I
Sputtering arts and method BACKGROUND OF THE INVENTION
____ This invention relates to an apparatus and a method for depositing metal on a substrate (workups) by a cathode sputtering technique In sputtering apparatus, the vaporizing of the material of a cathode into a mass of metallic atoms by the bombard-mint of gas ions is referred to as a glow discharge.
A number of the atoms are scattered and adhere to the surface of a workups positioned in the vicinity of the anode to form a metallic film thereon.
In the United States Patents Nos. 4,221,652 (September 9, 1980 - N. Quorum) and 4,282,083 (August 4, 1981 -G. Karats and G. Ago), a magnetic field is used in the sputtering apparatus. However in such sputtering apparatus the target tends to wear out and it is desirable to increase the time before the target wears out so as to give a higher yield.
SUMMARY OF THE INVENTION
Jo It is an object of the present invention to provide a sputtering apparatus and a method or sputtering in which a higher yield is obtained prom the target and a longer time of operation can be obtained between target replacements.
, . .
i .
Jo I
According to one aspect of the invention there is provided sputtering apparatus adapted to form a metallic film on a workups, comprising a magnetron sputter device for establishing a glow discharge, said device comprising a cathode target of material to be sputtered so as to coat at least part of said workups with said material, an anode at a different potential to said cathode target to form an electric field there between, a magnet adjacent said cathode target, and an assembly supporting said magnet and capable of rotating said magnet to produce a rotating magnetic field in the vicinity of said cathode target and said workups, said magnet being disposed such that said magnetic field is substantially parallel to the surface of said cathode target in the region to be sputtered.
According to another aspect there is provided a method of forming a metallic film on a workups comprising magnetron sputtering of a cathode target by establishing a glow discharge by means of an electric field in the vicinity of said cathode target, a magnetic field in the vicinity of said cathode target substantially parallel to the surface of said cathode target in the region to be sputtered, and rotation of said magnetic field.
DESCRIPTION OF_THE_D~WINGS
Figure 1 is a diagrammatic representation of one I embodiment of the invention, Figure 2 is a diagrammatic plan view of the arrangement of Figure 1, Figures 3 and 4 are diagrammatic representations of alternate magnetic tracks, Figures 5, 6 and 7 are diagrammatic representations of -an embodiment using a cylindrical target DESCRIPTION OF_PREFERRED_EMBODIMENTS
In Figure 1 there is diagrammatically illustrated, magnetron sputtering apparatus including a magnetron housing
2 and a magnetron sputter device 3. This device consists of -I .
:, ': .
' .
3 --a grounded anode shield electrode 4 located in the housing 2 together with a member 6 that serves both as a support and as a magnetic pole piece. A magnet assembly 8 and 10 is mounted on the member I, to produce a magnetic field 12, and the whole is capable of rotation as indicated by the arrow 14. A stationary cathode target disc 16 is positioned a short distance from the magnet assembly, the magnetic field 12 being substantially parallel to the surface of the cathode target 16 in the region to he sputtered. In operation, sputtering material from the cathode target disc 16 is deposited on the surface of a workups 25.
The anode shield electrode 4 is connected to ground potential at 18 whilst a negative potential of -500 to -1000 volts is applied to the cathode target disk 16 by way of lo terminal 20.
During the sputtering operation, the magnet assembly 8, 10 including the member 6 is rotated constantly at a selected speed, such as 60 rum and the plasma track, i.e. glow discharge, on the target disk 16 follows this rotation.
Consequently target erosion takes place from a much larger area of the target disc 16.
It the magnetic field 12 were stationary, the target erosion during sputtering takes place only along the stationary track defined by the magnetic field 12. This can be seen more clearly from Figure 2 which is a diagrammatic plan view representation of the arrangement within housing 2. The closed track of the air gap between the magnet assembly 8 and 10 is identified as 22, whilst the plasma ring 24 is also shown and it will be seen that rotation of the magnet assembly results in rotation of the plasma track or ring 24 on the target disc 16.
The effect of the magnetic field 12 is to confine most of the plasma 24 along the closed track and it will be understood that a strongly magnetized air gap in the form of the closed track 22 is created at the surface of the target , 16. The magnetic field 12 is, of course, created by suitably shaped magnets 8 and 10 which may be permanent or electron magnets. As seen, the cathode target is located within the vacuum chamber formed by housing 2 and it was found that a s stable plasma discharge was obtained at a suitable gas pressure, for example argon at 3 x 10 4 Torn.
It was found that more complex shapes of the magnetic track 22 were possible Two examples are diagrammatically illustrated in Figures 3 and 4 and in plan view they comprise a closed track formed from a plurality of petal-like outlines extending outwardly from a central location.
In Figure 5 there is diagrammatically illustrated a cylindrical arrangement according to an embodiment of the invention. Figure 6 is a partially cut-away perspective view and Figure 7 is a diagrammatic plan view of this embodiment.
In this embodiment the magnet 60 is cylindrical in shape and is magnetized such that the magnetic field follows a closed, endless track on the surface of the cylinder. This can be achieved either by magnetizing a solid cylinder with its I neutral axis following the closed track or by having two complementary cylindrical sections of opposite magnetic polarity, separated by an air gap following the closed track The natural lines Go force are such that sputtering takes place along the neutral zone of the magnet 60. The target 66 is in the form of a hollow cylinder closely surrounding the magnet fix. The shield electrodes 62 are at ground potential as indicated at 68 whilst a negative potential, of -500 to -1000 volts, is applied at terminal 70 to the cylindrical ;
target 66.
I The plasma is indicated at 64 whilst the plasma sweep on the target is represented by arrow 72 and results from the reciprocating action of the magnetic field.
From the above it will be seen that different shapes and geometries of magnetron sputtering can be achieved.
,, :
. .
:
.
-When other parameters (magnetic field, pressure and potential) are kept constant, total power in the plasma appears to be proportional to the length of the track.
The shape of the track and its sweep over the target determine the utilization efficiency, which could be as high as 80% for the circular disc.
During sputtering most of the power is generated as heat in the target. In the usual way, cooling is achieved by circulating water or other fluid behind the circular disc.
The same fluid can be used to provide the power to rotate the magnet assembly by the use of a small water turbine wheel attached to the shaft. This could eliminate the provision of external rotary power.
The described embodiments using a simplified target lo shape, (e.g. circular disc) appear to provide the following advantages:
1. Higher yield from a given target. These are generally expensive especially when made from precious metals 2. Longer time of operation between target replacements 3. Easier availability of targets in simple shapes, such as a circular disc, without the need for bonding or special geometry
4. The technique is particularly applicable to thin film techniques in the microelectronic industry.
It will be readily apparent to a person skilled in the art that a number of variations and modifications can be made without departing from the true spirit of the invention which will now be pointed out in the appended claims.