~ 3~7 CONTOURED TOUCH TYPE DATA PROC~SSING KEYBOARD
Technical Field This invention relates to electronic da~a processing equipment and more pa~ticularly it relates to keyswitch S type manual entry keyboards for both entry of data an~
functional control of data processing operations.
Background Art A significant bottleneck in the use of electronic computers and other data processing equipment is the human input interface equipment usually in the form of Xeyboards. Modern electronic data processors have out-stripped the capacities of conventional keyboards by providing capability for handling literally hundreds of control functions and data charac~ers on a single low cost chip. Also any manual input keyboard is sensitive to manual inpu~ speed and potential entry errors caused by either equipment characteristics or l~uman error. The need for improved speed, accuracy and high data handling capacity in manual entry keyboards is evident. A further desirable feature is minimal size compatible with port-able size computers, which constitute a considerable percentage of the market demand. For small keyboard panels of the prior art there is generall~ only room for operation by one hand, which further tends to restrict keyboard speed, accuracy and capacity.
Some prior art techniques are proposed to lncrease keyboard capacity for data processing applications, such as (1) the "chord" system of selection of keys either one or several at a time set forth in U.S. Patent 4,042,777 -~ F. C. Bequaert et al. - Aug. 16, 1977 or German 2924515 - Jan. 15, 1981~ (2) the use of the available keyboard keys in several different modes as set forth in U.S. Patent 3,892,958 - C. C. Tung - July 1, 1975 and (3) the use of counted sequential closures of keys a plurality of times to provide a larger number of .
3~
selections per key as set forth in U.S. Patents 4,202,038 - S. A. Petersson - May 6, 1980 and 4,272,826 - S. Deutsch - June 9, 1981. However, these keyboards all tend to increase the error rate of manual input data by requiring the operator to make mental choices including those which select how many fi.ngers and how many finger strokes are required for an entry.
The same is true if a keyboard has a larger number of keys so that an operator's hands get out of register for touch operation, or must have a large reach or hand move-ment span encompassing a large number of keys.
It is therefore an objective of this invention to improve the manual entry data processor keyboard art by providing structure to reduce errors, improve capacity and inc~ease speed.
i- .
- :~2 ~7 Disclosure of the Invention This invention provides electronic keyboard switching equipment for manual data entry and control of electronic computer and data processing equipment that permits faster more accurate manual input of data.
Also, high keyboard capacity is achieved in a compact size to compatib]y relate to modern chip and portable sized computer requirements and thereby make available an extensive range of the available built-in data processing functions.
One significant factor in producing fast and error free manual keyswitch entry is the provision of an inter-acting set of elements eliminating mental choices of the operator to determine which selection to make or which set of fingers to use. If a piano player first attempts to play rapidly a new song wi~hout practice it would be difficult to play all chords without error because of the mental process in choosing the number and locations of the necessary fingers. Rather a typist sequentially using one finger at a time to enter one character at a time can rapidl~ type new text with a mechanical action that substantially eliminates errors. This then is the limited mode of operation pro~ided by this invention together with other cooparating keyboard features that also result in comprehensive choice of many selections, rapid data production and few errors.
To significantly increase the key-to-signal selection efficiency, a single finger stroke may choose the individual keys one at a time plus a larse number of "virtual" keys 3~ afforded by stroking two or more side-by-side keys simultaneously.
It is significant to a typist or other keyboard operator to be able to find and rest the fingers in a ready home position from which the finger reach provides ~ ,' ~213~6~
access to the entire keyboard. Thus, an error reducing feature is incorporated and accented by this invention by means of producing a keyboard contour that lets the fingers feel by touch that they are in home position or S on a correctly selected key when reaching out. This tactile feedback also supplements the movement of the keyswitch for each entry so tha~ the operator knows one character is complete and another may immediately follow. This feature is characterized by tactile feedback markers to be sensed by a single finger in each entry position showing that the finger is registered in place for the entry, wherein the markers extend over a plurality of at least two side-by-side keys to encompass those entries which result from simultaneous switching 1~ of more than on~ keyswitch. The tactile markers comprise an ordered set of indentations, raised ridge sur~ace portions and flat surface areas, which typically respectively identify selections for the finger position to actuate one, two or more keyswitches. To accommodate tiered row typewriter type keyboar~s, the tiering overlaps the keys in an adjacent row to permit a single finger stroke actuation of keys in two adjacent tiered rows.
A preferred keyboard arrangement for one hand touch type entry of alphanumeric data has twelve keys arranged in five columns of keys, which overlap to fit the length of the five fin~ers on a hand, ana thus match a home key position with a normal natural hand posture.
Indicia entered on the keyboard permits visual reference, particularly useful for unusual or less frequently used selections. This is also important if a plurality of different live keyboard modes is available and makes the keyboard selections in different modes self-explanatory-without reference to an instruction manual.
ri~
., , ~, ~2~31~:i7 Compact size and full alphanumeric entry capacity o~
each entry with a single finger stroke using a single hand and as few as nine keys is achieved by use of the technique of ~etting a finger bridge more than one key for concurrent switching of more than one keyswitch per finger stroke, when provision is made for a mode change to select more than one live keyboard set. Direct en~ry of each character is provided by a single finger stroke on a live keyboard so that high data entry speed is achieved. A twelve key key-board can provide for example from 47 to 55 separate selectionsfor full alphanumeric capabilities and further choice of a number of functional control signals on a live ~eyboard. A
greater number of keys further expands the number of selections possible without any change of the keyboard mode.
This invention therefore makes it possible wi~h a compact twelve key symmetrical matrix array commonly used for telephone service to attain a full alphabetic mode of 35 characters supplementing the standard twelve choice numerical mode telephone key swi~ch assembly. Thus, forty-seven separate tones can be used and this array is useful in telephone switch-ing systems to replace complex PBX type switchboards.
~ hus broadly, the invention comprehends a telephone keyboar~ assembly having a matr`ix of side-by-side keys consisting of twelve keys, with provisions for operating a ~5 live keyboard in two live keyboard modes for selecting from the keyboard a plurality of at least 36 entries by means of single finger stroke~selections of the entires by switching ~f either one or two or more adjacent keys simultaneously.
'7 In a further embodimen-t, the invention provides a touch type data processor keyboard assel~ly of the type having a field of side-by-side keyswitches arranged for actuation of both selected individual keyswitches in-dependently and multiplicities of side-by-side keyswitches concurrently bridgeable for actuation by one finger which is characterized in that tactile feedback markers sensed by a single finger to determine finger stroke registration positions for entry of a desired keyswitch signal extend over a plurality of at least two of the side-by-side keys.
In a yet further embodiment, the invention is a touch type data processor keyboard assembly o~ the type having, a field of si~e-by-side keyswitches having finger operable keys, an output means operable for identification of both selected individual keyswitches independently and sets of a plurality of side-by-side keyswitches selected concurrently, and a bridging structure for actuation by a single finger on the keyboard surface consisting of finger actuation positions on more than one of the side~by-side key surfaces shaped with tactile markers for finger registxation to permit accurate simultaneous identification and selection of desired sets of multiple keys with a single finger stroke.
The invention additionally includes a keyboard layout for use by a sin~le hand having features in combination whi~.h comprise a symmetrical layout to thereby permit operation of either left or xight hands, and a set of more than three off-set columns of keys arranged with the columns conforming to fit the normal contour of the human hand including a center column for mating with the forefinger for actuation of the keys being offset from two adjacent columns in an amount approximating the longer length of that finger.
Other features, objects and advantages of the invention will be found throughout the description, drawing and claims.
,~;, ~ i ~L3~i7 Brief_Description of the Drawin~s In the drawings:
Figure 1 is a sketch of a data processing system partly in block diagram with a manual entry keyboard for entering data and control signals in accordance with the provisions of this invention;
Figure 2 is a partial section sketch showing keyboard profile features afforded by this invention as seen from lines 2-2 of Figure l;
Figure 3 is a plan view of a keyboard and display embodiment of the invention for manual entry of alpha-numeric data with keyswitches laid out in a conventional typewriter keyboard pattern;
Figure 4 is a further keyboard embodiment as shown in ~igure 1 illustrating the use of the live keyboard switches in a multiplicity of modes including numeric calculation and alphanumeric modes;
Figure S is an alternative keyboard pattern embodi-ment with sixteen keys arranged *or manual data entry by one hand;
Figure 6 is-a plan view of a twelve key keyboard embodiment with five rows of keys interlaced to fit the natural pocition of the fingers, thereby to reduce errors and permit comfortable data entry;
Figure 7 is a profile sketch of the keyboard of Figure 3 when tiered, as taken along lines 7-7, wherein keys in lower rows have portions extended to the adjacent higher level rows thereby to permit a single finger stroke to actuate simultaneously keys in two adjacent rows; and Figure 8 is a plan view of a twelve key symmetrical matrix keyboard layout of the type commonly used in telephone systems -~;
31~
The Preferred Embodiments As laid out in Figure 1, a single field 15 of twelve side-by-side manually operable keyswitches 16, 17, etc. provides both input data and operating instructions for ~ computer or other data processiny system, preferably self contained in an appropriate housing such as ~ portable or desk top si~ed case. The pertinent data processing-keyboard relationships are shown in block diagram form and a visual display panel 18 is available for output interfacing. The keyboard is operable live with the keyboard indicia showing avail~ble functions and characters selectable. In this case a numerical calculating mode of operation permits diyit by aigit sequential direct entry by means of a single stroke by a single finger of an appropriate one of the decimal digit keyswitches designated 0 to 9 in the circle or oblong key fitting aepress~ons 20 shown better by the profile view of Figure 2. Note that the symmetry of the layout provides one hand operation by either right or left hanas.
For control purposes, key 16 provides for a decimal point entry for the first occurrence in a numerical word.
However, for ~he second such entry in a word (a non-meaningful combination~ it will serve as a cGntrol function to enter the word into an appropriate register as indicated by the arrow designation. The execute tXQ) key 21 is used to execute command instruction such as for example, to change the computer mode of operation and establish a different set of entries for the live keyboard keys.
Basically this keyboard embodiment has contiguous keys disposed in a field presenting generally a flat surface plane (22, Fig. 2). That surface is contoured by depressions 20 and by raised surface portions 23 which can be felt to aid in touch selection of keyboard entries. Thus, the field of twelve keys is operated by one hand as a typewriter using a single finger for each entry to close a keyswitch (ox to concurrently close a combination of keyswitches). The depressions 20 and raised surfaces 23 thus permit the operator to feel the proper finger positions and to know when the fingers are resting in a home position or reaching to the right finger position for entries from a single keyswitch closure. A home position thus in the depression~ would be as follows: thumb at 0, index finger at 4, fore-finger at 5, ring finger at 6 and little finger ak the decimal point.
Each depression thus relates to a single Xeyswitch actuable by a single finger stroke and the tactile depression markers 20 will feedback to the operator the proper finger position for entries of a single keyswitch closure. The "Virtual" keys of two or more keyswi~ches simultaneously closed, are also identified by tactile feedback structuxe. Thus, junctions of two side-by-side keys, including sin 14, ~r and the like, are arranged on a flat surface junction line which is felt by the operator when the finger is in place fox a kev stroke of this set of virtual (two simultaneous keyswitch single~
keys. Similarly, the set of virtual keys for more than two simultaneous keyswitch closuxes by a single finger stroke are located at the raised ridges 23, which are felt by the oper~tor to assure that the finger is properly registered. ._ ` ;
~Z~L3~D~7 --1 o--Note that for ~he virtual keys a tactile feedback member is provided common to two or more ~eys by extending over a plurality of at least two side-by-side keys. Thus, the operator can "type" with greater accuracy and select with confidence the many key positions available from the set of twelve keyswitches.
If the number of keyswitches is 12 as for example disposed in this keyboard embodiment, as may be seen in Figure 1, forty-seven entry selections are provided.
This is achieved by providing output signals in response to actuation of either the twelve single keys independently t0-9, XQ and .) or the actuation of a plurality of keys concurrently.
In the format of Figure 6 by offsetting columnax keys, the number of selections available from twelve keys is increased to 55. This further adds the desirable feature of conforming the five columns of the keyboara to fit the normal contour of the human hand, where the fore-finger is the longest, etc. Thus, a natural home position will further prevent any errors caused by unnatura] hand positions required in other keyboard configurations.
It is important for accuracy ana speed in manual data entry that the individual characters be selected sequentially one at a time by choice of a single fingex as indicated on box 27. Thus, two side-by-side keys such as shown for clear X (ClX) at the intersection of keys 21 and 25 are operated concurrently by a single finger stroke. All of these two concurrent key selection positions are at medium level coplanar ~flat) surfacè finger stroke positions at the junctions where only ~wo keys meet, in accordance with the preferred contour embodiment of Figure 1. See the junction line 26 of keys 21 and 16 in Figure 2, for example, where the`back space/clear arrow indicia is seen in Figure 1. Other selections such as ~2~3~7 sin, cos are evident from the twelve key field embodiment as displayed. The touch at a flat surface joint between keys is readily recognized by an operator as a feedback signal assuring that the fingers are in proper position.
Also a plurality of 3 or 4 keyswitches may be stroked concurrently by a single finger with a single stroke for an entry. These locations are identified by a raised surface rectangle ridge 23 (see Figure 2 also). Thus, for example, di~ide (.) or percentage (%) control functions are selectea at three key junctions, and X for example is selected at a four key junction.
Thereby a number of selections far in excess of the number of key switches is provided in this system. The system also affords manual data input speed and accuracy not heretofore a~ailable by means of combining the contoured keyboard and the entry of a large numbe~r of characters or functions with a single finger stroke to permit touch type data entry in a mode similar to touch typewriting. Note that the maximum reach ~or selecting characters away from a home finger rest position (0-4~5-6-.~ is significantly reduced by the use of the-technique of briaging side-by-side keys with the acting data input finger and keeping the side-by-side keys in a single compact field. This means the hand can span a much ~ar~er number of key entry positions than on a type-writer type keyboard, for example. Also note that because of the more closely spaced character positions, the contoured keyboard mar~ers are most important in reducing the probability of error, since each class of keyswitch entry (1, 2, 3 keys, etc.) will have its own feel in terms of indentation, flat surface or raised marker ridge. A
special texture may be placed at the flat surfaces if desired Eor more prominent differentiation from other flat -keyboard areas out of register~ Thus~ both t~e movable -~Z~L3~7 keyswi~ches which must be actuated and the marker feel are feedback signals to the operator to improve the data input accuracy.
The switchboard is readily ad~pted to communicate with the data processor system 30 by means of a logic decoding switch selection network 31. Thus 47 different signals are derived for the various keyswitch selections on keyboard 15 of Figure 1 and validated as proper key-switch combinations. The signals for actuating the data processing then comprise a sequence of successive signals selected for each finger stroke (27) and coupled (32) to the data proce~sing system 30 in proper coded form for communication. Thus, both data in the form of characters f~r forming data entry words (33) and control of function sig~als (34) are entered by a single finger in a single keystroke.
The keyboard layout may take other forms, such as the conventional two hand typewriter layout pattern having at least twenty~eight separate Xeys for producing the full alphabet. As seen by the keyboard notation, the flat or tiered (Figure 7) keyboard surface has depressions 20 and raised ridqe portions 23 as în the hereinbefore described contour pattern. In this embodime~t, the rows of keys are interlaced to form three key intersections at th~ contoured positions 2~. It is readily apparen$
that great flexibility of control for a data processing system is provided by this keyboard layout, where space is available. It has the advantage of a standard key-board layout for two handed typing, but permits a large range of additional live keyboard functions and ~rovides the contour tactile feedback feature.
The twelve key layout of Figure 4 illustrates the comprehensive capabilities of thè keyboard system of this invention to effectively use more of the very large number of data processing functions available on modern ~2~3~
chips. For illustrative purposes, three different modes of operation are outlined, as may be seen best from the three separate notations on the multiple key intex-sections with the raised contours 23. For convenience to an operator, the three sets of indicia may be color coded, black, blue and red, for example.
The data processing system is then operated in three modes, such as an alphanumeric data processing mode, a numeric calculating mode, and other specialty modes such as adding machine (ADD) and programming (PGM) modes, as selected by appropriate commands generated from the keyswitches. In this embodiment auxiliary mode selector switches 39 are illustrated. It is seen from the key~
board notation that in the alphanumeric mode, ~he entire alphabet, all ten decimal digits, punctuation marks, and several command signals are available for one~hand entry from the twelve keyswitches. In each mode therefore the keyboard signals are coupled to the data pxocessing system for correspondiDg communication from a live key-board, so that each stroke of a single finger will prod~cea ~alid entry.
Other keyboard formats may be desired, such as for example, the twelve key telephone type keyboard of Figure 8 or the sixteen key version of Figure 5 In each case, the keyboard is located in a single ~ield and is preferably accessible by one hand leaving the other free for other purposes. By placing all the keys in a single field, a greater number of keyswitch combinations is available. Also, the keyswitch layout then can be 3U designed for fewer mental choices by the operator, thereby decreasing error rates. Also to decrease the error rate ana provide essentially mechanical entry of data even from unrehearsed copy, each entry is made in ~3~7 sequence by action of a sin~le finger, as in touch type-writing. It is seen therefore that accurate, high speed data and control function entry is achieved very eEficiently and comprehensively with few keys.
In Figure 6, the keyboard assembly comprises a field of twelve keys arranged in ~ive columns 40-44 symmetrically layed out for either left or ri~ht hand operation by a single hand. As seen from the home keys (0-4-5-6-.), the column keys are offset and interlaced. This serves two important purposes, namely it provides a larger number of virtual keys so that 55 choices are available from twelve keys and it conforms to the normal contour of the human hand to make use more comfortable and more error free to avoid errors caused by fatigue or reach from ar to an unnatural position of the fingers.
As may be seen the longer forefinger is accommodated by centermost offset column 42, whereas, index and ring fingers naturally meet and rest on columnar keys 41 and 43. The thumb and little fingers being the shortest then can find a position on the columns 40, 44. To conform to the offset columns the execute key 45 spans the three centermost columns. When this keyboard is used for telephone input, the two keys 45, 46 may carry * and notation.
Figure 7 illustrates the key construction in profile sketch of a tiered keyboard such as the typewriter keyboard of Figure 2, as afforded by this invention.
Thus, each key on a lower one of the tiered rows has a raised edge portion 49 thereof extending into the ad~acent upper tier to permit by a single fingerstroke the virtual key selection for simultaneously closing key-switches located in two adjacent rows or tiers.
L3(3~7 In accordance with this invention therefore another embodiment as shown in Figure 8 is particularly adapted for telephone use where a similar field arrange-ment of twelve keys is employed. Note that for special keyboards the use of nine keys can be used to provide twenty-five selection.s from nine keys and sixteen virtual keys, such as in telephone switchboard (PBX type) services whexe ten numerical digits are required plus control and switching signals. The twelve key layout with t~lirty-five selections shows that full alphabetic capabilities are feasible in telephone communications provided a mode change of the live keyboard functions from numeric to alphabetic mode is supplied, such as by operation of the #::key.
If the system diagram of Figure 1 is considered, it is seen that this invention provides improved telephone switching systems. For example, the keyboard switch selection device 31 may produce tones compatible with telephone line transmission in response to key selections from keyboard lS (or that of Figure 8). As seen from cable ~9 these tones ~up to forty-seven in number~ are processable in the telephone system switchboard 50 which can connect in a telephone receiving station 51 ~such as a computer~ for handling alphanumeric data input. This keyboard assembly constitutes what is known in the art as a simple modem. Also it is seen that this invention permits a comp~ex PBX type of switchboard used in telephone switching systems to be replaced by a simple twelve key standard telephone keyswitch assembly that produces an equivalent function that formerly required a large number of keyswitches while processing numerical data entires in a conventional way . _ 3~2~L3r~7 Having therefore advanced the state of the art, those novel features believed descriptive of th~
spiri~ and nature o.f the invention are set forth with particularity in the claims.
. _ 1