immunotoxins by mutating the framework regions of the Fv to lower the isoelectric point
AU2002227365A1 (en)2000-12-072002-06-18Chiron CorporationEndogenous retroviruses up-regulated in prostate cancer
US7708915B2 (en)2004-05-062010-05-04Castor Trevor PPolymer microspheres/nanospheres and encapsulating therapeutic proteins therein
US20020130430A1 (en)2000-12-292002-09-19Castor Trevor PercivalMethods for making polymer microspheres/nanospheres and encapsulating therapeutic proteins and other products
EP1224943A1 (en)2001-01-192002-07-24Crucell Holland B.V.Fibronectin as a tumor marker detected by phage antibodies
CN101921732A (en)2001-01-192010-12-22维洛诺瓦蒂夫公司A virus causing respiratory tract illness in susceptible mammals
US20040110191A1 (en)2001-01-312004-06-10Winkler Matthew M.Comparative analysis of nucleic acids using population tagging
CA2437737A1 (en)2001-02-142002-08-22Stephen D. GinsbergMethods and compositions of amplifying rna
US6652886B2 (en)2001-02-162003-11-25Expression GeneticsBiodegradable cationic copolymers of poly (alkylenimine) and poly (ethylene glycol) for the delivery of bioactive agents
DE10109897A1 (en)2001-02-212002-11-07Novosom Ag Optional cationic liposomes and their use
US7232425B2 (en)2001-03-022007-06-19Sorenson Development, Inc.Apparatus and method for specific interstitial or subcutaneous diffusion and dispersion of medication
KR100917939B1 (en)2001-03-092009-09-21진 스트림 피티와이 리미티드 Novel expression vectors
JP2002262882A (en)2001-03-122002-09-17Nisshinbo Ind Inc RNA amplification method
FR2822164B1 (en)2001-03-192004-06-18Centre Nat Rech Scient POLYPEPTIDES DERIVED FROM POLYMERASE RNAS, AND USES THEREOF
US6520949B2 (en)2001-04-022003-02-18Martin St. GermainMethod and apparatus for administering fluid to animals subcutaneously
DE10119005A1 (en)2001-04-182002-10-24Roche Diagnostics Gmbh Process for protein expression starting from stabilized linear short DNA in cell-free in vitro transcription / translation systems with exonuclease-containing lysates or in a cellular system containing exonucleases
US20030171253A1 (en)2001-04-192003-09-11Averil MaMethods and compositions relating to modulation of A20
ATE278796T1 (en)2001-04-232004-10-15Amaxa Gmbh BUFFER SOLUTION FOR ELECTROPORATION AND METHOD COMPRISING THE USE OF THE SAME
US7560424B2 (en)2001-04-302009-07-14Zystor Therapeutics, Inc.Targeted therapeutic proteins
US6777187B2 (en)2001-05-022004-08-17Rubicon Genomics, Inc.Genome walking by selective amplification of nick-translate DNA library and amplification from complex mixtures of templates
WO2002090225A2 (en)2001-05-082002-11-14Magnatech International, L.P.Electronic length control wire pay-off system and method
US20050137155A1 (en)2001-05-182005-06-23Sirna Therapeutics, Inc.RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA)
US8137911B2 (en)2001-05-222012-03-20Cellscript, Inc.Preparation and use of single-stranded transcription substrates for synthesis of transcription products corresponding to target sequences
CA2449054C (en)2001-05-302011-01-04The Scripps Research InstituteIntegrin targeting liposome for nucleic acid delivery
EP1903054A3 (en)2001-06-052008-07-23CureVac GmbHPharmaceutical compound containing a stabilised mRNA which is optimised for translation in its coded areas
EP1402035A2 (en)2001-06-182004-03-31Novartis AGG-protein coupled receptors and dna sequences thereof
US7547551B2 (en)2001-06-212009-06-16University Of Antwerp.Transfection of eukaryontic cells with linear polynucleotides by electroporation
US7785610B2 (en)2001-06-212010-08-31Dynavax Technologies CorporationChimeric immunomodulatory compounds and methods of using the same—III
EP1404716A2 (en)2001-06-262004-04-07Novartis AGNovel g protein-coupled receptors and dna sequences thereof
SE0102327D0 (en)2001-06-282001-06-28Active Biotech Ab A novel engineered superantigen for human therapy
US20040236092A1 (en)2001-07-132004-11-25Roman DziarskiPeptidologlycan recognition protein encoding nucleic acids and methods of use thereof
US6586524B2 (en)2001-07-192003-07-01Expression Genetics, Inc.Cellular targeting poly(ethylene glycol)-grafted polymeric gene carrier
ATE481497T1 (en)2001-08-012010-10-15Univ Utah N-TERMINUS TRUNCATED ISOFORMS OF CYCLIC PHOSPHODIESTERASES PDE3A
JP2005502344A (en)2001-08-272005-01-27ノバルティス アクチエンゲゼルシャフト Novel G protein coupled receptor and DNA sequence thereof
US20040142325A1 (en)2001-09-142004-07-22Liat MintzMethods and systems for annotating biomolecular sequences
AR045702A1 (en)2001-10-032005-11-09Chiron Corp COMPOSITIONS OF ASSISTANTS.
DE10148886A1 (en)2001-10-042003-04-30Avontec Gmbh Inhibition of STAT-1
US7276489B2 (en)2002-10-242007-10-02Idera Pharmaceuticals, Inc.Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5′ ends
ATE427992T1 (en)2001-11-142009-04-15Toyo Boseki DNA SYNTHESIS PROMOTORS, DNA POLYMERASE ASSOCIATED FACTORS AND USE THEREOF
WO2003044482A2 (en)2001-11-162003-05-30The University Of Tennessee Research CorporationRecombinant antibody fusion proteins and methods for detection of apoptotic cells
EP1454145A2 (en)2001-11-292004-09-08Novartis AGMethod for the assessment and prognosis of sarcoidosis
CA2409775C (en)2001-12-032010-07-13F. Hoffmann-La Roche AgReversibly modified thermostable enzymes for dna synthesis and amplification in vitro
EP2208736A3 (en)2001-12-072010-10-27Novartis Vaccines and Diagnostics, Inc.Endogenous retrovirus up-regulated in prostate cancer
CA2469049A1 (en)2001-12-072003-06-19Chiron CorporationEndogenous retrovirus polypeptides linked to oncogenic transformation
US20060275747A1 (en)2001-12-072006-12-07Hardy Stephen FEndogenous retrovirus up-regulated in prostate cancer
AU2002361429A1 (en)2001-12-172003-06-30Novartis AgNovel g-protein coupled receptors and dna sequences thereof
DE10162480A1 (en)2001-12-192003-08-07Ingmar Hoerr The application of mRNA for use as a therapeutic agent against tumor diseases
US20050003014A1 (en)2001-12-212005-01-06Ketelson Howard AllenUse of synthetic inorganic nanoparticles as carriers for ophthalmic and otic drugs
AU2003235707A1 (en)2002-01-182003-07-30Curevac GmbhImmunogenic preparations and vaccines on the basis of mrna
AU2003203079B9 (en)2002-02-042009-01-15Oncothyreon Inc.Immunostimulatory, covalently lipidated oligonucleotides
CA2473144C (en)2002-02-052013-05-28Genentech, Inc.Protein purification
FR2835749B1 (en)2002-02-082006-04-14Inst Nat Sante Rech Med PHARMACEUTICAL COMPOSITION IMPROVING IN VIVO GENE TRANSFER
DE10207178A1 (en)2002-02-192003-09-04Novosom Ag Components for the production of amphoteric liposomes
AR038568A1 (en)2002-02-202005-01-19Hoffmann La Roche ANTI-A BETA ANTIBODIES AND ITS USE
US7354742B2 (en)2002-02-222008-04-08Ortho-Mcneil Pharmaceutical, Inc.Method for generating amplified RNA
CA2481479C (en)2002-02-262012-12-11Maxygen, Inc.Novel flavivirus antigens
WO2003075840A2 (en)2002-03-042003-09-18Imclone Systems IncorporatedHuman antibodies specific to kdr and uses thereof
WO2003075892A1 (en)2002-03-132003-09-18Novartis AgPharmaceutical microparticles
US7074596B2 (en)2002-03-252006-07-11Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical CollegeSynthesis and use of anti-reverse mRNA cap analogues
AU2003230806B2 (en)2002-04-042009-05-07Zoetis Belgium S.A.Immunostimulatory G,U-containing oligoribonucleotides
US7399583B2 (en)2002-04-172008-07-15Novartis AgMethod for the identification of inhibitors of the binding of ARE-containing mRNA and a HuR protein
GB0209539D0 (en)2002-04-262002-06-05Avecia LtdMonomer Polymer and process
EP1361277A1 (en)2002-04-302003-11-12Centre National De La Recherche Scientifique (Cnrs)Optimization of transgene expression in mammalian cells
PL224150B1 (en)2002-05-022016-11-30Wyeth CorpComposition containing drug conjugate including the calicheamicin derivatives and the antibody, and the pharmaceutical composition containing it
US7374930B2 (en)2002-05-212008-05-20Expression Genetics, Inc.GLP-1 gene delivery for the treatment of type 2 diabetes
US20040018525A1 (en)2002-05-212004-01-29Bayer AktiengesellschaftMethods and compositions for the prediction, diagnosis, prognosis, prevention and treatment of malignant neoplasma
DE10224200C1 (en)2002-05-312003-08-21Artus Ges Fuer MolekularbiologReplicating RNA, useful, after reverse transcription, for analysis on microarrays, comprises conversion to cDNA then reverse transcription of this to form antisense sequences
US7198899B2 (en)2002-06-032007-04-03Chiron CorporationUse of NRG4, or inhibitors thereof, in the treatment of colon and pancreatic cancers
SE0201907D0 (en)2002-06-192002-06-19Atos Medical Ab Patches for tracheostoma valves
WO2004002453A1 (en)2002-06-282004-01-08Protiva Biotherapeutics Ltd.Method and apparatus for producing liposomes
US20040122216A1 (en)2002-07-012004-06-24Jacob NielsenRecombinant tissue protective cytokines and encoding nucleic acids thereof for protection, restoration, and enhancement of responsive cells, tissues, and organs
DE10229872A1 (en)2002-07-032004-01-29Curevac Gmbh Immune stimulation through chemically modified RNA
GB0215509D0 (en)2002-07-042002-08-14Novartis AgMarker genes
AR040575A1 (en)2002-07-162005-04-13Advisys Inc OPTIMIZED SYNTHETIC PLASMIDS IN EXPRESSION CODONS IN MAMMERS
CA2493808A1 (en)2002-07-242004-01-29Ptc Therapeutics, Inc.Methods for identifying small molecules that modulate premature translation termination and nonsense mediated mrna decay
EP1393745A1 (en)2002-07-292004-03-03Hybridon, Inc.Modulation of immunostimulatory properties of oligonucleotide-based compounds by optimal presentation of 5'ends
EP1386925A1 (en)2002-07-312004-02-04Girindus AGMethod for preparing oligonucleotides
US6653468B1 (en)2002-07-312003-11-25Isis Pharmaceuticals, Inc.Universal support media for synthesis of oligomeric compounds
EP1873180B1 (en)2002-08-142014-05-07Novartis AGOphthalmic device made from a radiation-curable prepolymer
KR101476067B1 (en)2002-09-062014-12-23인설트 테라페틱스, 인코퍼레이티드Cyclodextrin-based polymers for delivering the therapeutic agents covalently bound thereto
CA2497980C (en)2002-09-092011-06-21Nektar Therapeutics Al, CorporationMethod for preparing water-soluble polymer derivatives bearing a terminal carboxylic acid
US7534872B2 (en)2002-09-272009-05-19Syngen, Inc.Compositions and methods for the use of FMOC derivatives in DNA/RNA synthesis
KR20110140142A (en)2002-10-172011-12-30젠맵 에이/에스 Human monoclonal antibodies against CD20
EP1561814B1 (en)2002-10-222010-12-22Eisai R&D Management Co., Ltd.Gene specifically expressed in postmitotic dopaminergic neuron precursor cells
AU2003297557B2 (en)2002-11-212009-02-26Cellscript, Inc.Methods for using primers that encode one strand of a double-stranded promoter
US7491234B2 (en)2002-12-032009-02-17Boston Scientific Scimed, Inc.Medical devices for delivery of therapeutic agents
EP2301966A1 (en)2002-12-162011-03-30Genentech, Inc.Immunoglobulin variants and uses thereof
AU2003302743B2 (en)2002-12-232008-09-04Dynavax Technologies CorporationBranched immunomodulatory compounds and methods of using the same
US7169892B2 (en)2003-01-102007-01-30Astellas Pharma Inc.Lipid-peptide-polymer conjugates for long blood circulation and tumor specific drug delivery systems
WO2004067728A2 (en)2003-01-172004-08-12Ptc TherapeuticsMethods and systems for the identification of rna regulatory sequences and compounds that modulate their function
US9068234B2 (en)2003-01-212015-06-30Ptc Therapeutics, Inc.Methods and agents for screening for compounds capable of modulating gene expression
US8460864B2 (en)2003-01-212013-06-11Ptc Therapeutics, Inc.Methods for identifying compounds that modulate untranslated region-dependent gene expression and methods of using same
US8426194B2 (en)2003-01-212013-04-23Ptc Therapeutics, Inc.Methods and agents for screening for compounds capable of modulating VEGF expression
US20040147027A1 (en)2003-01-282004-07-29Troy Carol M.Complex for facilitating delivery of dsRNA into a cell and uses thereof
PT2236154T (en)2003-02-102018-06-26Biogen Ma IncImmunoglobulin formulation and method of preparation thereof
US20040167090A1 (en)2003-02-212004-08-26Monahan Sean D.Covalent modification of RNA for in vitro and in vivo delivery
CA2450289A1 (en)2003-03-202005-05-19Imclone Systems IncorporatedMethod of producing an antibody to epidermal growth factor receptor
US7320961B2 (en)2003-03-242008-01-22Abbott LaboratoriesMethod for treating a disease, disorder or adverse effect caused by an elevated serum concentration of an UGT1A1 substrate
ATE459710T1 (en)2003-03-252010-03-15Stratagene California DNA POLYMERASE FUSIONS AND USES THEREOF
WO2004092329A2 (en)2003-04-082004-10-28Galenica Pharmaceuticals, Inc.Semi-synthetic saponin analogs with carrier and immune stimulatory activities for dna and rna vaccines
UA91961C2 (en)2003-04-092010-09-27Дженентек, Инк.Therapy of autoimmune disease in a patient with an inadequate response to a tnf-alpha inhibitor
JP2006525405A (en)2003-05-052006-11-09ベン‐グリオン ユニバーシティ オブ ザ ネゲヴ リサーチ アンド デベロップメント オーソリティ Injectable cross-linked polymer preparations and their use
US7348004B2 (en)2003-05-062008-03-25Syntonix Pharmaceuticals, Inc.Immunoglobulin chimeric monomer-dimer hybrids
EP3552627A1 (en)2003-05-062019-10-16Bioverativ Therapeutics Inc.Clotting factor-fc chimeric proteins to treat hemophilia
TWI353991B (en)2003-05-062011-12-11Syntonix Pharmaceuticals IncImmunoglobulin chimeric monomer-dimer hybrids
US9567591B2 (en)2003-05-152017-02-14Mello Biotechnology, Inc.Generation of human embryonic stem-like cells using intronic RNA
GB0313132D0 (en)2003-06-062003-07-09Ich Productions LtdPeptide ligands
EP1636385A4 (en)2003-06-242010-06-02Mirus Bio CorpInhibition of gene function by delivery of polynucleotide-based gene expression inhibitors to mammalian cells in vivo
GB0316089D0 (en)2003-07-092003-08-13Xo Bioscience LtdDifferentiation method
US8592197B2 (en)2003-07-112013-11-26Novavax, Inc.Functional influenza virus-like particles (VLPs)
US7575572B2 (en)2003-07-152009-08-18Spinal Generations, LlcMethod and device for delivering medicine to bone
US20050013870A1 (en)2003-07-172005-01-20Toby FreymanDecellularized extracellular matrix of conditioned body tissues and uses thereof
DK1648998T3 (en)2003-07-182015-01-05Amgen Inc Specific binding agents for hepatocyte growth factor
DE10335833A1 (en)2003-08-052005-03-03Curevac Gmbh Transfection of blood cells with mRNA for immune stimulation and gene therapy
US20050048112A1 (en)2003-08-282005-03-03Jorg BreitenbachSolid pharmaceutical dosage form
US8668926B1 (en)2003-09-152014-03-11Shaker A. MousaNanoparticle and polymer formulations for thyroid hormone analogs, antagonists, and formulations thereof
US7135010B2 (en)2003-09-302006-11-14Damage Control Surgical Technologies, Inc.Method and apparatus for rapid deployment chest drainage
JP2007507460A (en)2003-10-062007-03-29ノバルティス アクチエンゲゼルシャフト Use of genetic polymorphisms associated with therapeutic efficacy in inflammatory diseases
US20050130201A1 (en)2003-10-142005-06-16Dharmacon, Inc.Splint-assisted enzymatic synthesis of polyribounucleotides
DE10347710B4 (en)2003-10-142006-03-30Johannes-Gutenberg-Universität Mainz Recombinant vaccines and their use
DE602004026470D1 (en)2003-11-052010-05-20Roche Glycart Ag FC RECEPTOR AND EFFECTOR FUNCTION
WO2005047536A2 (en)2003-11-132005-05-26Novartis AgDetection of genomic amplification and deletion in cancer
US20070054278A1 (en)2003-11-182007-03-08Applera CorporationPolymorphisms in nucleic acid molecules encoding human enzyme proteins, methods of detection and uses thereof
US7699852B2 (en)2003-11-192010-04-20Zimmer Spine, Inc.Fenestrated bone tap and method
WO2007062495A1 (en)2005-11-302007-06-07Roy Rabindranauth SooknananSelective terminal tagging of nucleic acids
US20050153333A1 (en)2003-12-022005-07-14Sooknanan Roy R.Selective terminal tagging of nucleic acids
EP1691746B1 (en)2003-12-082015-05-27Gel-Del Technologies, Inc.Mucoadhesive drug delivery devices and methods of making and using thereof
US7674884B2 (en)2003-12-102010-03-09Novimmune S.A.Neutralizing antibodies and methods of use thereof
US8372966B2 (en)2003-12-192013-02-12University Of CincinnatiOligonucleotide decoys and methods of use
JP4851944B2 (en)2003-12-232012-01-11ジェネンテック, インコーポレイテッド Novel anti-IL13 antibody and use thereof
EP1713514B1 (en)2004-01-282021-11-24Johns Hopkins UniversityDrugs and gene carrier particles that rapidly move through mucous barriers
ES2329807T3 (en)2004-01-302009-12-01Maxygen Holdings Ltd. REGULATED TRANSLECTURE OF TERMINATION CODONS.
US7309487B2 (en)2004-02-092007-12-18George InanaMethods and compositions for detecting and treating retinal diseases
CA2556027C (en)2004-02-122015-11-24Morphotek, Inc.Monoclonal antibodies that specifically block biological activity of a tumor antigen
US20070265220A1 (en)*2004-03-152007-11-15City Of HopeMethods and compositions for the specific inhibition of gene expression by double-stranded RNA
EP3269738A1 (en)2004-03-242018-01-17Chugai Seiyaku Kabushiki KaishaSubtypes of humanized antibody against interleukin-6 receptor
WO2005098433A2 (en)2004-04-012005-10-20Novartis AgDiagnostic assays for alzheimer’s disease
JP5848861B2 (en)2004-04-202016-01-27ジェンマブ エー/エスGenmab A/S Human monoclonal antibody against CD20
ES2246694B1 (en)2004-04-292007-05-01Instituto Cientifico Y Tecnologico De Navarra, S.A. PEGILATED NANOPARTICLES.
WO2005108411A2 (en)2004-05-052005-11-17Isis Pharmaceuticals, Inc.Substituted pixyl protecting groups for oligonucleotide synthesis
ES2313350T3 (en)2004-05-122009-03-01Baxter International Inc. MICROSPHERAS OF NUCLEIC ACID, PRODUCTION AND SUPPLY OF THE SAME.
US8012747B2 (en)2004-06-012011-09-06San Diego State University FoundationExpression system
ATE536418T1 (en)2004-06-072011-12-15Protiva Biotherapeutics Inc LIPID ENCAPSULATED INTERFERENCE RNA
US7745651B2 (en)2004-06-072010-06-29Protiva Biotherapeutics, Inc.Cationic lipids and methods of use
CA3075158A1 (en)2004-06-112005-12-29Trustees Of Tufts CollegeSilk-based drug delivery system
WO2006046978A2 (en)2004-06-282006-05-04Argos Therapeutics, Inc.Cationic peptide-mediated transformation
WO2006005058A2 (en)2004-06-302006-01-12Nektar Therapeutics Al, CorporationPolymer-factor ix moiety conjugates
DE102004035227A1 (en)2004-07-212006-02-16Curevac Gmbh mRNA mixture for vaccination against tumor diseases
AU2005328382C1 (en)2004-07-212013-01-24Alnylam Pharmaceuticals, Inc.Oligonucleotides comprising a modified or non-natural nucleobase
US7603349B1 (en)2004-07-292009-10-13Yahoo! Inc.User interfaces for search systems using in-line contextual queries
GB0417487D0 (en)2004-08-052004-09-08Novartis AgOrganic compound
SE0402025D0 (en)2004-08-132004-08-13Active Biotech Ab Treatment of hyperproliferative disease with superantigens in combination with another anticancer agent
US7291208B2 (en)2004-08-132007-11-06Gore Enterprise Holdings, Inc.Grooved active and passive adsorbent filters
CA2478458A1 (en)2004-08-202006-02-20Michael PanzaraTreatment of pediatric multiple sclerosis
DK2386640T3 (en)2004-08-262015-04-27Engeneic Molecular Delivery Pty LtdThe making of functional nucleic acids into mammalian cells via bacterially derived intact minicells
DE102004042546A1 (en)2004-09-022006-03-09Curevac Gmbh Combination therapy for immune stimulation
US7501486B2 (en)2004-09-072009-03-10Burnham Institute For Medical ResearchPeptides that selectively home to heart vasculature and related conjugates and methods
US8663599B1 (en)2004-10-052014-03-04Gp Medical, Inc.Pharmaceutical composition of nanoparticles
EP1811018A4 (en)2004-10-122007-11-28Tissue Targeting Japan IncBrain disposition marrow progenitor
EP2311455B1 (en)2004-10-132015-07-15PTC Therapeutics, Inc.Compounds for nonsense suppression, and methods for their use
US8057821B2 (en)2004-11-032011-11-15Egen, Inc.Biodegradable cross-linked cationic multi-block copolymers for gene delivery and methods of making thereof
EP1812569A2 (en)2004-11-082007-08-01K.U. Leuven Research and DevelopmentModified nucleosides for rna interference
US8946444B2 (en)2004-11-232015-02-03Ptc Therapeutics, Inc.Tetrahydrocarbazoles as active agents for inhibiting VEGF production by translational control
US7964571B2 (en)2004-12-092011-06-21Egen, Inc.Combination of immuno gene therapy and chemotherapy for treatment of cancer and hyperproliferative diseases
EP1856179B1 (en)2004-12-102013-05-15Kala Pharmaceuticals, Inc.Functionalized poly (ether-anhydride) block copolymers
US9068969B2 (en)2004-12-282015-06-30Ptc Therapeutics, Inc.Cell based methods and systems for the identification of RNA regulatory sequences and compounds that modulate their functions
US8535702B2 (en)2005-02-012013-09-17Boston Scientific Scimed, Inc.Medical devices having porous polymeric regions for controlled drug delivery and regulated biocompatibility
EP2287608B1 (en)2005-03-112014-01-08Firalis SASBiomarkers for cardiovascular side-effects induced by cox-2 inhibitory compounds
US8415325B2 (en)2005-03-312013-04-09University Of DelawareCell-mediated delivery and targeted erosion of noncovalently crosslinked hydrogels
EP2083088A3 (en)2005-04-072009-10-14Novartis Vaccines and Diagnostics, Inc.Cancer-related genes
AU2006235276A1 (en)2005-04-072006-10-19Novartis Vaccines And Diagnostics Inc.CACNA1E in cancer diagnosis, detection and treatment
EP1885403B1 (en)2005-04-122013-05-08Nektar TherapeuticsPoly(ethyleneglycol) conjugates of Lysostaphin
EP2295466A3 (en)2005-04-252011-08-17Pfizer Inc.Antibodies to myostatin
CA2609788A1 (en)2005-04-262006-11-02Coley Pharmaceutical GmbhModified oligoribonucleotide analogs with enhanced immunostimulatory activity
CA3151350A1 (en)2005-05-092006-11-16E. R. Squibb & Sons, L.L.C.Human monoclonal antibodies to programmed death 1 (pd-1) and methods for treating cancer using anti-pd-1 antibodies alone or in combination with other immunotherapeutics
US20070072175A1 (en)2005-05-132007-03-29Biogen Idec Ma Inc.Nucleotide array containing polynucleotide probes complementary to, or fragments of, cynomolgus monkey genes and the use thereof
US20060265771A1 (en)2005-05-172006-11-23Lewis David LMonitoring microrna expression and function
DE102005023170A1 (en)2005-05-192006-11-23Curevac Gmbh Optimized formulation for mRNA
MX2007015107A (en)2005-06-032008-02-15Genentech IncMethod of producing antibodies with modified fucosylation level.
US7550264B2 (en)2005-06-102009-06-23Datascope Investment CorporationMethods and kits for sense RNA synthesis
KR101304157B1 (en)2005-06-162013-09-06넥타르 테라퓨틱스Conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates
AU2006282042B2 (en)2005-06-172011-12-22The University Of North Carolina At Chapel HillNanoparticle fabrication methods, systems, and materials
US8202835B2 (en)2005-06-172012-06-19Yitzchak HillmanDisease treatment via antimicrobial peptides or their inhibitors
US8101385B2 (en)2005-06-302012-01-24Archemix Corp.Materials and methods for the generation of transcripts comprising modified nucleotides
CA2613442C (en)2005-06-302016-08-23Archemix Corp.Materials and methods for the generation of fully 2'-modified nucleic acid transcripts
US20080220471A1 (en)2005-07-272008-09-11Genentech, Inc.Vectors and Methods Using Same
US7612181B2 (en)2005-08-192009-11-03Abbott LaboratoriesDual variable domain immunoglobulin and uses thereof
US9012219B2 (en)2005-08-232015-04-21The Trustees Of The University Of PennsylvaniaRNA preparations comprising purified modified RNA for reprogramming cells
ES2735531T3 (en)2005-08-232019-12-19Univ Pennsylvania RNA containing modified nucleosides and methods of use thereof
US20070048741A1 (en)2005-08-242007-03-01Getts Robert CMethods and kits for sense RNA synthesis
HRP20110348T1 (en)2005-09-012011-07-31Celgene Corporation IMMUNOLOGICAL APPLICATIONS OF IMMUNOMODULATORY COMPOUNDS FOR THE VACCINE AND FOR THE TREATMENT OF INFECTIVE DISEASES
AU2006286228A1 (en)2005-09-012007-03-08Novartis Vaccines And Diagnostics Gmbh & Co KgMultiple vaccination including serogroup C meningococcus
US8420605B2 (en)2005-09-072013-04-16The University Of StrathclydeHydrogel compositions
US20120021042A1 (en)2005-09-152012-01-26Steffen PanznerEfficient Method For Loading Amphoteric Liposomes With Nucleic Acid Active Substances
DE102005046490A1 (en)2005-09-282007-03-29Johannes-Gutenberg-Universität MainzNew nucleic acid molecule comprising promoter, a transcriptable nucleic acid sequence, a first and second nucleic acid sequence for producing modified RNA with transcriptional stability and translational efficiency
US20070087437A1 (en)2005-10-142007-04-19Jifan HuMethods for rejuvenating cells in vitro and in vivo
ATE539765T1 (en)2005-11-042012-01-15Novartis Vaccines & Diagnostic FLU VACCINES WITH PARTICLE ADJUVANTS AND IMMUNE BOOSTERS COMBINATIONS
US20070105124A1 (en)2005-11-082007-05-10Getts Robert CMethods and kits for nucleic acid amplification
WO2007057167A2 (en)2005-11-182007-05-24Bioline LimitedA method for enhancing enzymatic dna polymerase reactions
SG10201600950TA (en)2005-11-282016-03-30Genmab AsRecombinant monovalent antibodies and methods for production thereof
TWI389709B (en)2005-12-012013-03-21Novartis Ag Transdermal therapeutic system
US8603457B2 (en)2005-12-022013-12-10University Of RochesterNonsense suppression and genetic codon alteration by targeted modification
WO2008051245A2 (en)2005-12-022008-05-02Novartis AgNanoparticles for use in immunogenic compositions
US7579318B2 (en)2005-12-062009-08-25Centre De La Recherche De La ScientifiqueCell penetrating peptides for intracellular delivery of molecules
EP1969000A2 (en)2005-12-062008-09-17Centre National de la Recherche ScientifiqueCell penetrating peptides for intracellular delivery of molecules
AU2006321602B2 (en)2005-12-082012-03-08Novartis AgEffects of inhibitors of FGFR3 on gene transcription
PT1970446E (en)2005-12-132011-09-01Univ KyotoNuclear reprogramming factor
JP2009519033A (en)2005-12-162009-05-14ディアト Cell penetrating peptide conjugates for delivering nucleic acids to cells
WO2007077042A1 (en)2006-01-062007-07-12Topotarget Switzerland SaNew method for the treatment of gout or pseudogout
KR101421745B1 (en)2006-01-132014-07-22더 트러스티스 오브 더 유니버시티 오브 펜실바니아 Vaccines and immunotherapeutics using codon-optimized IL-15, and methods of using the same
US20070178103A1 (en)2006-01-302007-08-02Fey Georg HCD19-specific immunotoxin and treatment method
US8476234B2 (en)2006-02-032013-07-02Prolor Biotech Inc.Long-acting coagulation factors and methods of producing same
US9458444B2 (en)2006-02-032016-10-04Opko Biologics Ltd.Long-acting coagulation factors and methods of producing same
US8946155B2 (en)2006-02-032015-02-03Opko Biologics Ltd.Long-acting polypeptides and methods of producing and administering same
DE102006007433A1 (en)2006-02-172007-08-23Curevac Gmbh Adjuvant in the form of a lipid-modified nucleic acid
JP5295785B2 (en)2006-02-202013-09-18エファ・ユニバーシティ・インダストリー・コラボレイション・ファウンデイション Cell membrane permeable peptide
JP5312050B2 (en)2006-02-212013-10-09ネクター セラピューティクス Split-type degradable polymers and composites produced therefrom
CA2643322C (en)2006-02-242015-07-21Novartis AgMicroparticles containing biodegradable polymer and cationic polysaccharide for use in immunogenic compositions
US20080038278A1 (en)2006-02-242008-02-14Jingsong CaoGPAT3 encodes a mammalian, microsomal acyl-coa:glycerol 3- phosphate acyltransferase
WO2007100770A2 (en)2006-02-282007-09-07Elan Pharmaceuticals, Inc.Methods of treating inflammatory and autoimmune diseases with natalizumab
US7910152B2 (en)2006-02-282011-03-22Advanced Cardiovascular Systems, Inc.Poly(ester amide)-based drug delivery systems with controlled release rate and morphology
GB0605217D0 (en)2006-03-152006-04-26Novartis AgMethod and compositions for assessing acute rejection
EP2012751A4 (en)2006-03-212010-11-24Morehouse School Of Medicine NEW NANOPARTICLES FOR THE ACTIVE COMPOSITION
EP2007435B1 (en)2006-03-312019-12-18Massachusetts Institute Of TechnologySystem for targeted delivery of therapeutic agents
US8257685B2 (en)2006-04-042012-09-04Stc.UnmSwellable particles for drug delivery
AU2007238624B2 (en)2006-04-142012-05-31Cellscript, LlcKits and methods for generating 5' capped RNA
EP1852127A1 (en)2006-05-022007-11-07Charité - Universitätsmedizin BerlinUse of a B-cell-depleting antibody for treatment of polyoma virus infections
CA2652280C (en)2006-05-152014-01-28Massachusetts Institute Of TechnologyPolymers for functional particles
MX2008014971A (en)2006-05-242008-12-05Serono Lab CLADRIBINE REGIME TO TREAT MULTIPLE SCLEROSIS.
WO2007143574A1 (en)2006-06-022007-12-13President And Fellows Of Harvard CollegeProtein surface remodeling
CA2656620C (en)2006-07-042018-03-13Genmab A/SCd20 binding molecules for the treatment of copd
DE602007013559D1 (en)2006-07-072011-05-12Univ Aarhus NANOTEILES FOR THE DISTRIBUTION OF NUCLEIC ACID
JP5271902B2 (en)2006-07-122013-08-21ノバルティス アーゲー Actinic crosslinkable copolymers for contact lens manufacture
KR20090039748A (en)2006-07-202009-04-22노파르티스 아게 AMBI-2 inhibitors for the treatment, diagnosis or detection of cancer
EP2054036B1 (en)2006-07-242019-12-18Singh-Broemer and Company, Inc.Solid nanoparticle formulation of water insoluble pharmaceutical substances with reduced ostwald ripening
JP2009544754A (en)2006-07-282009-12-17アプライド バイオシステムズ, エルエルシー Dinucleotide MRNA cap analog
WO2008014979A2 (en)2006-07-312008-02-07Curevac GmbhNUCLEIC ACID OF FORMULA (I): GIXmGn, OR (II): CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT
DE102006035618A1 (en)2006-07-312008-02-07Curevac GmbhNew nucleic acid useful as immuno-stimulating adjuvant for manufacture of a composition for treatment of cancer diseases e.g. colon carcinomas and infectious diseases e.g. influenza and malaria
RU2009108289A (en)2006-08-072010-09-20Джензим Корпорейшн (Us) COMBINED THERAPY
CA2661093A1 (en)2006-08-182008-02-21Nastech Pharmaceutical Company Inc.Dicer substrate rna peptide conjugates and methods for rna therapeutics
US8658211B2 (en)2006-08-182014-02-25Arrowhead Madison Inc.Polyconjugates for in vivo delivery of polynucleotides
CN101511382B (en)2006-09-062013-11-13加利福尼亚大学董事会Selectively targeted antimicrobial peptides and the use thereof
US8192927B2 (en)2006-09-072012-06-05Crucell Holland B.V.Human bind molecules capable of neutralizing influenza virus h5n1 and uses thereof
JP2010502713A (en)2006-09-082010-01-28ザ・ジョンズ・ホプキンス・ユニバーシティー Compositions and methods for enhancing transport through mucus
US8454948B2 (en)2006-09-142013-06-04Medgenics Medical Israel Ltd.Long lasting drug formulations
GB0619182D0 (en)2006-09-292006-11-08Leuven K U Res & DevOligonucleotide arrays
CA2927045A1 (en)2006-10-032008-04-10Muthiah ManoharanLipid containing formulations
BRPI0715299A2 (en)2006-10-052013-07-23The Johns Hopkins University Method for preparing polymeric nanoparticles, Method for preparing a micellar cup, Reconstitutable polymer micelles, Bioactive polymeric nanoparticle composition, Method for providing a patient a medicament and Method for preparing polymeric nanoparticle compositions
DE102006051516A1 (en)*2006-10-312008-05-08Curevac Gmbh (Base) modified RNA to increase the expression of a protein
US8414927B2 (en)2006-11-032013-04-09Boston Scientific Scimed, Inc.Cross-linked polymer particles
US7999087B2 (en)2006-11-152011-08-16Agilent Technologies, Inc.2′-silyl containing thiocarbonate protecting groups for RNA synthesis
US8242258B2 (en)2006-12-032012-08-14Agilent Technologies, Inc.Protecting groups for RNA synthesis
US8399007B2 (en)2006-12-052013-03-19Landec CorporationMethod for formulating a controlled-release pharmaceutical formulation
PL2121011T3 (en)2006-12-062014-10-31Novartis AgVaccines including antigen from four strains of influenza virus
US9034348B2 (en)2006-12-112015-05-19Chi2Gel Ltd.Injectable chitosan mixtures forming hydrogels
WO2008076437A2 (en)2006-12-182008-06-26Acceleron Pharma Inc.Activin-actrii antagonists and uses for increasing red blood cell levels
EP2104739B1 (en)2006-12-212013-06-19Novozymes Inc.Modified messenger rna stabilizing sequences for expressing genes in bacterial cells
EP2120859B1 (en)2006-12-212013-11-20Stryker CorporationSustained-release formulations comprising bmp-7 crystals
WO2008078180A2 (en)2006-12-222008-07-03Archemix Corp.Materials and methods for the generation of transcripts comprising modified nucleotides
DE102006061015A1 (en)2006-12-222008-06-26Curevac Gmbh Process for the purification of RNA on a preparative scale by HPLC
US8338166B2 (en)2007-01-042012-12-25Lawrence Livermore National Security, LlcSorting, amplification, detection, and identification of nucleic acid subsequences in a complex mixture
DE102007001370A1 (en)*2007-01-092008-07-10Curevac Gmbh RNA-encoded antibodies
WO2008091799A2 (en)2007-01-222008-07-31The Trustees Of Columbia University In The City Of New YorkCell-based methods for identifying inhibitors of parkinson's disease-associated lrrk2 mutants
EP2450368A1 (en)2007-01-302012-05-09Epivax, Inc.Regulatory t cell epitopes, compositions and uses thereof
TWI432449B (en)2007-02-022014-04-01Acceleron Pharma Inc Variants derived from ActRIIB and their uses
US8859229B2 (en)2007-02-022014-10-14Yale UniversityTransient transfection with RNA
WO2008096370A2 (en)2007-02-052008-08-14Natco Pharma LimitedAn efficient and novel purification method of recombinant hg-csf
US8333799B2 (en)2007-02-122012-12-18C. R. Bard, Inc.Highly flexible stent and method of manufacture
US8242087B2 (en)2007-02-272012-08-14K.U.Leuven Research & DevelopmentPhosphate modified nucleosides useful as substrates for polymerases and as antiviral agents
EP1964922A1 (en)*2007-03-022008-09-03Boehringer Ingelheim Pharma GmbH & Co. KGImprovement of protein production
PL2126093T3 (en)*2007-03-022013-03-29Boehringer Ingelheim PharmaImprovement of protein production
EP2120876B1 (en)2007-03-052015-03-04Washington UniversityNanoparticle delivery systems for membrane-integrating peptides
EP2125892A2 (en)2007-03-202009-12-02Millennium Pharmaceuticals, Inc.Nucleic acids encoding humanized immunoglobulin that binds a4b7 integrin
CA2685423C (en)2007-04-272014-02-18Echo Therapeutics, Inc.Skin permeation device for analyte sensing or transdermal drug delivery
DK2152290T3 (en)2007-04-302014-08-18Glaxosmithkline Llc PROCEDURES FOR ADMINISTRATION OF ANTI-IL-5 ANTIBODIES
WO2008135855A2 (en)2007-05-032008-11-13Pfizer Products Inc.Nanoparticles comprising a cholesteryl ester transfer protein inhibitor and a nonionizable polymer
US7682789B2 (en)2007-05-042010-03-23Ventana Medical Systems, Inc.Method for quantifying biomolecules conjugated to a nanoparticle
DK2494993T3 (en)2007-05-042018-11-12Marina Biotech Inc Amino acid lipids and uses thereof
US8728491B2 (en)2007-05-072014-05-20Alba Therapeutics CorporationTranscutaneous delivery of therapeutic agents
JP5296328B2 (en)2007-05-092013-09-25独立行政法人理化学研究所 Single-stranded circular RNA and method for producing the same
PL2476689T3 (en)2007-05-102016-04-29Agilent Technologies IncThiocarbon-protecting groups for RNA synthesis
SI3072525T1 (en)2007-05-142018-06-29Astrazeneca AbMethods of reducing basophil levels
WO2008144365A2 (en)2007-05-172008-11-27Novartis AgMethod for making dry powder compositions containing ds-rna based on supercritical fluid technology
BRPI0812384A2 (en)2007-05-222014-12-02Novartis Ag TREATMENT, DIAGNOSTIC AND DISEASE TREATMENT METHODS ASSOCIATED WITH FGF21
EP2826863B1 (en)2007-05-302017-08-23Northwestern UniversityNucleic acid functionalized nanoparticles for therapeutic applications
EP2164951A2 (en)2007-05-302010-03-24The General Hospital CorporationMethods of generating pluripotent cells from somatic cells
PT2167523E (en)2007-06-192014-09-22Univ Louisiana StateSynthesis and use of anti-reverse phosphorothioate analogs of the messenger rna cap
WO2009006438A2 (en)2007-06-292009-01-08Epicentre Technologies CorporationCopy dna and sense rna
WO2009015071A1 (en)2007-07-232009-01-29Dharmacon, Inc.Screening of micro-rna cluster inhibitor pools
US20090042825A1 (en)2007-08-062009-02-12Majed MatarComposition, method of preparation & application of concentrated formulations of condensed nucleic acids with a cationic lipopolymer
US9144546B2 (en)2007-08-062015-09-29Clsn Laboratories, Inc.Nucleic acid-lipopolymer compositions
EP2183390A1 (en)2007-08-232010-05-12Novartis AgMethods for detecting oligonucleotides
WO2009030368A1 (en)2007-09-052009-03-12F. Hoffmann-La Roche AgCombination therapy with type i and type ii anti-cd20 antibodies
WO2009030254A1 (en)2007-09-042009-03-12Curevac GmbhComplexes of rna and cationic peptides for transfection and for immunostimulation
US8506928B2 (en)2007-09-072013-08-13The Regents Of The University Of CaliforniaMethods and compounds for targeting tissues
US20110086904A1 (en)2007-09-172011-04-14The Trustees Of The University Of PennsylvaniaGENERATION OF HYPERSTABLE mRNAs
US8394763B2 (en)2007-09-262013-03-12Oregon Health & Science UniversityCyclic undecapeptides and derivatives as multiple sclerosis therapies
EP2205618B1 (en)2007-09-262016-11-09Intrexon CorporationSynthetic 5'utrs, expression vectors, and methods for increasing transgene expression
EP2042193A1 (en)2007-09-282009-04-01Biomay AGRNA Vaccines
PL2644192T3 (en)2007-09-282017-09-29Pfizer Inc.Cancer Cell Targeting Using Nanoparticles
US8470560B2 (en)2007-10-032013-06-25The United States Of America As Represented By The Secretary Of The ArmyCR-2 binding peptide P28 as molecular adjuvant for DNA vaccines
WO2009046738A1 (en)2007-10-092009-04-16Curevac GmbhComposition for treating lung cancer, particularly of non-small lung cancers (nsclc)
WO2009046739A1 (en)2007-10-092009-04-16Curevac GmbhComposition for treating prostate cancer (pca)
CA2917512A1 (en)2007-10-122009-04-23Massachusetts Institute Of TechnologyVaccine nanotechnology
US20090098118A1 (en)2007-10-152009-04-16Thomas FriessCombination therapy of a type ii anti-cd20 antibody with an anti-bcl-2 active agent
US20110091473A1 (en)2007-10-222011-04-21Genmab A/SNovel antibody therapies
BRPI0818913A2 (en)2007-11-012015-05-12Univ Rochester Recombinant factor viii having high stability
CA2705263A1 (en)2007-11-092009-05-14Novartis AgCombination therapy with an antagonist anti-cd 40 antibody and cyclophosphamide, doxorubicin, vincristine and prednisone (chop) for treatment of b-cell malignancies
US8470771B2 (en)2007-11-142013-06-25Institute Of Microbiology, Chinese Academy Of SciencesMethod and medicament for inhibiting the infection of influenza virus
CA2706419A1 (en)2007-11-302009-06-04Glaxo Group LimitedAntigen-binding constructs binding il-13
AU2008335202A1 (en)2007-12-102009-06-18Alnylam Pharmaceuticals, Inc.Compositions and methods for inhibiting expression of Factor VII gene
EP2610340B1 (en)2007-12-112014-10-01The Scripps Research InstituteCompositions and methods related to mRNA translational enhancer elements
EP2229459B1 (en)2007-12-132014-08-27Alnylam Pharmaceuticals, Inc.Methods and compositions for prevention or treatment of RSV infection
EP2072618A1 (en)2007-12-142009-06-24Johannes Gutenberg-Universität MainzUse of RNA for reprogramming somatic cells
WO2009086072A2 (en)2007-12-212009-07-09Genentech, Inc.Therapy of rituximab-refractory rheumatoid arthritis patients
WO2009093703A1 (en)2008-01-232009-07-30Ajinomoto Co., Inc.Method of producing l-amino acid
JPWO2009093384A1 (en)2008-01-242011-05-26独立行政法人産業技術総合研究所 Polynucleotide, polynucleotide analogue and gene expression control method using the same
RU2545701C2 (en)2008-01-312015-04-10Куревак ГмбхNUCLEIC ACIDS OF FORMULA (I) (NuGlXmGnNv)a AND DERIVATIVES THEREOF AS IMMUNOSTIMULATING AGENTS/ADJUVANTS
US20100330677A1 (en)2008-02-112010-12-30Cambridge Enterprise LimitedImproved Reprogramming of Mammalian Cells, and Cells Obtained
WO2009102467A2 (en)2008-02-132009-08-20Intarcia Therapeutics, Inc.Devices, formulations, and methods for delivery of multiple beneficial agents
DE102008009920A1 (en)2008-02-152009-08-20Aj Innuscreen Gmbh Mobile device for nucleic acid isolation
US20120027813A1 (en)2008-02-222012-02-02Novartis Vaccines And Diagnostics SrlAdjuvanted influenza vaccines for pediatric use
US8506966B2 (en)2008-02-222013-08-13Novartis AgAdjuvanted influenza vaccines for pediatric use
WO2009108891A2 (en)2008-02-292009-09-03Egen, Inc.Modified poloxamers for gene expression and associated methods
DK2993186T3 (en)2008-03-142019-11-25Biocon Ltd A monoclonal antibody and a method thereof
WO2009114854A1 (en)2008-03-142009-09-17Egen, Inc.Biodegradable cross-linked branched poly (alkylene imines)
CN102026660A (en)2008-03-282011-04-20葛兰素史密斯克莱有限责任公司Methods of treatment
NZ588583A (en)2008-04-152012-08-31Protiva Biotherapeutics IncNovel lipid formulations for nucleic acid delivery
WO2009127230A1 (en)*2008-04-162009-10-22Curevac GmbhMODIFIED (m)RNA FOR SUPPRESSING OR AVOIDING AN IMMUNOSTIMULATORY RESPONSE AND IMMUNOSUPPRESSIVE COMPOSITION
EP2288336B8 (en)2008-04-252017-03-22Northwestern UniversityNanostructures suitable for sequestering cholesterol
AU2009243187C1 (en)2008-04-282015-12-24President And Fellows Of Harvard CollegeSupercharged proteins for cell penetration
BRPI0913012B1 (en)2008-04-302021-12-14The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services, Centers For Disease Control And Prevention CHIMERA NUCLEIC ACID CHIMERA, METHODS FOR DETECTING A DENGUE VIRUS ANTIBODY IN A PATIENT SAMPLE, AND FOR PRODUCING VIRAL PARTICLES THAT EXPRESS PRM AND DENGUE VIRUS PROTEINS, USE OF CHIMERIC VIRUS AND FLAVIVIRUSES OR VIRAL PARTICLES
US9394538B2 (en)2008-05-072016-07-19Shi-Lung LinDevelopment of universal cancer drugs and vaccines
US8486278B2 (en)2008-05-082013-07-16Minipumps, LlcDrug-delivery pumps and methods of manufacture
US8697098B2 (en)2011-02-252014-04-15South Dakota State UniversityPolymer conjugated protein micelles
CA2724105C (en)2008-05-132017-09-05University Of WashingtonDiblock copolymers and polynucleotide complexes thereof for delivery into cells
EP2297323A1 (en)2008-05-212011-03-23Hartmann, Gunther5' triphosphate oligonucleotide with blunt end and uses thereof
FR2931824B1 (en)2008-05-292014-11-28Centre Nat Rech Scient PROCESS FOR RNA SYNTHESIS THROUGH CHEMICAL.
JP2011520472A (en)2008-05-292011-07-21ハナル バイオファーマ カンパニー リミテッド Modified erythropoietin (EPO) polypeptide exhibiting increased proteolytic enzyme resistance and pharmaceutical composition thereof
US20100086922A1 (en)2008-05-302010-04-08Millennium Pharmaceuticals, Inc.Assessment of chromosomal alterations to predict clinical outcome of bortezomib treatment
PL215513B1 (en)2008-06-062013-12-31Univ WarszawskiNew borane phosphate analogs of dinucleotides, their application, RNA particle, method of obtaining RNA and method of obtaining peptides or protein
TWI451876B (en)2008-06-132014-09-11Lilly Co EliPegylated insulin lispro compounds
US20100104645A1 (en)2008-06-162010-04-29Bind Biosciences, Inc.Methods for the preparation of targeting agent functionalized diblock copolymers for use in fabrication of therapeutic targeted nanoparticles
AU2009268923B2 (en)2008-06-162015-09-17Pfizer Inc.Drug loaded polymeric nanoparticles and methods of making and using same
WO2010005726A2 (en)2008-06-162010-01-14Bind Biosciences Inc.Therapeutic polymeric nanoparticles with mtor inhibitors and methods of making and using same
US20100009424A1 (en)2008-07-142010-01-14Natasha FordeSonoporation systems and methods
WO2010009065A2 (en)2008-07-152010-01-21Novartis AgAmphipathic peptide compositions
US20110250237A1 (en)2008-07-152011-10-13O'hagan DerekImmunogenic amphipathic peptide compositions
EP2331561A4 (en)2008-09-032013-02-27Xenome LtdLibraries of peptide conjugates and methods for making them
WO2010027512A2 (en)2008-09-062010-03-11Chemgenes CorporationRna synthesis - phosphoramidites for synthetic rna in the reverse direction, and application in convenient introduction of ligands, chromophores and modifications of synthetic rna at the 3' - end
US20120100558A1 (en)2008-09-082012-04-26Hanash Samir MLung cancer diagnosis
WO2010030763A2 (en)2008-09-102010-03-18Bind Biosciences, Inc.High throughput fabrication of nanoparticles
TW201438738A (en)2008-09-162014-10-16Genentech Inc Method for treating progressive multiple sclerosis
US20120021519A1 (en)2008-09-192012-01-26Presidents And Fellows Of Harvard CollegeEfficient induction of pluripotent stem cells using small molecule compounds
WO2010037408A1 (en)2008-09-302010-04-08Curevac GmbhComposition comprising a complexed (m)rna and a naked mrna for providing or enhancing an immunostimulatory response in a mammal and uses thereof
WO2010042490A1 (en)2008-10-062010-04-15Boston Medical Center CorporationA single lentiviral vector system for induced pluripotent (ips) stem cells derivation
PL2350043T3 (en)2008-10-092014-09-30Tekmira Pharmaceuticals CorpImproved amino lipids and methods for the delivery of nucleic acids
US8535655B2 (en)2008-10-102013-09-17Polyactiva Pty Ltd.Biodegradable polymer—bioactive moiety conjugates
US8343498B2 (en)2008-10-122013-01-01Massachusetts Institute Of TechnologyAdjuvant incorporation in immunonanotherapeutics
US8603532B2 (en)2008-10-202013-12-10Massachusetts Institute Of TechnologyNanostructures for drug delivery
US20120015899A1 (en)2008-10-252012-01-19Plant Bioscience, LimitedModified plant virus particles and uses therefor
CN104910025B (en)2008-11-072019-07-16麻省理工学院Alkamine lipid and its purposes
CN105709229B (en)2008-11-102020-07-28阿布特斯生物制药公司 Novel lipids and compositions for delivery of therapeutic agents
CA2780482A1 (en)2008-11-172010-05-10Anil K. SoodHdl particles for delivery of nucleic acids
EP2191840A1 (en)2008-11-282010-06-02Sanofi-AventisAntitumor combinations containing antibodies recognizing specifically CD38 and melphalan
CA2746514C (en)2008-12-102018-11-27Alnylam Pharmaceuticals, Inc.Gnaq targeted dsrna compositions and methods for inhibiting expression
EP2196476A1 (en)2008-12-102010-06-16Novartis AgAntibody formulation
EP2376091A4 (en)2008-12-122012-08-01Univ California NEW TARGETS FOR THE TREATMENT OF HYPERCHOLESTEROLEMIA
WO2010068866A2 (en)2008-12-122010-06-17Bind BiosciencesTherapeutic particles suitable for parenteral administration and methods of making and using same
JP2012512175A (en)2008-12-152012-05-31バインド バイオサイエンシズ インコーポレイテッド Long-circulating nanoparticles for sustained release of therapeutic agents
EP2405937A4 (en)2009-01-162012-06-20Glaxosmithkline LlcTreatment of a cancer using a combination of bendamustine and an anti-cd20 antibody
WO2010084371A1 (en)2009-01-262010-07-29MitoprodNovel circular interfering rna molecules
AU2010208035B2 (en)2009-01-292016-06-23Arbutus Biopharma CorporationImproved lipid formulation for the delivery of nucleic acids
WO2010088927A1 (en)2009-02-092010-08-12Curevac GmbhUse of pei for the improvement of endosomal release and expression of transfected nucleic acids, complexed with cationic or polycationic compounds
US20140141089A1 (en)2009-02-112014-05-22Colorado School Of MinesNanoparticles, Compositions Thereof, and Methods of Use, and Methods of Making the Same
JP5735927B2 (en)2009-02-242015-06-17ザ スクリプス リサーチ インスティテュート Re-engineering the primary structure of mRNA to enhance protein production
MX2011009362A (en)2009-03-052011-09-26Abbott LabIl-17 binding proteins.
WO2010102065A1 (en)2009-03-052010-09-10Bend Research, Inc.Pharmaceutical compositions of dextran polymer derivatives
WO2010141135A2 (en)2009-03-052010-12-09Trustees Of Boston UniversityBacteriophages expressing antimicrobial peptides and uses thereof
JP2012520085A (en)2009-03-132012-09-06エーゲン、インコーポレイテッド Compositions and methods for delivery of bioactive RNA
WO2010108108A2 (en)2009-03-202010-09-23Egen, Inc.Polyamine derivatives
US20120095077A1 (en)2009-03-232012-04-19University Of Utah Research FoundationMethods and compositions related to modified guanine bases for controlling off-target effects in rna interference
JP5622254B2 (en)2009-03-312014-11-12国立大学法人東京大学 Double-stranded ribonucleic acid polyion complex
KR101773368B1 (en)2009-04-032017-08-31유니버시티 오브 시카고Compositions and methods related to Protein A (SpA) variants
CA2795906C (en)2009-04-132019-02-26Inserm, Institut National De La Sante Et De La Recherche MedicaleHpv particles and uses thereof
CN102573907A (en)2009-04-172012-07-11比奥根艾迪克Ma公司Compositions and methods to treat acute myelogenous leukemia
US20100273220A1 (en)2009-04-222010-10-28Massachusetts Institute Of TechnologyInnate immune suppression enables repeated delivery of long rna molecules
AR076402A1 (en)2009-04-272011-06-08Novartis Ag COMPOSITIONS AND METHODS TO INCREASE MUSCLE GROWTH
WO2010129033A2 (en)2009-04-292010-11-11Calmune CorporationModified antibodies for passive immunotherapy
US8287910B2 (en)2009-04-302012-10-16Intezyne Technologies, Inc.Polymeric micelles for polynucleotide encapsulation
US8715736B2 (en)2009-04-302014-05-06Florida Agricultural And Mechanical UniversityNanoparticle formulations for skin delivery
KR20210031549A (en)2009-05-052021-03-19알닐람 파마슈티칼스 인코포레이티드Lipid compositions
DE202009007116U1 (en)2009-05-182010-10-14Amoena Medizin-Orthopädie-Technik GmbH Anti decubitus cushions
US8574835B2 (en)2009-05-292013-11-05Life Technologies CorporationScaffolded nucleic acid polymer particles and methods of making and using
KR102374518B1 (en)2009-06-102022-03-16알닐람 파마슈티칼스 인코포레이티드Improved lipid formulation
EP2440556A1 (en)2009-06-102012-04-18Vertex Pharmaceuticals IncorporatedInhibitors of phosphatidylinositol 3-kinase
WO2010148013A2 (en)2009-06-152010-12-23Alnylam Pharmaceuticals, Inc.Lipid formulated dsrna targeting the pcsk9 gene
US20110097329A1 (en)2009-06-262011-04-28Massachusetts Institute Of TechnologyCompositions and methods for treating cancer and modulating stress granule formation
CA2767127A1 (en)2009-07-012011-01-06Protiva Biotherapeutics, Inc.Novel lipid formulations for delivery of therapeutic agents to solid tumors
US8569256B2 (en)2009-07-012013-10-29Protiva Biotherapeutics, Inc.Cationic lipids and methods for the delivery of therapeutic agents
US20110300205A1 (en)2009-07-062011-12-08Novartis AgSelf replicating rna molecules and uses thereof
KR20120097484A (en)2009-07-312012-09-04에트리스 게엠베하Rna with a combination of unmodified and modified nucleotides for protein expression
EP2281579A1 (en)2009-08-052011-02-09BioNTech AGVaccine composition comprising 5'-Cap modified RNA
US20110053829A1 (en)2009-09-032011-03-03Curevac GmbhDisulfide-linked polyethyleneglycol/peptide conjugates for the transfection of nucleic acids
US20110070227A1 (en)2009-09-182011-03-24Anna-Marie Novotney-BarryTreatment of Autoimmune and Inflammatory Diseases
US8859284B2 (en)2009-10-222014-10-14The United States Of America, As Represented By The Secretary Of The NavyDelivery of nanoparticles to neurons
US8449916B1 (en)2009-11-062013-05-28Iowa State University Research Foundation, Inc.Antimicrobial compositions and methods
WO2011060250A1 (en)2009-11-132011-05-19Bend Research, Inc.Cationic dextran polymer derivatives
WO2011062965A2 (en)2009-11-182011-05-26University Of Washington Through Its Center For CommercializationTargeting monomers and polymers having targeting blocks
US8530429B2 (en)2009-11-242013-09-10Arch Cancer Therapeutics, Inc.Brain tumor targeting peptides and methods
HUE038039T2 (en)2009-12-012018-09-28Translate Bio IncDelivery of mrna for the augmentation of proteins and enzymes in human genetic diseases
US20110245756A1 (en)2009-12-032011-10-06Rishi AroraDevices for material delivery, electroporation, sonoporation, and/or monitoring electrophysiological activity
DE102009056884B4 (en)2009-12-032021-03-18Novartis Ag Vaccine Adjuvants and Improved Methods for Making Same
EP3326643B1 (en)2009-12-062021-04-07Bioverativ Therapeutics Inc.Factor viii-fc chimeric and hybrid polypeptides, and methods of use thereof
US20130189741A1 (en)2009-12-072013-07-25Cellscript, Inc.Compositions and methods for reprogramming mammalian cells
AU2010328336B2 (en)2009-12-072017-03-02Arbutus Biopharma CorporationCompositions for nucleic acid delivery
HUE047165T2 (en)2009-12-072020-04-28Univ PennsylvaniaRna preparations comprising purified modified rna for reprogramming cells
WO2011069529A1 (en)2009-12-092011-06-16Curevac GmbhMannose-containing solution for lyophilization, transfection and/or injection of nucleic acids
WO2011069528A1 (en)2009-12-092011-06-16Curevac GmbhLyophilization of nucleic acids in lactate-containing solutions
EP2509634B1 (en)2009-12-112019-03-06Pfizer IncStable formulations for lyophilizing therapeutic particles
WO2011084518A2 (en)2009-12-152011-07-14Bind Biosciences, Inc.Therapeutic polymeric nanoparticles comprising corticosteroids and methods of making and using same
WO2011084513A2 (en)2009-12-152011-07-14Bind Biosciences, Inc.Therapeutic polymeric nanoparticle compositions with high glass transition temperature or high molecular weight copolymers
DE102009058769A1 (en)2009-12-162011-06-22MagForce Nanotechnologies AG, 10589 Temperature-dependent activation of catalytic nucleic acids for controlled drug release
JP2013514977A (en)2009-12-162013-05-02ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッド Particles for delivery of multiple substances
AU2010330814B2 (en)2009-12-182017-01-12Acuitas Therapeutics Inc.Methods and compositions for delivery of nucleic acids
EP2338520A1 (en)2009-12-212011-06-29Ludwig Maximilians UniversitätConjugate with targeting ligand and use of same
CN102905763B (en)2009-12-232015-06-17诺华股份有限公司Lipids, lipid compositions, and methods of using them
US8846631B2 (en)2010-01-142014-09-30Regulus Therapeutics Inc.MicroRNA compositions and methods
PT2539451E (en)2010-02-242016-03-28Arrowhead Res CorpCompositions for targeted delivery of sirna
US8889193B2 (en)2010-02-252014-11-18The Johns Hopkins UniversitySustained delivery of therapeutic agents to an eye compartment
US20130133483A1 (en)2010-03-082013-05-30University Of RochesterSynthesis of Nanoparticles Using Reducing Gases
CN102892809A (en)2010-03-162013-01-23犹他大学研究基金会Cleavable modifications to reducible poly (amido ethylenimines)s to enhance nucleotide delivery
WO2011116072A1 (en)2010-03-162011-09-22Escape Therapeutics, Inc.Hybrid hydrogel scaffold compositions and methods of use
US20110230816A1 (en)2010-03-182011-09-22Tyco Healthcare Group LpGels for Transdermal Delivery
US9149432B2 (en)2010-03-192015-10-06Massachusetts Institute Of TechnologyLipid vesicle compositions and methods of use
GB201005005D0 (en)2010-03-252010-05-12Angeletti P Ist Richerche BioNew vaccine
JP2013528665A (en)2010-03-262013-07-11メルサナ セラピューティックス, インコーポレイテッド Modified polymers for delivery of polynucleotides, methods for their production, and methods of their use
WO2011119262A1 (en)2010-03-262011-09-29Cerulean Pharma Inc.Methods and systems for generating nanoparticles
US20110247090A1 (en)2010-04-022011-10-06Intrexon CorporationSynthetic 5'UTRs, Expression Vectors, and Methods for Increasing Transgene Expression
EP2555794A4 (en)2010-04-052014-01-15Univ Chicago PROTEIN A (SPA) ANTIBODY COMPOSITIONS AND METHODS AS AN IMMUNE RESPONSE AMPLIFIER
BR112012025364A2 (en)2010-04-072015-09-22Novartis Ag parvovirus b19 virus-like particle generation method
EP2558074B1 (en)2010-04-082018-06-06The Trustees of Princeton UniversityPreparation of lipid nanoparticles
JP6043278B2 (en)2010-04-092016-12-14パシラ ファーマシューティカルズ インコーポレーテッド Method for making multivesicular liposomes, method for preparing large diameter synthetic membrane vesicles, and evaporation apparatus
WO2011125469A1 (en)2010-04-092011-10-13国立大学法人東京大学Micro-rna-regulated recombinant vaccinia virus and utilization thereof
KR101196667B1 (en)2010-04-152012-11-02포항공과대학교 산학협력단A DELEVERY SYSTEM OF ANTI-CANCER AGENT USING pH SENSITIVE METAL NANOPARTICLE
DK2558577T3 (en)2010-04-162019-04-01Nuevolution As Bi-functional complexes and methods for the preparation and use of such complexes
EP3072961A1 (en)2010-04-162016-09-28Children's Medical Center CorporationSustained polypeptide expression from synthetic, modified rnas and uses thereof
EP2377938A1 (en)2010-04-162011-10-19EukarysCapping-prone RNA polymerase enzymes and their applications
US20130260460A1 (en)2010-04-222013-10-03Isis Pharmaceuticals IncConformationally restricted dinucleotide monomers and oligonucleotides
MX2012012567A (en)2010-04-282012-11-21Kimberly Clark CoMethod for increasing permeability of an epithelial barrier.
WO2011139911A2 (en)2010-04-292011-11-10Isis Pharmaceuticals, Inc.Lipid formulated single stranded rna
PE20130213A1 (en)2010-04-302013-03-19Novartis Ag USEFUL PREDICTIVE MARKERS IN THE TREATMENT OF FRAGILE X SYNDROME (FXS)
US9254327B2 (en)2010-05-102016-02-09Alnylam Pharmaceuticals, Inc.Methods and compositions for delivery of active agents
US10077232B2 (en)2010-05-122018-09-18Arbutus Biopharma CorporationCyclic cationic lipids and methods of use
WO2011141705A1 (en)2010-05-122011-11-17Protiva Biotherapeutics, Inc.Novel cationic lipids and methods of use thereof
EP2387999A1 (en)2010-05-212011-11-23CureVac GmbHHistidine-containing solution for transfection and/or injection of nucleic acids and uses thereof
WO2011149733A2 (en)2010-05-242011-12-01Merck Sharp & Dohme Corp.Novel amino alcohol cationic lipids for oligonucleotide delivery
JP5957646B2 (en)2010-06-042016-07-27サーナ・セラピューティクス・インコーポレイテッドSirna Therapeutics,Inc. Novel low molecular weight cationic lipids for oligonucleotide delivery
WO2011157715A1 (en)2010-06-142011-12-22F. Hoffmann-La Roche AgCell-penetrating peptides and uses therof
WO2011163121A1 (en)2010-06-212011-12-29Alnylam Pharmaceuticals, Inc.Multifunctional copolymers for nucleic acid delivery
WO2011161653A1 (en)2010-06-252011-12-29Novartis AgCombinations of meningococcal factor h binding proteins
CN103079592B (en)2010-07-012015-10-21浦项工科大学校产学协力团 Methods of treating and diagnosing cancer using microvesicles derived from cells
CN103037885B (en)2010-07-022015-08-26芝加哥大学The composition relevant to albumin A (SpA) variant and method
CA2804396C (en)2010-07-062021-06-29Novartis AgLiposomes with lipids having an advantageous pka-value for rna delivery
RU2625546C2 (en)2010-07-062017-07-14Новартис АгCationic emulsions "oil-in-water"
DK2591114T3 (en)2010-07-062016-08-29Glaxosmithkline Biologicals SaImmunization of large mammals with low doses of RNA
PT2590676T (en)2010-07-062016-11-04Glaxosmithkline Biologicals SaVirion-like delivery particles for self-replicating rna molecules
US9192661B2 (en)2010-07-062015-11-24Novartis AgDelivery of self-replicating RNA using biodegradable polymer particles
PT3243526T (en)2010-07-062020-03-04Glaxosmithkline Biologicals Sa DISTRIBUTION OF RNA TO DISPOLISH MULTIPLE IMMUNITY ROUTES
US9770463B2 (en)2010-07-062017-09-26Glaxosmithkline Biologicals SaDelivery of RNA to different cell types
EP3508573A1 (en)2010-07-092019-07-10Bioverativ Therapeutics Inc.Systems for factor viii processing and methods thereof
KR20220097518A (en)2010-07-092022-07-07바이오버라티브 테라퓨틱스 인크.Factor ix polypeptides and methods of use thereof
US20130177523A1 (en)2010-07-132013-07-11University Of Utah Research FoundationGold particles and methods of making and using the same in cancer treatment
GB201012410D0 (en)2010-07-232010-09-08Medical Res CouncilIntracellular immunity
CA2801523C (en)2010-07-302021-08-03Curevac GmbhComplexation of nucleic acids with disulfide-crosslinked cationic components for transfection and immunostimulation
CA2807552A1 (en)2010-08-062012-02-09Moderna Therapeutics, Inc.Engineered nucleic acids and methods of use thereof
WO2012021516A2 (en)2010-08-092012-02-16The Trustees Of The University Of PennsylvaniaNanoparticle-oligonucletide hybrid structures and methods of use thereof
WO2012019630A1 (en)2010-08-132012-02-16Curevac GmbhNucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein
AU2011291582A1 (en)2010-08-202013-03-07Cerulean Pharma Inc.Conjugates, particles, compositions, and related methods
EP2605816B1 (en)2010-08-202019-01-23University Of WashingtonCircumferential aerosol device for delivering drugs to olfactory epithelium and brain
ES2531577T3 (en)2010-08-202015-03-17Novartis Ag Needle sets for administration of soluble flu vaccine
LT4066819T (en)2010-08-312023-04-11Glaxosmithkline Biologicals SaSmall liposomes for delivery of immunogen-encoding rna
RS63329B1 (en)2010-08-312022-07-29Glaxosmithkline Biologicals SaPegylated liposomes for delivery of immunogen-encoding rna
ES2920140T3 (en)2010-08-312022-08-01Theraclone Sciences Inc Human immunodeficiency virus (HIV) neutralizing antibodies
US20130189351A1 (en)2010-08-312013-07-25Novartis AgLipids suitable for liposomal delivery of protein coding rna
KR20130100278A (en)2010-08-312013-09-10머크 샤프 앤드 돔 코포레이션Novel single chemical entities and methods for delivery of oligonucleotides
WO2012031205A2 (en)2010-09-032012-03-08The Brigham And Women's Hospital, Inc.Lipid-polymer hybrid particles
WO2012034077A2 (en)2010-09-092012-03-15The University Of ChicagoCompositions and methods related to attenuated staphylococcal strains
JP5793194B2 (en)2010-09-092015-10-14ザ・ユニバーシティ・オブ・シカゴThe University Of Chicago Methods and compositions involving protective staphylococcal antigens
US10307372B2 (en)2010-09-102019-06-04The Johns Hopkins UniversityRapid diffusion of large polymeric nanoparticles in the mammalian brain
US8466122B2 (en)2010-09-172013-06-18Protiva Biotherapeutics, Inc.Trialkyl cationic lipids and methods of use thereof
EP3144015B1 (en)2010-09-202021-06-02Sirna Therapeutics, Inc.Low molecular weight cationic lipids for oligonucleotide delivery
WO2012038448A1 (en)2010-09-212012-03-29Riboxx GmbhMethod for synthesizing rna using dna template
US20130280334A1 (en)2010-09-242013-10-24Massachusetts Institute Of TechnologyNanostructured Gels Capable of Controlled Release of Encapsulated Agents
WO2012050975A2 (en)2010-09-292012-04-19The University Of North Carolina At Chapel HillNovel circular mammalian rna molecules and uses thereof
WO2012044638A1 (en)2010-09-302012-04-05Merck Sharp & Dohme Corp.Low molecular weight cationic lipids for oligonucleotide delivery
PL4108671T3 (en)2010-10-012025-02-24Modernatx, Inc. MODIFIED NUCLEOSIDES, NUCLEOTIDES AND NUCLEIC ACIDS AND THEIR USES
US10078075B2 (en)2011-12-092018-09-18Vanderbilt UniversityIntegrated organ-on-chip systems and applications of the same
ES2716243T3 (en)2010-10-112019-06-11Glaxosmithkline Biologicals Sa Antigen Supply Platforms
US9492884B2 (en)2010-10-192016-11-15Mitsubishi Electric CorporationControl device and control method for laser processing machine
CA2813024A1 (en)2010-10-212012-04-26Merck Sharp & Dohme Corp.Novel low molecular weight cationic lipids for oligonucleotide delivery
EP2632485A4 (en)2010-10-292014-05-28Merck Sharp & Dohme RECOMBINANT SUBUNIT VACCINE AGAINST DENGUE VIRUS
CA2816977C (en)2010-11-052019-10-29The Johns Hopkins UniversityCompositions and methods relating to reduced mucoadhesion
CN103201386A (en)2010-11-092013-07-10加利福尼亚大学董事会 Skin-penetrating and cell-entry (SPACE) peptides and methods of use thereof
KR102557275B1 (en)2010-11-122023-07-19더 트러스티스 오브 더 유니버시티 오브 펜실바니아Consensus prostate antigens nucleic acid molecule encoding the same and vaccine and uses comprising the same
BR112013012195A2 (en)2010-11-162018-07-10Selecta Biosciences Inc immunostimulatory oligonucleotide
WO2012068360A1 (en)2010-11-172012-05-24Aduro BiotechMethods and compositions for inducing an immune response to egfrviii
AU2011329668B2 (en)2010-11-192016-07-28Idera Pharmaceuticals, Inc.Immune regulatory oligonucleotide (IRO) compounds to modulate toll-like receptor based immune response
WO2012075040A2 (en)2010-11-302012-06-07Shire Human Genetic Therapies, Inc.mRNA FOR USE IN TREATMENT OF HUMAN GENETIC DISEASES
WO2012072096A1 (en)2010-12-032012-06-07Biontech AgMethod for cellular rna expression
WO2012103985A2 (en)2010-12-162012-08-09Steve PascoloPharmaceutical composition consisting of rna having alkali metal as counter ion and formulated with dications
US8501930B2 (en)2010-12-172013-08-06Arrowhead Madison Inc.Peptide-based in vivo siRNA delivery system
CA2825370A1 (en)2010-12-222012-06-28President And Fellows Of Harvard CollegeContinuous directed evolution
EP3147367A1 (en)2010-12-292017-03-29F. Hoffmann-La Roche AGSmall molecule conjugates for intracellular delivery of nucleic acids
WO2012089225A1 (en)2010-12-292012-07-05Curevac GmbhCombination of vaccination and inhibition of mhc class i restricted antigen presentation
EP2661255B1 (en)2011-01-042021-03-10Brown UniversityNanotubes as carriers of nucleic acids into cells
WO2012094574A2 (en)2011-01-062012-07-12The Johns Hopkins UniversityStabilized polyribonucleotide nanoparticles
US20140080766A1 (en)2011-01-072014-03-20Massachusetts Institute Of TechnologyCompositions and methods for macromolecular drug delivery
DK2663548T3 (en)2011-01-112017-07-24Alnylam Pharmaceuticals Inc PEGYLED LIPIDS AND THEIR USE FOR PHARMACEUTICAL SUPPLY
WO2012099805A2 (en)2011-01-192012-07-26Ocean Nanotech, LlcNanoparticle based immunological stimulation
WO2012101235A1 (en)2011-01-262012-08-02Cenix Bioscience GmbhDelivery system and conjugates for compound delivery via naturally occurring intracellular transport routes
US10363309B2 (en)2011-02-042019-07-30Case Western Reserve UniversityTargeted nanoparticle conjugates
US20140066363A1 (en)2011-02-072014-03-06Arun K. BhuniaCarbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide
WO2012116715A1 (en)2011-03-022012-09-07Curevac GmbhVaccination in newborns and infants
US20120207840A1 (en)2011-02-102012-08-16Aura Biosciences, Inc.Virion Derived Protein Nanoparticles For Delivering Diagnostic Or Therapeutic Agents For The Treatment Of Non-Melanoma Skin Cancer
AU2012217788A1 (en)2011-02-142013-08-29Swift Biosciences, Inc.Polynucleotide primers and probes
WO2012112689A1 (en)2011-02-152012-08-23The University Of North Carolina At Chapel HillNanoparticle, liposomes, polymers, agents and proteins modified with reversible linkers
EP2675918B1 (en)2011-02-152017-11-08Merrimack Pharmaceuticals, Inc.Compositions and methods for delivering nucleic acid to a cell
EP2489371A1 (en)2011-02-182012-08-22Instituto Nacional de Investigacion y Tecnologia Agraria y AlimentariaCarrier peptides for drug delivery
WO2012113413A1 (en)2011-02-212012-08-30Curevac GmbhVaccine composition comprising complexed immunostimulatory nucleic acids and antigens packaged with disulfide-linked polyethyleneglycol/peptide conjugates
WO2012115980A1 (en)2011-02-222012-08-30California Institute Of TechnologyDelivery of proteins using adeno-associated virus (aav) vectors
US8696637B2 (en)2011-02-282014-04-15Kimberly-Clark WorldwideTransdermal patch containing microneedles
WO2012116714A1 (en)2011-03-022012-09-07Curevac GmbhVaccination in elderly patients
ES2681698T3 (en)2011-03-022018-09-14Glaxosmithkline Biologicals Sa Combination vaccines with lower doses of antigen and / or adjuvant
EP2683812A4 (en)2011-03-072014-12-03Massachusetts Inst Technology METHODS FOR TRANSFECTING CELLS WITH NUCLEIC ACIDS
WO2012125680A1 (en)2011-03-162012-09-20Novartis AgMethods of treating vasculitis using an il-17 binding molecule
US20140212503A1 (en)2011-03-172014-07-31Hyukjin LeeDelivery system
RU2013146242A (en)2011-03-172015-04-27Новартис Аг FGFR AND ITS LIGANDS AS BREAST CANCER BIOMARKERS IN HR-POSITIVE INDIVIDUALS
US10357568B2 (en)2011-03-242019-07-23Glaxosmithkline Biologicals S.A.Adjuvant nanoemulsions with phospholipids
EP2691443B1 (en)2011-03-282021-02-17Massachusetts Institute of TechnologyConjugated lipomers and uses thereof
CN103476949A (en)2011-03-282013-12-25诺瓦提斯公司Markers associated with cyclin-dependent kinase inhibitors
DE12722942T1 (en)2011-03-312021-09-30Modernatx, Inc. RELEASE AND FORMULATION OF MANIPULATED NUCLEIC ACIDS
JP2014511694A (en)2011-04-032014-05-19ザ ジェネラル ホスピタル コーポレーション ドゥーイング ビジネス アズ マサチューセッツ ジェネラル ホスピタル Efficient in vivo protein expression using modified RNA (MOD-RNA)
ES2587512T3 (en)2011-04-042016-10-25The U.S.A. As Represented By The Secretary, Department Of Health And Human Services 2'-O-aminooxymethyl nucleoside derivatives for use in the synthesis and modification of nucleosides, nucleotides and oligonucleotides
WO2012142132A1 (en)2011-04-112012-10-18Life Technologies CorporationPolymer particles and methods of making and using same
US11135174B2 (en)2011-04-132021-10-05The Trustees Of The University Of PennsylvaniaCoated mesoporous nanoparticles
WO2013158127A1 (en)2012-04-162013-10-24Molecular Transfer, Inc.Agents for improved delivery of nucleic acids to eukaryotic cells
US20140178894A1 (en)2011-04-202014-06-26Novartis Forschungsstiftung, ZweigniederlassungCulture medium suitable for the culture of undifferentiated cells
EA034702B1 (en)2011-04-262020-03-10Молекулар Экспресс, Инк.Liposomal compositions
CA2834365A1 (en)2011-04-282012-11-01Sandia CorporationPorous nanoparticle-supported lipid bilayers (protocells) for targeted delivery and methods of using same
US20160272697A2 (en)2011-04-282016-09-22The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc.Neutralizing Antibodies to Nipah and Hendra Virus
WO2012149246A1 (en)2011-04-292012-11-01Novartis AgMethods of treating squamous cell carcinoma related applications
CA3182519A1 (en)2011-04-292012-11-01Selecta Biosciences, Inc.Tolerogenic synthetic nanocarriers for antigen-specific deletion of t effector cells
UA116189C2 (en)2011-05-022018-02-26Мілленніум Фармасьютікалз, Інк. COMPOSITION OF ANTI-α4β7 ANTIBODY
EP3777538B1 (en)2011-05-022023-06-28Wayne State UniversityA protein-induced pluripotent cell technology and uses thereof
US8945588B2 (en)2011-05-062015-02-03The University Of ChicagoMethods and compositions involving protective staphylococcal antigens, such as EBH polypeptides
US9650745B2 (en)2011-05-102017-05-16Basf SeOil-in-water emulsions
US9283279B2 (en)2011-05-112016-03-15Ramot At Tel-Aviv University Ltd.Targeted polymeric conjugates and uses thereof
EP2706983A1 (en)2011-05-122014-03-19Helmut VocknerNovel pharmaceutical formulation
EP2706988B1 (en)2011-05-122019-12-04Yissum Research Development Company of the Hebrew University of Jerusalem Ltd.Liposomes comprising polymer-conjugated lipids and related uses
LT3275892T (en)2011-05-132020-04-10Glaxosmithkline Biologicals S.A.Pre-fusion rsv f antigens
CN103687957A (en)2011-05-172014-03-26现代治疗公司 Engineered nucleic acids and methods for their use in non-human vertebrates
US8691750B2 (en)2011-05-172014-04-08Axolabs GmbhLipids and compositions for intracellular delivery of biologically active compounds
CN103052757B (en)2011-05-202015-02-25科勒公司Toilet installation system and method
HUE046152T2 (en)2011-05-242020-02-28Biontech Rna Pharmaceuticals GmbhIndividualized vaccines for cancer
CA2836844A1 (en)2011-05-252012-11-29Novartis AgBiomarkers for lung cancer
US20140308363A1 (en)2011-05-312014-10-16Bind Therapeutics, Inc.Drug loaded polymeric nanoparticles and methods of making and using same
ES2685333T3 (en)2011-06-022018-10-08The Regents Of The University Of California Membrane encapsulated nanoparticles and method of use
CA2837852A1 (en)2011-06-022012-12-06Novartis AgBiomarkers for hedgehog inhibitor therapy
US9181553B2 (en)2011-06-062015-11-10Novartis Forschungsstiftung Zweigniederlassung Friedrich Miescher Institute For Biomedical ResearchMethod of treatment of breast cancers over-expressing the SHP2 signature genes
DK3336082T3 (en)2011-06-082020-04-27Translate Bio Inc SPLITLY LIPIDS
PL2717893T3 (en)2011-06-082019-12-31Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
WO2012168491A1 (en)2011-06-102012-12-13Novartis AgPharmaceutical formulations of pcsk9 antagonists
US8636696B2 (en)2011-06-102014-01-28Kimberly-Clark Worldwide, Inc.Transdermal device containing microneedles
WO2012170607A2 (en)2011-06-102012-12-13Novartis AgUse of pcsk9 antagonists
WO2012170753A2 (en)2011-06-102012-12-13Novartis AgBovine vaccines and methods
US8916696B2 (en)2011-06-122014-12-23City Of HopeAptamer-mRNA conjugates for targeted protein or peptide expression and methods for their use
WO2012172495A1 (en)2011-06-142012-12-20Novartis AgCompositions and methods for antibodies targeting tem8
CN103717249B (en)2011-06-152017-03-22克洛恩泰克制药股份公司Injection needle and device
US20140193408A1 (en)2011-06-162014-07-10Novartis AgSoluble proteins for use as therapeutics
RU2612900C2 (en)2011-06-202017-03-13Юниверсити Оф Питтсбург - Оф Зе Коммонвэлс Систем Оф Хайе ЭдьюкейшнH1n1 influenza virus antigens with wide spectrum of activity, optimized using computer tools
US9862926B2 (en)2011-06-272018-01-09Cellscript, Llc.Inhibition of innate immune response
ES2992120T3 (en)2011-06-282024-12-09Inovio Pharmaceuticals Inc A minimally invasive dermal electroporation device
ES2692519T3 (en)2011-07-012018-12-04Novartis Ag Method to treat metabolic disorders
WO2013003887A1 (en)2011-07-042013-01-10Commonwealth Scientific And Industrial Research OrganisationNucleic acid complex
EP2729126B1 (en)2011-07-062020-12-23GlaxoSmithKline Biologicals SALiposomes having useful n:p ratio for delivery of rna molecules
JP2014520807A (en)2011-07-062014-08-25ノバルティス アーゲー Immunogenic compositions and uses thereof
US9655845B2 (en)2011-07-062017-05-23Glaxosmithkline Biologicals, S.A.Oil-in-water emulsions that contain nucleic acids
RU2649133C2 (en)2011-07-062018-03-29Новартис АгCationic oil-in-water emulsions
WO2013006838A1 (en)2011-07-062013-01-10Novartis AgImmunogenic combination compositions and uses thereof
US8975302B2 (en)2011-07-072015-03-10Life Technologies CorporationPolymer particles, nucleic acid polymer particles and methods of making and using the same
US20130012566A1 (en)2011-07-102013-01-10Aura Biosciences, Inc.Virion Derived Protein Nanoparticles For Delivering Diagnostic Or Therapeutic Agents For The Treatment of Alopecia
US9617392B2 (en)2011-07-102017-04-11President And Fellows Of Harvard CollegeCompositions and methods for self-assembly of polymers with complementary macroscopic and microscopic scale units
WO2013009717A1 (en)2011-07-102013-01-17Elisabet De Los PinosVirion derived protein nanoparticles for delivering diagnostic or therapeutic agents for the treatment of skin-related diseases
GB2492999A (en)2011-07-202013-01-23Univ Central LancashireNeutron detector
US20140148503A1 (en)2011-07-202014-05-29University Of Iowa Research FoundationNucleic acid aptamers
CN103732211B (en)2011-07-212017-03-01禾大国际股份公开有限公司Branched polyether block polyamides copolymer and its manufacture and use method
US9493549B2 (en)2011-07-252016-11-15The Rockefeller UniversityAntibodies directed toward the HIV-1 GP120 CD4 binding site with increased potency and breadth
ES2687129T3 (en)2011-07-252018-10-23Glaxosmithkline Biologicals Sa Compositions and methods to evaluate the functional immunogenicity of parvovirus vaccines
WO2013019648A1 (en)2011-07-292013-02-07Selecta Biosciences, Inc.Control of antibody responses to synthetic nanocarriers
WO2013025834A2 (en)2011-08-152013-02-21The University Of ChicagoCompositions and methods related to antibodies to staphylococcal protein a
CN104024328A (en)2011-08-262014-09-03箭头研究公司 Poly(vinyl ester) polymers for in vivo nucleic acid delivery
HRP20190032T1 (en)2011-08-312019-02-22Glaxosmithkline Biologicals Sa PEGILATED LIPOSOMS, INTENDED FOR RNA IMPROVEMENT, CODING IMMUNOGEN
EP2750712A2 (en)2011-08-312014-07-09Mallinckrodt LLCNanoparticle peg modification with h-phosphonates
US9126966B2 (en)2011-08-312015-09-08Protiva Biotherapeutics, Inc.Cationic lipids and methods of use thereof
JP2014525462A (en)2011-09-012014-09-29アイアールエム・リミテッド・ライアビリティ・カンパニー Compounds and compositions as PDGFR kinase inhibitors
EP2751272A2 (en)2011-09-022014-07-09Novartis AGOrganic compositions to treat hsf1-related diseases
EP2755986A4 (en)2011-09-122015-05-20Moderna Therapeutics Inc MODIFIED NUCLEIC ACIDS AND METHODS OF USE
US9464124B2 (en)2011-09-122016-10-11Moderna Therapeutics, Inc.Engineered nucleic acids and methods of use thereof
WO2013039861A2 (en)2011-09-122013-03-21modeRNA TherapeuticsEngineered nucleic acids and methods of use thereof
WO2013038375A2 (en)2011-09-142013-03-21Novartis AgMethods for making saccharide-protein glycoconjugates
SG11201400527XA (en)2011-09-162014-04-28Univ PennsylvaniaRna engineered t cells for the treatment of cancer
EP2747761A1 (en)2011-09-222014-07-02Bind Therapeutics, Inc.Methods of treating cancers with therapeutic nanoparticles
WO2013072929A2 (en)2011-09-232013-05-23Indian Institute Of TechnologyNanop article based cosmetic composition
US9458214B2 (en)2011-09-262016-10-04Novartis AgDual function fibroblast growth factor 21 proteins
JO3476B1 (en)2011-09-262020-07-05Novartis AgFusion proteins for treating metabolic disorders
AU2012315965A1 (en)2011-09-272014-04-03Alnylam Pharmaceuticals, Inc.Di-aliphatic substituted PEGylated lipids
WO2013045505A1 (en)2011-09-282013-04-04Novartis AgBiomarkers for raas combination therapy
KR102014061B1 (en)2011-10-032019-08-28모더나 세라퓨틱스, 인코포레이티드Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
WO2013055971A1 (en)2011-10-112013-04-18Arizona Board Of Regents For And On Behalf Of Arizona State UniversityPolymers for delivering a substance into a cell
WO2013055905A1 (en)2011-10-112013-04-18Novartis AgRecombinant self-replicating polycistronic rna molecules
WO2013055331A1 (en)2011-10-122013-04-18The Curators Of The University Of MissouriPentablock polymers
WO2014066811A1 (en)2012-10-252014-05-01The Johns Hopkins UniversityBioreducible poly (b-amino ester)s for sirna delivery
CA2852064A1 (en)2011-10-142013-04-18Stc.UnmPorous nanoparticle-supported lipid bilayers (protocells) for targeted delivery including transdermal delivery of cargo and methods thereof
WO2013054307A2 (en)2011-10-142013-04-18Novartis AgAntibodies and methods for wnt pathway-related diseases
ES2745373T3 (en)2011-10-182020-03-02Dicerna Pharmaceuticals Inc Cationic amine lipids and their use
CN104093445B (en)2011-10-182016-09-07米歇尔技术公司drug delivery medical device
AU2012324398A1 (en)2011-10-202014-05-01Seqirus UK LimitedAdjuvanted influenza B virus vaccines for pediatric priming
EP2768507B1 (en)2011-10-202019-12-11Novartis AGBiomarkers predictive of responsiveness to alpha 7 nicotinic acetylcholine receptor activator treatment
CA2853316C (en)2011-10-252018-11-27The University Of British ColumbiaLimit size lipid nanoparticles and related methods
US20130110043A1 (en)2011-10-262013-05-02Nanopass Technologies Ltd.Microneedle Intradermal Drug Delivery Device with Auto-Disable Functionality
WO2013063468A1 (en)2011-10-272013-05-02Massachusetts Institute Of TechnologyAmino acid derivates functionalized on the n- terminal capable of forming drug incapsulating microspheres
KR102388880B1 (en)2011-10-272022-04-22소렌토 쎄라퓨틱스, 인코포레이티드Transdermal delivery of high viscosity bioactive agents
US9364542B2 (en)2011-10-282016-06-14Excelse Bio, Inc.Protein formulations containing amino acids
WO2013062140A1 (en)2011-10-282013-05-02Kyoto UniversityMethod for efficiently inducing differentiation of pluripotent stem cells into hepatic lineage cells
SG10201508662SA (en)2011-10-282015-11-27Presage Biosciences IncMethods for drug delivery
LT3091029T (en)2011-10-312023-02-27F. Hoffmann-La Roche AgAnti-il13 antibody formulations
CN104023793B (en)2011-10-312017-11-24马林克罗特有限公司Joint liposome composition for treating cancer
CA2853689C (en)2011-11-042020-06-30Nitto Denko CorporationMethod of producing lipid nanoparticles for drug delivery
US9579338B2 (en)2011-11-042017-02-28Nitto Denko CorporationMethod of producing lipid nanoparticles for drug delivery
US10449257B2 (en)2011-11-042019-10-22Agency For Science, Technology And ResearchSelf-assembled composite ultrasmall peptide-polymer hydrogels
WO2013067537A1 (en)2011-11-042013-05-10Univertiy Of Notre Dame Du LacNanoparticle-based drug delivery
JP2015502741A (en)2011-11-042015-01-29ノバルティス アーゲー Low density lipoprotein related protein 6 (LRP6)-half-life extended construct
US20130115247A1 (en)2011-11-052013-05-09Aura Biosciences, Inc.Virion Derived Protein Nanoparticles For Delivering Radioisotopes For The Diagnosis And Treatment Of Malignant And Systemic Disease And The Monitoring Of Therapy
US20130116408A1 (en)2011-11-052013-05-09Aura Biosciences, Inc.Virion Derived Protein Nanoparticles For Delivering Radioisotopes For The Diagnosis And Treatment Of Malignant And Systemic Disease And The Monitoring Of Therapy
WO2013068431A1 (en)2011-11-082013-05-16Novartis Forschungsstiftung, Zweigniederlassung, Friedrich Miescher Institute For Biomedical ResearchNew treatment for neurodegenerative diseases
US20140287510A1 (en)2011-11-082014-09-25Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher InstituteRod cell-specific promoter
EP2776838A1 (en)2011-11-082014-09-17Novartis Forschungsstiftung, Zweigniederlassung Friedrich Miescher Institute For Biomedical ResearchEarly diagnostic of neurodegenerative diseases
US9849087B2 (en)2011-11-082017-12-26The Board Of Trustees Of The University Of ArkansasMethods and compositions for X-ray induced release from pH sensitive liposomes
US10203325B2 (en)2011-11-092019-02-12Board Of Trustees Of Michigan State UniversityMetallic nanoparticle synthesis with carbohydrate capping agent
KR102301463B1 (en)2011-11-112021-09-14배리에이션 바이오테크놀로지스 아이엔씨.Compositions and methods for treatment of cytomegalovirus
WO2013071047A1 (en)2011-11-112013-05-16Children's Medical Center CorporationCompositions and methods for in vitro transcription of rna
AU2012340035A1 (en)2011-11-142014-04-17Susan W. BarnettImmunogenic complexes of polyanionic carbomers and Env polypeptides and methods of manufacture and use thereof
CA2855619A1 (en)2011-11-152013-05-23Novartis AgCombination of a phosphoinositide 3-kinase inhibitor and a modulator of the janus kinase 2 - signal transducer and activator of transcription 5 pathway
PL2790681T5 (en)2011-11-182024-02-05Regeneron Pharmaceuticals, Inc.Method of manufacturing an extended release pharmaceutical formulation comprising polymer coated protein microparticles using spray-drying
CA2856252A1 (en)2011-11-212013-05-30Novartis AgMethods of treating psoriatic arthritis (psa) using il-17 antagonists and psa response or non-response alleles
WO2013078199A2 (en)2011-11-232013-05-30Children's Medical Center CorporationMethods for enhanced in vivo delivery of synthetic, modified rnas
WO2013082111A2 (en)2011-11-292013-06-06The University Of North Carolina At Chapel HillGeometrically engineered particles and methods for modulating macrophage or immune responses
US9364549B2 (en)2011-11-302016-06-14Andreas VoigtHydrophobic drug-delivery material, method for manufacturing thereof and methods for delivery of a drug-delivery composition
CA2857502C (en)2011-11-302019-08-133M Innovative Properties CompanyMicroneedle device including a peptide therapeutic agent and an amino acid and methods of making and using the same
US20130142781A1 (en)2011-12-022013-06-06Invivo Therapeutics CorporationPeg based hydrogel for peripheral nerve injury applications and compositions and method of use of synthetic hydrogel sealants
WO2013082529A1 (en)2011-12-022013-06-06Yale UniversityEnzymatic synthesis of poly(amine-co-esters) and methods of use thereof for gene delivery
AU2012345726B2 (en)2011-12-022017-04-13Pegasus Laboratories, Inc.Amphipathic lipid-based sustained release compositions
US8497124B2 (en)2011-12-052013-07-30Factor Bioscience Inc.Methods and products for reprogramming cells to a less differentiated state
MX382822B (en)2011-12-052025-03-13Factor Bioscience Inc METHODS AND PRODUCTS FOR CELL TRANSFECTION.
CN103998536B (en)2011-12-052017-09-15纳诺精密医疗有限公司The device with titania nanotube film for medicine delivery
GB201121070D0 (en)2011-12-072012-01-18Isis Innovationcomposition for delivery of biotherapeutics
US9463247B2 (en)2011-12-072016-10-11Alnylam Pharmaceuticals, Inc.Branched alkyl and cycloalkyl terminated biodegradable lipids for the delivery of active agents
JP6305344B2 (en)2011-12-072018-04-04アルニラム・ファーマシューティカルズ・インコーポレーテッド Biodegradable lipids for delivery of active agents
US20140308304A1 (en)2011-12-072014-10-16Alnylam Pharmaceuticals, Inc.Lipids for the delivery of active agents
WO2013086486A1 (en)2011-12-092013-06-13President And Fellows Of Harvard CollegeIntegrated human organ-on-chip microphysiological systems
US10087422B2 (en)2011-12-092018-10-02President And Fellows Of Harvard CollegeOrgan chips and uses thereof
EP2787977A4 (en)2011-12-092015-05-06Univ California LIPOSOMAL ENCAPSULATION OF MEDICAMENTS
JP6182457B2 (en)2011-12-122017-08-16協和発酵キリン株式会社 Lipid nanoparticles for drug delivery systems containing cationic lipids
AU2012352455B2 (en)2011-12-122016-01-21The Trustees Of The University Of PennsylvaniaProteins comprising MRSA PBP2a and fragments thereof, nucleic acids encoding the same, and compositions and their use to prevent and treat MRSA infections
US20140045913A1 (en)2011-12-122014-02-13Kyowa Hakko Kirin Co., Ltd.Lipid nano particles comprising combination of cationic lipid
US20150000936A1 (en)2011-12-132015-01-01Schlumberger Technology CorporationEnergization of an element with a thermally expandable material
SG10201601349XA (en)2011-12-132016-03-30Engeneic Molecular Delivery Pty LtdBacterially derived, intact minicells for delivery of therapeutic agents to brain tumors
EP2604253A1 (en)2011-12-132013-06-19Otto GlatterWater-in-oil emulsions and methods for their preparation
EP2791364A4 (en)2011-12-142015-11-11Moderna Therapeutics Inc METHODS OF RESPONSE TO A BIOLOGICAL THREAT
US20140343129A1 (en)2011-12-142014-11-20Moderna Therapeutics, Inc.Modified nucleic acids, and acute care uses thereof
US20140349320A1 (en)2011-12-152014-11-27The Trustees Of The University Of PennsylvaniaUsing Adaptive Immunity to Detect Drug Resistance
WO2013087083A1 (en)2011-12-152013-06-20Biontech AgParticles comprising single stranded rna and double stranded rna for immunomodulation
CA3018046A1 (en)2011-12-162013-06-20Moderna Therapeutics, Inc.Modified nucleoside, nucleotide, and nucleic acid compositions
EP2791172B1 (en)2011-12-162017-07-19Synthon Biopharmaceuticals B.V.Compounds and methods for treating inflammatory diseases
RU2014129268A (en)2011-12-162016-02-10Аллерган, Инк. OPHTHALMIC COMPOSITIONS THAT CONTAIN GRAVITY POLYVINYL POLYVINYL PROCALT-POLYVINYL ACETATE-POLYETHYLENE Glycol copolymers
EP2790761B1 (en)2011-12-162022-05-11Novartis AGPassive powder aerosolization apparatus
IN2014DN05912A (en)2011-12-162015-06-05Massachusetts Inst Technology
WO2013090601A2 (en)2011-12-162013-06-20Massachusetts Institute Of TechnologyCompact nanoparticles for biological applications
WO2013091001A1 (en)2011-12-192013-06-27The University Of SydneyA peptide-hydrogel composite
US9241829B2 (en)2011-12-202016-01-26Abbott Medical Optics Inc.Implantable intraocular drug delivery apparatus, system and method
RU2014129863A (en)2011-12-212016-02-10Модерна Терапьютикс, Инк. WAYS TO INCREASE VITALITY OR INCREASE THE LIFE OF A BODY OR EXPLANATE BODY
EP2793941A1 (en)2011-12-232014-10-29F.Hoffmann-La Roche AgArticles of manufacture and methods for co-administration of antibodies
KR101963230B1 (en)2011-12-262019-03-29삼성전자주식회사Protein complex comprising multi-specific monoclonal antibodies
WO2013101908A1 (en)2011-12-272013-07-04Massachusetts Institute Of TechnologyMicroneedle devices and uses thereof
EP2797624A1 (en)2011-12-292014-11-05Novartis AGAdjuvanted combinations of meningococcal factor h binding proteins
EP2797634A4 (en)2011-12-292015-08-05Moderna Therapeutics Inc MODIFIED mRNA ENCODING POLYPEPTIDES PENETRATING IN CELLS
CA2862377A1 (en)2011-12-302013-07-04Cellscript, LlcMaking and using in vitro-synthesized ssrna for introducing into mammalian cells to induce a biological or biochemical effect
HK1201452A1 (en)2012-01-062015-09-04Gemphire Therapeutics Inc.Methods of reducing risk of cardiovascular disease
WO2013106496A1 (en)2012-01-102013-07-18modeRNA TherapeuticsMethods and compositions for targeting agents into and across the blood-brain barrier
CN104245925A (en)2012-01-262014-12-24生命科技公司 Method for increasing viral infectivity
KR20140128966A (en)2012-01-262014-11-06라이프 테크놀로지스 코포레이션Methods for increasing the infectivity of viruses
WO2013113325A1 (en)2012-01-312013-08-08Curevac GmbhNegatively charged nucleic acid comprising complexes for immunostimulation
WO2013113326A1 (en)2012-01-312013-08-08Curevac GmbhPharmaceutical composition comprising a polymeric carrier cargo complex and at least one protein or peptide antigen
EP2623121A1 (en)2012-01-312013-08-07Bayer Innovation GmbHPharmaceutical composition comprising a polymeric carrier cargo complex and an antigen
US9243085B2 (en)2012-02-092016-01-26Life Technologies CorporationHydrophilic polymeric particles and methods for making and using same
HK1205751A1 (en)2012-02-222015-12-24Cerulean Pharma Inc.Conjugates, particles, compositions, and related methods
US20130243867A1 (en)2012-02-232013-09-19University Of South Florida (A Florida Non-Profit Corporation)Micelle compositions and methods for their use
US20130224268A1 (en)2012-02-272013-08-29Newgen Biopharma Corp.Topical delivery of hormonal and non hormonal nano formulations, methods of making and using the same
EP2820047B1 (en)2012-03-012018-04-25Amgen Research (Munich) GmbHLong life polypeptide binding molecules
DE112013001457T5 (en)2012-03-132014-12-04University Of Kwazulu-Natal Transdermal application system
US10322089B2 (en)2012-03-142019-06-18The Board Of Trustees Of The Leland Stanford Junior UniversityNanoparticles, nanoparticle delivery methods, and systems of delivery
MX354811B (en)2012-03-162018-03-22Merck Patent GmbhTargeting aminoacid lipids.
EP2825207B1 (en)2012-03-162020-08-19The Johns Hopkins UniversityNon-linear multiblock copolymer-drug conjugates for the delivery of active agents
US8962577B2 (en)2012-03-162015-02-24The Johns Hopkins UniversityControlled release formulations for the delivery of HIF-1 inhibitors
US9610346B2 (en)2012-03-232017-04-04International Aids Vaccine InitiativeRecombinant viral vectors
WO2013142349A1 (en)2012-03-232013-09-26University Of ChicagoCompositions and methods related to staphylococcal sbi
WO2013148186A1 (en)2012-03-262013-10-03President And Fellows Of Harvard CollegeLipid-coated nucleic acid nanostructures of defined shape
WO2013143555A1 (en)2012-03-262013-10-03Biontech AgRna formulation for immunotherapy
SG10201607966UA (en)2012-03-272016-11-29Curevac AgArtificial nucleic acid molecules comprising a 5'top utr
CA2859452C (en)2012-03-272021-12-21Curevac GmbhArtificial nucleic acid molecules for improved protein or peptide expression
AU2013242403B2 (en)2012-03-272018-10-18Curevac AgArtificial nucleic acid molecules
EP2830594B1 (en)2012-03-272018-05-09Sirna Therapeutics, Inc.DIETHER BASED BIODEGRADABLE CATIONIC LIPIDS FOR siRNA DELIVERY
WO2013149141A1 (en)2012-03-292013-10-03Shire Human Genetic Therapies, Inc.Lipid-derived neutral nanoparticles
US20150050354A1 (en)2012-04-022015-02-19Moderna Therapeutics, Inc.Modified polynucleotides for the treatment of otic diseases and conditions
HK1206636A1 (en)2012-04-022016-01-15Modernatx, Inc.Modified polynucleotides for the production of oncology-related proteins and peptides
US20140275229A1 (en)2012-04-022014-09-18Moderna Therapeutics, Inc.Modified polynucleotides encoding udp glucuronosyltransferase 1 family, polypeptide a1
HK1206612A1 (en)2012-04-022016-01-15Moderna Therapeutics, Inc.Modified polynucleotides for the production of secreted proteins
US9303079B2 (en)2012-04-022016-04-05Moderna Therapeutics, Inc.Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
WO2013151650A1 (en)2012-04-052013-10-10University Of Florida Research Foundation, Inc.Neurophilic nanoparticles
US9107904B2 (en)2012-04-052015-08-18Massachusetts Institute Of TechnologyImmunostimulatory compositions and methods of use thereof
WO2013152351A2 (en)2012-04-062013-10-10The Trustees Of Columbia University In The City Of New YorkFusion polypeptides and methods of use thereof
WO2013153550A2 (en)2012-04-082013-10-17Theracoat LtdReverse thermal hydrogel preparations for use in the treatment of disorders of the urothelium
US9078930B2 (en)2012-04-112015-07-14Intezyne Technologies, Inc.Block copolymers for stable micelles
WO2013155493A1 (en)2012-04-122013-10-17Yale UniversityMethods of treating inflammatory and autoimmune diseases and disorders
WO2013154766A1 (en)2012-04-132013-10-17New York UniversityMicrorna control of ldl receptor pathway
WO2013155513A1 (en)2012-04-132013-10-17President And Fellows Of Harvard CollegeDevices and methods for in vitro aerosol delivery
MX2014001965A (en)2012-04-182014-03-31Arrowhead Res CorpPoly(acrylate) polymers for in vivo nucleic acid delivery.
AU2013249548A1 (en)2012-04-192014-11-06Sirna Therapeutics, Inc.Novel diester and triester based low molecular weight, biodegradable cationic lipids for oligonucleotide delivery
WO2013163234A1 (en)2012-04-232013-10-31Massachusetts Institute Of TechnologyStable layer-by-layer coated particles
UA117098C2 (en)2012-04-252018-06-25Рег'Юлес Терап'Ютікс Інк. A COMPOUND CONTAINING MODIFIED OLIGONUCLEOTIDE
KR102310775B1 (en)2012-05-032021-10-07칼라 파마슈티컬스, 인크.Pharmaceutical nanoparticles showing improved mucosal transport
JP6392209B2 (en)2012-05-042018-09-19ザ・ジョンズ・ホプキンス・ユニバーシティー Lipid-based drug carriers for rapid permeation through the mucus lining
WO2013173657A1 (en)2012-05-162013-11-21Micell Technologies, Inc.Low burst sustained release lipophilic and biologic agent compositions
WO2013173582A1 (en)2012-05-172013-11-21The United States Of America, As Represented By The Secretary, Department Of Health And Human ServicesHepatitis c virus neutralizing antibody
WO2013173693A1 (en)2012-05-182013-11-21The United States Of America, As Represented By The Secretary, Department Of Health And Human ServicesNanoparticles with enhanced entry into cancer cells
BR112014027834A2 (en)2012-05-232017-08-08Univ Ohio State lipid nanoparticle compositions for antisense oligonucleotide delivery
ES2719598T3 (en)2012-05-252019-07-11Curevac Ag Reversible immobilization and / or controlled release of nucleic acids contained in nanoparticles by polymeric coatings (biodegradable)
NZ702283A (en)2012-06-062016-09-30Loma Vista Medical IncInflatable medical devices
CN104349794B (en)2012-06-082019-01-04埃泽瑞斯公司The lung of mRNA delivers
HUE056014T2 (en)2012-06-082022-01-28Nitto Denko Corp Lipids for pharmaceutical preparations
JP6561378B2 (en)2012-06-082019-08-21トランスレイト バイオ, インコーポレイテッド Transpulmonary delivery of mRNA to non-pulmonary target cells
US20150218252A1 (en)2012-06-202015-08-06President And Fellows Of Harvard CollegeSelf-assembling peptides, peptide nanostructures and uses thereof
CN104507458B (en)2012-06-202018-05-22滑铁卢大学Mucoadhesive nano particle delivery system
EP2866833B1 (en)2012-06-272019-05-15Merck Sharp & Dohme Corp.Crystalline anti-human il-23 antibodies
US9150841B2 (en)2012-06-292015-10-06Shire Human Genetic Therapies, Inc.Cells for producing recombinant iduronate-2-sulfatase
US9415109B2 (en)2012-07-062016-08-16Alnylam Pharmaceuticals, Inc.Stable non-aggregating nucleic acid lipid particle formulations
US9956291B2 (en)2012-07-102018-05-01Shaker A. MousaNanoformulation and methods of use of thyroid receptor beta1 agonists for liver targeting
WO2014014890A1 (en)2012-07-162014-01-23Nanoderm Sciences, Inc.Targeted therapeutic nanoparticles
EP2687252A1 (en)2012-07-172014-01-22Sanofi-Aventis Deutschland GmbHDrug delivery device
EP2687251A1 (en)2012-07-172014-01-22Sanofi-Aventis Deutschland GmbHDrug delivery device
CN112587671A (en)2012-07-182021-04-02博笛生物科技有限公司Targeted immunotherapy for cancer
WO2014015334A1 (en)2012-07-202014-01-23Brown UniversitySystem and methods for nanostructure protected delivery of treatment agent and selective release thereof
KR20160073936A (en)2012-07-242016-06-27프레지던트 앤드 펠로우즈 오브 하바드 칼리지Self-assembly of nucleic acid nanostructures
WO2014015422A1 (en)2012-07-272014-01-30Ontario Institute For Cancer ResearchCellulose-based nanoparticles for drug delivery
GB201213624D0 (en)2012-07-272012-09-12Univ Ulster TheMethod and system for production of conjugated nanoparticles
WO2014025795A1 (en)2012-08-072014-02-13Northeastern UniversityCompositions for the delivery of rna and drugs into cells
WO2014024193A1 (en)2012-08-072014-02-13Prodel Pharma Ltd.Compositions and methods for rapid transmucosal delivery of pharmaceutical ingredients
SG11201500188YA (en)2012-08-082015-02-27Univ Nanyang TechMethods of manufacturing hydrogel microparticles having living cells, and compositions for manufacturing a scaffold for tissue engineering
AU2013299537A1 (en)2012-08-082015-02-19Presage Biosciences, Inc.Extrusion methods and devices for drug delivery
JP2015525799A (en)2012-08-102015-09-07ユニバーシティ・オブ・ノース・テキサス・ヘルス・サイエンス・センターUniversity of North Texas Health Science Center Drug delivery vehicle comprising conjugate of targeting polyamino acid and fatty acid
WO2014027006A1 (en)2012-08-132014-02-20Edko Pazarlama Tanitim Ticaret Limited SirketiBioadhesive formulations for use in drug delivery
CA2884870C (en)2012-08-132022-03-29Massachusetts Institute Of TechnologyAmine-containing lipidoids and uses thereof
EP2884965B1 (en)2012-08-142018-08-08Froese, AaronInternal structured self assembling liposomes
WO2014028209A1 (en)2012-08-142014-02-20The Trustees Of The University Of PennsylvaniaStabilizing shear-thinning hydrogels
WO2014028429A2 (en)2012-08-142014-02-20Moderna Therapeutics, Inc.Enzymes and polymerases for the synthesis of rna
AU2013302526B2 (en)2012-08-152018-03-22The University Of ChicagoExosome-based therapeutics against neurodegenerative disorders
US10179134B2 (en)2012-09-052019-01-15Creighton UniversityPolymeric nanoparticles in a thermosensitive gel for coital-independent vaginal prophylaxis of HIV
US8703197B2 (en)2012-09-132014-04-22International Business Machines CorporationBranched polyamines for delivery of biologically active materials
NZ705812A (en)2012-09-172018-08-31PfizerProcess for preparing therapeutic nanoparticles
WO2014047649A1 (en)2012-09-242014-03-27The Regents Of The University Of CaliforniaMethods for arranging and packing nucleic acids for unusual resistance to nucleases and targeted delivery for gene therapy
WO2014052634A1 (en)2012-09-272014-04-03The University Of North Carolina At Chapel HillLipid coated nanoparticles containing agents having low aqueous and lipid solubilities and methods thereof
US20150307542A1 (en)2012-10-032015-10-29Moderna Therapeutics, Inc.Modified nucleic acid molecules and uses thereof
WO2014053881A1 (en)2012-10-042014-04-10Centre National De La Recherche ScientifiqueCell penetrating peptides for intracellular delivery of molecules
US20140100178A1 (en)2012-10-042014-04-10Aslam AnsariComposition and methods for site-specific drug delivery to treat malaria and other liver diseases
WO2014054026A1 (en)2012-10-042014-04-10University Of The Witwatersrand, JohannesburgLiposomal drug delivery system
WO2014053882A1 (en)2012-10-042014-04-10Centre National De La Recherche ScientifiqueCell penetrating peptides for intracellular delivery of molecules
EP2716655A1 (en)2012-10-042014-04-09Institut PasteurNeutralizing antibodies directed against Hepatitis C virus ectodomain glycoprotein E2
WO2014053879A1 (en)2012-10-042014-04-10Centre National De La Recherche ScientifiqueCell penetrating peptides for intracellular delivery of molecules
WO2014053880A1 (en)2012-10-042014-04-10Centre National De La Recherche ScientifiqueCell penetrating peptides for intracellular delivery of molecules
EP2716689A1 (en)2012-10-052014-04-09National University of Ireland, GalwayPolymer comprising a plurality of branches having at least one disulfide group and/or at least one vinyl group
WO2014064534A2 (en)2012-10-052014-05-01Chrontech Pharma AbInjection needle, device, immunogenic compositions and method of use
US9931410B2 (en)2012-10-092018-04-03The Brigham And Women's Hospital, Inc.Nanoparticles for targeted delivery of multiple therapeutic agents and methods of use
US20140106260A1 (en)2012-10-112014-04-17The Trustees Of The University Of PennsylvaniaCore-shell nanoparticulate compositions and methods
MX2015004757A (en)2012-10-162015-07-17Endocyte IncDrug delivery conjugates containing unnatural amino acids and methods for using.
EA035012B1 (en)2012-10-182020-04-17Рокфеллер Юниверсити (Дзе)Broadly-neutralizing anti-hiv antibodies
AU2013336237A1 (en)2012-10-222015-06-11Sabag-Rfa LtdA system for delivering therapeutic agents into living cells and cells nuclei
WO2014066912A1 (en)2012-10-262014-05-01Vanderbilt UniversityPolymeric nanoparticles
MX2015005328A (en)2012-10-262015-09-25Nlife Therapeutics S L COMPOSITIONS AND METHODS FOR SELECTIVE ADMINISTRATION OF OLIGONUCLEOTID MOLECULES TO TYPES OF CELLS.
US20150272900A1 (en)2012-10-262015-10-01The Johns Hopkins UniversityLayer-By-Layer Approach to Co-Deliver DNA and siRNA via AuNPs: A Potential Platform for Modifying Release Kinetics
WO2014067551A1 (en)2012-10-292014-05-08Technische Universität DortmundT7 rna polymerase variants and methods of using the same
BR122019025681B1 (en)2012-11-012023-04-18Factor Bioscience Inc METHOD FOR INSERTING A NUCLEIC ACID SEQUENCE INTO A SECURE LOCATION OF A GENOME OF A CELL
WO2014071072A2 (en)2012-11-022014-05-08Pungente Michael DNovel cationic carotenoid-based lipids for cellular nucleic acid uptake
WO2014068542A1 (en)2012-11-052014-05-08Fondazione Centro San RaffaeleNovel targets in multiple myeloma and other disorders
BR112015010253A2 (en)2012-11-062017-07-11Rochal Ind Llc delivery of biologically active agents using hydrophobic and volatile solvents
WO2014074597A1 (en)2012-11-062014-05-15President And Fellows Of Harvard CollegeCompositions and methods relating to complex nucleic acid nanostructures
WO2014072997A1 (en)2012-11-072014-05-15Council Of Scientific & Industrial ResearchNanocomplex containing amphipathic peptide useful for efficient transfection of biomolecules
US9572893B2 (en)2012-11-072017-02-21Council Of Scientific And Industrial ResearchNanocomplex containing cationic peptide for biomolecule delivery
JP6487328B2 (en)2012-11-082019-03-20アルブミディクス リミティド Albumin variant
KR20210133321A (en)2012-11-082021-11-05클리어사이드 바이오메디컬, 인코포레이드Methods and devices for the treatment of ocular disease in human subjects
HK1211599A1 (en)2012-11-082016-05-27Eleven Biotherapeutics, Inc.Il-6 antagonists and uses thereof
TW201428101A (en)2012-11-082014-07-16Inviragen IncCompositions, methods and uses for dengue virus serotype-4 constructs
TR201809547T4 (en)2012-11-092018-07-23Biontech Rna Pharmaceuticals Gmbh Method for cellular RNA expression.
WO2014072468A1 (en)2012-11-092014-05-15Velin-Pharma A/SCompositions for pulmonary delivery
WO2014071963A1 (en)2012-11-092014-05-15Biontech AgMethod for cellular rna expression
US9200119B2 (en)2012-11-092015-12-01Momentive Performance Materials Inc.Silicon-containing zwitterionic linear copolymer composition
WO2014074218A1 (en)2012-11-122014-05-15Redwood Bioscience, Inc.Compounds and methods for producing a conjugate
US9833502B2 (en)2012-11-122017-12-05Genvec, Inc.Malaria antigens and methods of use
GB201220354D0 (en)2012-11-122012-12-26Medpharm LtdDermal compositions
US9943608B2 (en)2012-11-132018-04-17Baylor College Of MedicineMulti-arm biodegradable polymers for nucleic acid delivery
WO2014078636A1 (en)2012-11-162014-05-22President And Fellows Of Harvard CollegeNucleic acid hydrogel self-assembly
US9310374B2 (en)2012-11-162016-04-12Redwood Bioscience, Inc.Hydrazinyl-indole compounds and methods for producing a conjugate
EP2919760A4 (en)2012-11-192016-08-03Technion Res & Dev Foundation LIPOSOMES FOR DISTRIBUTION IN VIVO
EP2732825B1 (en)2012-11-192015-07-01InvivogenConjugates of a TLR7 and/or TLR8 agonist and a TLR2 agonist
WO2014081849A1 (en)2012-11-202014-05-30Phasebio Pharmaceuticals, Inc.Formulations of active agents for sustained release
US20140141037A1 (en)2012-11-202014-05-22Novartis AgRsv f prefusion trimers
WO2014081300A1 (en)2012-11-222014-05-30Tagworks Pharmaceuticals B.V.Channel protein activatable liposomes
EP4245744A3 (en)2012-11-222024-05-01Tagworks Pharmaceuticals B.V.Chemically cleavable group
WO2014081299A1 (en)2012-11-222014-05-30Tagworks Pharmaceuticals B.V.Activatable liposomes
SMT202200337T1 (en)2012-11-262022-09-14Modernatx IncTerminally modified rna
EP2931914A4 (en)2012-12-132016-08-17Moderna Therapeutics Inc MODIFIED POLYNUCLEOTIDES FOR MODIFYING CELL PHENOTYPE
RU2015132962A (en)2013-01-102017-02-14Новартис Аг IMMUNOGENIC COMPOSITIONS BASED ON INFLUENZA VIRUS AND THEIR APPLICATION
CA2897941A1 (en)2013-01-172014-07-24Moderna Therapeutics, Inc.Signal-sensor polynucleotides for the alteration of cellular phenotypes
HK1220122A1 (en)2013-03-092017-04-28Modernatx, Inc.Heterologous untranslated regions for mrna
WO2014158795A1 (en)2013-03-122014-10-02Moderna Therapeutics, Inc.Diagnosis and treatment of fibrosis
WO2014159813A1 (en)2013-03-132014-10-02Moderna Therapeutics, Inc.Long-lived polynucleotide molecules
EP2971010B1 (en)2013-03-142020-06-10ModernaTX, Inc.Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
EP4279610A3 (en)2013-03-152024-01-03ModernaTX, Inc.Ribonucleic acid purification
US20160032273A1 (en)2013-03-152016-02-04Moderna Therapeutics, Inc.Characterization of mrna molecules
WO2014152027A1 (en)2013-03-152014-09-25Moderna Therapeutics, Inc.Manufacturing methods for production of rna transcripts
US8980864B2 (en)2013-03-152015-03-17Moderna Therapeutics, Inc.Compositions and methods of altering cholesterol levels
US10077439B2 (en)2013-03-152018-09-18Modernatx, Inc.Removal of DNA fragments in mRNA production process
WO2014144767A1 (en)2013-03-152014-09-18Moderna Therapeutics, Inc.Ion exchange purification of mrna
WO2014144711A1 (en)2013-03-152014-09-18Moderna Therapeutics, Inc.Analysis of mrna heterogeneity and stability
PT3019619T (en)2013-07-112021-11-11Modernatx Inc COMPOSITIONS COMPRISING SYNTHETIC POLYNUCLEOTIDES ENCODING SYNTHETIC CRISPR AND SGARN-RELATED PROTEINS AND METHODS OF USE
US20160194625A1 (en)2013-09-032016-07-07Moderna Therapeutics, Inc.Chimeric polynucleotides
US20160194368A1 (en)2013-09-032016-07-07Moderna Therapeutics, Inc.Circular polynucleotides
US9925277B2 (en)2013-09-132018-03-27Modernatx, Inc.Polynucleotide compositions containing amino acids
EP3052106A4 (en)2013-09-302017-07-19ModernaTX, Inc.Polynucleotides encoding immune modulating polypeptides
BR112016007255A2 (en)2013-10-032017-09-12Moderna Therapeutics Inc polynucleotides encoding low density lipoprotein receptor
EP3058082A4 (en)2013-10-182017-04-26ModernaTX, Inc.Compositions and methods for tolerizing cellular systems
WO2015105926A1 (en)2014-01-082015-07-16Moderna Therapeutics, Inc.Polynucleotides for the in vivo production of antibodies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2018217897A1 (en)*2017-05-232018-11-29David WeinerCompositions and method for inducing an immune response

Also Published As

Publication numberPublication date
CA2813466A1 (en)2012-04-05
EP3590949A1 (en)2020-01-08
US20130102034A1 (en)2013-04-25
MX2013003681A (en)2013-11-20
US20190160185A1 (en)2019-05-30
US20130203115A1 (en)2013-08-08
JP2013543381A (en)2013-12-05
ES2737960T3 (en)2020-01-17
SG190679A1 (en)2013-07-31
US9334328B2 (en)2016-05-10
EP2622064A4 (en)2014-04-16
EP2622064B1 (en)2019-05-29
US20210236655A1 (en)2021-08-05
EP3431485B2 (en)2024-09-04
EP2625189A2 (en)2013-08-14
AU2011308496A2 (en)2014-10-02
US20170239374A1 (en)2017-08-24
EP2857413A1 (en)2015-04-08
WO2012045082A3 (en)2012-06-07
PL3590949T3 (en)2022-08-29
EP4435100A3 (en)2025-01-15
RS63430B1 (en)2022-08-31
US20150064725A1 (en)2015-03-05
SI4108671T1 (en)2025-02-28
US20120237975A1 (en)2012-09-20
US20130244282A1 (en)2013-09-19
WO2012045082A2 (en)2012-04-05
HRP20220796T1 (en)2022-10-14
EP3431485A1 (en)2019-01-23
DE19177059T1 (en)2021-10-07
CN104531812A (en)2015-04-22
SI3590949T1 (en)2022-09-30
EP4108671A1 (en)2022-12-28
EP2622064A1 (en)2013-08-07
RS66304B1 (en)2025-01-31
EP3590949B1 (en)2022-05-18
AU2017202958A1 (en)2017-05-25
US20160264975A1 (en)2016-09-15
AU2011308496A1 (en)2013-05-02
HUE058896T2 (en)2022-09-28
US20240033379A1 (en)2024-02-01
WO2012045075A1 (en)2012-04-05
US12357708B2 (en)2025-07-15
SG10201508149TA (en)2015-10-29
CN104531671A (en)2015-04-22
EP4435100A2 (en)2024-09-25
US9657295B2 (en)2017-05-23
CY1125421T1 (en)2025-05-09
ES2862955T3 (en)2021-10-08
ES2862955T5 (en)2025-01-29
BR112013007862A2 (en)2019-09-24
ES3005233T3 (en)2025-03-14
SMT202400513T1 (en)2025-01-14
ZA201303161B (en)2014-10-29
US20180112221A1 (en)2018-04-26
RU2013120302A (en)2014-11-20
EP2625189B1 (en)2018-06-27
PT3590949T (en)2022-08-02
ZA201403666B (en)2016-03-30
DK3590949T3 (en)2022-07-11
SMT202200321T1 (en)2022-09-14
LT4108671T (en)2025-01-10
EP3431485B1 (en)2020-12-30
EP2625189A4 (en)2014-04-30
CA3162352A1 (en)2012-04-05
HRP20241701T1 (en)2025-02-14
US10064959B2 (en)2018-09-04
PL4108671T3 (en)2025-02-24
LT3590949T (en)2022-07-25
FI4108671T3 (en)2024-12-27
CN103429606A (en)2013-12-04
US20250090692A1 (en)2025-03-20
US9701965B2 (en)2017-07-11
EP4108671B1 (en)2024-11-20
IL225493A0 (en)2013-06-27
NZ608972A (en)2015-09-25
PT4108671T (en)2024-12-23
HUE069586T2 (en)2025-03-28
ES2925251T3 (en)2022-10-14
EP2857499A1 (en)2015-04-08
DK4108671T3 (en)2025-01-06

Similar Documents

PublicationPublication DateTitle
US20210236655A1 (en)Engineered Nucleic Acids and Methods of Use Thereof
JP2013543381A5 (en)
US20160022774A1 (en)Diagnosis and treatment of fibrosis
US20140371302A1 (en)Modified mrnas encoding cell-penetrating polypeptides
CN103687957A (en) Engineered nucleic acids and methods for their use in non-human vertebrates

Legal Events

DateCodeTitleDescription
EEERExamination request

Effective date:20161003

FZDEDiscontinued

Effective date:20201005


[8]ページ先頭

©2009-2025 Movatter.jp