Movatterモバイル変換


[0]ホーム

URL:


AU2019202856A1 - Modulation of hepatitis b virus (hbv) expression - Google Patents

Modulation of hepatitis b virus (hbv) expression
Download PDF

Info

Publication number
AU2019202856A1
AU2019202856A1AU2019202856AAU2019202856AAU2019202856A1AU 2019202856 A1AU2019202856 A1AU 2019202856A1AU 2019202856 AAU2019202856 AAU 2019202856AAU 2019202856 AAU2019202856 AAU 2019202856AAU 2019202856 A1AU2019202856 A1AU 2019202856A1
Authority
AU
Australia
Prior art keywords
wing segment
sugar
linked nucleosides
compound
modified oligonucleotide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2019202856A
Inventor
Susan M. Freier
Michael L. Mccaleb
Eric E. Swayze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glaxo Group Ltd
Original Assignee
Glaxo Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012245243Aexternal-prioritypatent/AU2012245243B2/en
Application filed by Glaxo Group LtdfiledCriticalGlaxo Group Ltd
Priority to AU2019202856ApriorityCriticalpatent/AU2019202856A1/en
Publication of AU2019202856A1publicationCriticalpatent/AU2019202856A1/en
Assigned to GLAXO GROUP LIMITEDreassignmentGLAXO GROUP LIMITEDRequest for AssignmentAssignors: IONIS PHARMACEUTICALS, INC.
Abandonedlegal-statusCriticalCurrent

Links

Landscapes

Abstract

Disclosed herein are antisense compounds and methods for decreasing HBV mRNA, DNA and protein expression. Such methods, compounds, and compositions are useful to treat, prevent, or ameliorate HBV-related diseases, disorders or conditions.

Description

MODULATION OF HEPATITIS B VIRUS (HBV) EXPRESSION
Sequence Listing
The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled BIOL0175WOSEQ.txt created April 18, 2012, which is approximately 256 KB in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.
Field
In certain embodiments provided are methods, compounds, and compositions for inhibiting expression of hepatitis B virus (HBV) mRNA and protein in an animal. Such methods, compounds, and compositions are useful to treat, prevent, or ameliorate HBV-related diseases and disorders.
Background
Hepatitis B is a viral disease transmitted parenterally by contaminated material such as blood and blood products, contaminated needles, sexually and vertically from infected or carrier mothers to their offspring. It is estimated by the World Health Organization that more than 2 billion people have been infected worldwide, with about 4 million acute cases per year, 1 million deaths per year, and 350-400 million chronic carriers (World Health Organization: Geographic Prevalence of Hepatitis B Prevalence, 2004.
http ://www .who. int/vaccines-surveillance/graphics/htmls/hepbprev.htm).
The virus, HBV, is a double-stranded hepatotropic virus which infects only humans and non-human primates. Viral replication takes place predominantly in the liver and, to a lesser extent, in the kidneys, pancreas, bone marrow and spleen (Hepatitis B virus biology. Microbiol Mol Biol Rev. 64: 2000; 51-68.). Viral and immune markers are detectable in blood and characteristic antigen-antibody patterns evolve over 25 time. The first detectable viral marker is HBsAg, followed by hepatitis B e antigen (HBeAg) and HBV DNA.
Titers may be high during the incubation period, but HBV DNA and HBeAg levels begin to fall at the onset of illness and may be undetectable at the time of peak clinical illness (Hepatitis B virus infection—natural history and clinical consequences. N Engl J Med.. 350: 2004; 1118-1129). HBeAg is a viral marker detectable in blood and correlates with active viral replication, and therefore high viral load and infectivity 30 (Hepatitis B e antigen—the dangerous end game of hepatitis B. N Engl J Med. 347: 2002; 208-210). The presence of anti-HBsAb and anti-HBcAb (IgG) indicates recovery and immunity in a previously infected
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 individual.
Currently the recommended therapies for chronic HBV infection by the American Association for the Study of Liver Diseases (AASLD) and the European Association for the Study of the Liver (EASL) include interferon alpha (INFa), pegylated interferon alpha-2a (Peg-IFN2a), entecavir, and tenofovir. The nucleoside and nucleotide therapies, entecavir and tenofovir, are successful at reducing viral load, but the rates of HBeAg seroconversion and HBsAg loss are even lower than those obtained using IFNa therapy. Other similar therapies, including lamivudine (3TC), telbivudine (LdT), and adefovir are also used, but for nucleoside/nucleotide therapies in general, the emergence of resistance limits therapeutic efficacy.
Thus, there is a need in the art to discover and develop new anti-viral therapies. Additionally, there is a need for new anti-HBV therapies capable of increasing HBeAg and HBsAg seroconversion rates. Recent clinical research has found a correlation between seroconversion and reductions in HBeAg (Fried et al (2008) Hepatology 47:428) and reductions in HBsAg (Moucari et al (2009) Hepatology 49:1151). Reductions in antigen levels may have allowed immunological control of HBV infection because high levels of antigens are thought to induce immunological tolerance. Current nucleoside therapies for HBV are capable of dramatic reductions in serum levels of FIB V but have little impact on HBeAg and HBsAg levels.
Antisense technology is emerging as an effective means for reducing the expression of specific gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of HBV expression (See U.S. Patent Publication Nos. 2008/0039418 and 2007/0299027). Antisense therapy differs from nucleoside therapy in that it can directly target the transcripts for the HBV antigens and thereby reduce serum HBeAg and HBsAg levels. Because of the multiple, overlapping transcripts produced upon HBV infection, there is also an opportunity for a single antisense oligomer to reduce HBV DNA in addition to both HBeAg and HBsAg. Therefore, antisense technology is emerging as an effective means for reducing the expression of certain gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic, and research applications for the modulation of 25 HBV.
Summary
Provided herein are methods, compounds, and compositions for modulating expression of HBV mRNA and protein. In certain embodiments, compounds useful for modulating expression of HBV mRNA and protein are antisense compounds. In certain embodiments, the antisense compounds are antisense 30 oligonucleotides.
In certain embodiments, modulation can occur in a cell or tissue. In certain embodiments, the cell or tissue is in an animal. In certain embodiments, the animal is a human. In certain embodiments, HBV
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 mRNA levels are reduced. In certain embodiments, HBV DNA levels are reduced. In certain embodiments, HBV protein levels are reduced. In certain embodiments, HBV antigen levels are reduced. In certain embodiments, HBV s-antigen (HBsAg) levels are reduced. In certain embodiments, HBV e-antigen (HBeAg) levels are reduced. Such reduction can occur in a time-dependent manner or in a dose-dependent manner.
Also provided are methods, compounds, and compositions useful for preventing, treating, and ameliorating diseases, disorders, and conditions. In certain embodiments, such HBV related diseases, disorders, and conditions are liver diseases. In certain embodiments, such liver diseases, disorders, and conditions includes jaundice, liver cancer, liver inflammation, liver fibrosis, inflammation, liver cirrhosis, liver failure, diffuse hepatocellular inflammatory disease, hemophagocytic syndrome, serum hepatitis, HBV viremia, and liver disease-related transplantation. In certain embodiments, such HBV related diseases, disorders, and conditions are hyperproliferative diseases, disorders, and conditions. In certain embodiments such hyperproliferative diseases, disorders, and conditions include cancer as well as associated malignancies and metastases. In certain embodiments, such cancers include liver cancer and hepatocellular cancer (HCC).
Such diseases, disorders, and conditions can have one or more risk factors, causes, or outcomes in common. Certain risk factors and causes for development of liver disease or a hyperproliferative disease include growing older; tobacco use; exposure to sunlight and ionizing radiation; contact with certain chemicals; infection with certain viruses and bacteria; certain hormone therapies; family history of cancer; alcohol use; and certain lifestyle choices including poor diet, lack of physical activity, and/or being overweight. Certain symptoms and outcomes associated with development of a liver disease or a hyperproliferative disease include but are not limited to: flu-like illness, weakness, aches, headache, fever, loss of appetite, diarrhea, jaundice, nausea and vomiting, pain over the liver area of the body, clay- or greycolored stool, itching all over, and dark-colored urine.
In certain embodiments, methods of treatment include administering a HBV antisense compound to an individual in need thereof. In certain embodiments, methods of treatment include administering a HBV 25 antisense oligonucleotide to an individual in need thereof.
Detailed Description
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Herein, the use of the singular includes the plural unless specifically stated otherwise. As used herein, the use of “or” 30 means “and/or” unless stated otherwise. Furthermore, the use of the term “including” as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit, unless specifically stated otherwise.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this application, including, but not limited to, patents, patent applications, articles, books, and treatises, are hereby expressly incorporated by reference for the portions of the document discussed herein, as well as in their entirety.
Definitions
Unless specific definitions are provided, the nomenclature utilized in connection with, and the procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques may be used for chemical synthesis, and chemical analysis. Where permitted, all patents, applications, published applications and other publications, GENBANK Accession Numbers and associated sequence information obtainable through databases such as National Center for Biotechnology Information (NCBI) and other data referred to throughout in the disclosure herein are incorporated by reference for the portions of the document discussed herein, as well as in their entirety.
Unless otherwise indicated, the following terms have the following meanings:
“2’-O-methoxyethyl” (also 2’-MOE and 2’-O(CH2)2-OCH3) refers to an O-methoxy-ethyl modification at the 2’ position of a furanose ring. A 2’-O-methoxyethyl modified sugar is a modified sugar.
“2’-MOE nucleoside” (also 2’-O-methoxyethyl nucleoside) means a nucleoside comprising a 2’MOE modified sugar moiety.
“2’-substituted nucleoside” means a nucleoside comprising a substituent at the 2’-position of the furanosyl ring other than H or OH. In certain embodiments, 2’ substituted nucleosides include nucleosides with bicyclic sugar modifications.
“3’ target site” refers to the nucleotide of a target nucleic acid which is complementary to the 3’-most nucleotide of a particular antisense compound.
“5’ target site” refers to the nucleotide of a target nucleic acid which is complementary to the 5’-most nucleotide of a particular antisense compound.
“5-methylcytosine” means a cytosine modified with a methyl group attached to the 5 position. A 5methylcytosine is a modified nucleobase.
“About” means within ±7% of a value. For example, if it is stated, “the compounds affected at least about 70% inhibition of HBV”, it is implied that the HBV levels are inhibited within a range of 63% and
77%.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 “Acceptable safety profile” means a pattern of side effects that is within clinically acceptable limits.
“Active pharmaceutical agent” means the substance or substances in a pharmaceutical composition that provide a therapeutic benefit when administered to an individual. For example, in certain embodiments an antisense oligonucleotide targeted to HBV is an active pharmaceutical agent.
“Active target region” means a target region to which one or more active antisense compounds is targeted. “Active antisense compounds” means antisense compounds that reduce target nucleic acid levels or protein levels.
“Acute hepatitis B infection” results when a person exposed to the hepatitis B virus begins to develop the signs and symptoms of viral hepatitis. This period of time, called the incubation period, is an average of 90 days, but could be as short as 45 days or as long as 6 months. For most people this infection will cause mild to moderate discomfort but will go away by itself because of the body's immune response succeeds in fighting the virus. However, some people, particularly those with compromised immune systems, such as persons suffering from AIDS, undergoing chemotherapy, taking immunosuppressant drugs, or taking steroids, have very serious problems as a result of the acute HBV infection, and go on to more severe conditions such as fulminant liver failure.
“Administered concomitantly” refers to the co-administration of two agents in any manner in which the pharmacological effects of both are manifest in the patient at the same time. Concomitant administration does not require that both agents be administered in a single pharmaceutical composition, in the same dosage form, or by the same route of administration. The effects of both agents need not manifest themselves at the same time. The effects need only be overlapping for a period of time and need not be coextensive.
“Administering” means providing a pharmaceutical agent to an individual, and includes, but is not limited to administering by a medical professional and self-administering.
“Agent” means an active substance that can provide a therapeutic benefit when administered to an animal. “First Agent” means a therapeutic compound described herein. For example, a first agent can be an 25 antisense oligonucleotide targeting HBV. “Second agent” means a second therapeutic compound described herein (e.g. a second antisense oligonucleotide targeting HBV) and/or a non- HBV therapeutic compound.
“Amelioration” refers to a lessening of at least one indicator of the severity of a condition or disease. The severity of indicators may be determined by subjective or objective measures which are known to those skilled in the art.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 “Animal” refers to a human or non-human animal, including, but not limited to, mice, rats, rabbits, dogs, cats, pigs, and non-human primates, including, but not limited to, monkeys and chimpanzees.
“Antibody” refers to a molecule characterized by reacting specifically with an antigen in some way, where the antibody and the antigen are each defined in terms of the other. Antibody may refer to a complete antibody molecule or any fragment or region thereof, such as the heavy chain, the light chain, Fab region, and Fc region.
“Antisense activity” means any detectable or measurable activity attributable to the hybridization of an antisense compound to its target nucleic acid. In certain embodiments, antisense activity is a decrease in the amount or expression of a target nucleic acid or protein encoded by such target nucleic acid.
“Antisense compound” means an oligomeric compound that is is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding. Examples of antisense compounds include single-stranded and double-stranded compounds, such as, antisense oligonucleotides, siRNAs, shRNAs, snoRNAs, miRNAs, and satellite repeats.
“Antisense inhibition” means reduction of target nucleic acid levels in the presence of an antisense compound complementary to a target nucleic acid compared to target nucleic acid levels in the absence of the antisense compound.
“Antisense mechanisms” are all those mechanisms involving hybridization of a compound with target nucleic acid, wherein the outcome or effect of the hybridization is either target degradation or target occupancy with concomitant stalling of the cellular machinery involving, for example, transcription or splicing.
“Antisense oligonucleotide” means a single-stranded oligonucleotide having a nucleobase sequence that permits hybridization to a corresponding region or segment of a target nucleic acid.
“Base complementarity” refers to the capacity for the precise base pairing of nucleobases of an antisense oligonucleotide with corresponding nucleobases in a target nucleic add (i.e., hybridization), and is 25 mediated by Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen binding between corresponding nucleobases.
“Bicyclic sugar” means a furanose ring modified by the bridging of two non-geminal carbon atoms. A bicyclic sugar is a modified sugar.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 “Body weight” refers to an animal’s whole body weight, inclusive of all tissues including adipose tissue.
“Cap structure” or “terminal cap moiety” means chemical modifications, which have been incorporated at either terminus of an antisense compound.
“cEf ’ or “constrained ethyl” means a bicyclic sugar moiety comprising a bridge connecting the 4’carbon and the 2’-carbon, wherein the bridge has the formula: 4’-CH(CH3)-O-2’.
“Constrained ethyl nucleoside” (also cEt nucleoside) means a nucleoside comprising a bicyclic sugar moiety comprising a 4’-CH(CH3)-O-2’ bridge.
“Chemically distinct region” refers to a region of an antisense compound that is in some way chemically different than another region of the same antisense compound. For example, a region having 2’O-methoxyethyl nucleotides is chemically distinct from a region having nucleotides without 2’-Omethoxyethyl modifications.
“Chimeric antisense compounds” means antisense compounds that have at least 2 chemically distinct regions, each position having a plurality of subunits.
“Chronic hepatitis B infection” occurs when a person initially suffers from an acute infection but is then unable to fight off the infection. Whether the disease becomes chronic or completely resolves depends mostly on the age of the infected person. About 90% of infants infected at birth will progress to chronic disease. However, as a person ages, the risk of chronic infection decreases such that between 20%-50% of children and less than 10% of older children or adults will progress from acute to chronic infection. Chronic ζ,υ HBV infections are the primary treatment goal for embodiments of the present invention, although ASO compositions of the present invention are also capable of treating HBV-related conditions, such as inflammation, fibrosis, cirrhosis, liver cancer, serum hepatitis, and more.
“Co-administration” means administration of two or more pharmaceutical agents to an individual. The two or more pharmaceutical agents may be in a single pharmaceutical composition, or may be in separate 25 pharmaceutical compositions. Each of the two or more pharmaceutical agents may be administered through the same or different routes of administration. Co-administration encompasses administration in parallel or sequentially.
“Complementarity” means the capacity for pairing between nucleobases of a first nucleic acid and a second nucleic acid.
“Comply” means the adherence with a recommended therapy by an individual.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Comprise, comprises and comprising will be understood to imply the inclusion of a stated step or element or group of steps or elements but not the exclusion of any other step or element or group of steps or elements.
“Contiguous nucleobases” means nucleobases immediately adjacent to each other.
“Cure” means a method or course that restores health or a prescribed treatment for an illness.
“Deoxyribonucleotide” means a nucleotide having a hydrogen at the 2’ position of the sugar portion of the nucleotide. Deoxyribonucleotides may be modified with any of a variety of substituents.
“Designing” or “Designed to” refer to the process of designing an oligomeric compound that specifically hybridizes with a selected nucleic acid molecule.
“Diluent” means an ingredient in a composition that lacks pharmacological activity, but is pharmaceutically necessary or desirable. For example, in drugs that are injected, the diluent may be a liquid, e.g. saline solution.
“Dosage unit” means a form in which a pharmaceutical agent is provided, e.g. pill, tablet, or other dosage unit known in the art.
“Dose” means a specified quantity of a pharmaceutical agent provided in a single administration, or in a specified time period. In certain embodiments, a dose may be administered in two or more boluses, tablets, or injections. For example, in certain embodiments, where subcutaneous administration is desired, the desired dose requires a volume not easily accommodated by a single injection. In such embodiments, two or more injections may be used to achieve the desired dose. In certain embodiments, a dose may be administered 20 in two or more injections to minimize injection site reaction in an individual. In other embodiments, the pharmaceutical agent is administered by infusion over an extended period of time or continuously. Doses may be stated as the amount of pharmaceutical agent per hour, day, week or month.
“Dosing regimen” is a combination of doses designed to achieve one or more desired effects.
“Duration” means the period of time during which an activity or event continues. In certain 25 embodiments, the duration of treatment is the period of time during which doses of a pharmaceutical agent are administered.
Effective amount in the context of modulating an activity or of treating or preventing a condition means the administration of that amount of active ingredient to a subject in need of such modulation, treatment or prophylaxis, either in a single dose or as part of a series, that is effective for modulation of that
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 effect, or for treatment or prophylaxis or improvement of that condition. The effective amount will vary depending upon the health and physical condition of the subject to be treated, the taxonomic group of subjects to be treated, the formulation of the composition, the assessment of the medical situation, and other relevant factors.
“Efficacy” means the ability to produce a desired effect.
“Expression” includes all the functions by which a gene’s coded information is converted into structures present and operating in a cell. Such structures include, but are not limited to the products of transcription and translation.
“Fully complementary” or “100% complementary” means each nucleobase of a first nucleic acid has a complementary nucleobase in a second nucleic acid. In certain embodiments, a first nucleic acid is an antisense compound and a target nucleic acid is a second nucleic acid.
Fully modified motif' refers to an antisense compound comprising a contiguous sequence of nucleosides wherein essentially each nucleoside is a sugar modified nucleoside having uniform modification.
“Gapmer” means a chimeric antisense compound in which an internal region having a plurality of nucleosides that support RNase H cleavage is positioned between external regions having one or more nucleosides, wherein the nucleosides comprising the internal region are chemically distinct from the nucleoside or nucleosides comprising the external regions. The internal region may be referred to as the “gap” and the external regions may be referred to as the “wings.” “Gap-widened” means an antisense compound having a gap segment of 12 or more contiguous 2’20 deoxyribonucleotides positioned between 5’ and 3’ wing segments having from one to six nucleotides having modified sugar moieties.
“HBV” means mammalian hepatitis B virus, including human hepatitis B virus. The term encompasses geographical genotypes of hepatitis B virus, particularly human hepatitis B virus, as well as variant strains of geographical genotypes of hepatitis B virus.
“HBV antigen” means any hepatitis B virus antigen or protein, including core proteins such as “hepatitis B core antigen” or “HBcAG” and “hepatitis B E antigen” or “HBeAG” and envelope proteins such as “HBV surface antigen”, or “HBsAg” or “HBsAG” “Hepatitis B E antigen” or “HBeAg” or “HBeAG” is a secreted, non-particulate form of HBV core protein. HBV antigens HBeAg and HBeAg share primary amino acid sequences, so show cross-reactivity at 30 the T cell level. HBeAg is not required for viral assembly or replication, although studies suggest they may
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 be required for establishment of chronic infection. Neonatal infection with HBeAg-negative mutant often results in fulminant acute rather than chronic HBV infection (Terezawa et al (1991) Pediatr. Res. 29:5), whereas infection of young woodchucks with WHeAg-negative mutant results in a much lower rate of chronic WHV infection (Cote et al (2000) Hepatology 31:190). HBeAg may possibly function as a toleragen by inactivating core specific T cells through deletion or clonal anergy (Milich et al (1998) J. Immunol. 160:8102). There is a positive correlation between reduction of HBV viral load and antigens, and a decrease of expression, by T cells, of the inhibitory receptor programmed death-1 (PD-1; also known as PDCD1), a negative regulator of activated T cells, upon antiviral therapy and HBeAg seroconversion (Evans et al (2008) Hepatology 48:759).
“HBV mRNA” means any messenger RNA expressed by hepatitis B virus.
“HBV nucleic acid or ‘HBV DNA” means any nucleic acid encoding HBV. For example, in certain embodiments, a HBV nucleic acid includes, without limitation, any viral DNA sequence encoding a HBV genome or portion thereof, any RNA sequence transcribed from a viral DNA including any mRNA sequence encoding a HBV protein.
“HBV protein” means any protein secreted by hepatitis B virus The term encompasses various HBV antigens, including core proteins such as “Hepatitis E antigen”, “HBeAg” or “HBeAG” and envelope proteins such as “HBV surface antigen”, or “HBsAg”.
“HBV surface antigen”, or “HBsAg”, or “HBsAG” is the envelope protein of infectious HBV viral particles but is also secreted as a non-infectious particle with serum levels 1000-fold higher than HBV viral particles. The serum levels of HBsAg in an infected person or animal can be as high as 1000 pg/mL (Kann and Gehrlich (1998) Topley & Wilson’s Microbiology and Microbial Infections, 9th ed. 745). In acute HBV infections, the half-life of HBsAg in the serum, or serum t./2, is 8.3 days (Chulanov et al (2003) J. Med. Virol. 69: 313). Internalization of HBsAg by myeloid dendritic cells inhibits up-regulation of co-stimulatory molecules (i.e. B7) and inhibits T cell stimulatory capacity (den Brouw et al (2008) Immunology 126:280), 25 and dendritic cells from chronically infected patients also show deficits in expression of co-stimulatory molecules, secretion of IL-12, and stimulation of T cells in the presence of HBsAg (Zheng et al (2004) J. Viral Hepatitis 11:217). HBsAg specific CD8 cells from CHB patients show altered tetramer binding. These CD8 cells are not anergic but may have TCR topology that confers partial tolerance or ignorance (Reignat et al (2002) J. Exp. Med. 195:1089). Moreover, reduction in serum HBsAg > 1 log at week 24 has a high 30 predictive value (92%) for sustained virological response (SVR - defined as nondetectable HBV DNA by PCR at 1 year after treatment) during Peg-IFNa2a therapy (Moucari et al (2009) Hepatology 49:1151).
“Hepatitis B-related condition” or “HBV-related condition” means any disease, biological condition, medical condition, or event which is exacerbated, caused by, related to, associated with, or traceable to a hepatitis B infection, exposure, or illness. The term hepatitis B-related condition includes chronic HBV 10
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 infection, inflammation, fibrosis, cirrhosis, liver cancer, serum hepatitis, jaundice, liver cancer, liver inflammation, liver fibrosis, liver cirrhosis, liver failure, diffuse hepatocellular inflammatory disease, hemophagocytic syndrome, serum hepatitis, HBV viremia, liver disease related to transplantation, and conditions having symptoms which may include any or all of the following: flu-like illness, weakness, aches, headache, fever, loss of appetite, diarrhea, nausea and vomiting, pain over the liver area of the body, clay- or grey-colored stool, itching all over, and dark-colored urine, when coupled with a positive test for presence of a hepatitis B virus, a hepatitis B viral antigen, or a positive test for the presence of an antibody specific for a hepatitis B viral antigen..
“Hybridization” means the annealing of complementary nucleic acid molecules. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an antisense compound and a nucleic acid target. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an antisense oligonucleotide and a nucleic acid target.
“Identifying an animal having an HBV infection” means identifying an animal having been diagnosed with an HBV; or, identifying an animal having any symptom of an HBV infection including, but not limited to chronic HBV infection, inflammation, fibrosis, cirrhosis, liver cancer, serum hepatitis, jaundice, liver cancer, liver inflammation, liver fibrosis, liver cirrhosis, liver failure, diffuse hepatocellular inflammatory disease, hemophagocytic syndrome, serum hepatitis, HBV viremia, liver disease related to transplantation, and conditions having symptoms which may include any or all of the following: flu-like illness, weakness, aches, headache, fever, loss of appetite, diarrhea, nausea and vomiting, pain over the liver area of the body, clay- or grey-colored stool, itching all over, and dark-colored urine, when coupled with a positive test for presence of a hepatitis B virus, a hepatitis B viral antigen, or a positive test for the presence of an antibody specific for a hepatitis B viral antigen, when coupled with a positive test for presence of a hepatitis B virus, a hepatitis B viral antigen, or a positive test for the presence of an antibody specific for a hepatitis B viral antigen.
“Immediately adjacent” means there are no intervening elements between the immediately adjacent elements.
“Individual” means a human or non-human animal selected for treatment or therapy.
“Individual compliance” means adherence to a recommended or prescribed therapy by an individual.
Induce, inhibit, potentiate, elevate, increase, decrease or the like, generally denote quantitative differences between two states. Such terms may refer to a statistically significant difference between the two states. For example, an amount effective to inhibit the activity or expression of HBV”
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 means that the level of activity or expression of HBV in a treated sample will quantitatively differ, and may be statistically significant, from the level of HBV activity or expression in untreated cells. Such terms are applied to, for example, levels of expression, and levels of activity.
“Inhibiting HBV” means reducing the level or expression of an HBV mRNA, DNA and/or protein. In certain embodiments, HBV is inhibited in the presence of an antisense compound targeting HBV, including an antisense oligonucleotide targeting HBV, as compared to expression of HBV mRNA, DNA and/or protein levels in the absence of a HBV antisense compound, such as an antisense oligonucleotide.
Inhibiting the expression or activity refers to a reduction, blockade of the expression or activity and does not necessarily indicate a total elimination of expression or activity.
“Injection site reaction” means inflammation or abnormal redness of skin at a site of injection in an individual.
“Intemucleoside linkage” refers to the chemical bond between nucleosides.
“Intraperitoneal administration” means administration through infusion or injection into the peritoneum.
“Intravenous administration” means administration into a vein.
“Lengthened” antisense oligonucleotides are those that have one or more additional nucleosides relative to an antisense oligonucleotide disclosed herein.
“Linked deoxynucleoside” means a nucleic acid base (A, G, C, T, U) substituted by deoxyribose linked by a phosphate ester to form a nucleotide.
“Linked nucleosides” means adjacent nucleosides linked together by an intemucleoside linkage.
“Locked nucleic acid“ or “ LNA” or “LNA nucleosides” means nucleic acid monomers having a bridge connecting two carbon atoms between the 4’ and 2’position of the nucleoside sugar unit, thereby forming a bicyclic sugar. Examples of such bicyclic sugar include, but are not limited to A) a-LMethyleneoxy (4’-CH2-O-2’) LNA , (B) β-D-Methyleneoxy (4’-CH2-O-2’) LNA , (C) Ethyleneoxy (4’25 (CH2)2-O-2’) LNA , (D) Aminooxy (4’-CH2-O-N(R)-2’) LNA and (E) Oxyamino (4’-CH2-N(R)-O-2’) LNA, as depicted below.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Figure AU2019202856A1_D0001
As used herein, LNA compounds include, but are not limited to, compounds having at least one bridge between the 4’ and the 2’ position of the sugar wherein each of the bridges independently comprises 1 or from 2 to 4 linked groups independently selected from -[C(R|)(R2)]n-, -C(Ri)=C(R2)-, -C(R])=N-, -C(=NRi)-, -C(=O)-, -C(=S)-, -0-, -Si(Ri)2-, -S(=O)X- and -N(Ri)-; wherein: x is 0, 1, or 2; n is
1, 2, 3, or 4; each R1 and R2 is, independently, H, a protecting group, hydroxyl, Ci-C]2 alkyl, substituted CrC)2 alkyl, C2-Ci2 alkenyl, substituted C2-Cj2 alkenyl, C2-Ci2 alkynyl, substituted C2-C]2 alkynyl, C5-C20 aryl, substituted C5-C2o aryl, a heterocycle radical, a substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7 alicyclic radical, halogen, OJi, NJiJ2, SJ], N3, COOJbacyl (C(=O)-H), substituted acyl, CN, sulfonyl (S(=O)2-Ji), or sulfoxyl (S(=O)-Ji); and each Ji and J2 is, independently, H, Ci-C)2 alkyl, substituted Cj-Ci2 alkyl, C2-Ci2 alkenyl, substituted C2-Cj2 alkenyl, C2-Ci2alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, acyl (C(=O)-H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, CrC12 aminoalkyl, substituted Ci-C)2 aminoalkyl or a protecting group.
Examples of 4’- 2’ bridging groups encompassed within the definition of LNA include, but are not limited to one of formulae: -[C(Ri)(R2)]n-, -[C(R!)(R2)]n-O-, -C(RiR2)-N(Ri)-O- or -C^RN-O-NtR])-. Furthermore, other bridging groups encompassed with the definition of LNA are 4'-CH2-2', 4'-(CH2)2-2', 4'(CH2)3-2', 4'-CH2-O-2', 4'-(CH2)2-O-2', 4'-CH2-O-N(R1)-2' and 4'-CH2-N(R1)-O-2’- bridges, wherein each R] and R2 is, independently, H, a protecting group or CrCi2 alkyl.
Also included within the definition of LNA according to the invention are LNAs in which the 2'hydroxyl group of the ribosyl sugar ring is connected to the 4' carbon atom of the sugar ring, thereby forming a methyleneoxy (4’-CH2-O-2’) bridge to form the bicyclic sugar moiety. The bridge can also be a methylene (-CH2-) group connecting the 2' oxygen atom and the 4' carbon atom, for which the term methyleneoxy (4’CH2-O-2’) LNA is used. Furthermore; in the case of the bicylic sugar moiety having an ethylene bridging 25 group in this position, the term ethyleneoxy (4’-CH2CH2-O-2’) LNA is used, a -L- methyleneoxy (4’-CH20-2’), an isomer of methyleneoxy (4’-CH2-O-2’) LNA is also encompassed within the definition of LNA, as used herein.
“Mismatch” or “non-complementary nucleobase” refers to the case when a nucleobase of a first nucleic acid is not capable of pairing with the corresponding nucleobase of a second or target nucleic acid.
“Modified intemucleoside linkage” refers to a substitution or any change from a naturally occurring intemucleoside bond (i.e. a phosphodiester intemucleoside bond).
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 “Modified nucleobase” means any nucleobase other than adenine, cytosine, guanine, thymidine, or uracil. An “unmodified nucleobase” means the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U).
“Modified nucleoside” means a nucleoside having, independently, a modified sugar moiety and/or modified nucleobase.
“Modified nucleotide” means a nucleotide having, independently, a modified sugar moiety, modified intemucleoside linkage, or modified nucleobase.
“Modified oligonucleotide” means an oligonucleotide comprising at least one modified intemucleoside linkage, a modified sugar, and/or a modified nucleobase.
“Modified sugar” means substitution and/or any change from a natural sugar moiety.
“Monomer” refers to a single unit of an oligomer. Monomers include, but are not limited to, nucleosides and nucleotides, whether naturally occuring or modified.
“Motif’ means the pattern of unmodified and modified nucleosides in an antisense compound.
“Natural sugar moiety” means a sugar moiety found in DNA (2’-H) or RNA (2’-OH).
“Naturally occurring intemucleoside linkage” means a 3' to 5' phosphodiester linkage.
“Non-complementary nucleobase” refers to a pair of nucleobases that do not form hydrogen bonds with one another or otherwise support hybridization.
“Nucleic acid” refers to molecules composed of monomeric nucleotides. A nucleic acid includes, but is not limited to, ribonucleic acids (RNA), deoxyribonucleic acids (DNA), single-stranded nucleic acids, 20 double-stranded nucleic acids, small interfering ribonucleic acids (siRNA), and microRNAs (miRNA).
“Nucleobase” means a heterocyclic moiety capable of pairing with a base of another nucleic acid.
“Nucleobase complementarity” refers to a nucleobase that is capable of base pairing with another nucleobase. For example, in DNA, adenine (A) is complementary to thymine (T). For example, in RNA, adenine (A) is complementary to uracil (U). In certain embodiments, complementary nucleobase refers to a 25 nucleobase of an antisense compound that is capable of base pairing with a nucleobase of its target nucleic acid. For example, if a nucleobase at a certain position of an antisense compound is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, then the position of hydrogen bonding
WO 2012/145697
PCT/US2012/034550 between the oligonucleotide and the target nucleic acid is considered to be complementary at that nucleobase pair.
2019202856 24 Apr 2019 “Nucleobase sequence” means the order of contiguous nucleobases independent of any sugar, linkage, and/or nucleobase modification.
“Nucleoside” means a nucleobase linked to a sugar.
Nucleoside mimetic includes those structures used to replace the sugar or the sugar and the base and not necessarily the linkage at one or more positions of an oligomeric compound such as for example nucleoside mimetics having morpholino, cyclohexenyl, cyclohexyl, tetrahydropyranyl, bicyclo or tricyclo sugar mimetics, e.g., non furanose sugar units. Nucleotide mimetic includes those structures used to replace the nucleoside and the linkage at one or more positions of an oligomeric compound such as for example peptide nucleic acids or morpholinos (morpholinos linked by -N(H)-C(=O)-O- or other non-phosphodiester linkage). Sugar surrogate overlaps with the slightly broader term nucleoside mimetic but is intended to indicate replacement of the sugar unit (furanose ring) only. The tetrahydropyranyl rings provided herein are illustrative of an example of a sugar surrogate wherein the furanose sugar group has been replaced with a tetrahydropyranyl ring system. Mimetic refers to groups that are substituted for a sugar, a nucleobase, and/ or intemucleoside linkage. Generally, a mimetic is used in place of the sugar or sugar-intemucleoside linkage combination, and the nucleobase is maintained for hybridization to a selected target.
“Nucleotide” means a nucleoside having a phosphate group covalently linked to the sugar portion of the nucleoside.
“Off-target effect” refers to an unwanted or deleterious biological effect associated with modulation of RNA or protein expression of a gene other than the intended target nucleic acid.
“Oligomeric compound” means a polymer of linked monomeric subunits which is capable of hybridizing to at least a region of a nucleic acid molecule.
“Oligonucleoside” means an oligonucleotide in which the intemucleoside linkages do not contain a 25 phosphorus atom.
“Oligonucleotide” means a polymer of linked nucleosides each of which can be modified or unmodified, independent one from another.
“Parenteral administration” means administration through injection (e.g., bolus injection) or infusion. Parenteral administration includes subcutaneous administration, intravenous administration, intramuscular
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 administration, intraarterial administration, intraperitoneal administration, or intracranial administration, e.g., intrathecal or intracerebroventricular administration.
“Peptide” means a molecule formed by linking at least two amino acids by amide bonds. Without limitation, as used herein, “peptide” refers to polypeptides and proteins.
“Pharmaceutically acceptable carrier” means a medium or diluent that does not interfere with the structure of the oligonucleotide. Certain such carriers enable pharmaceutical compositions to be formulated as, for example, tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspension and lozenges for the oral ingestion by a subject.
“Pharmaceutically acceptable derivative” encompasses pharmaceutically acceptable salts, conjugates, prodrugs or isomers of the compounds described herein.
“Pharmaceutically acceptable salts” means physiologically and pharmaceutically acceptable salts of antisense compounds, i.e., salts that retain the desired biological activity of the parent oligonucleotide and do not impart undesired toxicological effects thereto.
“Pharmaceutical agent” means a substance that provides a therapeutic benefit when administered to an individual. For example, in certain embodiments, an antisense oligonucleotide targeted to HBV is a pharmaceutical agent.
“Pharmaceutical composition” means a mixture of substances suitable for administering to a subject. For example, a pharmaceutical composition may comprise an antisense oligonucleotide and a sterile aqueous solution. In certain embodiments, a pharmaceutical composition shows activity in free uptake assay in certain 20 cell lines.
“Phosphorothioate linkage” means a linkage between nucleosides where the phosphodiester bond is modified by replacing one of the non-bridging oxygen atoms with a sulfur atom. A phosphorothioate linkage is a modified intemucleoside linkage.
“Portion” means a defined number of contiguous (i.e;, linked) nucleobases of a nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of a target nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of an antisense compound.
“Prevention” or “preventing” refers to delaying or forestalling the onset or development of a condition or disease for a period of time from hours to days, preferably weeks to months.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 “Prodrug” means a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions.
“Prophylactically effective amount” refers to an amount of a pharmaceutical agent that provides a prophylactic or preventative benefit to an animal.
“Recommended therapy” means a therapeutic regimen recommended by a medical professional for the treatment, amelioration, or prevention of a disease.
“Region” is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic.
“Ribonucleotide” means a nucleotide having a hydroxy at the 2’ position of the sugar portion of the nucleotide. Ribonucleotides may be modified with any of a variety of substituents.
“Salts” mean a physiologically and pharmaceutically acceptable salts of antisense compounds, i.e., salts that retain the desired biological activity of the parent oligonucleotide and do not impart undesired toxicological effects thereto.
“Segments” are defined as smaller or sub-portions of regions within a target nucleic acid.
“Seroconversion” is defined as serum HBeAg absence plus serum HBeAb presence, if monitoring HBeAg as the determinant for seroconversion, or defined as serum HBsAg absence, if monitoring HBsAg as the determinant for seroconversion, as determined by currently available detection limits of commercial ELISA systems.
“Shortened” or “truncated” versions of antisense oligonucleotides taught herein have one, two or more nucleosides deleted.
“Side effects” means physiological responses attributable to a treatment other than desired effects. In certain embodiments, side effects include, without limitation, injection site reactions, liver function test abnormalities, renal function abnormalities, liver toxicity, renal toxicity, central nervous system 25 abnormalities, and myopathies. For example, increased aminotransferase levels in serum may indicate liver toxicity or liver function abnormality. For example, increased bilirubin may indicate liver toxicity or liver function abnormality.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 “Significant,” as used herein means measurable or observable, e.g, a significant result, such as, a significant improvement or significant, reduction generally refers to a measurable or observable result, such as a measurable or observable improvement or reduction.
“Sites,” as used herein, are defined as unique nucleobase positions within a target nucleic acid.
Slows progression means decrease in the development of the said disease.
“Specifically hybridizable” refers to an antisense compound having a sufficient degree of complementarity between an antisense oligonucleotide and a target nucleic acid to induce a desired effect, while exhibiting minimal or no effects on non-target nucleic acids under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays and therapeutic treatments. “Stringent hybridization conditions” or “stringent conditions” refer to conditions under which an oligomeric compound will hybridize to its target sequence, but to a minimal number of other sequences.
“Statistically Significant,” as used herein means a measurable or observable parameter that is unlikely to occur by chance.
“Subcutaneous administration” means administration just below the skin.
“Subject” means a human or non-human animal selected for treatment or therapy.
“Target” refers to a protein, the modulation of which is desired.
“Target gene” refers to a gene encoding a target.
“Targeting” means the process of design and selection of an antisense compound that will specifically hybridize to a target nucleic acid and induce a desired effect.
“Target nucleic acid,” “target RNA,” “target RNA transcript” and “nucleic acid target” all mean a nucleic acid capable of being targeted by antisense compounds.
“Target region” means a portion of a target nucleic acid to which one or more antisense compounds is targeted.
“Target segment” means the sequence of nucleotides of a target nucleic acid to which an antisense compound is targeted. “5’ target site” refers to the 5’-most nucleotide of a target segment. “3’ target site” refers to the 3’-most nucleotide of a target segment.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 “Therapeutically effective amount” means an amount of a pharmaceutical agent that provides a therapeutic benefit to an individual.
“Treatment” refers to administering a composition to effect an alteration or improvement of the disease or condition.
Unmodified nucleobases mean the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U).
“Unmodified nucleotide” means a nucleotide composed of naturally occuring nucleobases, sugar moieties, and intemucleoside linkages. In certain embodiments, an unmodified nucleotide is an RNA nucleotide (i.e. β-D-ribonucleosides) or a DNA nucleotide (i.e. β-D-deoxyribonucleoside).
“Validated target segment” is defined as at least an 8-nucleobase portion (i.e. 8 consecutive nucleobases) of a target region to which an active oligomeric compound is targeted.
“Wing segment” means a plurality of nucleosides modified to impart to an oligonucleotide properties such as enhanced inhibitory activity, increased binding affinity for a target nucleic acid, or resistance to degradation by in vivo nucleases.
Certain Embodiments
Certain embodiments provide methods, compounds, and compositions for inhibiting HBV mRNA expression.
Certain embodiments provide antisense compounds targeted to a HBV nucleic acid. In certain embodiments, the HBV nucleic acid is the sequences set forth in GENBANK Accession No. U95551.1 20 (incorporated herein as SEQ ID NO: 1).
In certain embodiments, the compounds provided herein are or comprise a modified oligonucleotide. In certain embodiments the compounds comprise a modified oligonucleotide and a conjugate as described herein. In certain embodiments, the modified oligonucleotide is a pharmaceutically acceptable derivative.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide 10 to 25 30 linked nucleosides in length targeted to HBV. The HBV target can have a sequence recited in SEQ ID
NO: 1 or a portion thereof or a variant thereof.
In certain embodiments, the compounds or modified oligonucleotides provided herein are 10 to 30 linked nucleosides in length and are targeted to HBV. In certain embodiments, the HBV target has the sequence recited in SEQ ID NO: 1. In certain embodiments, such compounds or oligonucleotides target one
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 of the following nucleotide regions of HBV: CCTGCTGGTGGCTCCAGTTC (SEQ ID NO: 1273 ); AGAGTCTAGACTCGTGGTGGACTTCTCTCA (SEQ ID NO: 1354);
CATCCTGCTGCTATGCCTCATCTTCTT (SEQ ID NO: 1276); CAAGGTATGTTGCCCGT (SEQ ID NO:
1277) ; CCTATGGGAGTGGGCCTCAG (SEQ ID NO: 1279;
i TGGCTCAGTTTACTAGTGCCATTTGTTCAGTGGTTCG (SEQ ID NO: 1287);
TATATGGATGATGTGGT (SEQ ID NO: 1359); TGCCAAGTGTTTGCTGA (SEQ ID NO: 1360); TGCCGATCCATACTGCGGAACTCCT (SEQ ID NO: 1361);
CCGTGTGCACTTCGCTTCACCTCTGCACGT (SEQ ID NO: 1352);
GGAGGCTGTAGGCATAAATTGGT (SEQ ID NO: 1353); CTTTTTCACCTCTGCCTA (SEQ ID
I NO: 1362); TTCAAGCCTCCAAGCTGTGCCTTGG (SEQ ID NO: 1363);
AGAGTCTAGACTCGTGGTGGACTTCTCTCAATTTTCTAGGGG (SEQ ID NO: 1274);
TGGATGTGTCTGCGGCGTTTTATCAT (SEQ ED NO: 1275); TGTATTCCCATCCCATC (SEQ ID NO:
1278) ; TGGCTCAGTTTACTAGTGC (SEQ ID NO: 1280); GGGCTTTCCCCCACTGT (SEQ ED NO:
1281); TCCTCTGCCGATCCATACTGCGGAACTCCT (SEQ ID NO: 1282);
: CGCACCTCTCTTTACGCGG (SEQ ED NO: 1283); GGAGTGTGGATTCGCAC (SEQ ID NO: 1284); or
GAAGAAGAACTCCCTCGCCT (SEQ ID NO: 1285). In certain embodiments, such compounds or oligonucleotides have a gap segment of 9, 10, or more linked deoxynucleosides. In certain embodiments, such compounds or oligonucleotides have a gap segment of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 linked nucleosides. In certain embodiments, such gap segment is between two wing segments that independently i have 1, 2, 3, 4, 5, 6, 7, or 8 linked modified nucleosides. In certain embodiments, one or more modified nucleosides in the wing segment have a modified sugar. In certain embodiments, the modified sugar is a bicyclic sugar. In certain embodiments, the modified nucleoside is an LNA nucleoside. In certain embodiments, the modified nucleoside is a 2’-substituted nucleoside. In certain embodiments, 2’ substituted nucleosides include nucleosides with bicyclic sugar modifications. In certain embodiments, the modified nucleoside is a 2’-MOE nucleoside. In certain embodiments, the modified nucleoside is a constrained ethyl (cEt) nucleoside.
In certain embodiments, the compounds or compositions comprise modified oligonucleotides consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising a portion at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 contiguous nucleobases 30 complementary to an equal length portion of any of the nucleobases set forth in SEQ ED NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ED NO: 1. In certain embodiments, such oligonucleotides have a gap segment of 9, 10, or more linked deoxynucleosides. In certain embodiments, such gap segment is between two wing segments that independently have 1, 2, 3, 4, 5, 35 6, 7, or 8 linked modified nucleosides. In certain embodiments, one or more modified nucleosides in the
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 wing segment have a modified sugar. In certain embodiments, the modified sugar is a bicyclic sugar. In certain embodiments, the modified nucleoside is an LNA nucleoside. In certain embodiments, the modified nucleoside is a 2’-substituted nucleoside. In certain embodiments, 2’ substituted nucleosides include nucleosides with bicyclic sugar modifications. In certain embodiments, the modified nucleoside is a 2’-MOE nucleoside. In certain embodiments, the modified nucleoside is a constrained ethyl (cEt) nucleoside. In certain embodiments, each modified nucleoside in each wing segment is independently a 2’-MOE nucleoside or a nucleoside with a bicyclic sugar modification such as a constrained ethyl (cEt) nucleoside or LNA nucleoside.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 contiguous nucleobases of any of SEQ ID NOs: 5-310, 321-802, 8041272, 1288-1350, 1364-1372, 1375, 1376, or 1379. In certain embodiments, such oligonucleotides have a gap segment of 9, 10, or more linked deoxynucleosides. In certain embodiments, such gap segment is between two wing segments that independently have 1-5, 1-4, 1-3, 2-5, 2-4 or 2-3 linked modified nucleosides. In certain embodiments, such gap segment is between two wing segments that independently have 1, 2, 3, 4, 5, 6, 7, or 8 linked modified nucleosides. In certain embodiments, one or more modified nucleosides in the wing segment have a modified sugar. In certain embodiments, the modified sugar is a bicyclic sugar. In certain embodiments, the modified nucleoside is an LNA nucleoside. In certain embodiments, the modified nucleoside is a 2’-substituted nucleoside. In certain embodiments, 2’ substituted nucleosides include nucleosides with bicyclic sugar modifications. In certain embodiments, the modified nucleoside is a 2’-MOE nucleoside. In certain embodiments, the modified nucleoside is a constrained ethyl (cEt) nucleoside.
In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment 25 on the 5’ end and 3’ end of the gap each independently having 2, 3, or 4 sugar modified nucleosides. In certain embodiments, each sugar modified nucleoside is independently a 2’-MOE nucleoside or a nucleoside with a bicyclic sugar moiety such as a constrained ethyl (cEt) nucleoside or LNA nucleoside. In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 9 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ 30 end of the gap each independently having 2, 3, 4, or 5 sugar modified nucleosides. In certain embodiments, each sugar modified nucleoside is independently a 2’-MOE nucleoside or a bicyclic nucleoside such as a constrained ethyl (cEt) nucleoside or LNA nucleoside.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, 9, 10, 11,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
12, 13, 14, 15, 16, 17, 18, 19, or 20 contiguous nucleobases of any of SEQ ID NOs: 5-310, 321-802, 8041272, 1288-1350, 1364-1372, 1375, 1376, or 1379. In certain embodiments, such oligonucleotides have a gap segment of 10 or more linked deoxynucleosides. In certain embodiments, such gap segment is between two wing segments that independently have 1-5, 1-4, 1-3, 2-5, 2-4 or 2-3 linked modified nucleosides. In certain embodiments, such gap segment is between two wing segments that independently have 2, 3, 4, 5, 6, 7, or 8 linked modified nucleosides. In certain embodiments, one or more modified nucleosides in the wing segment have a modified sugar. In certain embodiments, the modified sugar is a bicyclic sugar. In certain embodiments, the modified nucleoside is an LNA nucleoside. In certain embodiments, the modified nucleoside is a 2’-substituted nucleoside. In certain embodiments, 2’ substituted nucleosides include nucleosides with bicyclic sugar modifications. In certain embodiments, the modified nucleoside is a 2’-MOE nucleoside.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 contiguous nucleobases of any of SEQ ID NOs: 5, 15, 16,33,39-95, 123135, 163-175, 180-310, 321-406, 413-455, 461-802, or 804-1272. In certain embodiments, such oligonucleotides have a gap segment of 10 or more linked deoxynucleosides. In certain embodiments, such gap segment is between two wing segments that independently have 1-5, 1-4, 1-3, 2-5, 2-4 or 2-3 linked modified nucleosides. In certain embodiments, one or more modified nucleosides in the wing segment have a modified sugar. In certain embodiments, the modified sugar is a bicyclic sugar. In certain embodiments, the modified nucleoside is an LNA nucleoside. In certain embodiments, the modified nucleoside is a 2’substituted nucleoside. In certain embodiments, 2’ substituted nucleosides include nucleosides with bicyclic sugar modifications. In certain embodiments, the modified nucleoside is a 2’-MOE nucleoside.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, 9, 10, 11, 25 12, 13, 14, 15, 16, 17, 18, 19, or 20 contiguous nucleobases of any of SEQ ID NOs: 6-14, 17-32, 34-38, 96122, 136-162, 176-179, 407-412, 456-462, 523-538. In certain embodiments, such oligonucleotides have a gap segment of 10 or more linked deoxynucleosides. In certain embodiments, such gap segment is between two wing segments that independently have 1-5, 1-4, 1-3, 2-5, 2-4 or 2-3 linked modified nucleosides. In certain embodiments, one or more modified nucleosides in the wing segment have a modified sugar. In 30 certain embodiments, the modified nucleoside is a 2’-substituted nucleoside. In certain embodiments, the modified nucleoside is a 2’-MOE nucleoside. In certain embodiments, the modified oligonucleotide is 14 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-3 or 2 sugar modified nucleosides.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 2-4 or 3 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 9 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, or 5 sugar modified nucleosides, such as 2’-MOE nucleosides.
In certain embodiments, the modified oligonucleotide is 17 nucleosides in length and has a gap segment of 9 or 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 2-4 or 3-4 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, 5, or 6 sugar modified nucleosides, such as 2’-MOE nucleosides.
In certain embodiments, the modified oligonucleotide is 18 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5 ’ end and 3 ’ end of the gap each independently having 1 -5, 3-5, or 4 sugar modified nucleosides.
In certain embodiments, the modified oligonucleotide is 20 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, or 5 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, 5, 6, 7, or 8 sugar modified nucleosides, such as 2’-MOE nucleosides.
In certain embodiments, the compounds or compositions comprise a salt of the modified oligonucleotide.
In certain embodiments, the compounds or compositions further comprise a pharmaceutically 25 acceptable carrier or diluent.
In certain embodiments, the nucleobase sequence of the modified oligonucleotide is at least 70%, 75%, 80%, 85%, 90%, 95% or 100% complementary to SEQ ID NO: 1, as measured over the entirety of the modified oligonucleotide.
In certain embodiments, the nucleobase sequence of the modified oligonucleotide is at least 70%,
75%, 80%, 85%, 90%, 95% or 100% complementary to any one of SEQ ID NOs: 1, 1273, 1274, 1275, 1276,
1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, as measured over the entirety of the modified oligonucleotide.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the compound or modified oligonucleotide is single-stranded.
In certain embodiments, the modified oligonucleotide consists of S, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 18 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides. In certain embodiments, the modified oligonucleotide consists of 14 linked nucleosides.
In certain embodiments, at least one intemucleoside linkage of the modified oligonucleotide is a modified intemucleoside linkage. In certain embodiments, each intemucleoside linkage is a phosphorothioate intemucleoside linkage.
In certain embodiments, at least one nucleoside of the modified oligonucleotide comprises a modified sugar. In certain embodiments, at least one modified sugar comprises a 2’-O-methoxyethyl group (2’O(CH2)2-OCH3). In certain embodiments, the modified sugar comprises a 2’-O-CH3 group.
In certain embodiments, at least one modified sugar is a bicyclic sugar. In certain embodiments, at least one modified sugar the bicyclic sugar comprises a 4’- (CH2)n-O-2’ bridge, wherein n is 1 or 2. In certain embodiments, the bicyclic sugar comprises a 4’- CH2-O-2’ bridge. In certain embodiments, the bicyclic sugar comprises a 4’-CH(CH3)-O-2’ bridge.
In certain embodiments, at least one nucleoside of said modified oligonucleotide comprises a modified nucleobase. In certain embodiments, the modified nucleobase is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of a single-stranded modified oligonucleotide.
In certain embodiments, the modified oligonucleotide comprises: a) a gap segment consisting of linked deoxynucleosides; b) a 5’ wing segment consisting of linked nucleosides; and c) a 3’ wing segment consisting of linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing 25 segment and each nucleoside of each wing segment comprises a modified sugar.
In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides, the gap segment consisting of 10 linked deoxynucleosides, the 5’ wing segment consisting of three linked nucleosides, the 3’ wing segment consisting of three linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar and/or a constrained ethyl (cEt) sugar, each intemucleoside 30 linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine. In some aspects, each of the three linked nucleosides of the 5’ wing segment is a 2’-O-methoxyethyl sugar and each of the three linked nucleosides of the 3’ wing segment is a constrained ethyl (cEt) sugar. In other aspects, the three linked nucleosides of the 5’ wing segment are a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, and a 24
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 constrained ethyl (cEt) sugar in the 5’ to 3’ direction, and the three linked nucleosides of the 3’ wing segment are a constrained ethyl (cEt) sugar, a constrained ethyl (cEt) sugar, and a 2’-O-methoxyethyl sugar in the 5’ to 3’ direction. In other aspects, the three linked nucleosides of the 5’ wing segment are a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction, and the three linked nucleosides of the 3’ wing segment are a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction.
In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides, the gap segment consisting of 10 linked deoxynucleosides, the 5’ wing segment consisting of two linked nucleosides, the 3’ wing segment consisting of four linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar and a constrained ethyl (cEt) sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine. In some aspects, the two linked nucleosides of the 5’ wing segment are a 2’-O-methoxyethyl sugar and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction, and the four linked nucleosides of the 3’ wing segment are a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, and a 2’-O-methoxyethyl sugar in the 5’ to 3’ direction.
In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides, the gap segment consisting of 9 linked deoxynucleosides, the 5’ wing segment consisting of five linked nucleosides, the 3’ wing segment consisting of two linked nucleosides; the five linked nucleosides of the 5’ wing segment are a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, a constrained ethyl (cEt) sugar, a 2’deoxynucleoside, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; the two linked nucleosides of the 3’ wing segment are a 2’-O-methoxyethyl sugar and a 2’-O-methoxyethyl sugar in the 5’ to 3’ direction; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides, the gap segment consisting of 8 linked deoxynucleosides, the 5’ wing segment consisting of three linked nucleosides, 25 the 3’ wing segment consisting of five linked nucleosides; the three linked nucleosides of the 5’ wing segment are a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; each of the five linked nucleosides of the 3’ wing segment is a 2’-0-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides, the gap segment consisting of 8 linked deoxynucleosides, the 5’ wing segment consisting of three linked nucleosides, the 3’ wing segment consisting of five linked nucleosides; each of the three linked nucleosides of the 5’ wing segment is a constrained ethyl (cEt) sugar; each of the five linked nucleosides of the 3’ wing segment is a 2’O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5methylcytosine.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of 9 linked deoxynucleosides, the 5’ wing segment consisting of four linked nucleosides, the 3 ’ wing segment consisting of four linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar and a constrained ethyl (cEt) sugar, each intemucleoside linkage is a > phosphorothioate linkage and each cytosine is a 5-methylcytosme. In some aspects, the four linked nucleosides of the 5’ wing segment are a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction, and the four linked nucleosides of the 3’ wing segment are a 2’-O-methoxyethyl sugar, constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, and a 2’-O-methoxyethyl sugar in the 5’ to 3’ direction.
I In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of 9 linked deoxynucleosides, the 5’ wing segment consisting of four linked nucleosides, the 3’ wing segment consisting of four linked nucleosides; the four linked nucleosides of the 5’ wing segment are a 2’-O-methoxyethyl sugar, a 2’-0-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; the four linked nucleosides of the 3’ wing segment are a constrained
I ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, and a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of 9 linked deoxynucleosides, the 5’ wing segment consisting of four linked nucleosides, the 3’ wing segment consisting of four linked nucleosides; the four linked nucleosides of the 5’ wing segment i are a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; each of the four linked nucleosides of the 3’ wing segment is a 2’O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of 8 linked deoxynucleosides, the 5’ wing segment consisting of five linked nucleosides, the 3’ wing segment consisting of four linked nucleosides; the five linked nucleosides of the 5’ wing segment are a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, a constrained ethyl (cEt) sugar, a 2’deoxynucleoside, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; each of the four linked nucleosides of the 3’ wing segment is a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of 8 linked deoxynucleosides, the 5 ’ wing segment consisting of five linked nucleosides, the 3’ wing segment consisting of four linked nucleosides; the five linked nucleosides of the 5’ wing segment are a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; each of the four linked nucleosides of
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 the 3’ wing segment is a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of 7 linked deoxynucleosides, the 5 ’ wing segment consisting of five linked nucleosides, the 3’ wing segment consisting of five linked nucleosides; the five linked nucleosides of the 5’ wing segment are a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; the five linked nucleosides of the 3’ wing segment are a constrained ethyl (cEt) sugar, a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, and a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of 7 linked deoxynucleosides, the 5’ wing segment consisting of six linked nucleosides, the 3’ wing segment consisting of four linked nucleosides; the six linked nucleosides of the 5’ wing segment are a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, and a constrained ethyl (cEt) sugar in the 5 ’ to 3 ’ direction; each of the four linked nucleosides of the 3’ wing segment is a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of 7 linked deoxynucleosides, the 5’ wing segment consisting of six linked nucleosides, the 3’ wing segment consisting of four linked nucleosides; the six linked nucleosides of the 5’ wing segment are a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; each of the four linked nucleosides of the 3’ wing segment is a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides, the gap segment consisting of 10 linked deoxynucleosides, the 5’ wing segment consisting of five linked nucleosides, the 3’ wing segment consisting of five linked nucleosides, each nucleoside of each wing segment comprises a constrained ethyl (cEt) sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides, the gap segment consisting of 10 linked deoxynucleosides, the 5’ wing segment consisting of five linked nucleosides, the 3’ wing segment consisting of five linked nucleosides, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine, wherein the five linked nucleosides of the 5’ wing are a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction, and each of the five linked nucleosides of the 3’ wing are a 2’-O-methoxyethyl sugar.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of three linked nucleosides; and c) a 3’ wing segment consisting of three linked nucleosides. In some aspects, the gap segment is positioned between the 5’ wing segment and the 3’ wing segment; each of the three linked nucleosides of the 5’ wing segment is a 2’-Omethoxyethyl sugar and each of the three linked nucleosides of the 3’ wing segment is a constrained ethyl (cEt) sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine residue is a 5methylcytosine. In other aspects, the gap segment is positioned between the 5’ wing segment and the 3’ wing segment; the three linked nucleosides of the 5’ wing segment are a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; the three linked nucleosides of the 3’ wing segment are a constrained ethyl (cEt) sugar, a constrained ethyl (cEt) sugar, and a 2’-Omethoxyethyl sugar in the 5’ to 3’ direction; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine residue is a 5-methylcytosine. In other aspects, the three linked nucleosides of the 5’ wing segment are a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction, and the three linked nucleosides of the 3’ wing segment are a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 25 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ED NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of two linked nucleosides; and c) a 3’ wing segment 30 consisting of four linked nucleosides. In some aspects, the gap segment is positioned between the 5’ wing segment and the 3’ wing segment; the two linked nucleosides of the 5’ wing segment are a 2’-Omethoxyethyl sugar and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; the four linked nucleosides of the 3’ wing segment are a constrained ethyl (cEt) sugar, 2’-O-methoxyethyl sugar, constrained ethyl (cEt) sugar, and 2’-O-methoxyethyl sugar in the 5’ to 3’ direction; each intemucleoside linkage is a 35 phosphorothioate linkage; and each cytosine residue is a 5-methylcytosine.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) gap segment consisting of 9 linked deoxynucleosides; b) a 5’ wing segment consisting of five linked nucleosides; and c) a 3’ wing segment consisting of two linked nucleosides, wherein the five linked nucleosides of the 5’ wing segment are a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; the two linked nucleosides of the 3’ wing segment are a 2’-O-methoxyethyl sugar and a 2’-O-methoxyethyl sugar in the 5’ to 3’ direction; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 8 linked deoxynucleosides; b) a 5’ wing segment consisting of three linked nucleosides; and c) a 3’ wing segment consisting of five linked nucleosides, wherein the three linked nucleosides of the 5’ wing segment are a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; each of the five linked nucleosides of the 3’ wing segment is a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ED NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 8 linked 30 deoxynucleosides,· b) a 5’ wing segment consisting of three linked nucleosides; and c) a 3’ wing segment consisting of five linked nucleosides, wherein each of the three linked nucleosides of the 5’ wing segment is a constrained ethyl (cEt) sugar; each of the five linked nucleosides of the 3’ wing segment is a 2’-Omethoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5methylcytosine.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 9 linked deoxynucleosides; b) a 5’ wing segment consisting of four linked nucleosides; and c) a 3’ wing segment consisting of four linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar and a constrained ethyl (cEt) sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine. In some aspects, the four linked nucleosides of the 5’ wing segment are a 2’O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction, and the four linked nucleosides of the 3’ wing segment are a 2’-Omethoxyethyl sugar, constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, and a 2’-O-methoxyethyl sugar in the 5’ to 3’ direction.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 9 linked deoxynucleosides; b) a 5’ wing segment consisting of four linked nucleosides; and c) a 3’ wing segment consisting of four linked nucleosides, wherein the four linked nucleosides of the 5’ wing segment are a 2’-Omethoxyethyl sugar, a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; the four linked nucleosides of the 3’ wing segment are a constrained ethyl (cEt) 25 sugar, a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, and a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID 30 NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 9 linked deoxynucleosides; b) a 5’ wing segment consisting of four linked nucleosides; and c) the 3’ wing segment consisting of four linked nucleosides, wherein the four linked nucleosides of the 5’ wing segment are a 2’-O35 methoxyethyl sugar, a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, and a constrained ethyl (cEt)
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 sugar in the 5’ to 3’ direction; each of the four linked nucleosides of the 3’ wing segment is a 2’-Omethoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 8 linked deoxynucleosides; b) a 5’ wing segment consisting of five linked nucleosides; and c) a 3’ wing segment consisting of four linked nucleosides, wherein the five linked nucleosides of the 5’ wing segment are a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; each of the four linked nucleosides of the 3’ wing segment is a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 8 linked deoxynucleosides; b) a 5’ wing segment consisting of five linked nucleosides; and c) a 3’ wing segment consisting of four linked nucleosides, wherein the five linked nucleosides of the 5’ wing segment are a 2’-Omethoxyethyl sugar, a 2’-O-methoxyethyl sugar, 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, 25 and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; each of the four linked nucleosides of the 3’ wing segment is a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 30 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 7 linked deoxynucleosides; b) a 5’ wing segment consisting of five linked nucleosides; and c) a 3’ wing segment 35 consisting of five linked nucleosides, wherein the five linked nucleosides of the 5’ wing segment are a 2’-O31
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; the five linked nucleosides of the 3’ wing segment are a constrained ethyl (cEt) sugar, a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, a 2’O-methoxyethyl sugar, and a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 7 linked deoxynucleosides; b) a 5’ wing segment consisting of six linked nucleosides; and c) a 3’ wing segment consisting of four linked nucleosides, wherein the six linked nucleosides of the 5’ wing segment are a 2’-Omethoxyethyl sugar, a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; each of the four linked nucleosides of the 3’ wing segment is a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 7 linked deoxynucleosides; b) a 5’ wing segment consisting of six linked nucleosides; and c) a 3’ wing segment 25 consisting of four linked nucleosides, wherein the six linked nucleosides of the 5’ wing segment are a 2’-Omethoxyethyl sugar, a constrained ethyl (cEt) sugar, a 2’-O-methoxyethyl sugar, a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction; each of the four linked nucleosides of the 3’ wing segment is a 2’-O-methoxyethyl sugar; each intemucleoside linkage is a phosphorothioate linkage; and each cytosine is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 20 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO:
1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 10 linked
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 deoxynucleosides; b) a 5’ wing segment consisting of five linked nucleosides; and c) a 3’ wing segment consisting of five linked nucleosides, each nucleoside of each wing segment comprises a constrained ethyl (cEt) sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 20 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of 10 linked deoxynucleosides; b) a 5’ wing segment consisting of five linked nucleosides; and c) a 3’ wing segment consisting of five linked nucleosides, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine, wherein the five linked nucleosides of the 5’ wing are a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, a constrained ethyl (cEt) sugar, a 2’-deoxynucleoside, and a constrained ethyl (cEt) sugar in the 5’ to 3’ direction, and each of the five linked nucleosides of the 3’ wing are a 2’-Omethoxyethyl sugar.
In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides, the gap segment consisting of ten linked deoxynucleosides, the 5’ wing segment consisting of five linked nucleosides, the 3’ wing segment consisting of five linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides, the gap segment consisting of ten linked deoxynucleosides, the 5’ wing segment consisting of two linked nucleosides, the 3’ wing segment consisting of eight linked nucleosides, each nucleoside of each wing segment comprises 25 a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides, the gap segment consisting of ten linked deoxynucleosides, the 5’ wing segment consisting of eight linked nucleosides, the 3 ’ wing segment consisting of two linked nucleosides, each nucleoside of each wing segment 30 comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides, the gap segment consisting of ten linked deoxynucleosides, the 5’ wing segment consisting of three linked nucleosides, the 3’ wing segment consisting of seven linked nucleosides, each nucleoside of each wing
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides, the gap segment consisting of ten linked deoxynucleosides, the 5’ wing segment consisting of seven linked nucleosides, the 3’ wing segment consisting of three linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides, the gap segment consisting of ten linked deoxynucleosides, the 5’ wing segment consisting of four linked nucleosides, the 3’ wing segment consisting of six linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides, the gap segment consisting of ten linked deoxynucleosides, the 5’ wing segment consisting of six linked nucleosides, the 3’ wing segment consisting of four linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 18 linked nucleosides, the gap segment consisting of ten linked deoxynucleosides, the 5’ wing segment consisting of four linked nucleosides, the 3’ wing segment consisting of four linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of ten linked deoxynucleosides, the 5’ wing segment consisting of three linked 25 nucleosides, the 3’ wing segment consisting of four linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of nine linked deoxynucleosides, the 5’ wing segment consisting of two linked 30 nucleosides, the 3 ’ wing segment consisting of six linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of nine linked deoxynucleosides, the 5’ wing segment consisting of six linked nucleosides, the 3’ wing segment consisting of two linked nucleosides, each nucleoside of each wing segment
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of nine linked deoxynucleosides, the 5’ wing segment consisting of four linked nucleosides, the 3’ wing segment consisting of four linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of nine linked deoxynucleosides, the 5’ wing segment consisting of five linked nucleosides, the 3’ wing segment consisting of three linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 17 linked nucleosides, the gap segment consisting of nine linked deoxynucleosides, the 5’ wing segment consisting of three linked nucleosides, the 3’ wing segment consisting of five linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides, the gap segment consisting of ten linked deoxynucleosides, the 5’ wing segment consisting of three linked nucleosides, the 3’ wing segment consisting of three linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides, the gap segment consisting of nine linked deoxynucleosides, the 5’ wing segment consisting of five linked 25 nucleosides, the 3 ’ wing segment consisting of two linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides, the gap segment consisting of nine linked deoxynucleosides, the 5’ wing segment consisting of two linked 30 nucleosides, the 3’ wing segment consisting of five linked nucleosides, each nucleoside of each wing segment comprises a 2 ’-0-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides, the gap segment consisting of nine linked deoxynucleosides, the 5’ wing segment consisting of four linked nucleosides, the 3’ wing segment consisting of three linked nucleosides, each nucleoside of each wing
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 16 linked nucleosides, the gap segment consisting of nine linked deoxynucleosides, the 5’ wing segment consisting of three linked nucleosides, the 3’ wing segment consisting of four linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide consists of 14 linked nucleosides, the gap segment consisting often linked deoxynucleosides, the 5’ wing segment consisting of two linked nucleosides, the 3’ wing segment consisting of two linked nucleosides, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 20 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of five linked nucleosides; and c) a 3’ wing segment consisting of five linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 20 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 25 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ED NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of two linked nucleosides; and c) a 3’ wing segment 30 consisting of eight linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 20 linked nucleosides having a nucleobase sequence comprising a portion of at least 8
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of eight linked nucleosides; and c) a 3’ wing segment consisting of two linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 20 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of three linked nucleosides; and c) a 3’ wing segment consisting of seven linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 20 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked 25 deoxynucleosides; b) a 5’ wing segment consisting of seven linked nucleosides; and c) a 3’ wing segment consisting of three linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 20 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID
NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353,
1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO:
and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 deoxynucleosides; b) a 5’ wing segment consisting of four linked nucleosides; and c) a 3’ wing segment consisting of six linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 20 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of six linked nucleosides; and c) a 3’ wing segment consisting of four linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 18 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of four linked nucleosides; and c) a 3’ wing segment consisting of four linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 30 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of three linked nucleosides; and c) a 3’ wing segment consisting of four linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of nine linked deoxynucleosides; b) a 5’ wing segment consisting of two linked nucleosides; and c) a 3’ wing segment consisting of six linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of nine linked deoxynucleosides; b) a 5’ wing segment consisting of six linked nucleosides; and c) a 3’ wing segment consisting of two linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 25 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO:
and wherein the modified oligonucleotide comprises: a) a gap segment consisting of nine linked deoxynucleosides; b) a 5’ wing segment consisting of four linked nucleosides; and c) a 3’ wing segment consisting of four linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each 30 intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 39
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of nine linked deoxynucleosides; b) a 5’ wing segment consisting of five linked nucleosides; and c) a 3’ wing segment consisting of three linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 17 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ED NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ED NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of nine linked deoxynucleosides; b) a 5’ wing segment consisting of three linked nucleosides; and c) a 3’ wing segment consisting of five linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ED NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of three linked nucleosides; and c) a 3’ wing segment consisting of three linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ 25 wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID 30 NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of nine linked deoxynucleosides; b) a 5’ wing segment consisting of five linked nucleosides; and c) a 3’ wing segment consisting of two linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of nine linked deoxynucleosides; b) a 5’ wing segment consisting of two linked nucleosides; and c) a 3’ wing segment consisting of five linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of nine linked deoxynucleosides; b) a 5’ wing segment consisting of four linked nucleosides; and c) a 3’ wing segment consisting of three linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-0-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 16 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 25 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO: 1 and wherein the modified oligonucleotide comprises: a) a gap segment consisting of nine linked deoxynucleosides; b) a 5’ wing segment consisting of three linked nucleosides; and c) a 3’ wing segment 30 consisting of four linked nucleosides. The gap segment is positioned between the 5’ wing segment and the 3’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the compounds or compositions comprise a modified oligonucleotide consisting of 14 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases complementary to an equal length portion of any of nucleobases set forth in SEQ DD NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, > 1354, 1359, 1360, 1361, 1362, and 1363, wherein the nucleobase sequence is complementary to SEQ ID NO:
and wherein the modified oligonucleotide comprises: a) a gap segment consisting of ten linked deoxynucleosides; b) a 5’ wing segment consisting of two linked nucleosides; and c) a 3’ wing segment consisting of two linked nucleosides. The gap segment is positioned between the 5 ’ wing segment and the 3 ’ wing segment, each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar, each I intemucleoside linkage is a phosphorothioate linkage and each cytosine residue is a 5-methylcytosine.
In certain embodiments, the provided methods, compounds, and compositions inhibit HBV mRNA expression and/or DNA levels and or protein levels and/or antigen levels.
Another embodiment provides a method for treating a HBV-related diseases, disorders, and conditions in a mammal, the method comprising administering a therapeutically effective amount of any I pharmaceutical composition as described above to a mammal in need thereof, so as to treat the HBV-related diseases, disorders, and condition. In related embodiments, the mammal is a human and the HBV-related disease, disorder, and condition is a hepatitis B virus infection from a human hepatitis B virus. More particularly, the human hepatitis B virus may be any of the human geographical genotypes: A (Northwest Europe, North America, Central America); B (Indonesia, China, Vietnam); C (East Asia, Korea, China, I Japan, Polynesia, Vietnam); D (Mediterranean area, Middle East, India); E (Africa); F (Native Americans, Polynesia); G (United States, France); or H (Central America).
In certain embodiments, an antisense compound or oligonucleotide targeted to a HBV nucleic acid is complementary within the following nucleotide regions of SEQ ED NO: 1: 1-20, 10-29, 10-56, 13-38, 13-35, 19-38, 25-47, 25-50, 25-56, 43-68, 43-63, 55-74, 58-73, 58-74, 58-77, 58-79, 58-80, 58-84, 59-74, 59-75, 25 59-80, 60-75, 60-76, 60-79, 61-76, 61-77, 61-80, 62-77, 63-84, 68-114, 101-123, 98-123, 113-138, 116-138,
131-150, 137-162, 152-186, 158-177, 167-186, 191-215, 196-224, 196-215, 196-218, 199-228, 199-218, 199224, 200-224, 205-224, 206-228, 218-237, 224-243, 233-264, 242-263, 243-262, 244-263, 245-274; 245-260, 245-264, 246-266, 247-266, 247-269, 247-270, 245-267, 251-267, 245-266, 250-269, 251-266, 251-268, 251-269, 245-269, 245-266, 245-261, 250-265, 250-266, 250-267, 250-268, 250-269, 251-270, 252-267, 25330 268, 253-269, 253-272, 253-274, 254-269, 254-270, 254-274, 255-270, 255-271, 255-274, 255-401,255-400,
255-274, 255-273, 255-272, 255-271, 256-271, 256-275, 255-276, 256-272, 256-276, 253-275, 256-279, 257276, 258-273, 259-274, 260-279, 262-281, 262-321, 262-315, 262-312, 265-312, 266-288, 266-291, 266-285, 281-321,281-303, 290-321,290-312, 292-311,290-312, 293-312, 293-315, 293-321, 296-321, 302-321, 324343,339-361, 339-367, 348-367, 342-367, 358-392, 358-378, 360-392, 360-383, 360-388, 360-385, 362-381,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
366-388, 369-388, 366-385, 366-392, 370-389, 370-392, 380-399, 382-401, 384-433, 384-400, 384-401, 385401, 405-424, 409-428, 405-428, 411-426, 411-427, 411-430, 411-431,411-437, 412-431, 411-426, 411-427, 412-428, 412-431, 412-427, 413-433, 413-432, 413-428, 413-429, 413-432, 413-433, 414-427, 415-427, 414429, 414-430, 414-433, 415-428, 415-429, 415-430, 415-431, 415-434, 416-431, 416-432, 416-429, 416-435, 417-432, 417-433, 417-436, 418-433, 418-435, 418-434, 418-437, 419-435, 419-434, 420-435, 419-432, 419434, 421-436, 422-437, 422-441, 423-436, 425-465, 454-473, 454-472, 457-476, 457-472, 457-473, 454-476, 455-472, 457-485, 458-485, 458-483, 458-477, 458-473, 459-485, 460-485, 463-498, 463-485, 466-485, 463482, 457-491, 458-491, 459-491, 460-491, 463-491, 466-491, 472-491, 472-493, 473-492, 475-491, 459-494, 460-494, 463-494, 466-494, 467-498, 472-494, 475-494, 457-473, 457-472, 458-494, 454-494, 457-494, 457473, 485-513, 470-493, 476-519, 485-519, 500-519, 512-534, 512-550, 524-546, 536-559, 548-567, 548-570, 550-570, 548-594, 554-573, 548-576, 560-594, 584-606, 611-645, 617-363, 623-642, 617-645, 639-754, 639658, 639-654, 641-656, 642-657, 643-658, 642-754, 653-672, 662-685, 665-685,665-689, 668-687, 670-754, 670-706, 670-685, 670-686, 670-689, 671-690, 671-691, 671-686, 671-687, 672-693, 672-697, 672-707, 672687, 672-688, 673-688, 674-693, 678-693, 679-694, 679-707, 679-698, 679-701, 679-702, 679-707, 680-695, 680-699, 679-699, 681-706, 681-696, 682-697, 682-706, 682-707, 682-702, 682-701, 683-698, 684-699, 685700, 686-701, 687-754, 688-704, 689-709, 689-710, 690-705, 679-705, 679-710, 679-706, 690-710, 691-710, 690-754, 690-706, 684-703, 687-705, 687-702, 687-703, 687-706, 688-703, 688-704, 688-705, 689-704, 689705, 689-708, 690-705, 690-706, 690-709, 691-706, 692-711, 693-716, 693-712, 695-715, 697-716, 697716, 690-716, 724-746, 724-752, 724-754, 724-758, 733-752, 738-754, 738-753, 739-758, 739-754, 739-775, 739-754, 740-754, 742-785, 742-773, 757-776, 757-785, 790-815, 793-812, 811-833, 811-844, 814-833, 811906, 820-839, 822-844, 822-867, 823-842, 845-864, 845-867, 854-906, 845-909, 845-906, 854-876, 863-882, 863-885, 878-900, 887-906, 899-918, 899-933, 899-958, 905-927, 905-933, 914-933, 936-958, 936-955, 945964, 951-970, 951-985, 951-1044, 951-1024, 951-1056, 951-997, 960-985, 963-1044, 963-1024, 963-997, 972-1015, 1025-1044, 1031-1056, 1037-1056, 1046-1083, 1049-1068, 1070-1089, 1070-1095, 1082-1101, 25 1081-1134, 1081-1143, 1082-1101, 1088-1107, 1088-1134, 1094-1119, 1097-1119, 1112-1134, 1118-1143,
1118-1146, 1088-1146, 1121-1140, 1127-1146, 1127-1193, 1150-1193, 1156-1187, 1165-1187, 1170-1192,
1171-1191, 1172-1191, 1176-1192, 1176-1285, 1177-1192, 1176-1191, 1203-1297, 1206-1228, 1206-1255,
1209-1228, 1215-1255, 1245-1265, 1251-1280, 1262-1285, 1251-1285, 1259-1296, 1259-1290, 1259-1287,
1261-1296, 1261-1285, 1261-1276, 1261-1277, 1261-1280, 1262-1296, 1262-1277, 1262-1278, 1262-1281,
1263-1278, 1263-1279, 1263-1282, 1264-1279, 1264-1280, 1264-1283, 1264-1297, 1265-1280, 1265-1281,
1265-1284, 1266-1281, 1266-1282, 1266-1285, 1267-1282, 1267-1283, 1268-1283, 1268-1284, 1268-1296,
1269-1284, 1269-1285, 1269-1288, 1270-1285, 1271-1290, 1271-1296, 1277-1296, 1261-1290, 1262-1290,
1268-1290, 1263-1305, 1259-1305, 1259-1305, 1266-1305, 1259-1302, 1275-1294, 1281-1306, 1281-1324,
1281-1336, 1282-1301, 1286-1306, 1290-1324, 1293-1318, 1290-1324, 1293-1315, 1296-1315, 1311-1336,
1311-1333, 1326-1345, 1353-1381, 1359-1378, 1395-1414, 1498-1532, 1498-1523, 1498-1535, 1510-1529,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1515-1535, 1515-1563, 1515-1596, 1515-1605, 1515-1602, 1515-1540, 1515-1535, 1518-1605, 1518-1602,
1518-1537, 1521-1563, 1521-1540, 1550-1655, 1550-1563, 1550-1569, 1553-1578, 1553-1599, 1553-1590,
1565-1584, 1571-1595, 1577-1605, 1577-1606, 1577-1592, 1577-1593, 1577-1596, 1578-1593, 1578-1594,
1578-1597, 1578-1598, 1571-1598, 1579-1594, 1579-1594, 1579-1598, 1580-1595, 1580-1596, 1580-1599,
1580-1605, 1580-1602, 1581-1596, 1581-1597, 1581-1600, 1582-1597, 1582-1598, 1582-1601, 1582-1602,
1553-1655, 1583-1598, 1583-1599, 1583-1602, 1584-1599, 1584-1600, 1584-1603, 1585-1600, 1585-1601,
1585-1604, 1586-1601, 1586-1602, 1586-1605, 1587-1602, 1587-1603, 1587-1606, 1588-1603, 1588-1604,
1589-1604, 1589-1605, 1590-1605, 1590-1606, 1591-1606, 1586-1652, 1642-1664, 1651-1720, 1651-1673,
1655-1679, 1695-1720, 1716-1738, 1743-1763, 1743-1768,1764-1783,1773-1792, 1777-1796, 1777-1800,
1778- 1800, 1778-1793, 1778-1794, 1778-1797, 1779-1798, 1779-1797, 1779-1796, 1779-1795, 1779-1794,
1780-1799, 1780-1796, 1780-1795, 1781-1797, 1781-1796, 1781-1796, 1781-1800, 1781-1797, 1782-1799,
1782-1797, 1782-1798, 1783-1798, 1783-1799, 1784-1800, 1784-1799, 1779-1799, 1778-1889, 1778-1794,
1779- 1795, 1780-1799, 1785-1800, 1794-1813, 1806-1837, 1806-1828, 1806-1825, 1809-1828, 1812-1843,
1812-1837, 1812-1831, 1815-1843, 1815-1844, 1815-1840, 1815-1834, 1818-1837, 1821-1840, 1821-1844,
1821-1837, 1822-1843, 1822-1839, 1822-1837, 1823-1843, 1823-1838, 1824-1839, 1827-1846, 1861-1884,
1861-1880, 1865-1885, 1866-1881, 1867-1882, 1867-1886, 1868-1883, 1869-1885, 1869-1884, 1870-1885,
1871-1886, 1872-1887, 1874-1889, 1876-1895, 1888-1914, 1888-1908, 1891-1910, 1891-1914, 1895-1938,
1895-1935, 1913-1935, 1898-1920, 1907-1929, 1913-1935, 1918-1934, 1919-1938, 1919-1934, 1921-1934,
1928-1956, 1957-1976, 2035-2057, 2083-2141, 2230-2261, 2368-2393, 2381-2397, 2368-2394, 2379-2394,
2381-2396, 2368-2397, 2368-2396, 2420-2439, 2458-2476, 2459-2478, 2819-2838, 2818-2838, 2873-2892, and 3161-3182.
In certain embodiments, an antisense compound or oligonucleotide targeted to a HBV nucleic acid target the following nucleotide regions of SEQ ID NO: 1: 1-20, 10-29, 10-56, 13-38, 13-35, 19-38, 25-47, 2550, 25-56, 43-68, 43-63, 55-74, 58-73, 58-74, 58-77, 58-79, 58-80, 58-84, 59-74, 59-75, 59-80, 60-75, 60-76, 25 60-79, 61-76, 61-77, 61-80, 62-77, 63-84, 68-114, 101-123, 98-123, 113-138, 116-138, 131-150, 137-162,
152-186, 158-177, 167-186, 191-215, 196-224, 196-215, 196-218, 199-228, 199-218, 199-224, 200-224, 205224, 206-228, 218-237, 224-243, 233-264, 242-263, 243-262, 244-263, 245-274; 245-260, 245-264, 246-266, 247-266, 247-269, 247-270, 245-267, 251-267, 245-266, 250-269, 251-266, 251-268, 251-269, 245-269, 245266, 245-261, 250-265, 250-266, 250-267, 250-268, 250-269, 251-270, 252-267, 253-268, 253-269, 253-272, 30 253-274, 254-269, 254-270, 254-274, 255-270, 255-271, 255-274, 255-401, 255-400, 255-274, 255-273, 255272, 255-271, 256-271, 256-275, 255-276, 256-272, 256-276, 253-275, 256-279, 257-276, 258-273, 259-274,
260-279, 262-281, 262-321,262-315, 262-312, 265-312, 266-288, 266-291, 266-285, 281-321, 281-303, 290321, 290-312, 292-311, 290-312, 293-312, 293-315, 293-321, 296-321, 302-321, 324-343, 339-361, 339-367,
348-367, 342-367, 358-392, 358-378, 360-392, 360-383, 360-388, 360-385, 362-381, 366-388, 369-388, 36635 385, 366-392, 370-389, 370-392, 380-399, 382-401, 384-433, 384-400, 384-401, 385-401,405-424, 409-428,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
405-428, 411-426, 411-427, 411-430, 411-431,411-437, 412-431,411-426, 411-427, 412-428, 412-431, 412427, 413-433, 413-432, 413-428, 413-429, 413-432, 413-433, 414-427, 415-427, 414-429, 414-430, 414-433, 415-428, 415-429, 415-430, 415-431, 415-434, 416-431, 416-432, 416-429, 416-435, 417-432, 417-433, 417436, 418-433, 418-435, 418-434, 418-437, 419-435, 419-434, 420-435, 419-432, 419-434, 421-436, 422-437, 422-441, 423-436, 425-465, 454-473, 454-472, 457-476, 457-472, 457-473, 454-476, 455-472, 457-485, 458485, 458-483, 458-477, 458-473, 459-485, 460-485, 463-498, 463-485, 466-485, 463-482, 457-491, 458-491, 459-491, 460-491, 463-491, 466-491, 472-491, 472-493, 473-492, 475-491, 459-494, 460-494, 463-494, 466494, 467-498, 472-494, 475-494, 457-473, 457-472, 458-494, 454-494, 457-494, 457-473, 485-513, 470-493, 476-519, 485-519, 500-519, 512-534, 512-550, 524-546, 536-559, 548-567, 548-570, 550-570, 548-594, 554573, 548-576, 560-594, 584-606, 611-645, 617-363, 623-642, 617-645, 639-754, 639-658, 639-654, 641-656, 642-657, 643-658, 642-754, 653-672, 662-685, 665-685,665-689, 668-687, 670-754, 670-706, 670-685, 670686, 670-689, 671-690, 671-691, 671-686, 671-687, 672-693, 672-697, 672-707, 672-687, 672-688, 673-688, 674-693, 678-693, 679-694, 679-707, 679-698, 679-701, 679-702, 679-707, 680-695, 680-699, 679-699, 681706, 681-696, 682-697, 682-706, 682-707, 682-702, 682-701, 683-698, 684-699, 685-700, 686-701, 687-754, 688-704, 689-709, 689-710, 690-705, 679-705, 679-710, 679-706, 690-710, 691-710, 690-754, 690-706, 684703, 687-705, 687-702, 687-703, 687-706, 688-703, 688-704, 688-705, 689-704, 689-705, 689-708, 690-705, 690-706, 690-709, 691-706, 692-711, 693-716, 693-712, 695-715, 697-716, 697-716, 690-716, 724-746, 724752, 724-754, 724-758, 733-752, 738-754, 738-753, 739-758, 739-754, 739-775, 739-754, 740-754, 742-785, 742-773, 757-776, 757-785, 790-815, 793-812, 811-833, 811-844, 814-833, 811-906, 820-839, 822-844, 822867, 823-842, 845-864, 845-867, 854-906, 845-909, 845-906, 854-876, 863-882, 863-885, 878-900, 887-906, 899-918, 899-933, 899-958, 905-927, 905-933, 914-933, 936-958, 936-955, 945-964, 951-970, 951-985, 9511044, 951-1024, 951-1056, 951-997, 960-985, 963-1044, 963-1024, 963-997, 972-1015, 1025-1044, 10311056, 1037-1056, 1046-1083, 1049-1068, 1070-1089, 1070-1095, 1082-1101, 1081-1134, 1081-1143, 10821101, 1088-1107, 1088-1134, 1094-1119, 1097-1119, 1112-1134, 1118-1143, 1118-1146, 1088-1146,112125 1140, 1127-1146, 1127-1193, 1150-1193, 1156-1187, 1165-1187, 1170-1192, 1171-1191, 1172-1191,11761192, 1176-1285, 1177-1192, 1176-1191, 1203-1297, 1206-1228, 1206-1255, 1209-1228, 1215-1255,12451265, 1251-1280, 1262-1285, 1251-1285, 1259-1296, 1259-1290, 1259-1287, 1261-1296, 1261-1285,12611276, 1261-1277, 1261-1280, 1262-1296, 1262-1277, 1262-1278, 1262-1281, 1263-1278, 1263-1279,12631282, 1264-1279, 1264-1280, 1264-1283, 1264-1297, 1265-1280, 1265-1281, 1265-1284, 1266-1281,126630 1282, 1266-1285, 1267-1282, 1267-1283, 1268-1283, 1268-1284, 1268-1296, 1269-1284, 1269-1285,12691288, 1270-1285, 1271-1290, 1271-1296, 1277-1296, 1261-1290, 1262-1290, 1268-1290, 1263-1305,1259-
1305, 1259-1305, 1266-1305, 1259-1302, 1275-1294, 1281-1306, 1281-1324, 1281-1336, 1282-1301,1286-
1306, 1290-1324, 1293-1318, 1290-1324, 1293-1315, 1296-1315, 1311-1336, 1311-1333, 1326-1345,1353-
1381, 1359-1378, 1395-1414, 1498-1532, 1498-1523, 1498-1535, 1510-1529, 1515-1535, 1515-1563,151535 1596, 1515-1605, 1515-1602, 1515-1540, 1515-1535, 1518-1605, 1518-1602, 1518-1537, 1521-1563,152145
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1540, 1550-1655, 1550-1563, 1550-1569, 1553-1578, 1553-1599, 1553-1590, 1565-1584, 1571-1595,15771605, 1577-1606, 1577-1592, 1577-1593, 1577-1596, 1578-1593, 1578-1594, 1578-1597, 1578-1598,1571-
1598, 1579-1594, 1579-1594, 1579-1598, 1580-1595, 1580-1596, 1580-1599, 1580-1605, 1580-1602,1581-
1596, 1581-1597, 1581-1600, 1582-1597, 1582-1598, 1582-1601, 1582-1602, 1553-1655, 1583-1598,1583-
1599, 1583-1602, 1584-1599, 1584-1600, 1584-1603, 1585-1600, 1585-1601, 1585-1604, 1586-1601,1586-
1602, 1586-1605, 1587-1602, 1587-1603, 1587-1606, 1588-1603, 1588-1604, 1589-1604, 1589-1605,15901605, 1590-1606, 1591-1606, 1586-1652, 1642-1664, 1651-1720, 1651-1673, 1655-1679, 1695-1720,17161738, 1743-1763, 1743-1768, 1764-1783, 1773-1792, 1777-1796, 1777-1800, 1778-1800, 1778-1793,1778-
1794, 1778-1797, 1779-1798, 1779-1797, 1779-1796, 1779-1795, 1779-1794, 1780-1799, 1780-1796,1780-
1795, 1781-1797, 1781-1796, 1781-1796, 1781-1800, 1781-1797, 1782-1799, 1782-1797, 1782-1798,1783-
1798, 1783-1799, 1784-1800, 1784-1799, 1779-1799, 1778-1889, 1778-1794, 1779-1795, 1780-1799,17851800, 1794-1813, 1806-1837, 1806-1828, 1806-1825, 1809-1828, 1812-1843, 1812-1837, 1812-1831,18151843, 1815-1844, 1815-1840, 1815-1834, 1818-1837, 1821-1840, 1821-1844, 1821-1837, 1822-1843,18221839, 1822-1837, 1823-1843, 1823-1838, 1824-1839, 1827-1846, 1861-1884, 1861-1880, 1865-1885,18661881, 1867-1882, 1867-1886, 1868-1883, 1869-1885, 1869-1884, 1870-1885, 1871-1886, 1872-1887,18741889, 1876-1895, 1888-1914, 1888-1908, 1891-1910, 1891-1914, 1895-1938, 1895-1935, 1913-1935,18981920, 1907-1929, 1913-1935, 1918-1934, 1919-1938, 1919-1934, 1921-1934, 1928-1956, 1957-1976,20352057, 2083-2141, 2230-2261, 2368-2393, 2381-2397, 2368-2394, 2379-2394, 2381-2396, 2368-2397,23682396, 2420-2439, 2458-2476, 2459-2478, 2819-2838, 2818-2838, 2873-2892, and 3161-3182.
In certain embodiments, an antisense compound or oligonucleotide targeted to a HBV nucleic acid is complementary within the HBV pre-Sl second portion gene region corresponding to nucleotide region 11932 of SEQ ID NO: 1. In certain embodiments, an antisense compound or oligonucleotide targeted to a HBV nucleic acid is complementary within the HBV pre-Sl first portion gene region corresponding to nucleotide region 2831 -3182 of SEQ ID NO: 1.
In certain embodiments, an antisense compound or oligonucleotide targeted to a HBV nucleic acid target the HBV pre-Sl second portion gene region corresponding to nucleotide region 1-1932 of SEQ ID NO: 1. In certain embodiments, an antisense compound or oligonucleotide targeted to a HBV nucleic acid target the HBV pre-Sl first portion gene region corresponding to nucleotide region 2831-3182 of SEQ ID NO: 1.
In certain embodiments, antisense compounds or oligonucleotides target a region of a HBV nucleic acid. In certain embodiments, such compounds or oligonucleotides targeted to a region of a HBV nucleic acid have a contiguous nucleobase portion that is complementary to an equal length nucleobase portion of the region. For example, the portion can be at least an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19or20 contiguous nucleobases portion complementary to an equal length portion of a region recited herein. In certain embodiments, such compounds or oligonucleotide target the following nucleotide regions of SEQ ID NO: 1:
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1-20, 10-29, 10-56, 13-38, 13-35, 19-38, 25-47, 25-50, 25-56, 43-68, 43-63, 55-74, 58-73, 58-74, 58-77, 5879, 58-80, 58-84, 59-74, 59-75, 59-80, 60-75, 60-76, 60-79, 61-76, 61-77, 61-80, 62-77, 63-84, 68-114, 101123, 98-123, 113-138, 116-138, 131-150, 137-162, 152-186, 158-177, 167-186, 191-215, 196-224, 196-215, 196-218, 199-228, 199-218, 199-224, 200-224, 205-224, 206-228, 218-237, 224-243, 233-264, 242-263, 243262, 244-263, 245-274; 245-260, 245-264, 246-266, 247-266, 247-269, 247-270, 245-267, 251-267, 245266, 250-269, 251-266, 251-268, 251-269, 245-269, 245-266, 245-261, 250-265, 250-266, 250-267, 250-268, 250-269, 251-270, 252-267, 253-268, 253-269, 253-272, 253-274, 254-269, 254-270, 254-274, 255-270,255271, 255-274, 255-401, 255-400, 255-274, 255-273, 255-272, 255-271, 256-271, 256-275, 255-276, 256-272, 256-276, 253-275, 256-279, 257-276, 258-273, 259-274, 260-279, 262-281, 262-321, 262-315, 262-312, 265312, 266-288, 266-291, 266-285, 281-321, 281-303, 290-321, 290-312, 292-311, 290-312, 293-312, 293-315, 293-321, 296-321, 302-321, 324-343, 339-361, 339-367, 348-367, 342-367, 358-392, 358-378, 360-392, 360383, 360-388, 360-385, 362-381, 366-388, 369-388, 366-385, 366-392, 370-389, 370-392, 380-399, 382-401, 384-433, 384-400, 384-401, 385-401,405-424, 409-428, 405-428, 411-426, 411-427, 411-430, 411-431,411437, 412-431, 411-426, 411-427, 412-428, 412-431, 412-427, 413-433, 413-432, 413-428, 413-429, 413-432, 413-433, 414-427, 415-427, 414-429, 414-430, 414-433, 415-428, 415-429, 415-430, 415-431,415-434, 416431, 416-432, 416-429, 416-435, 417-432, 417-433, 417-436, 418-433, 418-435, 418-434, 418-437, 419-435, 419-434, 420-435, 419-432, 419-434, 421-436, 422-437, 422-441, 423-436, 425-465, 454-473, 454-472, 457476, 457-472, 457-473, 454-476, 455-472, 457-485, 458-485, 458-483, 458-477, 458-473, 459-485, 460-485, 463-498, 463-485, 466-485, 463-482, 457-491, 458-491, 459-491, 460-491, 463-491, 466-491, 472-491,472493, 473-492, 475-491, 459-494, 460-494, 463-494, 466-494, 467-498, 472-494, 475-494, 457-473, 457-472, 458-494, 454-494, 457-494, 457-473, 485-513, 470-493, 476-519, 485-519, 500-519, 512-534, 512-550, 524546, 536-559, 548-567, 548-570, 550-570, 548-594, 554-573, 548-576, 560-594, 584-606, 611-645, 617-363, 623-642, 617-645, 639-754, 639-658, 639-654, 641-656, 642-657, 643-658, 642-754, 653-672, 662-685, 665685,665-689, 668-687, 670-754, 670-706, 670-685, 670-686, 670-689, 671-690, 671-691, 671-686, 671-687, 25 672-693, 672-697, 672-707, 672-687, 672-688, 673-688, 674-693, 678-693, 679-694, 679-707, 679-698, 679701, 679-702, 679-707, 680-695, 680-699, 679-699, 681-706, 681-696, 682-697, 682-706, 682-707, 682-702, 682-701, 683-698, 684-699, 685-700, 686-701, 687-754, 688-704, 689-709, 689-710, 690-705, 679-705, 679710, 679-706, 690-710, 691-710, 690-754, 690-706, 684-703, 687-705, 687-702, 687-703, 687-706, 688-703, 688-704, 688-705, 689-704, 689-705, 689-708, 690-705, 690-706, 690-709, 691-706, 692-711, 693-716, 69330 712, 695-715, 697-716, 697-716, 690-716, 724-746, 724-752, 724-754, 724-758, 733-752, 738-754, 738753, 739-758, 739-754, 739-775, 739-754, 740-754, 742-785, 742-773, 757-776, 757-785, 790-815, 793-812, 811-833, 811-844, 814-833, 811-906, 820-839, 822-844, 822-867, 823-842, 845-864, 845-867, 854-906, 845909, 845-906, 854-876, 863-882, 863-885, 878-900, 887-906, 899-918, 899-933, 899-958, 905-927, 905-933, 914-933, 936-958,936-955, 945-964, 951-970, 951-985, 951-1044, 951-1024, 951-1056, 951-997, 960-985, 35 963-1044, 963-1024, 963-997, 972-1015, 1025-1044, 1031-1056, 1037-1056, 1046-1083, 1049-1068, 107047
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1089, 1070-1095, 1082-1101, 1081-1134, 1081-1143, 1082-1101, 1088-1107, 1088-1134, 1094-1119,10971119, 1112-1134, 1118-1143, 1118-1146, 1088-1146, 1121-1140, 1127-1146, 1127-1193, 1150-1193,11561187, 1165-1187, 1170-1192, 1171-1191, 1172-1191, 1176-1192, 1176-1285, 1177-1192, 1176-1191,12031297, 1206-1228, 1206-1255, 1209-1228, 1215-1255, 1245-1265, 1251-1280, 1262-1285, 1251-1285,1259-
1296, 1259-1290, 1259-1287, 1261-1296, 1261-1285, 1261-1276, 1261-1277, 1261-1280, 1262-1296,1262-
1277, 1262-1278, 1262-1281, 1263-1278, 1263-1279, 1263-1282, 1264-1279, 1264-1280, 1264-1283,1264-
1297, 1265-1280, 1265-1281, 1265-1284, 1266-1281, 1266-1282, 1266-1285, 1267-1282, 1267-1283,1268-
1283, 1268-1284, 1268-1296, 1269-1284, 1269-1285, 1269-1288, 1270-1285, 1271-1290, 1271-1296,12771296, 1261-1290, 1262-1290, 1268-1290, 1263-1305, 1259-1305, 1259-1305, 1266-1305, 1259-1302,1275| 1294, 1281-1306, 1281-1324, 1281-1336, 1282-1301, 1286-1306, 1290-1324, 1293-1318, 1290-1324,12931315, 1296-1315, 1311-1336, 1311-1333, 1326-1345, 1353-1381, 1359-1378, 1395-1414, 1498-1532,14981523, 1498-1535, 1510-1529, 1515-1535, 1515-1563, 1515-1596, 1515-1605, 1515-1602, 1515-1540,15151535, 1518-1605, 1518-1602, 1518-1537, 1521-1563, 1521-1540, 1550-1655, 1550-1563, 1550-1569,15531578, 1553-1599, 1553-1590, 1565-1584, 1571-1595, 1577-1605, 1577-1606, 1577-1592, 1577-1593,15771596, 1578-1593, 1578-1594, 1578-1597, 1578-1598, 1571-1598, 1579-1594, 1579-1594, 1579-1598,15801595, 1580-1596, 1580-1599, 1580-1605, 1580-1602, 1581-1596, 1581-1597, 1581-1600, 1582-1597,15821598, 1582-1601, 1582-1602, 1553-1655, 1583-1598, 1583-1599, 1583-1602, 1584-1599, 1584-1600,15841603, 1585-1600, 1585-1601, 1585-1604, 1586-1601, 1586-1602, 1586-1605, 1587-1602, 1587-1603,15871606, 1588-1603, 1588-1604, 1589-1604, 1589-1605, 1590-1605, 1590-1606, 1591-1606, 1586-1652,1642' 1664, 1651-1720, 1651-1673, 1655-1679, 1695-1720, 1716-1738, 1743-1763, 1743-1768, 1764-1783,17731792, 1777-1796, 1777-1800, 1778-1800, 1778-1793, 1778-1794, 1778-1797, 1779-1798, 1779-1797,1779-
1796, 1779-1795, 1779-1794, 1780-1799, 1780-1796, 1780-1795, 1781-1797, 1781-1796, 1781-1796,1781-
1800, 1781-1797, 1782-1799, 1782-1797, 1782-1798, 1783-1798, 1783-1799, 1784-1800, 1784-1799,17791799, 1778-1889, 1778-1794, 1779-1795, 1780-1799, 1785-1800, 1794-1813, 1806-1837, 1806-1828,180625 1825, 1809-1828, 1812-1843, 1812-1837, 1812-1831, 1815-1843, 1815-1844, 1815-1840, 1815-1834,18181837, 1821-1840, 1821-1844, 1821-1837, 1822-1843, 1822-1839, 1822-1837, 1823-1843, 1823-1838,18241839, 1827-1846, 1861-1884, 1861-1880, 1865-1885, 1866-1881, 1867-1882, 1867-1886, 1868-1883,18691885, 1869-1884, 1870-1885, 1871-1886, 1872-1887, 1874-1889, 1876-1895, 1888-1914, 1888-1908,18911910, 1891-1914, 1895-1938, 1895-1935, 1913-1935, 1898-1920, 1907-1929, 1913-1935, 1918-1934,191930 1938, 1919-1934, 1921-1934, 1928-1956, 1957-1976, 2035-2057, 2083-2141, 2230-2261, 2368-2393,23812397, 2368-2394, 2379-2394, 2381-2396, 2368-2397, 2368-2396, 2420-2439, 2458-2476, 2459-2478,28192838, 2818-2838, 2873-2892, and 3161-3182..
In certain embodiments, antisense compounds or oligonucleotides target a region of a HBV nucleic acid. In certain embodiments, such compounds or oligonucleotides targeted to a region of a HBV nucleic acid have a contiguous nucleobase portion that is complementary to an equal length nucleobase portion of the
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 region. For example, the portion can be at least an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 contiguous nucleobases portion complementary to an equal length portion of a region recited herein. In certain embodiments, such compounds or oligonucleotide target the following nucleotide regions of SEQ ED NO: 1: 58-73, 58-74, 58-77, 59-74, 60-75, 61-76, 62-77, 245-274; 245-260, 250-265, 251-266, 252-267, 253-268, 254-269, 255-270, 256-271, 256-272, 258-273, 259-274, 380-399, 382-401, 411-437, 411-427, 411-426, 412427, 413-428, 413-432, 414-429, 415-430, 416-431, 417-432, 418-433, 419-434, 420-435, 421-436, 422-437, 457-472, 458-473, 639-754, 639-658, 639-654, 641-656, 642-657, 643-658, 670-754, 670-706, 670-685, 671 686, 672-687, 673-688, 678-693, 679-694, 680-695, 681-706, 681-696, 682-697, 683-698, 684-699, 685-700,
686- 701, 687-702, 688-703, 689-704, 690-705, 691-706, 738-754, 738-753, 739-754, 1176-1285, 1176-1191,
1177-1192, 1261-1285, 1261-1276, 1262-1277, 1263-1278, 1264-1279, 1265-1280, 1266-1281, 1267-1282,
1268-1283, 1269-1284, 1270-1285, 1577-1606, 1577-1592, 1578-1593, 1579-1594, 1580-1595, 1581-1596,
1582-1597, 1583-1598, 1584-1599, 1585-1600, 1586-1601, 1587-1602, 1588-1603, 1589-1604, 1590-1605,
1591-1606, 1778-1889, 1778-1800, 1778-1793, 1779-1794, 1780-1799, 1780-1796, 1780-1795, 1781-1796,
1782- 1797, 1783-1798, 1784-1799, 1785-1800, 1822-1839, 1822-1837, 1823-1838, 1824-1839, 1866-1881,
1867-1882, 1868-1883, 1869-1884, 1870-1885, 1871-1886, 1872-1887, or 1874-1889, and wherein at least one nucleoside of the compound or modified oligonucleotide comprises at least one 2’-O-methoxyethyl or constrained ethyl (cEt) sugar.
In certain embodiments, an antisense compound or oligonucleotide targeted to a HBV nucleic acid is complementary within the following nucleotide regions of SEQ ID NO: 1: 58-73, 58-74, 58-77, 59-74, 59-75, 60-75, 60-76, 61-76, 61-77, 62-77, 253-272, 253-269, 254-270, 255-271, 256-272, 411-437, 411-426, 411427, 411-430, 412-427, 412-428, 412-431, 413-428, 413-429, 413-432, 414-429, 414-430, 414-433, 415-430, 415-431, 415-434, 416-431,416-432, 416-435, 417-432, 417-433, 417-436, 418-433, 418-434, 418-437, 457472, 457-473, 458-473, 670-706, 670-685, 670-686, 671-686, 671-687, 672-687, 672-688, 673-688, 687-702,
687- 703, 687-706, 688-703, 688-704, 689-704, 689-705, 690-705, 690-706, 691-706, 1261-1285, 1261-1276,
1261-1277, 1261-1280, 1262-1277, 1262-1278, 1262-1281, 1263-1278, 1263-1279, 1263-1282, 1264-1279,
1264-1280, 1264-1283, 1265-1280, 1265-1281, 1265-1284, 1266-1281, 1266-1282, 1266-1285, 1267-1282,
1267-1283, 1268-1283, 1268-1284, 1269-1284, 1269-1285, 1270-1285, 1577-1606, 1577-1592, 1577-1593,
1577-1596, 1578-1593, 1578-1594, 1578-1597, 1579-1594, 1579-1594, 1579-1598, 1580-1595, 1580-1596,
1580-1599, 1581-1596, 1581-1597, 1581-1600, 1582-1597, 1582-1598, 1582-1601, 1583-1598, 1583-1599,
1583-1602, 1584-1599, 1584-1600, 1584-1603, 1585-1600, 1585-1601, 1585-1604, 1586-1601, 1586-1602,
1586-1605, 1587-1602, 1587-1603, 1587-1606, 1588-1603, 1588-1604, 1589-1604, 1589-1605, 1590-1605,
1590-1606, 1591-1606, 1778-1800, 1778-1793, 1778-1794, 1778-1797, 1779-1794, 1779-1795, 1779-1798,
1780-1795, 1780-1796, 1780-1799, 1781-1796, 1781-1797, 1781-1800, 1782-1797, 1782-1798, 1783-1798,
1783- 1799, 1784-1799, and 1784-1800.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, an antisense compound or oligonucleotide targeted to a HBV nucleic acid target the following nucleotide regions of SEQ ID NO: 1: 58-73, 58-74, 58-77, 59-74, 59-75, 60-75, 60-76, 61-76, 61-77, 62-77, 253-272, 253-269, 254-270, 255-271, 256-272, 411-437, 411-426, 411-427, 411-430,
412-427, 412-428, 412-431,413-428, 413-429, 413-432, 414-429, 414-430, 414-433, 415-430, 415-431, 415434, 416-431, 416-432, 416-435, 417-432, 417-433, 417-436, 418-433, 418-434, 418-437, 457-472, 457-473, 458-473, 670-706, 670-685, 670-686, 671-686, 671-687, 672-687, 672-688, 673-688, 687-702, 687-703, 687706, 688-703, 688-704, 689-704, 689-705, 690-705, 690-706, 691-706, 1261-1285, 1261-1276, 1261-1277, 1261-1280, 1262-1277, 1262-1278, 1262-1281, 1263-1278, 1263-1279, 1263-1282, 1264-1279, 1264-1280,
1264-1283, 1265-1280, 1265-1281, 1265-1284, 1266-1281, 1266-1282, 1266-1285, 1267-1282, 1267-1283,
1268-1283, 1268-1284, 1269-1284, 1269-1285, 1270-1285, 1577-1606, 1577-1592, 1577-1593, 1577-1596,
1578-1593, 1578-1594, 1578-1597, 1579-1594, 1579-1594, 1579-1598, 1580-1595, 1580-1596, 1580-1599,
1581-1596, 1581-1597, 1581-1600, 1582-1597, 1582-1598, 1582-1601, 1583-1598, 1583-1599, 1583-1602,
1584-1599, 1584-1600, 1584-1603, 1585-1600, 1585-1601, 1585-1604, 1586-1601, 1586-1602, 1586-1605,
1587-1602, 1587-1603, 1587-1606, 1588-1603, 1588-1604, 1589-1604, 1589-1605, 1590-1605, 1590-1606,
1591-1606, 1778-1800, 1778-1793, 1778-1794, 1778-1797, 1779-1794, 1779-1795, 1779-1798, 1780-1795,
1780-1796, 1780-1799, 1781-1796, 1781-1797, 1781-1800, 1782-1797, 1782-1798, 1783-1798, 1783-1799,
1784-1799,and 1784-1800.
In certain embodiments, antisense compounds or oligonucleotides target a region of a HBV nucleic acid. In certain embodiments, such compounds or oligonucleotides targeted to a region of a HBV nucleic acid have a contiguous nucleobase portion that is complementary to an equal length nucleobase portion of the region. For example, the portion can be at least an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 contiguous nucleobases portion complementary to an equal length portion of a region recited herein. In certain embodiments, such compounds or oligonucleotide target the following nucleotide regions of SEQ ID NO: 1: 1-20, 10-29, 10-56, 13-38, 13-35, 19-38, 25-47, 25-50, 25-56, 43-68, 43-63, 55-74, 58-73, 58-74, 58-77, 5825 79, 58-80, 58-84, 59-74, 59-75, 59-80, 60-75, 60-76, 60-79, 61-76, 61-77, 61-80, 62-77, 63-84, 68-114, 101 123, 98-123, 113-138, 116-138, 131-150, 137-162, 152-186, 158-177, 167-186, 191-215, 196-224, 196-215, 196-218, 199-228, 199-218, 199-224, 200-224, 205-224, 206-228, 218-237, 224-243, 233-264, 242-263, 243262, 244-263, 245-264, 246-266, 247-266, 247-269, 247-270, 245-267, 251-267, 245-266, 250-269, 251-268, 251-269, 245-269, 245-266, 245-261,250-266, 250-267, 250-268, 250-269, 251-270, 253-269, 253-272, 25330 274, 254-270, 254-274, 255-271, 255-274, 255-401, 255-400, 255-274, 255-273, 255-272, 255-271, 256-275,
255-276, 256-272, 256-276, 253-275, 256-279, 257-276, 260-279, 262-281, 262-321, 262-315, 262-312, 265312, 266-288, 266-291, 266-285, 281-321, 281-303, 290-321, 290-312, 292-311, 290-312, 293-312, 293-315,
293-321, 296-321, 302-321, 324-343, 339-361, 339-367, 348-367, 342-367, 358-392, 358-378, 360-392, 360383, 360-388, 360-385, 362-381, 366-388, 369-388, 366-385, 366-392, 370-389, 370-392, 384-433, 384-400,
384-401,385-401,405-424,409-428, 405-428, 411-426,411-427, 411-430, 411-431, 411-437, 412-431, 41150
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
426, 411-427, 412-428, 412-431,412-427, 413-433, 413-432, 413-428, 413-429, 413-432, 413-433, 414-427, 415-427, 414-429, 414-430, 414-433, 415-428, 415-429, 415-430, 415-431, 415-434, 416-431, 416-432, 416429, 416-435, 417-432, 417-433, 417-436, 418-433, 418-435, 418-434, 418-437, 419-435, 419-434, 420-435, 419-432, 419-434, 422-441,423-436, 425-465, 454-473, 454-472, 457-476, 457-472, 457-473, 454-476, 455472, 457-485, 458-485, 458-483, 458-477, 458-473, 459-485, 460-485, 463-498, 463-485, 466-485, 463-482, 457-491,458-491, 459-491, 460-491,463-491, 466-491, 472-491, 472-493, 473-492, 475-491, 459-494, 460494, 463-494, 466-494, 467-498, 472-494, 475-494, 457-473, 457-472, 458-494, 454-494, 457-494, 457-473, 485-513, 470-493, 476-519, 485-519, 500-519, 512-534, 512-550, 524-546, 536-559, 548-567, 548-570, 550570, 548-594, 554-573, 548-576, 560-594, 584-606, 611-645, 617-363, 623-642, 617-645, 642-754, 653-672, 662-685, 665-685, 665-689, 668-687, 670-706, 670-685, 670-686, 670-689, 671-690, 671-691, 671-686, 671687, 672-693, 672-697, 672-707, 672-687, 672-688, 673-688, 674-693, 679-707, 679-698, 679-701, 679-702, 679-707, 680-699, 679-699, 682-706, 682-707, 682-702, 682-701, 687-754, 688-704, 689-709, 689-710, 690705, 679-705, 679-710, 679-706, 690-710, 691-710, 690-754, 690-706, 684-703, 687-705, 687-702, 687-703, 687-706, 688-703, 688-704, 688-705, 689-704, 689-705, 689-708, 690-705, 690-706, 690-709, 691-706, 692711, 693-716, 693-712, 695-715, 697-716, 697-716, 690-716, 724-746, 724-752, 724-754, 724-758, 733-752, 738-754, 739-758, 739-754, 739-775, 739-754, 740-754, 742-785, 742-773, 757-776, 757-785, 790-815, 793812, 811-833, 811-844, 814-833, 811-906, 820-839, 822-844, 822-867, 823-842, 845-864, 845-867, 854-906, 845-909, 845-906, 854-876, 863-882, 863-885, 878-900, 887-906, 899-918, 899-933, 899-958, 905-927, 905933, 914-933, 936-958, 936-955, 945-964, 951-970, 951-985, 951-1044, 951-1024, 951-1056, 951-997, 960985, 963-1044, 963-1024, 963-997, 972-1015, 1025-1044, 1031-1056, 1037-1056, 1046-1083, 1049-1068, 1070-1089, 1070-1095, 1082-1101, 1081-1134, 1081-1143, 1082-1101, 1088-1107, 1088-1134, 1094-1119,
1097-1119, 1112-1134, 1118-1143, 1118-1146, 1088-1146, 1121-1140, 1127-1146, 1127-1193, 1150-1193,
1156-1187, 1165-1187, 1170-1192, 1171-1191, 1172-1191, 1176-1192, 1177-1192, 1176-1191, 1203-1297,
1206-1228, 1206-1255, 1209-1228, 1215-1255, 1245-1265, 1251-1280, 1262-1285, 1251-1285, 1259-1296,
1259-1290, 1259-1287, 1261-1296, 1261-1285, 1261-1276, 1261-1277, 1261-1280, 1262-1296, 1262-1277,
1262-1278, 1262-1281, 1263-1278, 1263-1279, 1263-1282, 1264-1279, 1264-1280, 1264-1283, 1264-1297,
1265-1280, 1265-1281, 1265-1284, 1266-1281, 1266-1282, 1266-1285, 1267-1282, 1267-1283, 1268-1283,
1268-1284, 1268-1296, 1269-1284, 1269-1285, 1269-1288, 1270-1285, 1271-1290, 1271-1296, 1277-1296,
1261-1290, 1262-1290, 1268-1290, 1263-1305, 1259-1305, 1259-1305, 1266-1305, 1259-1302, 1275-1294,
1281-1306, 1281-1324, 1281-1336, 1282-1301, 1286-1306, 1290-1324, 1293-1318, 1290-1324, 1293-1315,
1296-1315, 1311-1336, 1311-1333, 1326-1345, 1353-1381, 1359-1378, 1395-1414, 1498-1532, 1498-1523,
1498-1535, 1510-1529, 1515-1535, 1515-1563, 1515-1596, 1515-1605, 1515-1602, 1515-1540, 1515-1535,
1518-1605, 1518-1602, 1518-1537, 1521-1563, 1521-1540, 1550-1655, 1550-1563, 1550-1569, 1553-1578,
1553-1599, 1553-1590, 1565-1584, 1571-1595, 1577-1605, 1577-1606, 1577-1592, 1577-1593, 1577-1596,
1578-1593, 1578-1594, 1578-1597, 1578-1598, 1571-1598, 1579-1594, 1579-1594, 1579-1598, 1580-1595,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1580-1596, 1580-1599, 1580-1605, 1580-1602, 1581-1596, 1581-1597, 1581-1600, 1582-1597, 1582-1598,
1582-1601, 1582-1602, 1553-1655, 1583-1598, 1583-1599, 1583-1602, 1584-1599, 1584-1600, 1584-1603,
1585-1600, 1585-1601, 1585-1604, 1586-1601, 1586-1602, 1586-1605, 1587-1602, 1587-1603, 1587-1606,
1588-1603, 1588-1604, 1589-1604, 1589-1605, 1590-1605, 1590-1606, 1591-1606, 1586-1652, 1642-1664,
1651-1720, 1651-1673, 1655-1679, 1695-1720, 1716-1738, 1743-1763, 1743-1768, 1764-1783, 1773-1792,
1777- 1796, 1777-1800, 1778-1800, 1778-1793, 1778-1794, 1778-1797, 1779-1798, 1779-1797, 1779-1796,
1779-1795, 1779-1794, 1780-1799, 1780-1796, 1780-1795, 1781-1797, 1781-1796, 1781-1796, 1781-1800,
1781-1797, 1782-1799, 1782-1797, 1782-1798, 1783-1798, 1783-1799, 1784-1800, 1784-1799, 1779-1799,
1778- 1794, 1779-1795, 1780-1799, 1794-1813, 1806-1837, 1806-1828, 1806-1825, 1809-1828, 1812-1843, | 1812-1837, 1812-1831, 1815-1843, 1815-1844, 1815-1840, 1815-1834, 1818-1837, 1821-1840, 1821-1844,
1821-1837, 1822-1843, 1822-1839, 1823-1843, 1827-1846, 1861-1884, 1861-1880, 1865-1885, 1867-1886,
1869-1885, 1876-1895, 1888-1914, 1888-1908, 1891-1910, 1891-1914, 1895-1938, 1895-1935, 1913-1935,
1898-1920, 1907-1929, 1913-1935, 1918-1934, 1919-1938, 1919-1934, 1921-1934, 1928-1956, 1957-1976,
2035-2057, 2083-2141, 2230-2261, 2368-2393, 2381-2397, 2368-2394, 2379-2394, 2381-2396, 2368-2397,
2368-2396, 2420-2439, 2458-2476, 2459-2478, 2819-2838, 2818-2838, 2873-2892, and 3161-3182.
In certain embodiments, antisense compounds or oligonucleotides target a region of a HBV nucleic acid. In certain embodiments, such compounds or oligonucleotides targeted to a region of a HBV nucleic acid have a contiguous nucleobase portion that is complementary to an equal length nucleobase portion of the region. For example, the portion can be at least an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 contiguous nucleobases portion complementary to an equal length portion of a region recited herein. In certain embodiments, such compounds or oligonucleotide target the following nucleotide regions of SEQ ID NO: 1: 233-264, 242-263, 243-262, 244-263, 245-264, 246-266, 247-266, 247-269, 247-270, 245-267, 251-267, 245-266, 250-269, 251-268, 251-269, 245-269, 245-266, 245-261, 250-266, 250-267, 250-268, 250-269, 251270, 253-272, 253-274, 254-274, 255-274, 255-401, 255-400, 255-274, 255-273, 255-272, 255-271, 256-275, 25 255-276, 256-276, 253-275, 256-279, 257-276, 260-279, 262-281, 262-321, 262-315, 262-312, 265-312, 266288, 266-291, 266-285, 281-321, 281-303, 405-424, 409-428, 405-428, 411-430, 411-431, 411-431, 412431, 411-426, 411-427, 412-428, 412-431, 412-427, 413-433, 413-432, 413-428, 413-433, 411-427, 414-427, 415-427, 415-428, 415-429, 416-432, 416-429, 418-435, 418-434, 419-435, 419-434, 420-435, 419-432, 419434, 422-441, 423-436, 425-465, 584-606, 611-645, 617-363, 623-642, 617-645, 642-754, 653-672, and 30 wherein at least one nucleoside of the compound or modified oligonucleotide comprises at least one 2’-Omethoxyethyl sugar.
In certain embodiments, the following nucleotide regions of SEQ ID NO: 1, when targeted by antisense compounds or oligonucleotides, display at least 50% inhibition: 1-20, 10-29, 10-56, 13-38, 13-35,
19-38, 25-47, 25-50, 25-56, 43-68, 43-63, 55-74, 58-77, 58-74, 58-73, 58-79, 58-80, 58-84, 59-74, 59-75,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
59-80, 60-79, 60-75, 60-76, 61-80, 61-76, 61-77, 62-77, 63-84, 68-114, 101-123, 98-123, 113-138, 116-138, 131-150, 137-162, 152-186, 158-177, 167-186, 191-215, 196-224, 196-215, 196-218, 199-228, 199-218, 199224, 200-224, 205-224, 206-228, 218-237, 224-243, 233-264, 242-263, 243-262, 244-263, 245-264, 246-266, 247-266, 247-269, 247-270, 245-267, 251-267, 245-266, 250-269, 251-268, 251-269, 245-269, 245-266, 245261, 250-265, 250-266, 250-267, 250-268, 250-269, 251-266, 251-270, 252-267, 253-268, 253-269, 253-272, 253-274, 254-269, 254-270, 254-274, 255-274, 255-401, 255-400, 255-274, 255-273, 255-272, 255-271, 255270, 256-271, 256-272, 256-275, 255-276, 256-276, 253-275, 256-279, 257-276, 258-273, 259-274, 260-279, 262-281, 262-321, 262-315, 262-312, 265-312, 266-288, 266-291, 266-285, 281-321, 281-303, 290-321, 290-312, 292-311, 290-312, 293-312, 293-315, 293-321,296-321, 302-321, 324-343, 339-361, 339-367, 348367, 342-367, 358-392, 358-378, 360-392, 360-383, 360-388, 360-385, 362-381, 366-388, 369-388, 366-385, 366-392, 370-389, 370-392, 380-399, 382-401, 384-433, 384-400, 384-401, 385-401, 405-424, 409-428, 405-
428, 411-430, 411-431, 411-431, 412-431, 411-426, 411-427, 411-430, 411-437, 412-428, 412-431, 412-427,
413-432, 413-428, 413-429, 413-433, 411-427, 414-427, 414-429, 414-430, 414-433, 415-427, 415-428, 415-
429, 415-430, 415-431, 415-434, 416-435, 416-432, 416-431, 416-429, 417-432, 417-433, 417-436, 418-437, 418-435, 418-434, 418-433, 419-435, 419-434, 420-435, 419-432, 419-434, 421-436, 422-441, 422-437, 423436, 425-465, 454-473, 454-472, 457-476, 454-476, 455-472, 457-485, 457-473, 457-472, 458-485, 458-483, 458-477, 458-473, 459-485, 460-485, 463-498, 463-485, 466-485, 463-482, 457-491, 458-491,459-491, 460491, 463-491, 466-491, 472-491, 472-493, 473-492, 475-491,459-494, 460-494, 463-494, 466-494, 467-498, 472-494, 475-494, 457-473, 457-472, 458-494, 454-494, 457-494, 457-473, 485-513, 470-493, 476-519, 485519, 500-519, 512-534, 512-550, 524-546, 536-559, 548-567, 548-570, 550-570, 548-594, 554-573, 548-576, 560-594, 584-606, 611-645, 617-363, 623-642, 617-645, 639-654, 641-656, 642-657, 642-754, 643-658, 653672, 662-685, 665-685,665-689, 668-687, 670-689, 670-706, 670-685, 670-686, 671-686, 671-687, 671-690, 671-691, 672-687, 672-688, 672-693, 672-697, 672-707, 673-688, 674-693, 678-693, 679-707, 679-694, 679698, 679-701, 679-702, 679-707, 680-699, 679-699, 680-695, 681-696, 682-706, 682-707, 682-702, 682-701,
682-697, 683-698, 684-699, 685-700, 686-701,687-702, 687-703, 687-706, 687-754, 688-703, 688-704, 689704, 689-705, 689-709, 689-710, 690-705, 690-706, 691-706, 679-705, 679-710, 679-706, 690-710, 691-710, 690-754, 690-706, 684-703, 687-705, 687-703, 687-706, 688-705, 689-708, 690-709, 692-711, 693-716, 693712, 695-715, 697-716, 697-716, 690-716, 724-746, 724-752, 724-754, 724-758, 733-752, 738-753, 738-754, 739-758, 739-754, 739-775, 739-754, 740-754, 742-785, 742-773, 757-776, 757-785, 790-815, 793-812, 81130 833, 811-844, 814-833, 811-906, 820-839, 822-844, 822-867, 823-842, 845-864, 845-867, 854-906, 845909, 845-906, 854-876, 854-873, 863-882, 863-885, 878-900, 878-897, 887-906, 899-918, 899-933, 899-958,
905-927, 905-933, 914-933, 936-958, 936-955, 945-964, 951-970, 951-985, 951-1044, 951-1024, 951-1056,
951-997, 960-985, 963-1044, 963-1024, 963-997, 966-985, 972-1015, 978-997, 1025-1044, 1031-1056,
1037-1056, 1046-1083, 1049-1068, 1070-1089, 1070-1095, 1082-1101, 1081-1134, 1081-1143, 1082-1101,
1088-1107, 1088-1134, 1094-1119, 1097-1119, 1112-1134, 1118-1143, 1118-1146, 1088-1146, 1121-1140,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1127-1146, 1127-1193, 1150-1193, 1156-1187, 1165-1187, 1170-1192, 1171-1191, 1172-1191, 1176-1192,
1177-1192, 1176-1191, 1203-1297, 1206-1228, 1206-1255, 1209-1228, 1215-1255, 1215-1234, 1218-1237,
1221-1240, 1224-1243, 1227-1246, 1230-1249, 1233-1252, 1236-1255, 1245-1265, 1251-1280, 1251-1285,
1251-1270, 1254-1273, 1254-1279, 1257-1276, 1258-1277, 1259-1296, 1259-1290, 1259-1287, 1260-1279, ί 1261-1285, 1261-1276, 1261-1277, 1261-1280, 1261-1296, 1262-1277, 1262-1278, 1262-1281, 1262-1285,
1262-1296, 1263-1278, 1263-1279, 1263-1282, 1264-1279, 1264-1280, 1264-1283, 1264-1297, 1265-1280,
1265-1281, 1265-1284, 1266-1281, 1266-1282, 1266-1285, 1267-1282, 1267-1283, 1268-1283, 1268-1284,
1268-1296, 1269-1284, 1269-1285, 1269-1288, 1270-1285, 1271-1290, 1271-1296, 1277-1296, 1261-1290,
1262-1290, 1268-1290, 1263-1305, 1259-1305, 1259-1305, 1266-1305, 1259-1302, 1275-1294, 1281-1306, l 1281-1324, 1281-1336, 1782-1797, 1282-1301, 1286-1306, 1290-1324, 1293-1318, 1290-1324, 1293-1315,
1296-1315, 1311-1336, 1311-1333, 1326-1345, 1353-1381, 1359-1378, 1395-1414, 1498-1532, 1498-1523,
1498-1535, 1510-1529, 1515-1535, 1515-1563, 1515-1596, 1515-1605, 1515-1602, 1515-1540, 1515-1535,
1518-1605, 1518-1602, 1518-1537, 1521-1563, 1521-1540, 1550-1655, 1550-1563, 1550-1569, 1553-1578,
1553-1599, 1553-1590, 1565-1584, 1571-1595, 1577-1606, 1577-1605, 1577-1596, 1577-1592, 1577-1593,
I 1578-1593, 1578-1594, 1578-1597, 1578-1598, 1579-1594, 1579-1595, 1579-1598, 1571-1598, 1580-1605,
1580-1602, 1580-1595, 1580-1596, 1580-1599, 1581-1596, 1581-1597, 1581-1600, 1582-1597, 1582-1598,
1582-1601, 1582-1602, 1553-1655, 1583-1598, 1583-1599, 1583-1602, 1584-1599, 1584-1600, 1584-1603,
1585-1600, 1585-1601, 1585-1604, 1586-1601, 1586-1602, 1586-1605, 1586-1652, 1587-1602, 1587.1603,
1587-1606, 1588-1603, 1588-1604, 1589-1604, 1589-1605, 1590-1605, 1590-1606, 1591-1606, 1642-1664, i 1651-1720, 1651-1673, 1655-1679, 1695-1720, 1716-1738, 1743-1763, 1743-1768, 1764-1783, 1773-1792,
1777-1796, 1777-1800, 1778-1800, 1778-1793, 1778-1794, 1778-1797, 1779-1798, 1779-1797, 1779-1796,
1779-1795, 1779-1794, 1780-1796, 1781-1797, 1781-1796, 1781-1800, 1781-1797, 1782-1799, 1784-1800,
1779-1799, 1778-1794, 1779-1795, 1780-1799, 1794-1813, 1780-1795, 1780-1796, 1780-1799, 1781-1796,
1781-1797, 1781-1800, 1782-1798, 1783-1799, 1784-1799, 1784-1800, 1785-1800, 1806-1837, 1806-1828,
1806-1825, 1809-1828, 1812-1843, 1812-1837, 1812-1831, 1815-1843, 1815-1844, 1815-1840, 1815-1834,
1818-1837, 1821-1840, 1821-1844, 1821-1837, 1822-1843, 1822-1839, 1823-1843, 1827-1846, 1861-1884,
1861-1880, 1865-1885, 1867-1886, 1869-1885, 1876-1895, 1888-1914, 1888-1908, 1891-1910, 1891-1914,
1895-1938, 1895-1935, 1913-1935, 1898-1920, 1907-1929, 1913-1935, 1918-1934, 1919-1938, 1919-1934,
1921-1934, 1928-1956, 1957-1976, 2035-2057, 2083-2141, 2230-2261, 2278-2297, 2281-2300, 2284-2303,
2368-2393, 2381-2397, 2368-2394, 2379-2394, 2381-2396, 2368-2397, 2368-2396, 2420-2439, 2458-2476,
2459-2478, 2819-2838, 2818-2838, 2873-2892, and 3161-3182.
In certain embodiments, the following nucleotide regions of SEQ ID NO: 1, when targeted by antisense compounds or oligonucleotides, display at least 60% inhibition: 1-20, 10-29, 10-53, 13-38, 25-50,
43-68,55-74, 58-84, 58-77, 58-74, 58-73, 58-79, 59-80, 59-74, 59-75, 60-75, 60-76, 61-77, 61-76, 61-80, 6235 77, 68-114, 98-123, 101-123, 113-138, 116-138, 131-150, 137-162, 152-186, 191-215, 196-224, 196-215,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
199-228, 199-218, 200-223, 199-218, 205-224, 206-228, 218-237, 224-243, 233-263, 244-263, 245-264, 247266, 250-265, 251-266, 252-267, 253-272, 253-269, 251-267, 253-274, 254-270, 255-276, 256-279, 256-276, 256-274, 256-272, 256-271, 258-273, 259-274, 265-388, 265-284, 266-291, 266-288, 260-279, 281-321,281303, 290-321, 290-312, 293-312, 296-315, 302-321, 324-343, 339-367, 339-361, 342-367, 348-367, 358-392, 358-378, 360-392, 360-379, 366-392, 366-385, 369-388, 370-392, 382-401, 405-428, 405-424, 409-428, 411436, 411-433, 411-431, 411-426, 411-430, 411-427, 412-431, 412-428, 412-427, 413-428, 413-429, 413-433,
414-433, 414-430, 414-429, 414-433, 415-430, 415-431, 415-434, 415-435, 415-436, 416-429, 416-434, 416431, 416-432, 416-436, 416-435, 417-436, 417-433, 417-432, 418-434, 418-433, 418-437, 419-434, 420-435, 421-436, 422-437, 423-436, 425-465, 454-472, 455-472, 457-476, 457-472, 457-473, 458-485, 458-473, 458483, 463-498, 467-498, 463-482, 470-493, 472-491, 485-519, 485-513, 500-519, 512-534, 524-546, 536-558, 548-567, 554-573, 548-576, 560-594, 584-606, 608-648, 639-654, 640-656, 641-656, 642-657, 642-658, 643658, 653-672, 662-685, 665-685, 670-706, 670-689, 670-685, 670-686, 671-690, 671-686, 671-687, 672-707, 672-697, 672-693, 672-687, 672-688, 673-688, 679-707, 679-698, 679-694, 680-695, 681-696, 682-697, 682701, 683-698, 684-699, 685-700, 686-701, 687-754, 687-702, 687-705, 687-703, 687-706, 688-704, 688-703, 688-704, 688-705, 688-707, 689-710, 689-709, 689-705, 689-704, 690-754, 690-705, 690-706, 691-706, 691710, 692-711, 697-716, 724-758, 724-754, 724-752, 724-746, 738-754, 738-753, 739-754, 742-785, 757-785, 790-815, 811-906, 811-844, 811-833, 822-867, 822-844, 823-842, 845-867, 854-906, 854-873, 878-897, 899958, 899-933, 936-958, 945-964, 951-1044, 951-1024, 951-985, 951-997, 963-1044, 963-1024, 963-997, 966-985, 978-997, 1031-1056, 1046-1083, 1070-1095, 1081-1143, 1081-1134, 1082-1101, 1088-1146, 1088-
1134,1118-1146,1118-1143,1127-1193,1170-1189,1176-1192,1176-1191,1177-1192,1203-1297,1206-
1255,1209-1228,1215-1234,1218-1237,1221-1240,1224-1243,1227-1246,1230-1249,1233-1252,1236-
1255,1251-1270,1251-1285,1254-1273,1254-1279,1257-1276,1258-1277,1259-1278,1260-1279,1261-
1276,1261-1285,1261-1276,1261-1277,1261-1280,1262-1281,1262-1277,1262-1278,1262-1281,1263-
1278,1263-1279,1263-1282,1264-1297,1264-1279,1264-1280,1264-1283,1265-1280,1265-1281,1265-
251284,1266-1281,1266-1282,1266-1285,1267-1282,1267-1283,1268-1283,1268-1284,1268-1287,1269-
1284,1269-1285,1270-1285,1281-1336,1281-1324,1281-1306,1286-1305,1290-1324,1311-1336,1326-
1345,1353-1381,1395-1414,1498-1535,1498-1532,1515-1535,1515-1534,1521-1540,1550-1655,1553-
1599,1553-1590,1577-1606,1577-1592,1577-1593,1577-1596,1578-1593,1578-1594,1578-1597,1579-
1594,1579-1595,1579-1598,1580-1595,1580-1596,1580-1599,1581-1596,1581-1597,1581-1600,1582-
301597,1582-1598,1582-1601,1583-1598,1583-1599,1583-1602,1584-1599,1584-1600,1584-1603,1585-
1600,1585-1601,1585-1604,1586-1601,1586-1602,1586-1605,1587-1602,1587-1603,1587-1606,1588-
1603,1588-1604,1589-1604,1589-1605,1590-1605,1590-1606,1591-1606,1642-1664,1651-1720,1716-
1738,1743-1763,1764-1783,1773-1792,1777-1800,1777-1797,1655-1674,1778-1794,1778-1800,1781-
1800,1781-1797,1784-1800,1779-1799,1778-1794,1778-1797,1779-1795,1779-1798,1780-1795,1780-
351796,1780-1799,1781-1796,1781-1797,1781-1800,1782-1797,1794-1813,1806-1837,1806-1825,1812-
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1837, 1812-1831, 1815-1844, 1815-1834, 1818-1837, 1821-1837, 1822-1838, 1827-1846, 1861-1884,18211840, 1866-1885, 1867-1886, 1888-1914, 1888-1907, 1891-1914, 1895-1938, 1895-1935, 1919-1938,19281956, 1957-1976, 2035-2057, 2083-2141, 2230-2261, 2278-2297, 2281-2300, 2284-2303, 2368-2397,23682396, 2368-2394, 2368-2393, 2379-2394, 2381-2396, 2420-2439, 2458-2476, 2819-2838, 2873-2892, and
3161-3182.
In certain embodiments, the following nucleotide regions of SEQ ID NO: 1, when targeted by antisense compounds or oligonucleotides, display at least 65% inhibition: 1-20, 10-29, 10-53, 13-38, 25-50, 43-68, 55-74, 58-84, 58-79, 58-74, 58-73, 58-77, 59-75, 59-80, 58-77, 60-75, 60-76, 61-77, 61-76, 61-80, 6277, 68-114, 98-123, 101-123, 113-138, 116-138, 131-150, 137-162, 152-186, 191-215, 196-215, 199-228, 199-218, 200-223,199-218, 205-224, 206-228, 218-237, 224-243, 233-263, 244-263, 245-264, 250-265, 251266, 253-269, 253-274, 255-276, 256-279, 256-276, 256-274, 256-272, 256-271, 247-266, 253-272, 258-273, 266-291, 266-288, 260-279, 281-321, 281-303, 290-321, 290-312, 296-315, 293-312, 302-321, 324-343, 339367, 339-361, 342-367, 348-367, 358-392, 358-378, 360-392, 360-379, 366-392, 366-385, 369-388, 370-392, 382-401, 405-428, 405-424, 409-428, 411-433, 411-431, 411-430, 411-427, 411-426, 412-431, 412-428,412427, 413-433, 413-428, 413-429, 413-432, 414-433, 414-430, 414-429, 415-430, 415-431, 415-434, 415-435,
415-436, 416-434, 416-436, 416-435, 416-432, 416-431, 417-436, 417-433, 417-432, 418-433, 418-434, 418437, 420-435, 422-437, 423-436, 425-465, 454-472, 455-472, 457-472, 458-485, 458-483, 458-473, 463-498, 467-498, 457-476, 470-493, 472-491, 485-519, 485-513, 500-519, 512-534, 524-546, 536-558, 548-567, 554573, 548-576, 560-594, 584-606, 608-648, 639-654, 640-656, 641-656, 642-657, 642-658, 643-658, 653-672, 662-685, 665-685, 670-685, 670-706, 670-689, 670-686, 670-685, 671-686, 671-687, 671-690, 672-688, 672687, 672-707, 672-697, 672-693, 673-688, 679-698, 680-695, 681-696, 682-697, 682-701, 683-698, 684-699, 685-700, 686-701, 687-702, 688-703, 688-707, 687-754, 690-754, 690-706, 690-705, 687-705, 687-703, 687706, 687-702, 688-705, 688-703, 688-704, 689-705, 691-706, 692-711, 697-716, 724-758, 724-754, 724-752, 724-746, 738-754, 739-754, 742-785, 757-785, 790-815, 811-906, 811-844, 811-833, 822-867, 822-844, 82325 842, 845-867, 854-906, 854-873, 878-897, 899-958, 899-933, 936-958, 945-964, 951-1044, 951-1024, 951-
985, 951-997, 963-1044, 963-1024, 963-997, 966-985, 978-997, 1031-1056, 1046-1083, 1070-1095, 10811143, 1081-1134, 1082-1101, 1088-1146, 1088-1134, 1118-1146, 1118-1143, 1127-1193, 1170-1189,11761192, 1177-1192, 1203-1297, 1206-1255, 1209-1228, 1215-1234, 1218-1237, 1221-1240, 1224-1243,12271246, 1230-1249, 1233-1252, 1236-1255, 1251-1270, 1251-1285, 1254-1273, 1254-1279, 1257-1276,125830 1277, 1259-1278, 1260-1279, 1261-1285, 1261-1276, 1261-1277, 1261-1280, 1262-1281, 1262-1277,12621278, 1263-1278, 1263-1279, 1263-1282, 1264-1297, 1264-1279, 1264-1280, 1264-1283, 1265-1280,12651281, 1265-1284, 1266-1281, 1266-1282, 1266-1285, 1267-1282, 1267-1283, 1268-1283, 1268-1284,12681287, 1269-1284, 1269-1285, 1270-1285, 1281-1336, 1281-1324, 1281-1306, 1290-1324, 1311-1336,13261345, 1353-1381, 1395-1414, 1498-1535, 1498-1532, 1515-1535, 1515-1534, 1550-1655, 1553-1599,155335 1590, 1577-1606, 1577-1592, 1577-1593, 1577-1596, 1578-1593, 1578-1594, 1578-1597, 1579-1594,157956
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1595, 1579-1598, 1580-1595, 1580-1596, 1580-1599, 1581-1596, 1581-1597, 1581-1600, 1582-1597,15821598, 1582-1601, 1583-1598, 1583-1599, 1583-1602, 1584-1599, 1584-1600, 1584-1603, 1585-1600,15851601, 1585-1604, 1586-1601, 1586-1602, 1586-1605, 1587-1602, 1587-1603, 1587-1606, 1588-1603,15881604, 1589-1604, 1589-1605, 1590-1605, 1590-1606, 1591-1606, 1642-1664, 1651-1720, 1655-1674,17161738, 1743-1763, 1764-1783, 1773-1792, 1777-1800, 1777-1797, 1778-1800, 1778-1797, 1779-1799,17781794, 1779-1794, 1779-1795, 1779-1798, 1780-1796, 1780-1799, 1780-1795, 1781-1796, 1781-1797,17811800, 1782-1797, 1794-1813, 1806-1837, 1806-1825, 1812-1837, 1812-1831, 1815-1844, 1815-1834,18181837, 1821-1837, 1822-1838, 1827-1846, 1861-1884, 1866-1885, 1867-1886, 1888-1914, 1888-1907,18911914, 1895-1938, 1895-1935, 1919-1938, 1928-1956, 1957-1976, 2035-2057, 2083-2141, 2230-2261,22782297, 2281-2300, 2284-2303, 2368-2397, 2368-2396, 2368-2394, 2368-2393, 2379-2394, 2381-2396,24202439, 2458-2476, 2819-2838, 2873-2892, and 3161-3182.
In certain embodiments, the following nucleotide regions of SEQ ID NO: 1, when targeted by antisense compounds or oligonucleotides, display at least 70% inhibition: 1-20, 10-29, 10-53, 13-38, 25-50, 43-68, 55-74, 58-84, 58-79, 58-74, 59-75, 59-80, 58-77, 60-75, 60-76, 61-77, 68-114, 98-123, 101-123, 113138, 116-138, 131-150, 137-162, 152-186, 191-215, 199-228, 199-218,200-223,205-224, 206-228,218-237, 224-243, 233-263, 244-263, 245-264, 253-269, 253-274, 255-276, 256-279, 256-276, 256-274, 256-272, 247266, 250-265, 251-266, 253-272, 256-271, 266-291, 266-288, 260-279, 281-321, 281-303, 290-321, 290-312, 293-312, 302-321, 324-343, 339-367, 339-361, 342-367, 348-367, 358-392, 358-378, 360-392, 360-379, 366392, 366-385, 370-392, 382-401, 405-428, 405-424, 409-428, 411-433, 411-431, 411-430, 411-427, 411-426, 412-431, 412-428, 412-427, 413-428, 413-429, 413-432, 414-433, 414-430, 414-429, 415-430, 414-433, 415434, 415-435, 415-436, 416-431, 416-434, 416-436, 416-435, 416-432, 417-436, 417-433, 418-433, 418-437, 423-436, 425-465, 454-472, 455-472, 457-472, 457-476, 458-473, 458-485, 458-483, 463-498, 467-498, 457476, 470-493, 470-493, 472-491, 485-519, 485-513, 485-519, 485-513, 500-519, 512-534, 524-546, 536-558, 548-567, 554-573, 548-576, 560-594, 584-606, 608-648, 639-654, 640-656, 641-656, 642-657, 642-658, 64325 658, 653-672, 662-685, 665-685, 670-706, 670-689, 670-685, 670-686, 671-690, 671-686, 671-687, 672-687,
672-688, 672-707, 672-697, 672-693, 673-688, 679-698, 681-696, 682-697, 682-701, 683-698, 684-699, 686701, 687-702, 687-754, 687-702, 688-703, 690-754, 690-706, 687-705, 687-703, 687-706, 692-711, 697-716, 724-758, 724-754, 724-752, 724-746, 738-754, 739-754, 738-754, 742-785, 757-785, 790-815, 811-906, 811844, 811-833, 822-867, 822-844, 845-867, 854-906, 854-873, 878-897, 899-958, 899-933, 936-958, 945-964, 30 951-1044, 951-1024, 951-985, 951-997, 963-1044, 963-1024, 963-997, 966-985, 978-997, 1031-1056, 10461083, 1070-1095, 1081-1143, 1081-1134, 1082-1101, 1088-1146, 1088-1134, 1118-1146, 1118-1143,11271193, 1170-1189, 1176-1192, 1177-1192, 1203-1297, 1206-1255, 1209-1228, 1215-1234, 1218-1237,12211240, 1224-1243, 1227-1246, 1230-1249, 1233-1252, 1236-1255, 1251-1285, 1251-1270, 1254-1273,12541279, 1257-1276, 1258-1277, 1259-1278, 1260-1279, 1261-1285, 1261-1276, 1261-1277, 1261-1280,126235 1281, 1262-1277, 1262-1278, 1263-1278, 1263-1279, 1263-1282, 1264-1297, 1264-1279, 1264-1280,126457
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1283, 1265-1281, 1265-1284, 1266-1282, 1266-1285, 1267-1282, 1267-1283, 1268-1283, 1268-1284,12681287, 1269-1284, 1269-1285, 1270-1285, 1281-1336, 1281-1324, 1281-1306, 1290-1324, 1311-1336,13261345, 1353-1381, 1395-1414, 1498-1535, 1498-1532, 1515-1535, 1550-1655, 1553-1599, 1553-1590,15771606, 1577-1592, 1577-1593, 1577-1596, 1578-1593, 1578-1594, 1578-1597, 1579-1594, 1579-1595,15791598, 1580-1595, 1580-1596, 1580-1599, 1581-1596, 1581-1597, 1581-1600, 1582-1597, 1582-1598,15821601, 1583-1598, 1583-1599, 1583-1602, 1584-1599, 1584-1600, 1584-1603, 1585-1600, 1585-1601,1585-
1604, 1586-1602, 1586-1605, 1587-1602, 1587-1603, 1587-1606, 1588-1603, 1588-1604, 1589-1604,1589-
1605, 1590-1605, 1590-1606, 1591-1606, 1642-1664, 1651-1720, 1716-1738, 1743-1763, 1764-1783,1773-
1792, 1777-1800, 1777-1797, 1778-1800, 1778-1797, 1779-1799, 1778-1794, 1779-1795, 1779-1798,1780i 1795, 1780-1796, 1780-1799, 1781-1800, 1782-1797, 1794-1813, 1806-1837, 1806-1825, 1812-1837,18121831, 1815-1844, 1815-1834, 1818-1837, 1821-1837, 1822-1838, 1827-1846, 1861-1884, 1866-1885,18671886, 1888-1914, 1888-1907, 1891-1914, 1895-1938, 1895-1935, 1919-1938, 1928-1956, 1957-1976,20352057, 2083-2141, 2230-2261, 2278-2297, 2281-2300, 2284-2303, 2368-2397, 2368-2396, 2368-2394,23682393, 2379-2394, 2381-2396, 2420-2439, 2458-2476, 2819-2838, 2873-2892, and 3161-3182.
In certain embodiments, the following nucleotide regions of SEQ ID NO: 1, when targeted by antisense compounds or oligonucleotides, display at least 75% inhibition: 13-32, 16-35, 19-38, 25-44, 28-47, 31-50, 43-62, 46-65, 49-68, 55-74, 58-82, 58-74, 58-77, 59-75, 60-75, 60-76, 61-77, 65-84, 98-117, 101-120, 104-123, 116-135, 119-138, 131-150, 137-156, 140-159, 143-162, 158-177, 161-180, 164-183, 167-186, 200219, 203-226, 209-228, 218-237, 233-252, 236-255, 239-258, 242-264, 247-266, 251-266, 253-272, 255-276, i 266-285, 269-288, 281-300, 284-303, 290-313, 298-317, 302-321, 324-343, 339-358, 342-361, 348-367, 358381, 364-383, 366-386, 370-389, 373-392, 382-401,405-424, 409-428, 411-430, 411-426, 411-427, 412-427, 412-431, 413-428, 413-429, 413-432, 414-436, 414-430, 414-429, 415-430, 416-431, 416-432, 417-433, 418437, 422-441, 425-444, 428-447, 434-453, 440-459, 443-462, 446-465, 456-477, 458-473, 464-483, 470-493, 476-495, 479-498, 488-507, 491-510, 494-513, 500-519, 512-531, 515-534, 524-543, 527-546, 536-555, 53925 558, 560-579, 566-585, 569-588, 572-591, 575-594, 584-603, 587-606, 608-627, 614-633, 617-636, 620-639,
623-642, 626-645, 629-648, 639-654, 641-656, 642-657, 643-658, 653-672, 665-684, 668-688, 670-706, 670686, 670-685, 671-691, 671-687, 671-686, 672-688, 673-688, 679-703, 681-696, 682-697, 686-701,686-706, 687-702, 687-703, 688-703, 689-708, 693-712, 695-714, 696-715, 697-716, 727-746, 739-754, 742-761, 748767, 751-770, 754-773, 757-776, 760-779, 763-782, 766-785, 790-809, 793-812, 796-815, 811-830, 814-833, 30 817-836, 820-839, 822-844, 845-864, 854-873, 857-876, 863-882, 866-885, 872-891, 875-894, 878-897, 881900, 884-903, 887-906, 899-918, 902-921, 905-924, 908-927, 911-930, 914-933, 936-955, 939-958, 951-970,
954-973, 957-976, 960-979, 963-982, 966-985, 969-988, 972-991, 975-994, 978-997, 996-1015, 1002-1021,
1025-1044, 1031-1050, 1034-1053, 1037-1056, 1046-1065, 1049-1068, 1052-1071, 1055-1074, 1058-1077,
1061-1080, 1064-1083, 1070-1089, 1073-1092, 1076-1095, 1082-1101, 1088-1107, 1094-1113, 1097-1116,
1100-1119, 1103-1122, 1106-1125, 1109-1128, 1112-1131, 1115-1134, 1121-1140, 1127-1146, 1153-1172,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1156-1175, 1159-1178, 1162-1181, 1165-1184, 1168-1191, 1174-1193, 1206-1225, 1209-1228, 1212-1231,
1215-1234, 1218-1237, 1221-1240, 1224-1243, 1227-1246, 1230-1249, 1233-1252, 1236-1255, 1239-1258,
1242-1261, 1245-1264, 1251-1270, 1254-1273, 1254-1279, 1257-1283, 1257-1276, 1258-1277, 1260-1279,
1261-1285, 1261-1276, 1261-1277, 1261-1280, 1262-1277, 1262-1278, 1263-1278, 1263-1279, 1263-1282,
1264-1279, 1264-1280, 1264-1283, 1265-1281, 1265-1284, 1266-1281, 1266-1282, 1266-1285, 1267-1282,
1267-1283, 1268-1283, 1268-1284, 1268-1287, 1269-1284, 1269-1285, 1270-1285, 1272-1291, 1275-1294,
1282-1303, 1286-1306, 1290-1309, 1293-1312, 1296-1315, 1299-1318, 1305-1324, 1311-1330, 1314-1333,
1317-1336, 1353-1381, 1356-1375, 1359-1378, 1498-1517, 1501-1520, 1504-1523, 1510-1529, 1553-1572,
1556-1575, 1559-1578, 1562-1581, 1565-1584, 1571-1590, 1574-1599, 1577-1606, 1577-1592, 1577-1593,
1577-1596, 1578-1593, 1578-1594, 1578-1597, 1579-1594, 1579-1595, 1579-1598, 1580-1595, 1580-1596,
1581-1596, 1581-1597, 1581-1600, 1582-1597, 1582-1598, 1582-1601, 1582-1602, 1583-1598, 1583-1599,
1583-1602, 1584-1599, 1584-1600, 1584-1603, 1585-1600, 1585-1601, 1585-1604, 1586-1601, 1586-1605,
1586-1602, 1587-1602, 1587-1603, 1587-1606, 1588-1603, 1588-1604, 1589-1604, 1589-1605, 1590-1605,
1590-1606, 1591-1606, 1604-1623, 1607-1626, 1630-1649, 1633-1652, 1645-1664, 1651-1670, 1654-1674,
1657-1676, 1660-1679, 1663-1682, 1666-1685, 1689-1708, 1695-1714, 1698-1717, 1701-1720, 1716-1735,
1778-1797,1778-1794, 1778-1797, 1779-1795, 1779-1798, 1780-1795, 1780-1796,1780-1799,1781-1800, 1794-1813, 1895-1914, 1898-1917, 1901-1920, 1907-1926, 1910-1929, 1913-1932, 1916-1935, 1919-1938, 2278-2297, 2281-2300, and 2284-2303.
In certain embodiments, the following nucleotide regions of SEQ ED NO: 1, when targeted by antisense compounds or oligonucleotides, display at least 80% inhibition: 13-32, 16-35, 19-38, 25-44, 28-47, 46-65, 49-68, 58-77, 59-80, 63-82, 98-120, 116-135, 137-159, 158-177, 167-186, 203-224, 205-224, 209228, 218-237, 233-252, 236-263, 245-264, 253-272, 256-275, 257-276, 266-288, 281-300, 290-312, 293-312, 324-343, 339-358, 348-367, 358-378, 360-379, 361-383, 366-385, 373-392, 382-401,405-424, 411-431, 411426, 411-427, 411-430, 413-428, 414-433, 414-434, 415-430, 415-434, 416-431, 416-435, 417-436, 418-437, 25 422-441, 425-444, 434-453, 456-476, 458-473, 458-477, 464-483, 471-493, 488-507, 494-513, 512-531, 524543, 527-546, 536-558, 560-579, 566-585, 572-591, 575-594, 584-603, 587-606, 608-627, 614-633, 617-636, 620-639, 623-642, 626-645, 629-648, 639-654, 641-656, 642-657, 643-658, 665-688, 670-687, 670-686, 671 686, 671-687, 671-691, 673-688, 679-699, 682-697, 682-706, 686-701, 687-702, 687-706, 687-703, 693-715, 727-746, 742-761, 748-767, 757-776, 766-785, 790-815, 814-833, 820-839, 822-844, 845-864, 854-873, 85430 876, 863-885, 872-906, 878-897, 899-918, 905-933, 936-955, 951-979, 963-985, 966-985, 972-1015, 978997, 1002-1021, 1025-1044, 1031-1056, 1049-1074, 1061-1083, 1070-1089, 1082-1101, 1088-11107, 10941119, 1109-1134, 1121-1140, 1127-1146, 1159-1187, 1171-1191, 1206-1228, 1209-1228, 1215-1255, 12151234, 1218-1237, 1221-1240, 1224-1243, 1227-1246, 1230-1249, 1233-1252, 1236-1255, 1245-1264, 12511279, 1251-1270, 1254-1273, 1254-1279, 1257-1276, 1258-1277, 1259-1278, 1260-1279, 1261-1285, 126135 1276, 1261-1277, 1261-1280, 1262-1277, 1262-1278, 1262-1281, 1263-1278, 1263-1282, 1264-1279, 126459
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1283, 1265-1284, 1266-1285, 1267-1282, 1267-1283, 1268-1283, 1268-1284, 1269-1284, 1269-1285,12691288, 1270-1285, 1275-1294, 1282-1301, 1286-1306, 1293-1318, 1311-1333, 1326-1345, 1359-1378,15531578, 1565-1584, 1571-1590, 1574-1599, 1577-1592, 1577-1596, 1577-1593, 1577-1596, 1578-1593,15781594, 1578-1597, 1579-1595, 1579-1598, 1580-1596, 1580-1599, 1581-1596, 1581-1597, 1581-1600,15821597, 1582-1601, 1582-1602, 1583-1598, 1583-1599, 1583-1602, 1584-1599, 1584-1603, 1585-1601,15851604, 1586-1605, 1587-1602, 1587-1606, 1588-1603, 1589-1604, 1589-1605, 1657-1679, 1780-1795,17801796, 1780-1799, 1913-1935,2278-2297, 2281-2300, and 2284-2303.
In certain embodiments, the following nucleotide regions of SEQ ID NO: 1, when targeted by antisense compounds or oligonucleotides, display at least 85% inhibition: 13-32, 16-35, 19-38, 25-44, 46-65, 59-80, 101-120, 140-159, 158-177, 167-186, 200-219, 205-224, 209-228, 233-252, 242-263, 253-272, 266285, 281-300, 290-311, 293-312, 359-379, 361-381, 370-389, 382-401, 411-426, 411-430, 411-427, 413-428, 414-433, 415-430, 416-435, 417-436, 422-441, 456-476, 458-473, 470-493, 512-531, 524-543, 536-558, 566585, 575-594, 587-606, 608-627, 614-636, 623-645, 639-654, 665-687, 671-686, 671-687, 680-699, 682-703, 687-706, 687-703, 727-746, 742-761, 757-776, 793-812, 822-843, 854-876, 854-873, 863-885, 878-900, 878897, 887-906, 899-918, 905-927, 914-933, 936-955, 951-985, 966-985, 972-1015, 978-997, 1002-1021, 1025-1044, 1037-1056, 1049-1074, 1064-1083, 1070-1089, 1088-1107, 1094-1119, 1109-1128, 1121-1140,
1156-1175, 1162-1187, 1172-1191, 1206-1228, 1209-1228, 1215-1255, 1215-1234, 1218-1237, 1221-1240,
1224-1243, 1227-1246, 1230-1249, 1233-1252, 1236-1255, 1245-1264, 1251-1279, 1251-1270, 1254-1273,
1254-1279, 1257-1276, 1258-1277, 1259-1278, 1260-1279, 1261-1285, 1261-1276, 1261-1277, 1261-1280,
1262-1277, 1262-1278, 1262-1281, 1263-1278, 1263-1282, 1264-1279, 1264-1283, 1265-1284, 1266-1285,
1267-1282, 1267-1283, 1268-1284, 1269-1284, 1269-1285, 1269-1288, 1270-1285, 1275-1294, 1282-1301,
1293-1315, 1311-1330, 1359-1378, 1574-1593, 1577-1592, 1577-1593, 1577-1596, 1577-1606, 1578-1593,
1578-1594, 1578-1597, 1579-1598, 1580-1596, 1580-1599, 1581-1597, 1581-1600, 1582-1601, 1583-1598,
1583-1602, 1584-1603, 1585-1601, 1585-1604, 1586-1605, 1587-1602, 1588-1603, 1780-1799, 1780-1796, and 2278-2297, 2281-2300, and 2284-2303.
In certain embodiments, the following nucleotide regions of SEQ ID NO: 1, when targeted by antisense compounds or oligonucleotides, display at least 90% inhibition: 13-32, 16-35, 60-80, 140-159, 158177, 167-186, 242-261, 292-311, 362-381, 370-389, 382-401, 411-427, 411-426, 413-428, 415-430, 416-435, 422-441,473-492, 617-636, 623-642, 639-654, 668-687, 680-699, 682-701, 684-703, 687-706, 727-746, 75730 776, 824-843, 854-873, 854-876, 863-882, 878-897, 878-900, 887-906, 899-918, 905-927, 914-933, 936-955,
951-970, 960-985, 966-985, 972-1015, 978-997, 1025-1044, 1037-1056, 1070-1089, 1097-1119, 1109-1128,
1121-1140, 1165-1187, 1172-1191, 1206-1228, 1209-1228, 1215-1234, 1215-1234, 1215-1255, 1218-1237,
1221-1240, 1224-1243, 1227-1246, 1230-1249, 1233-1252, 1236-1255, 1245-1264, 1251-1279, 1251-1270,
1254-1273, 1254-1279, 1257-1276, 1258-1277, 1259-1278, 1260-1279, 1261-1285, 1261-1280, 1262-1278,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1261-1276, 1262-1281, 1262-1277, 1263-1282, 1263-1278, 1264-1283, 1265-1284, 1266-1285, 1268-1284,
1269-1284, 1269-1285, 1269-1288, 1296-1315, 1577-1605, 1577-1596, 1577-1593, 1577-1592, 1578-1597,
1581-1600, 1582-1601, 1583-1602, 1583-1598, 1585-1601, 1585-1604, 1586-1605, 1588-1603, 1780-1799,
1780-1796, 2278-2297, 2281-2300, and 2284-2303.
In certain embodiments, the following nucleotide regions of SEQ ID NO: 1, when targeted by antisense compounds or oligonucleotides, display at least 95% inhibition: 411-426, 411-427, 413-428, 617636, 623-642, 668-687, 680-699, 682-701, 854-873, 878-897, 887-906, 914-933, 966-985, 978-997, 12091228, 1215-1234, 1218-1237, 1221-1240, 1224-1243, 1227-1246, 1230-1249, 1233-1252, 1236-1255, 12451264, 1251-1270, 1254-1273, 1254-1279, 1257-1276, 1258-1277, 1259-1278, 1260-1279, 1261-1285, 12611280, 1262-1281, 1263-1282, 1263-1278, 1264-1283, 1265-1284, 1266-1285, 1268-1284, 1269-1288, 15771592, 1577-1596, 1577-1601, 1583-1598, 1585-1601, 1588-1603, 1780-1799, 2278-2297, 2281-2300, and
2284-2303.
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a HBV nucleic acid and effect at least a 50% inhibition of a HBV mRNA, ISIS IDs: 510088, 510089, 510090, 510092, 510096, 510097, 510098,510099, 510100, 510101, 510102, 505330,509928, 510104, 509929, 510105, 509930, 510106, 510107, 510108, 510111, 510115, 509931, 510116, 510117, 510118, 510119,
510120, 510121, 509932, 510122,509933, 510123, 509934, 510124, 509935, 510125, 510126, 510127,
510128, 510140, 146779, 505314, 505315, 505316, 505317, 146821, 505318, 509922, 505319, 509925,
505320, 509952, 505321, 505322,505323,505324, 505325, 505326, 505327, 505328, 505329, 509956,
509957, 509927, 509958,510038,505330, 509959, 510039, 509960,510040,509961, 510041, 509962, 509963, 505331, 505332, 509968, 509969, 510050, 510052, 505333,505334,505335, 505336, 509972,
146823, 509974, 505338, 505339, 509975, 505340, 509978, 505341,509979,510058, 505342, 509981,
510061, 505344, 505345, 509983, 505346, 509984, 505347, 505348, 505350, 505352, 505353, 505354,
505355, 505356, 146786, 505357, 505358, 505359, 505360, 509985,509986,509987, 509988,505363,
505364, 505365, 505366,146787,510079, 524410, 524411, 524413, 524414, 524415, 524416, 524417,
524418, 524419, 524420, 524421,524422, 524424, 524425, 524426,524427,524428, 524429, 524431, 524432, 524433, 524434, 524435,524436, 524439, 524440, 524442, 524444, 524446, 524447, 524448, 524450, 524451, 524452, 524453, 524454, 524455, 524456, 524457,524458, 524459, 524460, 524461, 524462, 524464, 524466, 524467, 524468, 524469, 524470, 524471,524472,524473, 524474,524475,
524477, 524478, 524479, 524480,524481, 524482, 524483, 524484, 524485, 524486, 524487, 524489,
524490, 524491,524492,524493,524494,524495,524496, 524498, 524499,524500, 524501,524502, 524503, 524504, 524506,524507,524508, 524509,524510, 524511,524512,524513, 524514,524515, 524516, 524517, 524518, 524519,524520, 524521,524522, 524523,524524,524525, 524526, 524527, 524528, 524529, 524530, 524531, 524532, 524533, 524534, 524535,524536,524537, 524538,524539,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
524540, 524541, 524543, 524544, 524546, 524547, 524548,524549, 524550, 524551, 524552, 524553,
524554, 524555,524556,524557,524558,524559, 524560, 524561, 524562, 524563, 524564, 524565,
524568, 524569, 524570,524571,524572, 524573, 524574,524575, 524576, 524577, 524578, 524579,
524580, 524581,524582,524584,524585,524586, 524587,524588, 524589, 524590, 524591, 524592,
524593, 524594, 524595,524598,524599,524600, 524601,524602, 524603, 524604, 524605, 524606,
524607, 524608, 524609, 524610, 524611,524614, 524615,524616,524617, 524618, 524619, 524620,
524621, 524622, 524623, 524624, 524625, 524626, 524627,524629,524632, 524633, 524634, 524635,
524636,524637,524638,524639,524640,524641,524642,524643, 524644, 524646, 524647, 524648,
524649, 524650, 524651,524652,524654, 524656, 524657, 524658, 524659, 524660, 524661, 524662,
524663, 524664,524665,524666,524667,524668, 524669,524670, 524672, 524673, 524675, 524676,
524678, 524679, 524680, 524682,524683, 524684,524685,524686,524687, 524688, 524689, 524690,
524691, 524692, 524693,524694, 524695,524696, 524697,524698, 524699, 524700, 524701, 524702,
524703, 524704, 524705, 524706, 524707, 524708, 524709, 524710, 524712, 524713, 524714, 524715,
524716, 524717, 524718, 524719, 524721, 524722, 524723, 524724, 524726, 524727, 524728, 524729,
524730,524731,524732,524733,524734,524735, 524736, 524737, 524738, 524739, 524740, 524741,
524742,524743, 524744,524745,524746, 524747,524748, 524749, 524750, 524751, 524752, 524753,
524754, 524755, 524756, 524757,524758, 524759, 524760, 524761, 524762, 524763, 524764, 524765,
524766, 524767, 524768,524769, 524770,524771, 524772,524773, 524774, 524775, 524776, 524777,
524778, 524779, 524780, 524781, 524782, 524783, 524784, 524785, 524786, 524787, 524788, 524789,
524790, 524791, 524792, 524793, 524794, 524795, 524796, 524797, 524798, 524799, 524800, 524801,
524802, 524803, 524804, 524805, 524806, 524807, 524808, 524809, 524810, 524811, 524812, 524813,
524814, 524815, 524816, 524817, 524818, 524819, 524820, 524821, 524822, 524823, 524824, 524825,
524826,524827, 524828,524829, 524830,524831, 524632,524833, 524834, 524835, 524842, 524843,
524844, 524845, 524847, 524848,524856, 524857, 524861, 524866, 524867, 524868, 524869, 524870,
524871, 524872, 524873, 524875, 524876, 524877, 524878, 524879, 524880, 524881, 524882, 524883,
524884, 524885, 524886, 524887, 524888, 524889, 524890, 524891, 524892, 524893, 524894, 524895,
524896, 524897, 524898, 524899, 524900, 524901, 524902, 524903, 524904, 524905, 524906, 524907,
524908, 524909, 524910, 524911, 524912, 524913, 524914, 524915, 524916, 524917, 524918, 524919,
524921, 524922, 524923, 524924, 524925, 524926, 524927, 524928, 524929, 524930, 524931, 524932,
524933,524934,524935, 524936, 524937, 524938, 524939, 524940, 524941, 524942, 524943, 524944,
524945,524946, 524947, 524948, 524949, 524950, 524951, 524952, 524953, 524954, 524955, 524956,
524957, 524958, 524959, 524960, 524961, 524962, 524964, 524965, 524976, 524977, 524978, 524979,
524980, 524981, 524982, 524983, 524984, 524985, 524986, 524987, 524988, 524989, 524991, 524992,
524993, 524994, 524997, 524998, 525021, 525022, 525037, 525039, 525043, 525050, 525052, 525086,
525090, 525100, 551909, 551910, 551911, 551912, 551913, 551916, 551917, 551918, 551919, 551920,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
551921, 551922, 551923, 551924, 551925, 551926,551927, 551928, 551929, 551930, 551932, 551933,
551934, 551935, 551936, 551937, 551939, 551940, 551941, 551942, 551943, 551944, 551945,551946,
551947, 551948, 551949, 551950, 551951, 551952, 551953,551954, 551955, 551956, 551957,551958,
551959, 551960, 551962, 551963, 551964, 551965, 551966, 551967,551968, 551971, 551972, 551973,
551974,551975,551976, 551977, 551978, 551979, 551980, 551981, 551982, 551983, 551984, 551985,
551986, 551987,551988, 551989, 551990, 551992, 551993, 551994, 551995, 551996, 551997, 551998,
551999, 552000, 552001, 552002, 552003, 552004, 552005, 552006, 552007, 552009, 552010, 552011,
552012, 552013, 552014, 552015, 552016, 552017,552018,552019, 552020, 552021, 552022, 552023,
552024, 552025, 552026, 552027, 552028, 552029,552030,552031,552032,552033, 552034,552035,
552036, 552037, 552038, 552039, 552040, 552041, 552042,552043, 552044, 552045, 552046, 552047,
552048, 552049, 552050, 552051, 552052, 552053, 552054, 552055, 552056, 552057, 552058, 552059,
552060, 552061,552062, 552063, 552064, 552065, 552067, 552068, 552069, 552070, 552071, 552072,
552073, 552074, 552075, 552076, 552077, 552078, 552079, 552080, 552081, 552082, 552083, 552084,
552085, 552086, 552087, 552088, 552089, 552090,552091,552092,552093, 552094, 552095,552096,
552097, 552098, 552099, 552100, 552101, 552102,552114,552115,552116, 552117, 552118,552119,
552122, 552123,552124, 552125, 552126, 552127, 552128, 552129, 552131, 552132, 552133, 552134,
552135,552136,552137,552138, 552139, 552140,552141,552142, 552143, 552144, 552145, 552146,
552147, 552148,552149, 552150, 552151, 552152, 552153,552154, 552155, 552158, 552159, 552160,
552161, 552162, 552163, 552164, 552165, 552167, 552168, 552169, 552170, 552171, 552175, 552176,
552177,552178,552179,552180, 552181, 552182, 552183, 552185, 552186, 552187, 552188, 552189,
552191, 552192,552193, 552194, 552195, 552196, 552197, 552198, 552199, 552200, 552201, 552202,
552203, 552204,552205, 552206, 552207, 552208, 552209, 552210, 552211, 552212, 552213, 552214,
552215, 552216,552217, 552218, 552220, 552222,552224,552225, 552230, 552239, 552240, 552241,
552242, 552243, 552246, 552247, 552248, 552249,552250,552251, 552252, 552253, 552254, 552255,
552256, 552257, 552258, 552259, 552260, 552261, 552262, 552263, 552264, 552265, 552266, 552267,
552268, 552269, 552270, 552271, 552279, 552285, 552288, 552293, 552294, 552295, 552296, 552297,
552300, 552301,552302, 552303, 552304, 552305, 552306,552307, 552308, 552309, 552310, 552312,
552313,552314,552315,552316, 552317, 552318,552319,552320, 552321, 552322, 552323,552325,
552326, 552330,552331,552332, 552333, 552337,552338,552339,552340,552341, 552342, 552343,
552344, 552345, 552347, 552348, 552349, 552350, 552351,552352,552354, 552355, 552356,552357,
552358, 552359, 552360, 552361, 552362, 552363, 552364,552365, 552366, 552367, 552368,552369,
552370, 552371,552372, 552373, 552374, 552375, 552376, 552377, 552378, 552379, 552380, 552385,
552386, 552390,552391,552393, 552394, 552395,552396,552397,552398, 552399, 552400,552401,
552402, 552403,552408, 552409, 552410, 552411,552412,552413,552414,552415,552416,552417,
552418, 552419, 552420, 552421, 552422, 552423,552424,552425,552428,552430,552431,552432,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
552433, 552440,
552453,552455,
552471,552472,
552484,552485,
552502,552503,
552515, 552516,
552530, 552531,
552547, 552548,
552567, 552568,
552582, 552583,
552595,552596,
552794,552795,
552806, 552807,
552818, 552819,
552830, 552831,
552842,552843,
552854, 552855,
552866, 552868,
552895,552896,
552910, 552911,
552925, 552926,
552937, 552938,
552950, 552951,
552966, 552969,
552981,552982,
552995,552996,
553007,553008,
566831,566832,
577130,577131,
552442, 552443,
552456, 552458,
552473, 552474,
552486,552487,
552504, 552505,
552517, 552520,
552532,552533,
552553, 552554,
552569, 552570,
552584, 552585,
552597, 552598,
552796,552797,
552808, 552809,
552820, 552821,
552832, 552833,
552844, 552845,
552856, 552857,
552870, 552871,
552898, 552899,
552912, 552913,
552927, 552928,
552939, 552940,
552953, 552954,
552970, 552971,
552983,552984,
552997, 552998,
553009, 553010,
577120, 577121,
577132, 577133,
552444, 552445,
552459, 552464,
552475, 552476,
552488, 552490,
552506, 552508,
552521, 552522,
552534, 552535,
552555, 552557,
552571, 552572,
552586, 552587,
552600, 552606,
552798, 552799,
552810, 552811,
552822, 552823,
552834, 552835,
552846, 552847,
552858, 552859,
552872, 552876,
552901,552902,
552914, 552915,
552929, 552930,
552941, 552942,
552955, 552956,
552972, 552973,
552987, 552988,
552999, 553000,
553011,553012,
577122,577123,
577134, 577135,
552446,552447,
552465,552466,
552477,552478,
552491, 552493,
552509,552510,
552523,552525,
552538, 552539,
552558,552559,
552576,552577,
552588,552589,
552608,552787,
552800,552801,
552812,552813,
552824,552825,
552836, 552837,
552848, 552849,
552860,552861,
552889,552890,
552903,552904,
552916, 552917,
552931,552932,
552943, 552944,
552957,552958,
552974, 552975,
552989,552990,
553001,553002,
553014, 553015,
577124, 577125,
577136,582665,
552448, 552449,
552467, 552468,
552479,552480,
552497, 552499,
552511, 552512,
552526, 552527,
552540, 552541,
552561,552562,
552578, 552579,
552590, 552591,
552788, 552789,
552802, 552803,
552814,552815,
552826, 552827,
552838, 552839,
552850,552851,
552862, 552863,
552891,552892,
552905,552907,
552918, 552919,
552933, 552934,
552945, 552946,
552959, 552960,
552976, 552977,
552991,552992,
553003,553004,
553016,566828,
577126, 577127, and 582666.
552450, 552452,
552469, 552470,
552481,552482,
552500, 552501,
552513,552514,
552528,552529,
552542, 552544,
552565, 552566,
552580, 552581,
552592, 552594,
552790, 552791,
552804, 552805,
552816, 552817,
552828, 552829,
552840, 552841,
552852, 552853,
552864, 552865,
552893, 552894,
552908,552909,
552922, 552923,
552935, 552936,
552947, 552948,
552961, 552965,
552979, 552980,
552993, 552994,
553005, 553006,
566829, 566830,
577128, 577129,
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a HBV nucleic acid and effect at least a 50% inhibition of a HBV mRNA, SEQ ID NOs: 5, 6, 7, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,.27, 28, 29, 30, 33, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 74, 83, 85, 86, 87, 88, 89, 92, 96, 98, 99, 100, 102, 103, 104, 106, 108, 109, 111, 112, 115, 117, 121, 122, 123, 124, 125, 126, 127, 128, 136, 137, 139, 140, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 153, 155, 157, 159, 161, 165, 166, 167, 168, 169, 171, 172, 173, 174, 175, 176, 177, 178,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
179, 180, 181, 186, 187, 188, 189, 190, 191, 192, 193, 194, 197, 198, 199, 201, 203, 206, 207, 208, 209,210,
211, 212, 213, 215, 217, 218, 220, 221, 222, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 235, 236,237,
240, 241, 242, 243, 244, 250, 283, 321, 322, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 335, 336,337,
338, 339, 340, 342, 343, 344, 345, 346, 347, 350, 351,353, 355, 357, 358, 359, 361, 362, 363, 364, 365,366,
367, 368, 369, 370, 371, 372, 373, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 387, 388, 389, 390,391,
392, 393, 394, 395, 396, 397, 399, 400, 401,402, 403, 404, 405, 406, 408, 409, 410, 411, 412, 413, 414, 416,
417, 418, 419, 420 421,422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438,
439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 453, 454, 456, 457, 458, 459, 460, 461, 462,
463, 464, 465, 466, 467, 468, 469, 470, 471, 473, 474, 475, 478, 479, 480, 481,482, 483, 484, 485, 486, 487,
488, 489, 490, 491, 492, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 508, 509, 510, 511,512,
513, 514, 515, 516, 517, 518, 519, 520, 521, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535,536,
537, 539, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560,561,
562, 564, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 582, 583, 585, 586,588,
589, 590, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610,611,
612, 613, 614, 615, 616, 617, 618, 619, 620, 622, 623, 624, 625, 626, 627, 628, 629, 631, 632, 633, 634,636,
637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657,658,
659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679,680,
681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701,702,
703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723,724,
725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745,746,
747, 754, 755, 756, 757, 759, 760, 768, 769, 773, 777, 778, 779, 780, 781, 782, 783, 784, 786, 787, 788,789,
790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810,811,
812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 833,834,
835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855,856,
857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 876, 877, 888,889,
890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 903, 904, 905, 906, 909, 910, 933, 934, 949,951,
955, 962, 964, 998, 1002, 1013, 1052, 1267, 1271, 1272, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295,
1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312,
1313, 1314, 1315, 1316, 1317, 1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329,
1330,1331,1332,1333,1334, 1335,1336,1337,1338,1339,1340,1341,1342,1343, 1344, 1345, 1346,
1347, 1348, 1349, 1350, 1364, 1365, 1366, 1367, 1368, 1369, 1370, 1371, 1372, 1375, and 1376.
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a
HBV nucleic acid and effect at least a 60% inhibition of a HBV mRNA, ISIS IDs: 510090, 510100, 510102,
505330, 509928, 510104, 509929, 510105, 509930, 510106, 510107, 510111, 509931, 510116, 510117,
510118, 510119, 510120, 510121, 509932, 510122, 509933, 510123, 509934, 510124, 509935, 510125,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
510128, 146779, 505314, 505315, 505316, 505317,
505325, 505326, 505327, 505328, 505329, 509956,
509968, 505333, 505335, 146823, 509974, 505338,
509981, 505344, 505345, 509983, 505346, 509984,
505357, 505358, 505359, 505360, 509985, 509986,
524416, 524417, 524418, 524419, 524420, 524421,
524432, 524433, 524434, 524435, 524439, 524440,
524454, 524455, 524456, 524457, 524459, 524460,
524471, 524472, 524473, 524474, 524475, 524477, ι 524486, 524487, 524489, 524490, 524491, 524492,
524501, 524502, 524503, 524504, 524506, 524507,
524514, 524515, 524516, 524517, 524519, 524520,
524529, 524532, 524533, 524534, 524535, 524536,
524546, 524547, 524549, 524550, 524552, 524553,
524560, 524561, 524562, 524563, 524564, 524565,
524574, 524575, 524576, 524577, 524578, 524579,
524588, 524589, 524590, 524591, 524593, 524594,
524604, 524605, 524606, 524607, 524610, 524611,
524620, 524621, 524622, 524623, 524625, 524627,1 524637, 524638, 524639, 524640, 524641, 524642,
524650, 524651, 524654, 524656, 524657, 524658,
524666, 524667, 524668, 524669, 524670, 524673,
524684, 524685, 524686, 524687, 524688, 524689,
524697, 524698, 524699, 524700, 524701, 524702,
524709, 524710, 524713, 524714, 524715, 524716,
524726, 524727, 524728, 524729, 524730, 524731,
524738, 524739, 524741, 524742, 524743, 524744,
524752, 524753, 524754, 524755, 524756, 524757,
524764, 524765, 524766, 524767, 524768, 524769,
524776, 524777, 524778, 524779, 524780, 524781,
524789, 524790, 524791, 524792, 524793, 524794,
524801, 524802, 524803, 524804, 524805, 524806,
524813, 524814, 524815, 524816, 524817, 524818,
524825, 524826, 524827, 524828, 524829, 524830,
524847, 524856, 524866, 524867, 524868, 524869,
146821, 505318, 505319, 505322, 505323, 505324,
509957, 509958, 505330, 509959, 510041, 505332,
505339, 509975, 505340, 505341, 509979, 505342,
505347, 505348, 505353, 505354, 505356, 146786,
505363, 505366, 524410, 524413, 524414, 524415,
524422, 524424, 524425, 524426, 524428, 524431,
524446, 524447, 524448, 524451, 524452, 524453,
524461, 524464, 524466, 524467, 524468, 524469,
524478, 524479, 524480, 524481, 524482, 524485,
524493, 524494, 524495, 524496, 524499, 524500,
524508, 524509, 524510, 524511, 524512, 524513,
524521, 524523, 524525, 524526, 524527, 524528,
524537, 524538, 524539, 524540, 524541, 524543,
524554, 524555, 524556, 524557, 524558, 524559,
524568, 524569, 524570, 524571, 524572, 524573,
524580, 524581, 524582, 524585, 524586, 524587,
524595, 524598, 524599, 524600, 524602, 524603,
524614, 524615, 524616, 524617, 524618, 524619,
524629, 524632, 524633, 524634, 524635, 524636,
524643, 524644, 524646, 524647, 524648, 524649,
524659, 524661, 524662, 524663, 524664, 524665,
524675, 524676, 524678, 524679, 524680, 524683,
524690, 524691, 524692, 524694, 524695, 524696,
524703, 524704, 524705, 524706, 524707, 524708,
524717, 524718, 524719, 524721, 524722, 524724,
524732, 524733, 524734, 524735, 524736, 524737,
524746, 524747, 524748, 524749, 524750, 524751,
524758, 524759, 524760, 524761, 524762, 524763,
524770, 524771, 524772, 524773, 524774, 524775,
524782, 524783, 524784, 524785, 524787, 524788,
524795, 524796, 524797, 524798, 524799, 524800,
524807, 524808, 524809, 524810, 524811, 524812,
524819, 524820, 524821, 524822, 524823, 524824,
524632, 524833, 524842, 524843, 524844, 524845,
524870, 524871, 524872, 524873, 524876, 524878,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
524879, 524880, 524881, 524882, 524883, 524884,
524891, 524892, 524893, 524894, 524895, 524896,
524903, 524904, 524905, 524906, 524907, 524908,
524915, 524916, 524921, 524922, 524923, 524924,
524932, 524933, 524936, 524937, 524938, 524939,
524948, 524949, 524950, 524952, 524953, 524954,
524981, 524982, 524983, 524984, 524985, 524986,
525037, 525052, 551909, 551911, 551919, 551920,
551928, 551932, 551933, 551934, 551935, 551936,
551951, 551952, 551953, 551954, 551955, 551956,
551965, 551966, 551967, 551968, 551973, 551975,
551986, 551987, 551989, 551990, 551992, 551993,
552000, 552001, 552002, 552003, 552005, 552006,
552015, 552016, 552017, 552018, 552019, 552020,
552027, 552028, 552029, 552030, 552031, 552032,
552041, 552042, 552044, 552045, 552046, 552047,
552054, 552055, 552056, 552057, 552058, 552059,
552068, 552069, 552070, 552071, 552073, 552074,
552081, 552082, 552083, 552084, 552085, 552086,
552093, 552094, 552095, 552096, 552097, 552098,
552116, 552117, 552118, 552119, 552123, 552124,
552132, 552133, 552134, 552135, 552136, 552138,
552146, 552147, 552148, 552149, 552150, 552151,
552162, 552163, 552168, 552169, 552170, 552171,
552185, 552187, 552188, 552191, 552192, 552193,
552200, 552201, 552202, 552203, 552204, 552205,
552212, 552213, 552214, 552215, 552216, 552222,
552247, 552248, 552252, 552253, 552254, 552255,
552265, 552266, 552268, 552285, 552293, 552294,
552307, 552308, 552309, 552310, 552312, 552313,
552321, 552322, 552323, 552325, 552326, 552331,
552345, 552347, 552348, 552349, 552351, 552354,
552362, 552363, 552364, 552365, 552366, 552367,
552374, 552375, 552376, 552377, 552378, 552379,
552410, 552411, 552412, 552414, 552416, 552418,
524885, 524886, 524887, 524888, 524889, 524890,
524897, 524898, 524899, 524900, 524901, 524902,
524909, 524910, 524911, 524912, 524913, 524914,
524925, 524926, 524928, 524929, 524930, 524931,
524940, 524941, 524942, 524944, 524946, 524947,
524955, 524961, 524977, 524978, 524979, 524980,
524987, 524988, 524991, 524992, 524993, 524994,
551921, 551922, 551924, 551925, 551926, 551927,
551941, 551943, 551944, 551948, 551949, 551950,
551957, 551958, 551959, 551960, 551962, 551963,
551979, 551981, 551982, 551983, 551984, 551985,
551994, 551995, 551996, 551997, 551998, 551999,
552007, 552009, 552010, 552012, 552013, 552014,
552021, 552022, 552023, 552024, 552025, 552026,
552033, 552034, 552035, 552036, 552038, 552039,
552048, 552049, 552050, 552051, 552052, 552053,
552060, 552061, 552062, 552063, 552064, 552065,
552075, 552076, 552077, 552078, 552079, 552080,
552087, 552088, 552089, 552090, 552091, 552092,
552099, 552100, 552101, 552102, 552114, 552115,
552125, 552126, 552127, 552128, 552129, 552131,
552139, 552140, 552141, 552143, 552144, 552145,
552152, 552153, 552155, 552158, 552159, 552160,
552176, 552178, 552179, 552180, 552182, 552183,
552194, 552195, 552196, 552197, 552198, 552199,
552206, 552207, 552208, 552209, 552210, 552211,
552224, 552225, 552239, 552240, 552242, 552246,
552256, 552257, 552258, 552259, 552261, 552263,
552295, 552296, 552301, 552302, 552303, 552306,
552314, 552315, 552316, 552317, 552318, 552320,
552332, 552337, 552338, 552339, 552340, 552343,
552355, 552356, 552358, 552359, 552360, 552361,
552368, 552369, 552370, 552371, 552372, 552373,
552396, 552397, 552398, 552403, 552408, 552409,
552419, 552420, 552421, 552422, 552423, 552424,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
552431, 552442, 552445, 552449, 552455, 552456,
552472, 552473, 552474, 552475, 552477, 552478,
552509, 552511, 552512, 552515, 552516, 552520,
552529, 552530, 552531, 552534, 552540, 552541,
552572, 552576, 552577, 552578, 552579, 552582,
552590, 552595, 552596, 552597, 552788, 552789,
552804, 552805, 552806, 552807, 552808, 552809,
552817, 552818, 552819, 552820, 552821, 552822,
552830, 552831, 552832, 552833, 552834, 552835,
552843, 552844, 552845, 552846, 552847, 552848,
552855, 552856, 552857, 552858, 552859, 552860,
552872, 552891, 552892, 552893, 552894, 552902,
552910, 552911, 552912, 552913, 552914, 552915,
552927, 552928, 552929, 552930, 552931, 552932,
552939, 552940, 552941, 552942, 552943, 552944,
552958, 552960, 552961, 552966, 552969, 552971,
552979, 552980, 552981, 552982, 552983, 552984,
552994, 552995, 552996, 552998, 552999, 553000,
553007, 553008, 553009, 553010, 553011, 553012,
577120, 577121, 577122, 577123, 577124, 577125,
577132, 577133, 577134, 577135, 577136,and 58266(
552459, 552464, 552465, 552466, 552467, 552469,
552479, 552480, 552484, 552487, 552497, 552508,
552521, 552522, 552523, 552526, 552527, 552528,
552542, 552559, 552567, 552568, 552569, 552570,
552583, 552584, 552585, 552586, 552587, 552588,
552790, 552791, 552796, 552800, 552801, 552803,
552811, 552812, 552813, 552814, 552815, 552816,
552823, 552824, 552826, 552827, 552828, 552829,
552836, 552837, 552838, 552839, 552841, 552842,
552849, 552850, 552851, 552852, 552853, 552854,
552861, 552862, 552863, 552864, 552865, 552866,
552903, 552904, 552905, 552907, 552908, 552909,
552916, 552917, 552918, 552922, 552923, 552925,
552933, 552934, 552935, 552936, 552937, 552938,
552945, 552946, 552951, 552955, 552956, 552957,
552972, 552973, 552974, 552975, 552976, 552977,
552988, 552989, 552990, 552991, 552992, 552993,
553001, 553002, 553003, 553004, 553005, 553006,
553016, 566828, 566829, 566830, 566831, 566832,
577126, 577127, 577128, 577129, 577130, 577131,
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a HBV nucleic acid and effect at least a 60% inhibition of a HBV mRNA, SEQ ID NOs: 7, 9, 10, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 56, 83,
85, 86, 87, 88, 89, 92, 96, 98, 100, 102, 103, 112, 115, 117, 122, 123, 124, 125, 126, 127, 128, 136, 137, 139,
140, 142, 143, 145, 147, 149, 150, 151, 153, 155, 157, 159, 161, 166, 167, 168, 172, 174, 176, 177, 178, 179,
180, 181, 186, 187, 188, 189, 190, 191, 192, 193, 194, 198, 199, 201, 206, 207, 208, 209,210, 211, 212, 213,
218, 220, 222, 224, 225, 226, 227, 228, 230, 231, 232, 233, 234, 240, 243, 321, 324, 325, 326, 327, 328, 329,
330, 331, 332, 333, 335, 336, 337, 339, 342, 343, 344, 345, 346, 350, 351, 357, 358, 359, 362, 363, 364, 365,
366, 367, 368, 370, 371, 372, 375, 376, 377, 378, 379, 381, 382, 383, 384, 387, 388, 389, 390, 391, 392, 395,
396, 397, 399, 400, 401,402, 403, 404, 405, 406, 409, 410, 411, 412, 413, 414, 416, 417, 418, 419, 420 421,
422, 423, 424, 425, 426, 427, 429, 430, 431, 433, 435, 436, 437, 438, 439, 442, 443, 444, 445, 446, 447, 448,
449, 450, 451, 453, 456, 457, 459, 460, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471,473, 474, 475, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 495, 496, 497, 498, 499, 500, 501, 503,
504, 505, 508, 509, 510, 512, 513, 514, 515, 516, 517, 520, 521, 524, 525, 526, 527, 528, 529, 530, 531, 532,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
533, 535, 537, 539, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559,
560, 561, 564, 566, 567, 568, 569, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 583, 585, 586, 588, 589,
590, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614,
615, 616, 617, 618, 619, 620, 623, 624, 625, 626, 627, 628, 629, 631, 632, 634, 636, 637, 638, 639, 640, 641,
642, 643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 655, 657, 658, 659, 660, 661, 662, 663, 664, 665,
666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687,
688, 689, 690, 691, 692, 693, 694, 695, 696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710,
711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732,
733, 734, 735, 736, 737, 738, 740, 741, 742, 744, 745, 754, 755, 756, 757, 759, 768, 777, 778, 779, 780, 781,
782, 783, 784, 787, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806,
807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828,
833, 834, 835, 836, 837, 838, 840, 841, 842, 843, 844, 845, 848, 849, 850, 851, 852, 853, 854, 856, 858, 859,
860, 861, 862, 864, 865, 866, 867, 873, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 903, 904,
905, 906, 949, 964, 1271, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299,1300,
1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316,1317,
1318, 1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1328, 1329, 1330, 1331, 1332, 1333,1334,
1335, 1336, 1337, 1338, 1339, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, 1350,1365,
1366, 1367, 1368, 1369, 1370, 1371, 1372, and 1376.
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a HBV nucleic acid and effect at least a 70% inhibition of a HBV mRNA, ISIS IDs: 510100, 505330, 509928, 509929, 509930, 510106, 509931, 510116, 510119, 510120, 510121, 509932,510122, 509933, 510123, 509934, 510124, 509935, 146779, 505317, 146821, 505318, 505319, 505323, 505325, 505326, 505327,
509957, 505330, 505332, 505335, 509974, 505338, 505339, 509975, 505342, 509981, 505345, 505346,
505347, 505348, 146786, 505357, 505358, 505359, 505363, 524410, 524413, 524414, 524415, 524416,
524418, 524419, 524420, 524421, 524424, 524425, 524426, 524428, 524431, 524432, 524433, 524434,
524435, 524446, 524447, 524448, 524452, 524453, 524457, 524459, 524460,524461, 524464, 524466, 524467, 524468, 524469, 524472, 524473, 524474, 524475, 524477, 524478,524479, 524480,524481,
524482, 524485, 524487, 524490, 524491, 524492, 524493, 524494, 524495, 524499, 524500,524502,
524503, 524507, 524508, 524510, 524511, 524512, 524513, 524514, 524515,524516,524517,524520,
524525, 524526, 524528, 524532, 524533, 524534, 524535, 524536, 524537, 524538, 524539, 524540,
524541, 524547, 524549, 524552, 524553,524554, 524555, 524556, 524557,524558, 524559, 524560, 524561, 524563, 524564, 524565, 524568, 524569, 524570, 524571,524572,524573, 524574,524575,
524577, 524578, 524579, 524580, 524582, 524586, 524587, 524590, 524591,524594, 524595,524598,
524600, 524602, 524603, 524604, 524605, 524606, 524607, 524610, 524611, 524614, 524615,524616,
524617, 524618, 524619, 524620, 524621, 524629, 524633, 524634, 524635, 524636, 524637, 524638,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
524641, 524642, 524643, 524644, 524646, 524647,524648, 524649, 524650, 524651, 524656, 524657,
524659, 524661, 524662, 524663, 524664, 524665,524666, 524667, 524668, 524669, 524670,524678,
524679,524680,524685, 524686, 524687, 524688, 524689, 524690, 524691, 524692, 524695, 524696,
524698, 524699,524700, 524701, 524702, 524703,524704, 524705, 524706, 524707, 524708, 524709,
524713, 524714, 524715, 524716, 524717, 524718, 524721, 524722, 524724, 524726, 524727, 524728,
524729, 524730, 524731, 524732, 524733, 524734,524735, 524736, 524737, 524738, 524739, 524741,
524742, 524743, 524746, 524747, 524748, 524749, 524750, 524751, 524752, 524754, 524755, 524756,
524758, 524760, 524761, 524762, 524763, 524764, 524765, 524766, 524767, 524768, 524769, 524771,
524773, 524775, 524776, 524777, 524778, 524779,524780, 524781, 524782, 524783, 524784, 524785,
524787, 524788, 524789, 524790, 524791, 524792,524793, 524794, 524795, 524796, 524797, 524798,
524799, 524800, 524801, 524802, 524803, 524804,524805, 524806, 524807, 524808, 524809, 524810,
524811, 524812, 524813, 524814, 524815, 524816,524817, 524818, 524819, 524821, 524822, 524823,
524824, 524825, 524826, 524827, 524828, 524829, 524830, 524833, 524842, 524843, 524844, 524845,
524856, 524866, 524867, 524868, 524869, 524870,524871, 524873, 524879, 524880, 524881, 524882,
524883,524884, 524885, 524886, 524887, 524888, 524889, 524890, 524891, 524892, 524893, 524894,
524895,524896, 524897, 524898, 524899, 524900, 524902, 524903, 524905, 524906, 524907, 524908,
524909, 524910,524911, 524912, 524913, 524914,524915, 524916, 524921, 524922, 524930, 524931,
524932, 524937, 524940, 524942, 524948, 524980,524981, 524982, 524983, 524984, 524985, 524986,
524987, 524988, 551919, 551921, 551922, 551924,551925, 551926, 551933, 551941, 551950, 551951,
551952, 551953, 551955, 551956, 551957, 551958, 551966, 551983, 551984, 551985, 551986, 551987,
551989, 551990, 551992, 551993, 551994, 551995, 551996, 551997, 551998, 551999, 552000, 552005,
552006,552009,552012,552013, 552014, 552015,552017, 552018, 552019, 552020, 552021, 552022,
552023,552024, 552025, 552026, 552027, 552028,552029, 552030, 552031, 552032, 552033, 552034,
552038, 552039, 552041, 552044, 552046, 552047,552049, 552050, 552051, 552052, 552053, 552054,
552055, 552056, 552057, 552058, 552059, 552060, 552061, 552062, 552063, 552064, 552065, 552068,
552069, 552070, 552071, 552073, 552074, 552075,552076, 552077, 552078, 552079, 552080, 552081,
552082, 552083, 552084, 552085, 552086, 552087, 552088, 552089, 552090, 552091, 552092, 552093,
552094, 552095, 552096, 552097, 552098, 552099, 552100, 552101, 552115, 552117, 552123, 552125,
552127, 552128, 552129, 552132, 552133, 552138, 552139, 552140, 552141, 552143, 552144, 552145,
552146, 552147, 552148, 552149, 552150, 552151,552152, 552158, 552159, 552160, 552163, 552168,
552179, 552187, 552188, 552192, 552193, 552195,552199, 552200, 552201, 552202, 552203, 552204,
552205, 552206, 552207, 552208, 552210, 552211,552213, 552214, 552222, 552246, 552247, 552248,
552253, 552254, 552255, 552258, 552294, 552301,552302, 552306, 552307, 552308, 552309, 552310,
552312,552314, 552315, 552317, 552318, 552321, 552322, 552323, 552325, 552332, 552337, 552339,
552347,552348, 552349, 552354, 552355, 552358, 552359, 552360, 552361,552362, 552363, 552364,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
552365,552366,552367, 552368, 552369, 552371,
552379, 552403, 552408, 552409, 552411,552418,
552466, 552467, 552472, 552474, 552475, 552477,
552529,552530,552534,552567, 552578, 552579,
552803, 552804, 552805, 552808, 552816, 552817,
552824, 552828, 552829, 552830, 552833, 552834,
552849,552850,552851, 552852, 552853, 552854,
552861,552863,552864, 552865, 552872, 552894,
552913,552914,552915, 552916, 552917, 552918,
552930,552931, 552932, 552933, 552934, 552935,
552942, 552943, 552944, 552945, 552946, 552957,
552976,552979,552980, 552981, 552983, 552984,
552998,552999,553001,553002, 553003, 553004,
566828, 566829,566830, 566831, 566832, 577120,
577127,577128,577129, 577130, 577131, 577132,
552373, 552374, 552375, 552376, 552377, 552378,
552419, 552420,552424, 552442,552464, 552465,
552478, 552521, 552522, 552523, 552527, 552528,
552584,552586, 552587, 552588, 552590, 552789,
552818, 552819, 552820, 552821, 552822, 552823,
552835, 552842, 552843, 552844, 552846, 552848,
552855, 552856, 552857, 552858, 552859, 552860,
552903,552904,552907, 552909, 552910, 552911,
552922, 552923, 552925, 552927, 552928, 552929,
552936,552937, 552938, 552939, 552940, 552941,
552961, 552966, 552969, 552971, 552972, 552974,
552988,552989, 552990, 552991, 552995, 552996,
553006, 553008, 553009, 553010, 553011, 553012,
577121, 577122, 577123, 577124, 577125, 577126,
577133, 577134, 577135, 577136, and 582666.
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a HBV nucleic acid and effect at least a 70% inhibition of a HBV mRNA, SEQ ID NOs: 12, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 29, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 83, 89, 92, 96, 98, 100, 103, 112, 123, 125, 126, 127, 136, 137, 139, 140, 142, 143, 145, 147, 149, 151, 153, 166, 167, 168, 174, 176, 177, 178, 179, 181, 186, 187, 188, 190, 198,201,207, 209,210,211,212,213,224, 225,226, 227, 232, 234, 240, 321,324, 325, 326, 327, 329, 330, 331, 332, 335, 336, 337, 339, 342, 343, 344, 345, 346, 357, 358, 359, 363, 364, 368,
370, 371, 372, 375, 376, 377, 378, 379, 382, 383, 384, 387, 388, 389, 390, 391, 392, 395, 397, 400, 401, 402,
403, 404, 405, 409, 410, 412, 413, 417, 418, 420 421, 422, 423, 424, 425, 426, 427, 430, 435, 436, 438, 442,
443, 444, 445, 446, 447, 448, 449, 450, 451, 457, 459, 462, 463, 464, 465, 466, 467, 468, 469, 470, 473, 474,
475, 478, 479, 480, 481, 482, 483, 484, 485, 487, 488, 489, 490, 492, 496, 497, 500, 501, 504, 505, 508, 510,
512, 513, 514, 515, 516, 517, 520, 521, 524, 525, 526, 527, 528, 529, 530, 531, 539, 543, 544, 545, 546, 547,
548, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 566, 567, 569, 571, 572, 573, 574, 575, 576, 577,
578, 579, 580, 588, 589, 590, 595, 596, 597, 598, 599, 600, 601, 602, 605, 606, 608, 609, 610, 611, 612, 613,
614, 615, 616, 617, 618, 619, 623, 624, 625, 626, 627, 628, 631, 632, 634, 636, 637, 638, 639, 640, 641, 642,
643, 644, 645, 646, 647, 648, 649, 650, 652, 653, 654, 657, 658, 659, 660, 661, 662, 663, 665, 666, 667, 669,
671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 682, 684, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695,
696, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718,
719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 733, 734, 735, 736, 737, 738, 740, 741, 742,
745, 754, 755, 756, 757, 768, 777, 778, 779, 780, 781,782, 784, 790, 791, 792, 793, 794, 795, 796, 797, 798,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 814, 815, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 833, 834, 842, 843, 844, 849, 852, 854, 860, 892, 893, 894, 895, 896, 897, 898, 899, 900, 1288, 1289, 1290, 1291, 1292, 1293, 1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313, 1314, 1315, 1316, 1317, 1320, 1322, 1323, 1324, 1325, 1326, 1327, 1329, 1330, 1331, 1332, 1333, 1334, 1335, 1336, 1337, 1338, 1340, 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349, and 1350, 1367, 1368, 1369, 1370, 1372, and 1376.
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a HBV nucleic acid and effect at least a 80% inhibition of a HBV mRNA, ISIS IDs: 510100, 509931, 510116, 505317, 505319, 505323, 505326,505327, 505330,505339, 505346, 505347, 505358, 509934, 146786,
524414, 524415, 524416, 524418, 524419, 524425, 524426, 524431, 524432, 524434, 524446, 524447,
524452, 524459, 524460, 524466, 524469, 524475, 524477, 524478, 524479, 524482, 524485, 524490,
524491,524492,524493,524494,524495, 524499, 524502, 524503, 524507, 524510, 524511, 524512,
524520, 524525,524528,524532,524533, 524534, 524535, 524536, 524540, 524541, 524547, 524552,
524553,524556, 524561,524564,524565,524568, 524570, 524571, 524572, 524573, 524578, 524580, 524586, 524590, 524591,524594,524595,524602,524604, 524606, 524607, 524610, 524611, 524614, 524616, 524617, 524618, 524619, 524620, 524621, 524633, 524634, 524635, 524636, 524637, 524641,
524643, 524644, 524646, 524649, 524650, 524651, 524657, 524662, 524664, 524667, 524670, 524678,
524679, 524680, 524686, 524688, 524690, 524691, 524692, 524695, 524698, 524699, 524701, 524702,
524704, 524705, 524706, 524707, 524708, 524709, 524713, 524715, 524716, 524717, 524718, 524721,
524726, 524727, 524728, 524729,524730, 524731, 524733, 524734, 524735, 524737, 524739, 524741, 524742, 524743, 524747, 524748, 524749, 524751, 524752, 524754, 524758, 524760, 524762, 524763, 524764, 524767, 524768, 524769, 524771, 524773, 524777, 524778, 524779, 524780, 524781, 524783, 524784, 524788, 524789, 524791, 524792, 524793, 524794, 524795, 524796, 524797, 524798, 524801, 524803, 524804, 524805, 524806, 524807, 524808, 524809, 524810, 524811, 524813, 524816, 524819,
524822,524823, 524824, 524827, 524828, 524829, 524833, 524842, 524844, 524880, 524881, 524882,
524884, 524886, 524887,524888, 524889, 524890, 524891, 524893, 524907, 524908, 524980, 524986, 524987, 551921, 551924, 551925, 551953, 551956, 551957, 551984, 551986, 551987, 551989, 551990, 551993, 551994, 551995, 551996, 551997, 551998, 551999, 552000, 552005, 552006, 552018, 552019, 552020, 552021, 552022, 552023, 552024, 552025, 552026, 552027, 552028,552029, 552030, 552031, 30 552032, 552033, 552034, 552039, 552044, 552046, 552050, 552051, 552052, 552053, 552054, 552055,
552056,552057, 552058, 552059, 552060, 552061, 552062, 552063, 552064, 552065, 552073, 552077, 552078,552079, 552080, 552082, 552083, 552084, 552085, 552086, 552087, 552088, 552089, 552090, 552091,552092, 552093, 552094, 552095, 552096, 552097, 552098, 552138, 552139, 552145, 552146, 552147,552149, 552192, 552193, 552199, 552200, 552201, 552207, 552246, 552247, 552253, 552301,
552307,552308,552310, 552317,552347,552348, 552354, 552355, 552360,552361, 552362, 552363,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
552364, 552365, 552366, 552367, 552371, 552375, 552464, 552465, 552521, 552808, 552816, 552817, 552818,552819, 552820, 552822, 552824,552834,552844, 552849, 552850, 552851, 552852, 552853, 552854,552916, 552922, 552923, 552925,552930,552931,552932, 552933, 552936, 552937, 552938, 552939, 552942, 552943, 552944, 552980, 552988, 552989, 552996, 552998, 553002, 553003, 566828, 566829, 566830, 566831, 566832, 577120, 577121,577122, 577123,577124, 577125, 577126, 577127, 577128,577130,577131,577132, 577133,577134,577135, 577136, and 582666.
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a HBV nucleic acid and effect at least a 80% inhibition of a HBV mRNA, SEQ ID NOs: 17, 20, 22, 24, 26, 28, 39, 40, 50, 51, 83, 89, 103, 123, 126, 127, 136, 137, 143, 147, 149, 168, 176, 177, 178, 179, 187, 188, 210, 211, 212, 224, 225, 226, 227, 232, 325, 326, 327, 329, 330, 336, 337, 342, 343, 345, 357, 358, 363, 370, 371, 376, 379, 387, 388, 389, 392, 395, 400, 401, 402, 403, 404, 405, 409, 412, 413, 417, 420 421, 422, 430, 435, 438, 442, 443, 444, 445, 446, 450, 451, 457, 462, 463, 466, 474, 475, 478, 480, 481, 482, 483, 488, 490,
496, 500, 501, 504, 505, 512, 514, 516, 517, 520, 521, 524, 526, 527, 528, 529, 530, 531, 543, 544, 545, 546,
547, 551, 553, 554, 555, 559, 560, 561, 567, 572, 574, 577, 580, 588, 589, 590, 596, 598, 600, 601, 602, 605,
608, 609, 611, 612, 614, 615, 616, 617, 618, 619, 623, 625, 626, 627, 628, 631, 636, 637, 638, 639, 640, 641,
643, 644, 645, 646, 648, 650, 652, 653, 654, 658, 659, 660, 662, 663, 665, 669, 671, 673, 674, 675, 678, 679,
680, 682, 684, 688, 689, 690, 691, 692, 694, 695, 699, 700, 702, 703, 704, 705, 706, 707, 708, 709, 712, 714,
715, 716, 717, 718, 719, 720, 721, 722, 723, 725, 728, 731, 734, 735, 736, 740, 741, 745, 756, 791, 792, 793,
795, 797, 798, 799, 800, 801, 802, 804, 805, 806, 807, 819, 820, 892, 898, 899, 1292, 1293, 1295, 1296, 1301, 1302, 1303, 1304, 1305, 1306, 1307, 1308, 1310, 1312, 1316, 1322, 1324, 1325, 1326, 1327, 1330, 1331, 1332, 1333, 1334, 1335, 1338, 1339, 1340, 1341, 1344, 1345, 1349, 1350, 1368, 1372, and 1376.
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a HBV nucleic acid and effect at least a 90% inhibition of a HBV mRNA, ISIS IDs: 524414, 524415, 524432, 524460, 524466, 524469, 524475, 524477, 524493, 524512, 524535, 524540, 524552, 524561, 524572,
524617, 524619,524634,524641, 524644,524657,524667,524691,524698, 524699, 524701, 524706,
524707, 524709, 524713, 524715, 524716, 524718, 524721, 524726, 524729, 524730, 524731, 524733, 524734, 524735, 524739, 524743, 524754, 524763, 524764, 524767, 524771, 524780, 524781, 524784, 524788,524789,524791, 524792, 524793,524794, 524795, 524796, 524797, 524798, 524801, 524803, 524804,524805, 524806, 524807, 524808,524809, 524810, 524811, 524822, 524827, 524842, 551986,
551987, 551989, 552005, 552018, 552019, 552020, 552021,552022, 552023, 552025, 552046, 552050,
552051, 552052, 552053, 552054, 552055, 552057,552082,552083, 552084, 552085, 552086, 552087, 552088, 552089, 552092, 552093, 552096, 552097,552307,552317,552355, 552361, 552362, 552363, 552817,552851,552922,552923,566828,566829,566830, 566831, 566832, 577120, 577121, 577122,
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
577123, 577124, 577125,577126,577127,577128,577130, 577131, 577132, 577134, 577135, 577136, and
582666.
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a HBV nucleic acid and effect at least a 90% inhibition of a HBV mRNA, SEQ ID NOs: 17, 24, 50, 51,137, i 143, 147, 176, 211, 212, 224, 226, 227, 325, 326, 343, 371, 376, 379, 403, 422, 445, 450, 462, 482, 527,529,
544, 551, 554, 567, 577, 601, 608, 609, 611, 616, 617, 619, 623, 625, 626, 628, 631, 636, 639, 640, 641,643,
644, 645, 646, 650, 654, 665, 674, 675, 678,682,691,692, 695, 699,700, 702,703,704,705,706,707,708,
709, 712, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 735, 801, 804, 805, 807, 1296, 1302, 1303, 1304,
1312, 1325, 1326, 1332, 1334, 1340, 1345, 1349, and 1376.
i In certain embodiments, the following antisense compounds or oligonucleotides target a region of a
HBV nucleic acid and effect at least a 95% inhibition of a HBV mRNA, ISIS IDs: 524619, 524634, 524641, 505339, 524698, 524709, 524718, 524731, 524734, 524789, 524791, 524792, 524793, 524794, 524795,
524796, 524797, 524798, 524801, 524803, 524804, 524805, 524806, 505346, 146785, 524807, 505347,
524808, 524809, 524810, 524811, 146786, 525101, 525102, 525103, 525107, 525108, 525109, 525110, : 525111, 525112, 525113, 525114, 525115, 525116, 525117, 525118, 525119, 525120, 552018, 552050,
552019, 552051, 552020, 552052, 551987, 552021, 552053, 552005, 552022, 552054, 551989, 552023,
552055, 552084, 552085, 552086, 552087, 552088, 552361, 552317, 566831, 577123, 577124, 566830,
566828, 566829, 577127, 577135, 577132, 577136, 566832, and 577122.
In certain embodiments, the following antisense compounds or oligonucleotides target a region of a > HBV nucleic acid and effect at least a 95% inhibition of a HBV mRNA, SEQ ID NOs: 17, 50, 137, 143, 187, 210, 212, 224, 529, 544, 551, 608, 619, 628, 641, 645, 700, 702, 703, 704, 705, 706, 707, 708, 709, 712, 715, 716, 717, 718, 719, 720, 721, 722,723, 1014, 1015, 1016, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1236, 1302, 1312, 1334, 1340, 1345, 1349.
Certain embodiments provide methods of treating HBV related disease, disorder, or condition in an animal, comprising administering to an animal in need thereof a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 5-310, 321-802, 804-1272, 1288-1350 , 1364-1372, 1375, 1376, and 1379.
Certain embodiments provide methods of treating HBV related disease, disorder, or condition in an animal, comprising administering to an animal in need thereof a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising at least 10 contiguous nucleobases of
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 any of the nucleobase sequences of SEQ ID NOs: 17, 51, 86, 93, 95, 98, 100, 102, 104, 106, 109, 112, 115, 117, 137, 140, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 167, 168, 176, 177- 179, 181, 188, 190- 192, 194, 199, 201, 208, 209, 211, 226, 230-237, 244, 245, 247, 252, 254, 256, 258, 260, 262, 264, 266, 271, 1318-1347, 1364- 1372, 1375, 1376, and 1379, wherein at least one nucleoside of the modified oligonucleotide comprises at least one 2’-O-methoxyethyl sugar and/or constrained ethyl (cEt) sugar. In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, or 4 sugar modified nucleosides.
Certain embodiments provide a method of reducing HBV expression in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 5-310, 321-802, 804-1272, 1288-1350 , 1364-1372, 1375, 1376, and 1379.
Certain embodiments provide a method of reducing HBV expression in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 17, 51, 86, 93, 95, 98, 100, 102, 104, 106, 109, 112, 115, 117, 137, 140, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 167, 168, 176, 177- 179, 181, 188, 190- 192, 194, 199, 201, 208, 209, 211, 226, 230-237, 244, 245, 247, 252, 254, 256, 258, 260, 262, 264, 266, 271, 13181347, 1364- 1372, 1375, andl376, wherein at least one nucleoside of the modified oligonucleotide comprises at least one 2’-O-methoxyethyl sugar and/or constrained ethyl (cEt) sugar. In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 9 or 10 linked nucleosides. In 25 certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, or 5 sugar modified nucleosides.
Certain embodiments provide a method of preventing, ameliorating or treating an HBV-related disease, disorder or condition in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified 30 oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 17, 51, 86, 93, 95, 98, 100, 102, 104, 106, 109, 112, 115, 117, 137, 140, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 167, 168, 176, 177- 179, 181, 188, 190- 192, 194, 199, 201,208,209,211,226, 230-237, 244, 245,247, 252, 254, 256, 258, 260, 262, 264, 266, 271, 1318-1347, 1364- 1372, 1375, andl376, wherein at least one 75
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 nucleoside of the modified oligonucleotide comprises at least one 2’-O-methoxyethyl sugar and/or constrained ethyl (cEt) sugar. In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 9 or 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, or 5 sugar modified nucleosides.
Certain embodiments provide methods of treating HBV related disease, disorder, or condition in an animal, comprising administering to an animal in need thereof a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ED NOs: 5, 15, 16, 33, 39-95, 123-135, 163-175, 180-310, 321-406, 413-455, 461-802, or 804-1272.
Certain embodiments provide methods of treating HBV related disease, disorder, or condition in an animal, comprising administering to an animal in need thereof a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ED NOs: 6-14, 17-32, 34-38, 96-122, 136-162, 176-179, 407-412, 456-462, 523-538 wherein at least one nucleoside of the modified oligonucleotide comprises at least one 2’O-methoxyethyl sugar.
In certain embodiments, the modified oligonucleotide is 14 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-3 or 2 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 9 or 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 2-4 or 3 sugar modified nucleosides. In certain 25 embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, or 5 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 17 nucleosides in length and has a gap segment of 9 or 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 2-4 or 3-4 sugar modified nucleosides. In certain embodiments, the modified 30 oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, 5, or 6 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 18 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 3-5, or 4 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 20 nucleosides in length and
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, or 5 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, 5, 6, 7, or 8 sugar modified nucleosides.
Certain embodiments provide a method of reducing HBV expression in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 5-310, 321-802, 804-1272, or 1288-1350.
Certain embodiments provide a method of reducing HBV expression in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 5, 15, 16, 33, 39-95, 123-135, 163-175, 180-310, 321-406, 413455,461-802, or 804-1272.
Certain embodiments provide a method of reducing HBV expression in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 6-14, 17-32, 34-38, 96-122, 136-162, 176-179, 407-412, 456-462, 523-538 wherein at least one nucleoside of the modified oligonucleotide comprises at least one 2’-Omethoxyethyl sugar.
In certain embodiments, the modified oligonucleotide is 14 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment 25 on the 5’ end and 3’ end of the gap each independently having 1-3 or 2 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 9 or 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, or 5 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 10 linked 30 nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 2-4 or 3 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 17 nucleosides in length and has a gap segment of 9 or 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 each independently having 2, 3, 4, 5, or 6 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 17 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 2-4 or 3-4 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 18 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 3-5, or 4 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 20 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, 5, 6, 7, or 8 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 20 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, or 5 sugar modified nucleosides.
Certain embodiments provide a method of preventing, ameliorating or treating an HBV-related disease, disorder or condition in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV and having a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 5-310, 321-802, 804-1272, or 1288-1350, wherein at least one nucleoside of the modified oligonucleotide comprises at least one 2’-O-methoxyethyl sugar. In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 5-310, 321-802, or 804-1272. In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 10 contiguous 25 nucleobases of any of the nucleobase sequences of SEQ ID NOs: 5, 15, 16, 33, 39-95, 123-135, 163-175, 180-310, 321-406, 413-455, 461-802, or 804-1272. In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 6-14, 17-32, 34-38, 96-122, 136-162, 176-179, 407-412, 456-462, 523-538 wherein at least one nucleoside of the modified oligonucleotide comprises at least one 2’-O-methoxyethyl sugar. In certain 30 embodiments, the modified oligonucleotide is 14 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-3 or 2 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 9 or 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap 35 each independently having 2, 3, 4, or 5 sugar modified nucleosides. In certain embodiments, the modified
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 oligonucleotide is 16 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 2-4 or 3 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 17 nucleosides in length and has a gap segment of 9 or 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, 5, or 6 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 17 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 2-4 or 3-4 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 18 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 3-5, or 4 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 20 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 2, 3, 4, 5, 6, 7, or 8 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 20 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, or 5 sugar modified nucleosides.
Examples of HBV-related diseases, disorders or conditions include, but are not limited to chronic HBV infection, jaundice, liver cancer, liver inflammation, liver fibrosis, liver cirrhosis, liver failure, diffuse hepatocellular inflammatory disease, hemophagocytic syndrome, serum hepatitis, HBV viremia, and conditions having symptoms which may include any or all of the following: flu-like illness, weakness, aches, headache, fever, loss of appetite, diarrhea, nausea and vomiting, pain over the liver area of the body, clay- or grey-colored stool, itching all over, and dark-colored urine, when coupled with a positive test for presence of 25 a hepatitis B virus, a hepatitis B viral antigen, or a positive test for the presence of an antibody specific for a hepatitis B viral antigen.
Certain embodiments provide a method of reducing HBV mRNA expression in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length 30 targeted to HBV. In certain embodiments, reduction of HBV mRNA expression in an animal prevents, ameliorates or treats an HBV-related disease, disorder or condition. In certain embodiments, reduction of HBV mRNA expression in an animal prevents, ameliorates or treats liver disease. In certain embodiments, the HBV mRNA expression is reduced by at least 5%, 10%, 20%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100%.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Certain embodiments provide a method of reducing HBV protein levels in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV. In certain embodiments, reduction of HBV protein levels in an animal prevents, ameliorates or treats an HBV-related disease, disorder or condition. In certain embodiments, reduction of HBV protein levels in an animal prevents, ameliorates or treats liver disease. In certain embodiments, the HBV protein level is reduced by at least 5%, 10%, 20%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100%.
Certain embodiments provide a method of reducing HBV DNA levels in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV. In certain embodiments, reduction of HBV DNA levels in an animal prevents, ameliorates or treats an HBV-related disease, disorder or condition. In certain embodiments, the mammal may be human, and the hepatitis B virus may be a human hepatitis B virus. More particularly, the human hepatitis B virus may be any of the human geographical genotypes: A (Northwest Europe, North America, Central America); B (Indonesia, China, Vietnam); C (East Asia, Korea, China, Japan, Polynesia, Vietnam); D (Mediterranean area, Middle East, India); E (Africa); F (Native Americans, Polynesia); G (United States, France); or H (Central America). In certain embodiments, reduction of HBV DNA levels in an animal prevents, ameliorates or treats liver disease. In certain embodiments, the HBV DNA level is reduced by at least 5%, 10%, 20%, i 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100%.
Certain embodiments provide a method of reducing HBV antigen levels in an animal comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV. In certain embodiments, the antigen is HBsAG or HBeAG. In certain embodiments, 25 reduction of HBV antigen levels in an animal prevents, ameliorates or treats an HBV-related disease, disorder or condition. In certain embodiments, reduction of HBV antigen levels in an animal prevents, ameliorates or treats liver disease. In certain embodiments, the HBV antigen levels are reduced by at least 5%, 10%, 20%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100%.
Certain embodiments provide a method of reducing HBV DNA and HBV antigen in a animal infected with a hepatitis B virus, comprising administering to the animal a compound or composition described herein. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV. In certain embodiments, the antigen is
HBsAG or HBeAG. In certain embodiments, the amount of HBV antigen may be sufficiently reduced to result in seroconversion, defined as serum HBeAg absence plus serum HBeAb presence if monitoring
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
HBeAg as the determinant for seroconversion, or defined as serum HBsAg absence if monitoring HBsAg as the determinant for seroconversion, as determined by currently available detection limits of commercial ELISA systems.
Certain embodiments provide a method for treating an animal with a HBV related disease, disorder or condition comprising: a) identifying said animal with the HBV related disease, disorder or condition, and b) administering to said animal a therapeutically effective amount of a compound or composition comprising a modified oligonucleotide consisting of 14 to 20 linked nucleosides and having a nucleobase sequence at least 90% complementary to any of SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363, as measured over the entirety of said modified oligonucleotide. In certain embodiments, the therapeutically effective amount of the compound or composition administered to the animal treats or reduces the HBV related disease, disorder or condition, or a symptom thereof, in the animal. In certain embodiments, the HBV related disease, disorder or condition is a liver disease. In certain embodiments, the related disease, disorder or condition is chronic HBV infection, jaundice, liver cancer, liver inflammation, liver fibrosis, liver cirrhosis, liver failure, diffuse hepatocellular inflammatory disease, hemophagocytic syndrome, serum hepatitis, HBV viremia, or liver disease-related to transplantation.
Certain embodiments provide a method for treating an animal with a HBV related disease, disorder or condition comprising: a) identifying said animal with the HBV related disease, disorder or condition, and b) administering to said animal a therapeutically effective amount of a compound or composition comprising a modified oligonucleotide consisting of 14 to 20 linked nucleosides and having a nucleobase sequence at least 90% complementary to SEQ ID NO: 1, as measured over the entirety of said modified oligonucleotide. In certain embodiments, the therapeutically effective amount of the compound or composition administered to the animal treats or reduces the HBV related disease, disorder or condition, or a symptom thereof, in the animal. In certain embodiments, the HBV related disease, disorder or condition is a liver disease. In certain 25 embodiments, the related disease, disorder or condition is chronic HBV infection, jaundice, liver cancer, liver inflammation, liver fibrosis, liver cirrhosis, liver failure, diffuse hepatocellular inflammatory disease, hemophagocytic syndrome, serum hepatitis, HBV viremia, or liver disease-related to transplantation.
In certain embodiments, HBV has the sequence as set forth in GenBank Accession Numbers U95551.1 (incorporated herein as SEQ ID NO: 1) or any variant or fragment thereof. In certain embodiments, 30 HBV has truncated portions of the human sequence as set forth in SEQ ID NOs: 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282,1283,1284,1285, 1287, 1352,1353,1354,1359, 1360, 1361, 1362, and 1363.
In certain embodiments, the animal is a human.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the compounds or compositions are designated as a first agent. In certain embodiments, the methods comprise administering a first agent and one or more second agents. In certain embodiments, the methods comprise administering a first agent and one or more second agents. In certain embodiments, the first agent and one or more second agents are co-administered. In certain embodiments the first agent and one or more second agents are co-administered sequentially or concomitantly.
In certain embodiments, the one or more second agents are also a compound or composition described herein. In certain embodiments, the one or more second agents are different from a compound or composition described herein. Examples of one or more second agents include, but are not limited to, an antiinflammatory agent, chemotherapeutic agent or anti-infection agent.
In other related embodiments, the additional therapeutic agent may be an HBV agent, an HCV agent, a chemotherapeutic agent, an antibiotic, an analgesic, a non-steroidal anti-inflammatory (NSAID) agent, an antifungal agent, an antiparasitic agent, an anti-nausea agent, an anti-diarrheal agent, or an immunosuppressant agent.
In certain embodiments, the one or more second agents are an HBV agent. In certain embodiments the HBV agent can include, but is not limited to, interferon alpha-2b, interferon alpha-2a, and interferon alphacon-1 (pegylated and unpegylated), ribavirin; an HBV RNA replication inhibitor; a second antisense oligomer; an HBV therapeutic vaccine; an HBV prophylactic vaccine; lamivudine (3TC); entecavir (ETV); tenofovir diisoproxil fumarate (TDF); telbivudine (LdT); adefovir; or an HBV antibody therapy (monoclonal or polyclonal).
In certain embodiments, the one or more second agents are an HCV agent. In certain embodiments the HBV agent can include, but is not limited to interferon alpha-2b, interferon alpha-2a, and interferon alphacon-1 (pegylated and unpegylated); ribavirin; an HCV RNA replication inhibitor (e.g., ViroPharma's VP50406 series); an HCV antisense agent; an HCV therapeutic vaccine; an HCV protease inhibitor; an HCV helicase inhibitor; or an HCV monoclonal or polyclonal antibody therapy.
In certain embodiments, the one or more second agents are an anti-inflammatory agent (i.e., an inflammation lowering therapy). In certain embodiments the inflammation lowering therapy can include, but is not limited to, a therapeutic lifestyle change, a steroid, a NSAID or a DMARD. The steroid can be a corticosteroid. The NSAID can be an aspirin, acetaminophen, ibuprofen, naproxen, COX inhibitors, indomethacin and the like. The DMARD can be a TNF inhibitor, purine synthesis inhibitor, calcineurin inhibitor, pyrimidine synthesis inhibitor, a sulfasalazine, methotrexate and the like.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the one or more second agents are a chemotherapeutic agent (i.e., a cancer treating agent). Chemotherapeutic agents can include, but are not limited to, daunorubicin, daunomycin, dactinomycin, doxorubicin, epirubicin, idarubicin, esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, bis-chloroethylnitrosurea, busulfan, mitomycin C, actinomycin D, mithramycin, prednisone, hydroxyprogesterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylmelamine, pentamethylmelamine, mitoxantrone, amsacrine, chlorambucil, methylcyclohexylnitrosurea, nitrogen mustards, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine (CA), 5-azacytidine, hydroxyurea, deoxycoformycin, 4-hydroxyperoxycyclophosphoramide, 5-fluorouracil (5-FU), 5fluorodeoxyuridine (5-FUdR), methotrexate (MTX), colchicine, taxol, vincristine, vinblastine, etoposide, trimetrexate, teniposide, cisplatin, gemcitabine and di ethylstilbestrol (DES).
In certain embodiments, the one or more second agents are an anti-infection agent. Examples of antiinfection agents include, but are not limited to, antibiotics, antifungal drugs and antiviral drugs.
In certain embodiments, administration comprises parenteral administration.
Certain embodiment provides a method for reducing an amount of HBV mRNA, DNA, protein and/or an amount of HBV antigen in a mammal infected with a hepatitis B virus, the method comprising administering a therapeutically effective amount of a pharmaceutical composition as described above to a mammal in need thereof so as to reduce the hepatitis B virus infection and the hepatitis B antigen, compared to the amount of HBV mRNA, protein and an amount of HBV antigen in the mammal before treatment. In some embodiments, the mammal may be human, and the hepatitis B virus may be a human hepatitis B virus. More particularly, the human hepatitis B virus may be any of the human geographical genotypes: A (Northwest Europe, North America, Central America); B (Indonesia, China, Vietnam); C (East Asia, Korea, China, Japan, Polynesia, Vietnam); D (Mediterranean area, Middle East, India); E (Africa); F (Native Americans, Polynesia); G (United States, France); or H (Central America).
In certain embodiments, a method is provided for reducing an amount of HBV mRNA, DNA, protein 25 and/or an amount of HBV antigen in a mammal infected with a hepatitis B virus, the method comprising administering a therapeutically effective amount of a pharmaceutical composition as described above to a mammal in need thereof so as to reduce the hepatitis B virus infection and the hepatitis B antigen, compared to the amount of HBV mRNA, protein and an amount of HBV antigen in the mammal before treatment, wherein the amount of mRNA is reduced at least 70% compared to the amount before administration of the 30 modified antisense oligonucleotide. In certain embodiments, a method is provided for reducing an amount of HBV mRNA, DNA, protein and/or an amount of HBV antigen in a mammal infected with a hepatitis B virus, the method comprising administering a therapeutically effective amount of a pharmaceutical composition as
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 described above to a mammal in need thereof so as to reduce the hepatitis B virus infection and the hepatitis B antigen, compared to the amount of HBV mRNA, protein and an amount of HBV antigen in the mammal before treatment, wherein the amount of mRNA is reduced at least 75% compared to the amount before administration of the modified antisense oligonucleotide. In certain embodiments, a method is provided for reducing an amount of HBV mRNA, DNA, protein and/or an amount of HBV antigen in a mammal infected with a hepatitis B virus, the method comprising administering a therapeutically effective amount of a pharmaceutical composition as described above to a mammal in need thereof so as to reduce the hepatitis B virus infection and the hepatitis B antigen, compared to the amount of HBV mRNA, protein and an amount of HBV antigen in the mammal before treatment, wherein the amount of mRNA is reduced at least 80% compared to the amount before administration of the modified antisense oligonucleotide. In certain embodiments, a method is provided for reducing an amount of HBV mRNA, DNA, protein and/or an amount of HBV antigen in a mammal infected with a hepatitis B virus, the method comprising administering a therapeutically effective amount of a pharmaceutical composition as described above to a mammal in need thereof so as to reduce the hepatitis B virus infection and the hepatitis B antigen, compared to the amount of HBV mRNA, protein and an amount of HBV antigen in the mammal before treatment, wherein the amount of mRNA is reduced at least 85% compared to the amount before administration of the modified antisense oligonucleotide. In certain embodiments, a method is provided for reducing an amount of HBV mRNA, DNA, protein and/or an amount of HBV antigen in a mammal infected with a hepatitis B virus, the method comprising administering a therapeutically effective amount of a pharmaceutical composition as described above to a mammal in need thereof so as to reduce the hepatitis B virus infection and the hepatitis B antigen, compared to the amount of HBV mRNA, protein and an amount of HBV antigen in the mammal before treatment, wherein the amount of mRNA is reduced at least 90% compared to the amount before administration of the modified antisense oligonucleotide. In certain embodiments, a method is provided for reducing an amount of HBV mRNA, DNA, protein and/or an amount of HBV antigen in a mammal infected 25 with a hepatitis B virus, the method comprising administering a therapeutically effective amount of a pharmaceutical composition as described above to a mammal in need thereof so as to reduce the hepatitis B virus infection and the hepatitis B antigen, compared to the amount of HBV mRNA, protein and an amount of HBV antigen in the mammal before treatment, wherein the amount of mRNA is reduced at least 95% compared to the amount before administration of the modified antisense oligonucleotide. In related methods, 30 the HBV antigen may be HBsAg or may be HBeAg, and more particularly, the amount of HBV antigen may be sufficiently reduced to result in seroconversion, defined as serum HBeAg absence plus serum HBeAb presence if monitoring HBeAg as the determinant for seroconversion, or defined as serum HBsAg absence if monitoring HBsAg as the determinant for seroconversion, as determined by currently available detection limits of commercial ELISA systems.
Certain embodiment provides a method for promoting seroconversion of a hepatitis B virus in a
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 mammal infected with HBV, the method comprising administering a therapeutically effective amount of a pharmaceutical composition as described above to a mammal infected with hepatitis B; monitoring for presence of HBeAg plus HBeAb in a serum sample of the mammal, or monitoring for presence of HBsAg in a serum sample of the mammal, such that the absence of HBeAg plus the presence of HBeAb in the serum sample if monitoring HBeAg as the determinant for seroconversion, or the absence of HBsAg in the serum sample if monitoring HBsAg as the determinant for seroconversion, as determined by current detection limits of commercial ELISA systems, is indication of seroconversion in the mammal.
Certain embodiments provide the use of a compound or composition as described herein for preventing, ameliorating or treating liver disease, or symptom thereof, in an animal. In certain embodiments, the compound or composition comprises a modified oligonucleotide 10 to 30 linked nucleosides in length targeted to HBV. In certain embodiments, the modified oligonucleotide has a nucleobase sequence comprising at least 10 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 17, 51, 86, 93, 95, 98, 100, 102, 104, 106, 109, 112, 115, 117, 137, 140, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 167, 168, 176, 177- 179, 181, 188, 190- 192, 194, 199, 201, 208, 209, 211, 226, 230-237, 244, 245, 247, 252, 254, 256, 258, 260,262, 264, 266,271,1318-1347, 1364- 1372, 1375, 1376,and 1379.
In certain embodiments, the compounds or compositions as described herein are efficacious by virtue of having at least one of an in vitro IC50 of less than 250 nM, less than 200 nM, less than 150 nM, less than 100 nM, less than 90 nM, less than 80 nM, less than 70 nM, less than 65 nM, less than 60 nM, less than 55 nM, less than 50 nM, less than 49 nM, less than 47 nM, less than 46 nM, when delivered to HepG2.2.1 cells. In certain embodiments inhibition is measured with primer probe set RTS3370, as described herein.
In certain embodiments, the compounds or compositions as described herein are efficacious by virtue of having at least one of an in vitro IC5o of less than 250 nM, less than 200 nM, less than 100 nM, less than 90 nM, less than 80 nM, less than 70 nM, less than 60 nM, less than 50 nM, less than 40 nM, less than 35 nM, less than 34 nM, less than 33 nM, less than 32 nM, less than 31 nM, when delivered to HepG2.2.1 25 cells. In certain embodiments inhibition is measured with primer probe set RTS3371, as described herein.
In certain embodiments, the compounds or compositions as described herein are efficacious by virtue of having at least one of an in vitro IC5o of less than 20 μΜ, less than 10 μΜ, less than 9.5 μΜ, less than 9.0 μΜ, less than 8.5 μΜ, less than 8.0 μΜ, less than 7.5 μΜ, less than 7.0 μΜ, less than 6.5 μΜ, less than 6.0 μΜ, less than 5.5 μΜ, less than 5.0 μΜ, less than 4.5 μΜ, less than 4.0 μΜ, less than 3.5 μΜ, less 30 than 3.0 μΜ, less than 2.5 μΜ, when delivered to HepG2.2.1 cells as described herein.
In certain embodiments, the compounds or compositions as described herein are highly tolerable as demonstrated by having at least one of an increase an ALT or AST value of no more than 4 fold, 3 fold, or 2
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 fold over saline treated animals or an increase in liver, spleen, or kidney weight of no more than 30%, 20%, 15%, 12%, 10%, 5%, or 2%. In certain embodiments, the compounds or compositions as described herein are highly tolerable as demonstrated by having no increase of ALT or AST over saline treated animals. In certain embodiments, the compounds or compositions as described herein are highly tolerable as demonstrated by having no increase in liver, spleen, or kidney weight over saline treated animals. In certain embodiments, these compounds or compositions include ISIS 146779, ISIS 146786, ISIS 505317, ISIS 505329, ISIS 505332, ISIS 505346, ISIS 505347, ISIS 505358, ISIS 509926, ISIS 509927, ISIS 509932, ISIS 509934, ISIS 509960, ISIS 509974, ISIS 510038, ISIS 510039, ISIS 510040, ISIS 510041, ISIS 510050ISIS 509975, ISIS 510100, ISIS 510106, and ISIS 510116. In certain embodiments, such compounds or compositions include compounds comprising the nucleobase sequence of any one of SEQ ID NOs: 5-310, 321-802, or 804-1272. In certain embodiments, such compounds or compositions include compounds comprising the nucleobase sequence of any one of SEQ ID NOs: 5, 15,16,33,39-95, 123-135,163-175, 180310, 321-406, 413-455, 461-802, or 804-1272. In certain embodiments, such compounds or compositions include compounds comprising the nucleobase sequence of any one of SEQ ID NOs: 6-14, 17-32, 34-38, 96122, 136-162, 176-179, 407-412, 456-462, 523-538 (update SEQ ID NOs) wherein at least one nucleoside of the modified oligonucleotide comprises at least one 2’-O-methoxyethyl sugar._In certain embodiments, the modified oligonucleotide is 14 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-3 or 2 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 16 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 2-4 or 3 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 17 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each 25 independently having 1-5, 2-4 or 3-4 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 18 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, 3-5, or 4 sugar modified nucleosides. In certain embodiments, the modified oligonucleotide is 20 nucleosides in length and has a gap segment of 10 linked nucleosides. In certain 30 embodiments, the modified oligonucleotide has a wing segment on the 5’ end and 3’ end of the gap each independently having 1-5, or 5 sugar modified nucleosides.
Certain embodiments provide the use of a compound or composition as described herein in the manufacture of a medicament for treating, ameliorating, delaying or preventing an HBV-related disease, disorder or condition in an animal.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Certain embodiments provide the use of a compound or composition as described herein in the manufacture of a medicament for treating, ameliorating, delaying or preventing liver disease in an animal.
Certain embodiments provide a kit for treating, preventing, or ameliorating an HBV-related disease, disorder or condition, or a symptom thereof, as described herein wherein the kit comprises: a) a compound or compositions as described herein; and optionally b) an additional agent or therapy as described herein. The kit can further include instructions or a label for using the kit to treat, prevent, or ameliorate the HBV-related disease, disorder or condition.
Antisense compounds
Oligomeric compounds include, but are not limited to, oligonucleotides, oligonucleosides, oligonucleotide analogs, oligonucleotide mimetics, antisense compounds, antisense oligonucleotides, and siRNAs. An oligomeric compound may be “antisense” to a target nucleic acid, meaning that is is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding.
In certain embodiments, an antisense compound has a nucleobase sequence that, when written in the 5’ to 3’ direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted. In certain such embodiments, an antisense oligonucleotide has a nucleobase sequence that, when written in the 5’ to 3’ direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted.
In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 10-30 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 12 to 30 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 12 to 22 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 14 to 30 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 14 to 20 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 15 25 to 30 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 15 to 20 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 16 to 30 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 16 to 20 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 17 to 30 subunits in length. In certain embodiments, an antisense compound targeted to a HBV 30 nucleic acid is 17 to 20 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 18 to 30 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 18 to 21 subunits in length. In certain embodiments, an antisense compound targeted to a HBV 87
WO 2012/145697
PCT/US2012/034550 nucleic acid is 18 to 20 subunits in length. In certain embodiments, an antisense compound targeted to a
HBV nucleic acid is 20 to 30 subunits in length. In other words, such antisense compounds are from 12 to 30 linked subunits, 14 to 30 linked subunits, 14 to 20 subunits, 15 to 30 subunits, 15 to 20 subunits, 16 to 30
2019202856 24 Apr 2019 subunits, 16 to 20 subunits, 17 to 30 subunits, 17 to 20 subunits, 18 to 30 subunits, 18 to 20 subunits, 18 to 21 subunits, 20 to 30 subunits, or 12 to 22 linked subunits, respectively. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 14 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 16 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 17 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 18 subunits in length. In certain embodiments, an antisense compound targeted to a HBV nucleic acid is 20 subunits in length. In other embodiments, the antisense compound is 8 to 80, 12 to 50, 13 to 30, 13 to 50, 14 to 30, 14 to 50, 15 to 30, 15 to 50, 16 to 30, 16 to 50, 17 to 30, 17 to 50, 18 to 22, 18 to 24, 18 to 30, 18 to 50, 19 to 22, 19 to 30, 19 to 50, or 20 to 30 linked subunits.
In certain such embodiments, the antisense compounds are 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
Figure AU2019202856A1_D0002
Figure AU2019202856A1_D0003
or 80 linked subunits in length, or a range defined by any two of the above values. In some embodiments the antisense compound is an antisense oligonucleotide, and the linked subunits are nucleotides.
In certain embodiments antisense oligonucleotides targeted to a HBV nucleic acid may be shortened or truncated. For example, a single subunit may be deleted from the 5’ end (5’ truncation), or alternatively from the 3’ end (3’ truncation). A shortened or truncated antisense compound targeted to a HBV nucleic acid may have two subunits deleted from the 5’ end, or alternatively may have two subunits deleted from the 3’ end, of the antisense compound. Alternatively, the deleted nucleosides may be dispersed throughout the antisense compound, for example, in an antisense compound having one nucleoside deleted from the 5’ end and one nucleoside deleted from the 3’ end.
When a single additional subunit is present in a lengthened antisense compound, the additional subunit may be located at the 5’ or 3’ end of the antisense compound. When two or more additional subunits are present, the added subunits may be adjacent to each other, for example, in an antisense compound having two subunits added to the 5’ end (5’ addition), or alternatively to the 3’ end (3’ addition), of the antisense compound. Alternatively, the added subunits may be dispersed throughout the antisense compound, for example, in an antisense compound having one subunit added to the 5’ end and one subunit added to the 3’ end.
It is possible to increase or decrease the length of an antisense compound, such as an antisense oligonucleotide, and/or introduce mismatch bases without eliminating activity. For example, in Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992), a series of antisense oligonucleotides 13-25 nucleobases
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 in length were tested for their ability to induce cleavage of a target RNA in an oocyte injection model. Antisense oligonucleotides 25 nucleobases in length with 8 or 11 mismatch bases near the ends of the antisense oligonucleotides were able to direct specific cleavage of the target mRNA, albeit to a lesser extent than the antisense oligonucleotides that contained no mismatches. Similarly, target specific cleavage was achieved using 13 nucleobase antisense oligonucleotides, including those with 1 or 3 mismatches.
Gautschi et al. (J. Natl. Cancer Inst. 93:463-471, March 2001) demonstrated the ability of an oligonucleotide having 100% complementarity to the bcl-2 mRNA and having 3 mismatches to the bcl-xL mRNA to reduce the expression of both bcl-2 and bcl-xL in vitro and in vivo. Furthermore, this oligonucleotide demonstrated potent anti-tumor activity in vivo.
Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358,1988) tested a series of tandem 14 nucleobase antisense oligonucleotides, and a 28 and 42 nucleobase antisense oligonucleotides comprised of the sequence of two or three of the tandem antisense oligonucleotides, respectively, for their ability to arrest translation of human DHFR in a rabbit reticulocyte assay. Each of the three 14 nucleobase antisense oligonucleotides alone was able to inhibit translation, albeit at a more modest level than the 28 or 42 nucleobase antisense oligonucleotides.
Antisense Compound Motifs
In certain embodiments, antisense compounds targeted to a HBV nucleic acid have chemically modified subunits arranged in patterns, or motifs, to confer to the antisense compounds properties such as enhanced inhibitory activity, increased binding affinity for a target nucleic acid, or resistance to degradation by in vivo nucleases.
Chimeric antisense compounds typically contain at least one region modified so as to confer increased resistance to nuclease degradation, increased cellular uptake, increased binding affinity for the target nucleic acid, and/or increased inhibitory activity. A second region of a chimeric antisense compound 25 may optionally serve as a substrate for the cellular endonuclease RNase H, which cleaves the RNA strand of an RNA:DNA duplex.
Antisense compounds having a gapmer motif are considered chimeric antisense compounds. In a gapmer an internal region having a plurality of nucleotides that supports RNaseH cleavage is positioned between external regions having a plurality of nucleotides that are chemically distinct from the nucleosides of 30 the internal region. In the case of an antisense oligonucleotide having a gapmer motif, the gap segment generally serves as the substrate for endonuclease cleavage, while the wing segments comprise modified
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 nucleosides. In certain embodiments, the regions of a gapmer are differentiated by the types of sugar moieties comprising each distinct region. The types of sugar moieties that are used to differentiate the regions of a gapmer may in some embodiments include β-D-ribonucleosides, β-D-deoxyribonucleosides, 2'modified nucleosides (such 2’-modified nucleosides may include 2’-MOE and 2’-O-CH3, among others), and bicyclic sugar modified nucleosides (such bicyclic sugar modified nucleosides may include those having a constrained ethyl). In certain embodiments, nucleosides in the wings may include several modified sugar moieties, including, for example 2’-MOE and bicyclic sugar moieties such as constrained ethyl or LNA. In certain embodiments, wings may include several modified and unmodified sugar moieties. In certain embodiments, wings may include various combinations of 2’-MOE nucleosides, bicyclic sugar moieties such as constrained ethyl nucleosides or LNA nucleosides, and 2’-deoxynucleosides.
Each distinct region may comprise uniform sugar moieties, variant, or alternating sugar moieties. The wing-gap-wing motif is frequently described as “X-Y-Z”, where “X” represents the length of the 5’wing, “Y” represents the length of the gap, and “Z” represents the length of the 3’-wing. “X” and “Z” may comprise uniform, variant, or alternating sugar moieties. In certain embodiments, “X” and “Y” may include one or more 2’-deoxynucleosides.“Y” may comprise 2’-deoxynucleosides. As used herein, a gapmer described as “X-Y-Z” has a configuration such that the gap is positioned immediately adjacent to each of the 5’-wing and the 3’ wing. Thus, no intervening nucleotides exist between the 5’-wing and gap, or the gap and the 3’-wing. Any of the antisense compounds described herein can have a gapmer motif. In certain embodiments, “X” and “Z” are the same; in other embodiments they are different. In certain embodiments, i “Y” is between 8 and 15 nucleosides. X, Y, or Z can be any of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30 or more nucleosides.
In certain embodiments, gapmers provided herein include, for example, 11 -mers having a motif of 1-9-1.
In certain embodiments, gapmers provided herein include, for example, 12-mers having a motif of 25 1-9-2, 2-9-1, or 1-10-1.
In certain embodiments, gapmers provided herein include, for example, 13-mers having a motif of 1-9-3, 2-9-2, 3-9-1, 1-10-2, or 2-10-1.
In certain embodiments, gapmers provided herein include, for example, 14-mers having a motif of 1-9-4, 2-9-3, 3-9-2, 4-9-1, 1-10-3, 2-10-2, or 3-10-1.
In certain embodiments, gapmers provided herein include, for example, 15-mers having a motif of
1-9-5, 2-9-4, 3-9-3, 4-9-2, 5-9-1, 1-10-4, 2-10-3, 3-10-2, or 4-10-1.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, gapmers provided herein include, for example, 16-mers having a motif of 4-8-4, 2-9-5, 3-9-4, 4-9-3, 5-9-2, 1-10-5, 2-10-4, 3-10-3, 4-10-2, 3-8-5, or 5-10-1.
In certain embodiments, gapmers provided herein include, for example, 17-mers having a motif of
3- 9-5, 3-10-4, 4-9-4, 5-9-3, 2-10-5, 3-10-4, 4-10-3, 5-10-2, 2-9-6, 5-8-4, 5-7-5, 6-7-4, or 6-9-2.
In certain embodiments, gapmers provided herein include, for example, 18-mers having a motif of
4- 9-5, 5-9-4, 3-10-5, 4-10-4, or 5-10-3.
In certain embodiments, gapmers provided herein include, for example, 19-mers having a motif of
5- 9-5, 4-10-5, or 5-10-4.
In certain embodiments, gapmers provided herein include, for example, 20-mers having a motif of
5-10-5, 2-10-8, 8-10-2, 3-10-7, 7-10-3, 4-10-6, or 6-10-4.
In certain embodiments, the antisense compound has a “wingmer” motif, having a wing-gap or gapwing configuration, i.e. an X-Y or Y-Z configuration as described above for the gapmer configuration. Thus, wingmer configurations provided herein include, but are not limited to, for example 5-10, 8-4, 4-12, 12-4, 3-14, 16-2, 18-1, 10-3, 2-10, 1-10, 8-2, 2-13, 5-13, 5-8, or 6-8.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 2-10-2 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 3-10-3 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 4-10-4 20 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 5-10-5 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 3-10-4 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 2-10-4 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 2-10-8 gapmer motif.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain gapmer motif.
In certain gapmer motif.
In certain gapmer motif.
In certain gapmer motif.
In certain embodiments, embodiments, embodiments, embodiments, embodiments, the the the the the antisense antisense antisense antisense antisense compound targeted compound targeted compound targeted compound targeted compound targeted to to to to to
HBV
HBV
HBV
HBV
HBV nucleic nucleic nucleic nucleic nucleic acid has acid has acid has acid has acid has
3-10-7
7-10-3
4-10-6
6-10-4 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 2-9-6 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 6-9-2 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 4-9-4 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 5-9-3 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 3-9-5 gapmer 20 motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 5-9-2 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 2-9-5 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 4-9-3 gapmer motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a 3-9-4 gapmer motif.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a gap-widened motif.
In certain embodiments, the antisense compound targeted to a HBV nucleic acid has a gapmer motif in which the gap consists of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16 linked nucleosides.
In certain embodiments, the antisense compounds targeted to a HBV nucleic acid has any of the following sugar motifs:
k-d(10)-k e-d(10)-k k-d(10)-e k-k-d(10)-k-k k-k-d(10)-e-e e-e-d(10)-k-k k-k-k-d(10)-k-k-k e-e-e-d(10)-k-k-k k-k-k-d(10)-e-e-e k-k-k-d(10)-k-k-k e-k-k-d(10)-k-k-e e-e-k-d(10)-k-k-e e-d-k-d(10)-k-k-e e-k-d(10)-k-e-k-e k-d(10)-k-e-k-e-e e-e-k-d(10)-k-e-k-e e-d-d-k-d(9)-k-k-e e-e-e-e-d(9)-k-k-e
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 e-e-e-e-e-d( 1O)-e-e-e-e-e k-d-k-d-k-d(9)-e-e e-e-k-k-d(9)-e-k-e-e k-d-k-d-k-d( 1O)-e-e-e-e-e k-e-k-d(10)-k-e-k e-e-e-k-k-d(8)-e-e-e-e e-e-e-k-k-d(7)-k-k-e-e-e e-e-e-k-d(9)-k-e-e-e e-e-e-k-k-d(7)-k-k-e-e-e e-e-e-e-k-k-d(7)-e-e-e-e e-k-e-k-d(9)-e-e-e-e e-k-e-k-d-k-d(7)-e-e-e-e e-e-e-k-k-d(7)-k-k-e-e-e k-d-k-d-k-d(8)-e-e-e-e-e wherein, k is a constrained ethyl nucleoside, e is a 2’-MOE substituted nucleoside, and d is a 2’deoxynucleoside.
In certain embodiments, the antisense oligonucleotide has a sugar motif described by Formula A as follows: (J)m-(B)n-(J)p-(B)r-(A)t-(D)g-(A)v-(B)w-(J)x-(B)y-(J)z wherein:
each A is independently a 2’ -substituted nucleoside;
each B is independently a bicyclic nucleoside;
each J is independently either a 2’-substituted nucleoside or a 2’-deoxynucleoside;
each D is a 2’-deoxynucleoside;
m is 0-4; n is 0-2; p is 0-2; r is 0-2; t is 0-2; v is 0-2; w is 0-4; x is 0-2; y is 0-2; z is 0-4; g is 6-14;
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 provided that:
at least one of m, n, and r is other than 0;
at least one of w and y is other than 0;
the sum of m, n, p, r, and t is from 2 to 5; and the sum of v, w, x, y, and z is from 2 to 5.
Target Nucleic Acids, Target Regions and Nucleotide Sequences
Nucleotide sequences that encode HBV include, without limitation, the following: GENBANK Accession U95551.1 (incorporated herein as SEQ ID NO: 1).
It is understood that the sequence set forth in each SEQ ID NO in the Examples contained herein is independent of any modification to a sugar moiety, an intemucleoside linkage, or a nucleobase. As such, antisense compounds defined by a SEQ ID NO may comprise, independently, one or more modifications to a sugar moiety, an intemucleoside linkage, or a nucleobase. Antisense compounds described by Isis Number (Isis No) indicate a combination of nucleobase sequence and motif.
In certain embodiments, a target region is a structurally defined region of the target nucleic acid. For example, a target region may encompass a 3’ UTR, a 5’ UTR, an exon, an intron, an exon/intron junction, a coding region, a translation initiation region, translation termination region, or other defined nucleic acid region. The structurally defined regions for HBV can be obtained by accession number from sequence databases such as NCBI and such information is incorporated herein by reference. In certain embodiments, a 20 target region may encompass the sequence from a 5’ target site of one target segment within the target region to a 3’ target site of another target segment within the same target region.
Targeting includes determination of at least one target segment to which an antisense compound hybridizes, such that a desired effect occurs. In certain embodiments, the desired effect is a reduction in mRNA target nucleic acid levels. In certain embodiments, the desired effect is reduction of levels of protein 25 encoded by the target nucleic acid or a phenotypic change associated with the target nucleic acid.
A target region may contain one or more target segments. Multiple target segments within a target region may be overlapping. Alternatively, they may be non-overlapping. In certain embodiments, target segments within a target region are separated by no more than about 300 nucleotides. In certain emodiments, target segments within a target region are separated by a number of nucleotides that is, is about, is no more
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 than, is no more than about, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, or 10 nucleotides on the target nucleic acid, or is a range defined by any two of the preceeding values. In certain embodiments, target segments within a target region are separated by no more than, or no more than about, 5 nucleotides on the target nucleic acid. In certain embodiments, target segments are contiguous. Contemplated are target regions i defined by a range having a starting nucleic acid that is any of the 5’ target sites or 3’ target sites listed herein.
Suitable target segments may be found within a 5’ UTR, a coding region, a 3’ UTR, an intron, an exon, or an exon/intron junction. Target segments containing a start codon or a stop codon are also suitable target segments. A suitable target segment may specifcally exclude a certain structurally defined region such I as the start codon or stop codon.
The determination of suitable target segments may include a comparison of the sequence of a target nucleic acid to other sequences throughout the genome. For example, the BLAST algorithm may be used to identify regions of similarity amongst different nucleic acids. This comparison can prevent the selection of antisense compound sequences that may hybridize in a non-specific manner to sequences other than a : selected target nucleic acid (i.e., non-target or off-target sequences).
There may be variation in activity (e.g., as defined by percent reduction of target nucleic acid levels) of the antisense compounds within an active target region. In certain embodiments, reductions in HBV mRNA levels are indicative of inhibition of HBV expression. Reductions in levels of a HBV protein are also indicative of inhibition of target mRNA expression. Further, phenotypic changes are indicative of i inhibition of HBV expression. In certain embodiments, reduced fatigue, reduced flu-like symptoms, increase in appetite, reduced nausea, reduced joint pain, reduced jaundice, reduced pain in the abdomen, reduced weakness, reduced weight loss, reduction in breast enlargement in men, reduced rash on the palms, reduced difficulty with blood clotting, reduced cirrhosis, reduced spider-like blood vessels on the skin, increased Vitamins A and D absorption, reduced tumor growth, reduced tumor volume, reduced headache, reduced 25 fever, reduced diarrhea, reduced pain over the liver area of the body, reduced clay- or grey-colored stool, reduced itching, reduced dark-colored urine, and reduced nausea and vomiting can be indicative of inhibition of HBV expression, In certain embodiments, amelioration of symptoms associated with HBVrelated conditions, disease, and disorders can be indicative of inhibition of HBV expression. In certain embodiments, reduction of cirrhosis is indicative of inhibition of HBV expression. In certain embodiments, 30 reduction of liver cancer markers can be indicative of inhibition of HBV expression.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Hybridization
In some embodiments, hybridization occurs between an antisense compound disclosed herein and a HBV nucleic acid. The most common mechanism of hybridization involves hydrogen bonding (e.g., WatsonCrick, Hoogsteen or reversed Hoogsteen hydrogen bonding) between complementary nucleobases of the nucleic acid molecules.
Hybridization can occur under varying conditions. Stringent conditions are sequence-dependent and are determined by the nature and composition of the nucleic acid molecules to be hybridized.
Methods of determining whether a sequence is specifically hybridizable to a target nucleic acid are well known in the art. In certain embodiments, the antisense compounds provided herein are specifically hybridizable with a HBV nucleic acid.
Complementarity
An antisense compound and a target nucleic acid are complementary to each other when a sufficient number of nucleobases of the antisense compound can hydrogen bond with the corresponding nucleobases of the target nucleic acid, such that a desired effect will occur (e.g., antisense inhibition of a target nucleic acid, such as a HBV nucleic acid).
Non-complementary nucleobases between an antisense compound and a HBV nucleic acid may be tolerated provided that the antisense compound remains able to specifically hybridize to a target nucleic acid. Moreover, an antisense compound may hybridize over one or more segments of a HBV nucleic acid such that 20 intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure, mismatch or hairpin structure).
In certain embodiments, the antisense compounds provided herein, or a specified portion thereof, are, or are at least, 70%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary to a HBV nucleic acid, a target region, target segment, or specified 25 portion thereof. Percent complementarity of an antisense compound with a target nucleic acid can be determined using routine methods.
For example, an antisense compound in which 18 of 20 nucleobases of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, an antisense compound which is 18 nucleobases in length having four
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 noncomplementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649 656). Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482 489).
In certain embodiments, the antisense compounds provided herein, or specified portions thereof, are fully complementary (i.e. 100% complementary) to a target nucleic acid, or specified portion thereof. For example, an antisense compound may be fully complementary to a HBV nucleic acid, or a target region, or a target segment or target sequence thereof. As used herein, “fully complementary” means each nucleobase of an antisense compound is capable of precise base pairing with the corresponding nucleobases of a target nucleic acid. For example, a 20 nucleobase antisense compound is fully complementary to a target sequence that is 400 nucleobases long, so long as there is a corresponding 20 nucleobase portion of the target nucleic acid that is fully complementary to the antisense compound. Fully complementary can also be used in reference to a specified portion of the first and /or the second nucleic acid. For example, a 20 nucleobase portion of a 30 nucleobase antisense compound can be “fully complementary” to a target sequence that is 400 nucleobases long. The 20 nucleobase portion of the 30 nucleobase oligonucleotide is fully complementary to the target sequence if the target sequence has a corresponding 20 nucleobase portion wherein each nucleobase is complementary to the 20 nucleobase portion of the antisense compound. At the same time, the entire 30 nucleobase antisense compound may or may not be fully complementary to the target sequence, depending on whether the remaining 10 nucleobases of the antisense compound are also complementary to the target 25 sequence.
The location of a non-complementary nucleobase may be at the 5’ end or 3’ end of the antisense compound. Alternatively, the non-complementary nucleobase or nucleobases may be at an internal position of the antisense compound. When two or more non-complementary nucleobases are present, they may be contiguous (i.e. linked) or non-contiguous. In one embodiment, a non-complementary nucleobase is located 30 in the wing segment of a gapmer antisense oligonucleotide.
In certain embodiments, antisense compounds that are, or are up to 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleobases in length comprise no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid, such as a HBV nucleic acid, or specified portion thereof.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, antisense compounds that are, or are up to 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleobases in length comprise no more than 6, no more than 5, no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid, such as a HBV nucleic acid, or specified portion thereof.
The antisense compounds provided also include those which are complementary to a portion of a target nucleic acid. As used herein, “portion” refers to a defined number of contiguous (i:e. linked) nucleobases within a region or segment of a target nucleic acid. A “portion” can also refer to a defined number of contiguous nucleobases of an antisense compound. In certain embodiments, the antisense compounds, are complementary to at least an 8 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 9 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 10 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least an 11 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 12 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 13 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 14 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 15 nucleobase portion of a target segment. Also contemplated are antisense compounds that are complementary to at least a 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more nucleobase portion of a target segment, or a range defined by any two of these values.
Identity
The antisense compounds provided herein may also have a defined percent identity to a particular nucleotide sequence, SEQ ID NO, or compound represented by a specific Isis number, or portion thereof. As 25 used herein, an antisense compound is identical to the sequence disclosed herein if it has the same nucleobase pairing ability. For example, a RNA which contains uracil in place of thymidine in a disclosed DNA sequence would be considered identical to the DNA sequence since both uracil and thymidine pair with adenine. Shortened and lengthened versions of the antisense compounds described herein as well as compounds having non-identical bases relative to the antisense compounds provided herein also are 30 contemplated. The non-identical bases may be adjacent to each other or dispersed throughout the antisense compound. Percent identity of an antisense compound is calculated according to the number of bases that have identical base pairing relative to the sequence to which it is being compared.
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In certain embodiments, the antisense compounds, or portions thereof, are at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to one or more of the antisense compounds or SEQ ID NOs, or a portion thereof, disclosed herein.
In certain embodiments, a portion of the antisense compound is compared to an equal length portion of the target nucleic acid. In certain embodiments, an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleobase portion is compared to an equal length portion of the target nucleic acid.
In certain embodiments, a portion of the antisense oligonucleotide is compared to an equal length portion of the target nucleic acid. In certain embodiments, an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleobase portion is compared to an equal length portion of the target nucleic acid.
Modifications
A nucleoside is a base-sugar combination. The nucleobase (also known as base) portion of the nucleoside is normally a heterocyclic base moiety. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to the 2', 3' or 5' hydroxyl moiety of the sugar. Oligonucleotides are formed through the covalent linkage of adjacent nucleosides to one another, to form a linear polymeric oligonucleotide. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the intemucleoside linkages of the oligonucleotide.
Modifications to antisense compounds encompass substitutions or changes to intemucleoside linkages, sugar moieties, or nucleobases. Modified antisense compounds are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target, increased stability in the presence of nucleases, or increased inhibitory activity.
Chemically modified nucleosides may also be employed to increase the binding affinity of a shortened or truncated antisense oligonucleotide for its target nucleic acid. Consequently, comparable results 25 can often be obtained with shorter antisense compounds that have such chemically modified nucleosides.
Modified Internucleoside Linkages
The naturally occuring intemucleoside linkage of RNA and DNA is a 3' to 5' phosphodiester linkage. Antisense compounds having one or more modified, i.e. non-naturally occurring, intemucleoside linkages are often selected over antisense compounds having naturally occurring intemucleoside linkages
100
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for target nucleic acids, and increased stability in the presence of nucleases.
Oligonucleotides having modified intemucleoside linkages include intemucleoside linkages that retain a phosphorus atom as well as intemucleoside linkages that do not have a phosphorus atom. Representative phosphorus containing intemucleoside linkages include, but are not limited to, phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidate, and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorous-containing linkages are well known.
In certain embodiments, antisense compounds targeted to a HBV nucleic acid comprise one or more modified intemucleoside linkages. In certain embodiments, the modified intemucleoside linkages are phosphorothioate linkages. In certain embodiments, each intemucleoside linkage of an antisense compound is a phosphorothioate intemucleoside linkage.
Modified Sugar Moieties
Antisense compounds provided herein can optionally contain one or more nucleosides wherein the sugar group has been modified. Such sugar modified nucleosides may impart enhanced nuclease stability, increased binding affinity, or some other beneficial biological property to the antisense compounds. In certain embodiments, nucleosides comprise a chemically modified ribofuranose ring moiety. Examples of chemically modified ribofuranose rings include, without limitation, addition of substitutent groups (including 5' and 2' substituent groups); bridging of non-geminal ring atoms to form bicyclic nucleic acids (BNA); replacement of the ribosyl ring oxygen atom with S, N(R), or C(R1)(R)2 (R = H, C1-C12 alkyl or a protecting group); and combinations thereof. Examples of chemically modified sugars include, 2'-F-5'-methyl substituted nucleoside (see, PCT International Application WO 2008/101157, published on 8/21/08 for other disclosed 5', 2'-bis substituted nucleosides), replacement of the ribosyl ring oxygen atom with S with further substitution at the 2'-position (see, published U.S. Patent Application US2005/0130923, published on June 25 16, 2005), or, alternatively, 5'-substitution of a BNA (see, PCT International Application WO 2007/134181, published on 11/22/07, wherein LNA is substituted with, for example, a 5'-methyl or a 5'-vinyl group).
Examples of nucleosides having modified sugar moieties include, without limitation, nucleosides comprising 5'-vinyl, 5'-methyl (R or S), 4'-S, 2'-F, 2'-OCH3, and 2'-O(CH2)2OCH3 substituent groups. The substituent at the 2’ position can also be selected from allyl, amino, azido, thio, O-allyl, O-Ci-Cio alkyl, 30 OCF3, O(CH2)2SCH3, O(CH2)2-O-N(Rm)(Rn), and O-CH2-C(=O)-N(Rm)(Rn), where each Rm and Rn is, independently, H or substituted or unsubstituted C,-Cio alkyl.
101
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
As used herein, “bicyclic nucleosides” refer to modified nucleosides comprising a bicyclic sugar moiety. Examples of bicyclic nucleosides include, without limitation, nucleosides comprising a bridge between the 4' and the 2' ribosyl ring atoms. In certain embodiments, antisense compounds provided herein include one or more bicyclic nucleosides wherein the bridge comprises a 4’ to 2’ bicyclic nucleoside.
I Examples of such 4’ to 2’ bicyclic nucleosides, include, but are not limited to, one of the formulae: 4'-(CH2)0-2' (LNA); 4'-(CH2)-S-2'; 4'-(CH2)2-O-2' (ENA); 4'-CH(CH3)-O-2' (cEt) and 4’-CH(CH2OCH3)-O-2', and analogs thereof (see, U.S. Patent 7,399,845, issued on July 15, 2008); 4'-C(CH3)(CH3)-O-2', and analogs thereof (see, published PCT International Application W02009/006478, published January 8, 2009); 4'-CH2N(OCH3)-2', and analogs thereof (see, published PCT International Application W02008/150729, published
I December 11, 2008); 4'-CH2-O-N(CH3)-2' (see, published U.S. Patent Application US2004/0171570, published September 2, 2004); 4'-CH2-N(R)-O-2', wherein R is H, Ci-C]2 alkyl, or a protecting group (see, U.S. Patent 7,427,672, issued on September 23, 2008); 4'-CH2-C(H)(CH3)-2' (see, Chattopadhyaya, et al., J.
Org. Chem.,2009, 74, 118-134); and 4'-CH2-C(=CH2)-2', and analogs thereof (see, published PCT International Application WO 2008/154401, published on December 8, 2008). Also see, for example: Singh i et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J. Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J. Am. Chem. Soc., 129(26) 8362-8379 (Jul. 4, 2007); Elayadi et al., Curr. Opinion Invens. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, \-Ί; Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; U.S. Patent Nos U.S.
> 6,670,461, 7,053,207, 6,268,490, 6,770,748, 6,794,499, 7,034,133, 6,525,191, 7,399,845; published PCT
International applications WO 2004/106356, WO 94/14226, WO 2005/021570, and WO 2007/134181; U.S.
Patent Publication Nos. US2004/0171570, US2007/0287831, and US2008/0039618; and U.S. Patent Serial Nos. 12/129,154, 60/989,574, 61/026,995, 61/026,998, 61/056,564, 61/086,231, 61/097,787, and 61/099,844; and PCT International Application Nos. PCT/US2008/064591, PCT/US2008/066154, and
PCT/US2008/068922. Each of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and β-D-ribofuranose (see PCT international application PCT/DK98/00393, published on March 25, 1999 as WO 99/14226).
In certain embodiments, bicyclic sugar moieties of BNA nucleosides include, but are not limited to, compounds having at least one bridge between the 4' and the 2’ position of the pentofuranosyl sugar moiety 30 wherein such bridges independently comprises 1 or from 2 to 4 linked groups independently selected from [C(Ra)(Rb)]n-> -C(Ra)=C(Rb)-, -C(Ra)=N-, -C(=NRa)-, -C(=O)-, -C(=S)-> -O-, -Si(Ra)2-, -S(=O)X-, and -N(Ra)-;
wherein:
x is 0, 1, or 2;
n is 1, 2, 3, or 4;
102
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 each Ra and Rb is, independently, H, a protecting group, hydroxyl, Ci-Ci? alkyl, substituted C|-C|2alkyl, C2-C)2 alkenyl, substituted C2-C12 alkenyl, C2-C)2 alkynyl, substituted C2-Ci2 alkynyl, C5-C2O aryl, substituted C5-C20 aryl, heterocycle radical, substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7 alicyclic radical, halogen, OJi, NJJ2, SJi, N3, COOJi, acyl (C(=O)H), substituted acyl, CN, sulfonyl (S(=O)2-Ji), or sulfoxyl (S(=O)-J3); and each Ji and J2 is, independently, H, CrCi2 alkyl, substituted Ci-Ci2 alkyl, C2-C)2 alkenyl, substituted C2-C|2 alkenyl, C2-C|2 alkynyl, substituted C2-Ci2 alkynyl, C5-C2o aryl, substituted C5-C2o aryl, acyl (C(=O)H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, C]-C]2 aminoalkyl, substituted Cj-Ci2 aminoalkyl, or a protecting group.
In certain embodiments, the bridge of a bicyclic sugar moiety is, -[C(Ra)(Rb)]n-, -[C(Ra)(Rb)]n-O-, -C(RaRb)-N(R)-O- or, -C(RaRb)-O-N(R)-. In certain embodiments, the bridge is 4'-CH2-2', 4'-(CH2)2-2', 4'(CH2)3-2', 4'-CH2-O-2', 4'-(CH2)2-O-2', 4'-CH2-O-N(R)-2', and 4'-CH2-N(R)-O-2'-, wherein each R is, independently, H, a protecting group, or Ct-Ci2 alkyl.
In certain embodiments, bicyclic nucleosides are further defined by isomeric configuration. For example, a nucleoside comprising a 4’-2’ methylene-oxy bridge, may be in the α-L configuration or in the βD configuration. Previously, ct-L-methyleneoxy (4’-CH2-O-2’) BNA's have been incorporated into antisense oligonucleotides that showed antisense activity (Frieden et al., Nucleic Acids Research, 2003, 21, 63656372).
In certain embodiments, bicyclic nucleosides include, but are not limited to, (A) a-L-Methyleneoxy (4’-CH2-O-2’) BNA , (B) β-D-Methyleneoxy (4’-CH2-O-2’) BNA , (C) Ethyleneoxy (4’-(CH2)2-O-2’) BNA , (D) Aminooxy (4’-CH2-O-N(R)-2’) BNA, (E) Oxyamino (4’-CH2-N(R)-O-2’) BNA, (F) Methyl(methyleneoxy) (4’-CH(CH3)-O-2’) BNA, (G) methylene-thio (4’-CH2-S-2’) BNA, (H) methyleneamino (4’-CH2-N(R)-2’) BNA, (I) methyl carbocyclic (4’-CH2-CH(CH3)-2’) BNA, and (J) propylene carbocyclic (4’-(CH2)3-2’) BNA as depicted below.
103
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Figure AU2019202856A1_D0004
Figure AU2019202856A1_D0005
— (J) wherein Bx is the base moiety and R is, independently, H, a protecting group or Ci-C]2 alkyl.
In certain embodiments, bicyclic nucleoside having Formula I:
Figure AU2019202856A1_D0006
Bx wherein:
Bx is a heterocyclic base moiety;
-Qa-Qb-Qc- is -ΟΗ2-Ν^)-ΟΗ2-, -C(=O)-N(Rc)-CH2-, -CH2-O-N(Rc)-, -CH2-N(Rc)-O-, or -14(1^)-0CH2;
104
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Rc is Ci-C12 alkyl or an amino protecting group; and
Ta and Tb are each, independently, H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety, or a covalent attachment to a support medium.
In certain embodiments, bicyclic nucleoside having Formula II:
Ta-°-A °Βχ
Figure AU2019202856A1_D0007
wherein:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently, H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety, or a covalent attachment to a support medium;
Za is C]-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, substituted C]-C6 alkyl, substituted C2-C6 alkenyl, substituted C2-C6 alkynyl, acyl, substituted acyl, substituted amide, thiol, or substituted thio.
In one embodiment, each of the substituted groups is, independently, mono or poly substituted with substituent groups independently selected from halogen, oxo, hydroxyl, OJC, NJcJd, SJC, N3, OC(=X)Jc, and NJeC(=X)NJcJd, wherein each Jc, Jd, and Je is, independently, H, Ci-C6 alkyl, or substituted Ci-C6 alkyl and X is O or NJC.
In certain embodiments, bicyclic nucleoside having Formula III:
T. Γ
Figure AU2019202856A1_D0008
wherein:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently, H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety, or a covalent attachment to a support medium;
Zb is C|-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, substituted Cj-Q, alkyl, substituted C2-C6 alkenyl,
105
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 substituted C2-C6 alkynyl, or substituted acyl (C(=O)-).
In certain embodiments, bicyclic nucleoside having Formula IV:
Figure AU2019202856A1_D0009
I wherein:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety, or a covalent attachment to a support medium;
Rd is Ci-C6 alkyl, substituted CrC6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl, or I substituted C2-C6 alkynyl;
each qa, qb, qc and qd is, independently, H, halogen, CrC6 alkyl, substituted CrC6 alkyl, C2-C6alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl, or substituted C2-C6 alkynyl, Ci-C6 alkoxyl, substituted CrCb alkoxyl, acyl, substituted acyl, CrC6 aminoalkyl, or substituted CrC6 aminoalkyl;
In certain embodiments, bicyclic nucleoside having Formula V:
Figure AU2019202856A1_D0010
wherein:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently, H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety, or a covalent attachment to a support medium;
Qa, qb, Qe and qf are each, independently, hydrogen, halogen, C1-C12 alkyl, substituted C1-C12 alkyl, C2C12 alkenyl, substituted C2-C12 alkenyl, C2-Ci2 alkynyl, substituted C2-Ci2 alkynyl, C1-C12 alkoxy, substituted C1-C12 alkoxy, O® SJj, SO® SO,® NJj®, N3, CN, C(=O)O® C(=O)N®Fk, C(=O)® O-C(=O)N®Fk, N(H)C(=NH)NJj®, N(H)C(=O)NJj® orN(H)C(=S)NJjJk;
or qe and qf together are =C(qg)(qh);
106
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 qg and qh are each, independently, H, halogen, CrCi2 alkyl, or substituted CrC|2 alkyl.
The synthesis and preparation of the methyleneoxy (4’-CH2-O-2’) BNA monomers adenine, cytosine, guanine, 5-methyl-cytosine, thymine, and uracil, along with their oligomerization, and nucleic acid recognition properties have been described (see, e.g., Koshkin et al., Tetrahedron, 1998, 54, 3607-3630). BNAs and preparation thereof are also described in WO 98/39352 and WO 99/14226.
Analogs of methyleneoxy (4’-CH2-O-2’) BNA, methyleneoxy (4’-CH2-O-2’) BNA, and 2'-thioBNAs, have also been prepared (see, e.g., Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222). Preparation of locked nucleoside analogs comprising oligodeoxyribonucleotide duplexes as substrates for nucleic acid polymerases has also been described (see, e.g., Wengel et al., WO 99/14226). Furthermore, synthesis of 2'-amino-BNA, a novel comformationally restricted high-affinity oligonucleotide analog, has been described in the art (see, e.g., Singh et al., J. Org. Chem., 1998, 63, 10035-10039). In addition, 2'amino- and 2'-methylamino-BNA's have been prepared and the thermal stability of their duplexes with complementary RNA and DNA strands has been previously reported.
In certain embodiments, bicyclic nucleoside having Formula VI:
Figure AU2019202856A1_D0011
Figure AU2019202856A1_D0012
wherein:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently, H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety, or a covalent attachment to a support medium;
each q„ qj, qk and qi is, independently, H, halogen, C|-C12 alkyl, substituted C1-C12 alkyl, C2-C]2alkenyl, substituted C2-C]2 alkenyl, C2-Ci2 alkynyl, substituted C2-C]2 alkynyl, Ci-Cj2 alkoxyl, substituted CrCl2 alkoxyl, OJj; SJj, SOJj; SO2Jj, NJjJk, N3, CN, C(=O)OJj, C(=O)NJjJk, C(=O)Jj, O-C(=O)NJjJk, N(H)C(=NH)NJjJk, N(H)C(=O)NJjJk, orN(H)C(=S)NJjJk; and qi and qj or qi and qk together are =C(qg)(qh), wherein qg and qh are each, independently, H, halogen, Ci-C12 alkyl, or substituted Cj-Cn alkyl.
One carbocyclic bicyclic nucleoside having a 4'-(CH2)3-2' bridge and the alkenyl analog, bridge 4'CH=CH-CH2-2', have been described (see, e.g., Freier et al., Nucleic Acids Research, 1997, 25(22), 44294443 and Albaek et al., J. Org. Chem., 2006, 71, 7731-7740). The synthesis and preparation of carbocyclic bicyclic nucleosides along with their oligomerization and biochemical studies have also been described (see, e.g., Srivastava et al., J. Am. Chem. Soc. 2007, 129(26), 8362-8379).
107
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
As used herein, “bicyclic nucleoside” refers to a nucleoside comprising a bridge connecting two carbon atoms of the sugar ring, thereby forming a bicyclic sugar moiety. In certain embodiments, the bridge connects the 2’ carbon and another carbon of the sugar ring.
As used herein, “4’-2’ bicyclic nucleoside” or “4’ to 2’ bicyclic nucleoside” refers to a bicyclic nucleoside comprising a furanose ring comprising a bridge connecting the 2’ carbon atom and the 4’ carbon atom.
As used herein, “monocylic nucleosides” refer to nucleosides comprising modified sugar moieties that are not bicyclic sugar moieties. In certain embodiments, the sugar moiety, or sugar moiety analogue, of a nucleoside may be modified or substituted at any position.
As used herein, “2’-modified sugar” means a furanosy 1 sugar modified at the 2’ position. In certain embodiments, such modifications include substituents selected from: a halide, including, but not limited to substituted and unsubstituted alkoxy, substituted and unsubstituted thioalkyl, substituted and unsubstituted amino alkyl, substituted and unsubstituted alkyl, substituted and unsubstituted allyl, and substituted and unsubstituted alkynyl. In certain embodiments, 2’ modifications are selected from substituents including, but not limited to: O[(CH2)nO]mCH3, O(CH2)nNH2, O(CH2)„CH3, O(CH2)nONH2, OCH2C(=O)N(H)CH3, and O(CH2)nON[(CH2)nCH3]2, where n and m are from 1 to about 10. Other 2'- substituent groups can also be selected from: CrCi2 alkyl; substituted alkyl; alkenyl; alkynyl; alkaryl; aralkyl; O-alkaryl or O-aralkyl; SH; SCH3; OCN; Cl; Br; CN; CF3; OCF3; SOCH3; SO2CH3; ONO2; NO2; N3; NH2; heterocycloalkyl; heterocycloalkaryl; aminoalkylamino; polyalkylamino; substituted silyl; an RNA cleaving group; a reporter ι group; an intercalator; a group for improving pharmacokinetic properties; and a group for improving the pharmacodynamic properties of an antisense compound, and other substituents having similar properties. In certain embodiments, modifed nucleosides comprise a 2’-MOE side chain (see, e.g., Baker et al., J. Biol. Chem., 1997, 272, 11944-12000). Such 2'-MOE substitution have been described as having improved binding affinity compared to unmodified nucleosides and to other modified nucleosides, such as 2’- O25 methyl, O-propyl, and O-aminopropyl. Oligonucleotides having the 2'-MOE substituent also have been shown to be antisense inhibitors of gene expression with promising features for in vivo use (see, e.g., Martin, V.,Helv. Chim. Acta, 1995, 78, 486-504; Altmann et al., Chimia, 1996, 50, 168-176; Altmann et al., Biochem. Soc. Trans., 1996, 24, 630-637; and Altmann et al., Nucleosides Nucleotides, 1997,16, 917-926).
As used herein, a “modified tetrahydropyran nucleoside” or “modified THP nucleoside” means a 30 nucleoside having a six-membered tetrahydropyran “sugar” substituted in for the pentofuranosyl residue in normal nucleosides (a sugar surrogate). Modified THP nucleosides include, but are not limited to, what is referred to in the art as hexitol nucleic acid (HNA), anitol nucleic acid (ANA), manitol nucleic acid (MNA) (see Leumann, CJ. Bioorg. & Med. Chem. (2002) 10:841-854), fluoro HNA (F-HNA), or those compounds having Formula X:
108
WO 2012/145697
PCT/US2012/034550
Figure AU2019202856A1_D0013
2019202856 24 Apr 2019
Formula X:
wherein independently for each of said at least one tetrahydropyran nucleoside analog of Formula X:
Bx is a heterocyclic base moiety;
T3 and T4 are each, independently, an intemucleoside linking group linking the tetrahydropyran nucleoside analog to the antisense compound or one of T3 and T4 is an intemucleoside linking group linking the tetrahydropyran nucleoside analog to the antisense compound and the other of T3 and T4 is H, a hydroxyl protecting group, a linked conjugate group, or a 5' or 3'-terminal group;
qb q2, q3, q4, qs, q6 and q7 are each, independently, H, Ci-C6 alkyl, substituted CrC6 alkyl, C2-C6alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl, or substituted C2-C6 alkynyl; and one of Ri and R2 is hydrogen and the other is selected from halogen, substituted or unsubstituted alkoxy, NJJs, SJb N3, OC(=X)Jb OC(=X)NJ,J2, NJ3C(=X)NJ,J2, and CN, wherein X is O, S, or NJb and each Jb J2, and J3 is, independently, H or C|-C6 alkyl.
In certain embodiments, the modified THP nucleosides of Formula X are provided wherein qm, qn, qp, qr, qs, qt> and qu are each H. In certain embodiments, at least one of qm, qn, qp, qr, qs, qt, and qu is other than H. In certain embodiments, at least one of qm, qn, qp, qr, qs, qt and qu is methyl. In certain embodiments, THP nucleosides of Formula X are provided wherein one of R! and R2 is F. In certain embodiments, Ri is fluoro and R2 is H, Rj is methoxy and R2 is H, and Ri is methoxyethoxy and R2 is H.
As used herein, “2’-modified nucleoside” or “2’-substituted nucleoside” refers to a nucleoside comprising a sugar comprising a substituent at the 2’ position of a furanose ring other than H or OH. 2’modified nucleosides, include, but are not limited to, bicyclic nucleosides wherein the bridge connecting two 20 carbon atoms of the sugar ring connects the 2’ carbon and another carbon of the sugar ring and nucleosides with non-bridging 2’substituents, such as allyl, amino, azido, thio, O-allyl, O-Cj-Cio alkyl, -OCF3, O-(CH2)2O-CH3, 2'-O(CH2)2SCH3, O-(CH2)2-O-N(Rm)(Rn), or O-CH2-C(=O)-N(Rm)(Rn), where each Rm and Rn is, independently, H or substituted or unsubstituted C(-Cio alkyl. 2’-modifed nucleosides may further comprise other modifications, for example, at other positions of the sugar and/or at the nucleobase.
As used herein, “2’-F” refers to a sugar comprising a fluoro group at the 2’ position.
As used herein, “2’-0Me” or “2’-OCH3” or “2’-O-methyl” each refers to a nucleoside comprising a sugar comprising an -OCH3 group at the 2’ position of the sugar ring.
109
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
As used herein, oligonucleotide refers to a compound comprising a plurality of linked nucleosides. In certain embodiments, one or more of the plurality of nucleosides is modified. In certain embodiments, an oligonucleotide comprises one or more ribonucleosides (RNA) and/or deoxyribonucleosides (DNA).
Many other bicyclo and tricyclo sugar surrogate ring systems are also known in the art that can be used to modify nucleosides for incorporation into antisense compounds (see, e.g., review article: Leumann, J. C, Bioorganic & Medicinal Chemistry, 2002, 10, 841-854). Such ring systems can undergo various additional substitutions to enhance activity.
Methods for the preparations of modified sugars are well known to those skilled in the art.
In nucleotides having modified sugar moieties, the nucleobase moieties (natural, modified, or a combination thereof) are maintained for hybridization with an appropriate nucleic acid target.
In certain embodiments, antisense compounds comprise one or more nucleotides having modified sugar moieties. In certain embodiments, the modified sugar moiety is 2’-MOE. In certain embodiments, the 2’-MOE modified nucleotides are arranged in a gapmer motif. In certain embodiments, the modified sugar moiety is a cEt. In certain embodiments, the cEt modified nucleotides are arranged throughout the wings of a gapmer motif.
Compositions and Methods for Formulating Pharmaceutical Compositions
Antisense oligonucleotides may be admixed with pharmaceutically acceptable active or inert substances for the preparation of pharmaceutical compositions or formulations. Compositions and methods for the formulation of pharmaceutical compositions arc dependent upon a number of criteria, including, but not limited to, route of administration, extent of disease, or dose to be administered.
An antisense compound targeted to a HBV nucleic acid can be utilized in pharmaceutical compositions by combining the antisense compound with a suitable pharmaceutically acceptable diluent or carrier. A pharmaceutically acceptable diluent includes phosphate-buffered saline (PBS). PBS is a diluent 25 suitable for use in compositions to be delivered parenterally. Accordingly, in one embodiment, employed in the methods described herein is a pharmaceutical composition comprising an antisense compound targeted to a HBV nucleic acid and a pharmaceutically acceptable diluent. In certain embodiments, the pharmaceutically acceptable diluent is PBS. In certain embodiments, the antisense compound is an antisense oligonucleotide.
Pharmaceutical compositions comprising antisense compounds encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other oligonucleotide which, upon administration to an animal, including a human, is capable of providing (directly or indirectly) the biologically active metabolite
110
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 or residue thereof. Accordingly, for example, the disclosure is also drawn to pharmaceutically acceptable salts of antisense compounds, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.
A prodrug can include the incorporation of additional nucleosides at one or both ends of an antisense compound which are cleaved by endogenous nucleases within the body, to form the active antisense compound.
Conjugated Antisense compounds
Antisense compounds may be covalently linked to one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the resulting antisense oligonucleotides. Typical conjugate groups include cholesterol moieties and lipid moieties. Additional conjugate groups include carbohydrates, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes.
Antisense compounds can also be modified to have one or more stabilizing groups that are generally attached to one or both termini of antisense compounds to enhance properties such as, for example, nuclease stability. Included in stabilizing groups are cap structures. These terminal modifications protect the antisense compound having terminal nucleic acid from exonuclease degradation, and can help in deliveiy and/or localization within a cell. The cap can be present at the 5'-terminus (5'-cap), or at the 3'-terminus (3'cap), or can be present on both termini. Cap structures are well known in the art and include, for example, inverted deoxy abasic caps. Further 3' and 5'-stabilizing groups that can be used to cap one or both ends of an antisense compound to impart nuclease stability include those disclosed in WO 03/004602 published on January 16, 2003.
Cell culture and antisense compounds treatment
The effects of antisense compounds on the level, activity or expression of HBV nucleic acids can be tested in vitro in a variety of cell types. Cell types used for such analyses are available from commerical vendors (e.g. American Type Culture Collection, Manassus, VA; Zen-Bio, Inc., Research Triangle Park, NC; Clonetics Corporation, Walkersville, MD) and are cultured according to the vendor’s instructions using 30 commercially available reagents (e.g. Invitrogen Life Technologies, Carlsbad, CA). Illustrative cell types
111
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 include, but are not limited to, HuVEC cells, b.END cells, HepG2 cells, Hep3B cells, and primary hepatocytes.
In vitro testing of antisense oligonucleotides
Described herein are methods for treatment of cells with antisense oligonucleotides, which can be modified appropriately for treatment with other antisense compounds.
Cells may be treated with antisense oligonucleotides when the cells reach approximately 60-80% confluency in culture.
One reagent commonly used to introduce antisense oligonucleotides into cultured cells includes the cationic lipid transfection reagent LIPOFECTIN (Invitrogen, Carlsbad, CA). Antisense oligonucleotides may be mixed with LIPOFECTIN in OPTI-MEM 1 (Invitrogen, Carlsbad, CA) to achieve the desired final concentration of antisense oligonucleotide and a LIPOFECTIN concentration that may range from 2 to 12 ug/mL per 100 nM antisense oligonucleotide.
Another reagent used to introduce antisense oligonucleotides into cultured cells includes LIPOFECTAMINE (Invitrogen, Carlsbad, CA). Antisense oligonucleotide is mixed with LIPOFECTAMINE in OPTI-MEM 1 reduced serum medium (Invitrogen, Carlsbad, CA) to achieve the desired concentration of antisense oligonucleotide and a LIPOFECTAMINE concentration that may range from 2 to 12 ug/mL per 100 nM antisense oligonucleotide.
Another technique used to introduce antisense oligonucleotides into cultured cells includes 20 electroporation.
Cells are treated with antisense oligonucleotides by routine methods. Cells may be harvested 16-24 hours after antisense oligonucleotide treatment, at which time RNA or protein levels of target nucleic acids are measured by methods known in the art and described herein. In general, when treatments are performed in multiple replicates, the data are presented as the average of the replicate treatments.
The concentration of antisense oligonucleotide used varies from cell line to cell line. Methods to determine the optimal antisense oligonucleotide concentration for a particular cell line are well known in the art. Antisense oligonucleotides are typically used at concentrations ranging from 1 nM to 300 nM when transfected with LIPOFECTAMINE. Antisense oligonucleotides are used at higher concentrations ranging from 625 to 20,000 nM when transfected using electroporation.
112
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
RNA Isolation
RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are well known in the art. RNA is prepared using methods well known in the art, for example, using the TRIZOL Reagent (Invitrogen, Carlsbad, CA) according to the manufacturer’s recommended protocols.
Analysis of inhibition of target levels or expression
Inhibition of levels or expression of a HBV nucleic acid can be assayed in a variety of ways known in the art. For example, target nucleic acid levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or quantitaive real-time PCR. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are well known in the art. Northern blot analysis is also routine in the art. Quantitative real-time PCR can be conveniently accomplished using the commercially available ABI PRISM 7600, 7700, or 7900 Sequence Detection System, available from PEApplied Biosystems, Foster City, CA and used according to manufacturer’s instructions.
Quantitative Real-Time PCR Analysis of Target RNA Levels
Quantitation of target RNA levels may be accomplished by quantitative real-time PCR using the ABI PRISM 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer’s instructions. Methods of quantitative real-time PCR are well known in the art.
Prior to real-time PCR, the isolated RNA is subjected to a reverse transcriptase (RT) reaction, 20 which produces complementary DNA (cDNA) that is then used as the substrate for the real-time PCR amplification. The RT and real-time PCR reactions are performed sequentially in the same sample well. RT and real-time PCR reagents may be obtained from Invitrogen (Carlsbad, CA). RT real-time-PCR reactions are carried out by methods well known to those skilled in the art.
Gene (or RNA) target quantities obtained by real time PCR are normalized using either the 25 expression level of a gene whose expression is constant, such as cyclophilin A, or by quantifying total RNA using RIBOGREEN (Invitrogen, Inc. Carlsbad, CA). Cyclophilin A expression is quantified by real time PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RIBOGREEN RNA quantification reagent (Invetrogen, Inc. Eugene, OR). Methods of RNA quantification by RIBOGREEN are taught in Jones, L.J., et al, (Analytical Biochemistry, 1998, 265, 368-374). A 30 CYTOFLUOR 4000 instrument (PE Applied Biosystems) is used to measure RIBOGREEN fluorescence.
113
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Probes and primers are designed to hybridize to a HBV nucleic acid. Methods for designing realtime PCR probes and primers are well known in the art, and may include the use of software such as
PRIMER EXPRESS Software (Applied Biosystems, Foster City, CA).
Quantitative Real-Time PCR Analysis of Target DNA Levels
Quantitation of target DNA levels may be accomplished by quantitative real-time PCR using the ABI PRISM 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer’s instructions. Methods of quantitative real-time PCR are well known in the art.
Gene (or DNA) target quantities obtained by real time PCR are normalized using either the expression level of a gene whose expression is constant, such as cyclophilin A, or by quantifying total DNA using RIBOGREEN (Invitrogen, Inc. Carlsbad, CA). Cyclophilin A expression is quantified by real time PCR, by being run simultaneously with the target, multiplexing, or separately. Total DNA is quantified using RIBOGREEN RNA quantification reagent (Invetrogen, Inc. Eugene, OR). Methods of DNA quantification by RIBOGREEN are taught in Jones, L.J., et al, (Analytical Biochemistry, 1998, 265, 368-374). A CYTOFLUOR 4000 instrument (PE Applied Biosystems) is used to measure RIBOGREEN fluorescence.
Probes and primers are designed to hybridize to a HBV nucleic acid. Methods for designing realtime PCR probes and primers are well known in the art, and may include the use of software such as PRIMER EXPRESS Software (Applied Biosystems, Foster City, CA).
Analysis of Protein Levels
Antisense inhibition of HBV nucleic acids can be assessed by measuring HBV protein levels. Protein levels of HBV can be evaluated or quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), enzyme-linked immunosorbent assay (ELISA), quantitative protein assays, protein activity assays (for example, caspase activity assays), 25 immunohistochemistry, immunocytochemistry or fluorescence-activated cell sorting (FACS). Antibodies directed to a target can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional monoclonal or polyclonal antibody generation methods well known in the art.
114
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
In vivo testing of antisense compounds
Antisense compounds, for example, antisense oligonucleotides, are tested in animals to assess their ability to inhibit expression of HBV and produce phenotypic changes. Testing may be performed in normal animals, or in experimental disease models. For administration to animals, antisense oligonucleotides are formulated in a pharmaceutically acceptable diluent, such as phosphate-buffered saline. Administration includes parenteral routes of administration, such as intraperitoneal, intravenous, subcutaneous, intrathecal, and intracerebroventricular. Calculation of antisense oligonucleotide dosage and dosing frequency is within the abilities of those skilled in the art, and depends upon factors such as route of administration and animal body weight. Following a period of treatment with antisense oligonucleotides, RNA is isolated from liver tissue and changes in HBV nucleic acid expression are measured. Changes in HBV DNA levels are also measured. Changes in HBV protein levels are also measured. Changes in HBV HBeAg levels are also measured. Changes in HBV HBsAg levels are also measured.
Certain Indications
In certain embodiments, provided herein are methods, compounds, and compositions of treating an individual comprising administering one or more pharmaceutical compositions provided herein. In certain embodiments, the individual has an HBV-related condition. In certain embodiments, chronic HBV infection, inflammation, fibrosis, cirrhosis, liver cancer, serum hepatitis, jaundice, liver cancer, liver inflammation, liver fibrosis, liver cirrhosis, liver failure, diffuse hepatocellular inflammatory disease, hemophagocytic syndrome, serum hepatitis, and HBV viremia. In certain embodiments, the HBV-related condition may have which may include any or all of the following: flu-like illness, weakness, aches, headache, fever, loss of appetite, diarrhea, jaundice, nausea and vomiting, pain over the liver area of the body, clay- or grey-colored stool, itching all over, and dark-colored urine, when coupled with a positive test for presence of a hepatitis B virus, a hepatitis B viral antigen, or a positive test for the presence of an antibody specific for a hepatitis B viral 25 antigen. In certain embodiments, the individual is at risk for an HBV-related condition. This includes individuals having one or more risk factors for developing an HBV-related condition, including sexual exposure to an individual infected with Hepatitis B virus, living in the same house as an individual with a lifelong hepatitis B virus infection, exposure to human blood infected with the hepatitis B virus, injection of illicit drugs, being a person who has hemophilia, and visiting an area where hepatitis B is common. In certain 30 embodiments, the individual has been identified as in need of treatment for an HBV-related condition. In certain embodiments provided herein are methods for prophylactically reducing HBV expression in an individual. Certain embodiments include treating an individual in need thereof by administering to an individual a therapeutically effective amount of an antisense compound targeted to an HBV nucleic acid.
115
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Due to overlapping transmission routes, many people have been exposed to both hepatitis B virus (HBV) and hepatitis C virus (HCV), and a smaller proportion are chronically infected with both viruses, especially in regions such as Asia where HBV is endemic. Estimates suggest that up to 10% of people with HCV may also have HBV, while perhaps 20% of people with HBV are co-infected with HCV. However, treatment of hepatitis B or hepatitis B in HBV-HCV co-infected individuals has not been well studied. Treatment is complicated by the fact that HCV and HBV appear to inhibit each other's replication (though not all studied have observed this interaction). Therefore, treatment that fully suppresses HBV could potentially allow HCV to re-emerge, or vice versa. Therefore, the compounds and compositions described herein may advantageously be used for treating patients infected with both HBV and HCV. Exemplary treatment options for hepatitis C (HCV) include interferons, e.g., interferon alpha-2b, interferon alpha-2a, and interferon alphacon-1. Less frequent interferon dosing can be achieved using pegylated interferon (interferon attached to a polyethylene glycol moiety which improves its pharmacokinetic profile). Combination therapy with interferon alpha-2b (pegylated and unpegylated) and ribavirin has also been shown to be efficacious for some patient populations. Other agents currently being developed include HCV RNA replication inhibitors (e.g., ViroPharma's VP50406 series), HCV antisense agents, HCV therapeutic vaccines, HCV protease inhibitors, HCV helicase inhibitors and HCV antibody therapy (monoclonal or polyclonal).
In certain embodiments, treatment with the methods, compounds, and compositions described herein is useful for preventing an HBV-related condition associated with the presence of the hepatitis B virus. In certain embodiments, treatment with the methods, compounds, and compositions described herein is useful for preventing an HBV-related condition.
In one embodiment, administration of a therapeutically effective amount of an antisense compound targeted to an HBV nucleic acid is accompanied by monitoring of HBV mRNA levels in the serum of an individual to determine an individual’s response to administration of the antisense compound. In certain embodiments, administration of a therapeutically effective amount of an antisense compound targeted to an 25 HBV nucleic acid is accompanied by monitoring of HBV DNA levels in the serum of an individual to determine an individual’s response to administration of the antisense compound. In certain embodiments, administration of a therapeutically effective amount of an antisense compound targeted to an HBV nucleic acid is accompanied by monitoring of HBV protein levels in the serum of an individual to determine an individual’s response to administration of the antisense compound. In certain embodiments, administration of 30 a therapeutically effective amount of an antisense compound targeted to an HBV nucleic acid is accompanied by monitoring of HBV S antigen (HBsAg) levels in the serum of an individual to determine an individual’s response to administration of the antisense compound. In certain embodiments, administration of a therapeutically effective amount of an antisense compound targeted to an HBV nucleic acid is accompanied by monitoring of HBV E antigen (HBeAg) levels in the serum of an individual to determine an individual’s
116
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 response to administration of the antisense compound. An individual’s response to administration of the antisense compound is used by a physician to determine the amount and duration of therapeutic intervention.
In certain embodiments, administration of an antisense compound targeted to an HBV nucleic acid results in reduction of HBV expression by at least 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 99%, or a range defined by any two of these values. In certain embodiments, administration of an antisense compound targeted to an HBV nucleic acid results in reduced symptoms associated with the HBVrelated condition and reduced HBV-related markers in the blood. In certain embodiments, administration of an HBV antisense compound decreases HBV RNA levels, HBV DNA levels, HBV protein levels, HBsAg levels, or HBeAg levels by at least 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 99%, or a range defined by any two of these values.
In certain embodiments, pharmaceutical compositions comprising an antisense compound targeted to HBV are used for the preparation of a medicament for treating a patient suffering or susceptible to an HBVrelated condition.
Certain Combination Therapies
In certain embodiments, one or more pharmaceutical compositions provided herein are coadministered with one or more other pharmaceutical agents. In certain embodiments, such one or more other pharmaceutical agents are designed to treat the same disease, disorder, or condition as the one or more pharmaceutical compositions provided herein. In certain embodiments, such one or more other pharmaceutical agents are designed to treat a different disease, disorder, or condition as the one or more pharmaceutical compositions provided herein. In certain embodiments, such one or more other pharmaceutical agents are designed to treat an undesired side effect of one or more pharmaceutical compositions provided herein. In certain embodiments, one or more pharmaceutical compositions provided herein are co-administered with another pharmaceutical agent to treat an undesired effect of that other 25 pharmaceutical agent. In certain embodiments, one or more pharmaceutical compositions provided herein are co-administered with another pharmaceutical agent to produce a combinational effect. In certain embodiments, one or more pharmaceutical compositions provided herein are co-administered with another pharmaceutical agent to produce a synergistic effect.
In certain embodiments, one or more pharmaceutical compositions provided herein and one or more 30 other pharmaceutical agents are administered at the same time. In certain embodiments, one or more pharmaceutical compositions provided herein and one or more other pharmaceutical agents are administered at different times. In certain embodiments, one or more pharmaceutical compositions provided herein and
117
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 one or more other pharmaceutical agents are prepared together in a single formulation. In certain embodiments, one or more pharmaceutical compositions provided herein and one or more other pharmaceutical agents are prepared separately. In certain embodiments the antisense oligonucleotides disclosed is administered in combination with an HCV agent. In further embodiments, the HCV compound is administered simultaneously as the antisense compound; in other embodiments, the HCV compound is administered separately; so that a dose of each of the HCV agent and the antisense compound overlap, in time, within the patient’s body. In related embodiments, the HCV agent may be selected from interferon alpha-2b, interferon alpha-2a, and interferon alphacon-1 (pegylated and unpegylated); ribavirin; an HCV RNA replication inhibitor (e.g., ViroPharma's VP50406 series); an HCV antisense agent; an HCV therapeutic vaccine; an HCV protease inhibitor; an HCV helicase inhibitor; and an HCV antibody therapy (monoclonal or polyclonal).
In other embodiments, an HBV antisense compound of the present invention may be administered to a patient infected with HBV, in combination with one or more HBV therapeutic agents, wherein the one or more HBV therapeutic agents may be administered in the same drug formulation as the HBV ASO compound, or may be administered in a separate formulation. The one or more HBV therapeutic agents may be administered simultaneously with the ASO HBV compound, or may be administered separately, so that a dose of each of the HBV ASO compound and the HBV therapeutic agent overlap, in time, within the patient’s body. In related embodiments, the one or more HBV therapeutic agent may be selected from interferon alpha-2b, interferon alpha-2a, and interferon alphacon-1 (pegylated and unpegylated), ribavirin; an HBV RNA replication inhibitor; a second HBV antisense compound; an HBV therapeutic vaccine; an HBV prophylactic vaccine; lamivudine (3TC); entecavir; tenofovir; telbivudine (LdT); adefovir; and an HBV antibody therapy (monoclonal or polyclonal).
EXAMPLES
Non-limiting disclosure and incorporation by reference
While certain compounds, compositions and methods described herein have been described with specificity in accordance with certain embodiments, the following examples serve only to illustrate the compounds described herein and are not intended to limit the same. Each of the references recited in the present application is incorporated herein by reference in its entirety.
Example 1: Antisense inhibition of HBV viral mRNA in HepG2.2.15 cells by MOE gapmers
Antisense oligonucleotides were designed targeting a HBV viral nucleic acid and were tested for their effects on HBV mRNA in vitro. Cultured HepG2.2.15 cells at a density of 25,000 cells per well were 118
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 transfected using electroporation with 15,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3370 (forward sequence CTTGGTCATGGGCCATCAG, designated herein as SEQ ID NO: 2; reverse sequence CGGCTAGGAGTTCCGCAGTA, designated herein as SEQ ID NO: 3; probe sequence TGCGTGGAACCTTTTCGGCTCC, designated herein as SEQ ID NO: 4) was used to measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
The newly designed chimeric antisense oligonucleotides in Table 1 were designed as either 5-10-5 MOE gapmers or 3-10-4 MOE gapmers. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising five nucleosides each. The 3-10-4 MOE gapmers are 17 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising three and 4 nucleosides respectively. Each nucleoside in the 5’ wing segment and each nucleoside in the 3’ wing segment has an MOE sugar modification. Each nucleoside in the central gap segment has a deoxy sugar modification. The intemucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines.
“Viral Target start site” indicates the 5’-most nucleotide to which the gapmer is targeted in the viral gene sequence. “Viral Target stop site” indicates the 3’-most nucleotide to which the gapmer is targeted viral gene sequence. The ‘Motif column indicates the gap and wing structure of each gapmer. Each gapmer listed in Table 1 is targeted to the viral genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. U95551.1).
Table 1
Inhibition of viral HBV mRNA levels by MOE gapmers targeted to SEQ ID NO: 1
Viral Start SiteViral Stop SiteISIS NoSequenceMotif%inhibitionSEQ ID NO
245261510088CCACGAGTCTAGACTCT3-10-4555
250266510089GTCCACCACGAGTCTAG3-10-4596
251267510090AGTCCACCACGAGTCTA3-10-4607
252268510091AAGTCCACCACGAGTCT3-10-4478
253269510092GAAGTCCACCACGAGTC3-10-4599
254270510093AGAAGTCCACCACGAGT3-10-43210
255271510094GAGAAGTCCACCACGAG3-10-44111
256272510095AGAGAAGTCCACCACGA3-10-44412
257273510096GAGAGAAGTCCACCACG3-10-45413
119
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
258274510097TGAGAGAAGTCCACCAC3-10-45714
384400510098TGATAAAACGCCGCAGA3-10-45515
385401510099ATGATAAAACGCCGCAG3-10-45916
411427510100GGCATAGCAGCAGGATG3-10-48517
412428510101AGGCATAGCAGCAGGAT3-10-45118
413429510102GAGGCATAGCAGCAGGA3-10-46919
414433505330AGATGAGGCATAGCAGCAGG5-10-57420
414430510103TGAGGCATAGCAGCAGG3-10-41221
415434509928AAGATGAGGCATAGCAGCAG5-10-57122
415431510104ATGAGGCATAGCAGCAG3-10-46923
416435509929GAAGATGAGGCATAGCAGCA5-10-57824
416432510105GATGAGGCATAGCAGCA3-10-46925
417436509930AGAAGATGAGGCATAGCAGC5-10-57226
417433510106AGATGAGGCATAGCAGC3-10-47727
418437146783AAGAAGATGAGGCATAGCAG5-10-51528
418434510107AAG ATG AGGC ATAGC AG3-10-46929
419435510108GAAGATGAGGCATAGCA3-10-45930
420436510109AGAAGATGAGGCATAGC3-10-4031
421437510110AAGAAGATGAGGCATAG3-10-43832
457473510111ACGGGCAACATACCTTG3-10-46233
639658146784CTGAGGCCCACTCCCATAGG5-10-5534
639655510112AGGCCCACTCCCATAGG3-10-44435
640656510113GAGGCCCACTCCCATAG3-10-42736
641657510114TGAGGCCCACTCCCATA3-10-44437
642658510115CTGAGGCCCACTCCCAT3-10-45238
687706509931CGAACCACTGAACAAATGGC5-10-58939
687703510116ACCACTGAACAAATGGC3-10-48940
688704510117AACCACTGAACAAATGG3-10-46941
689705510118GAACCACTGAACAAATG3-10-46342
690706510119CGAACCACTGAACAAAT3-10-47443
738754510120ACCACATCATCCATATA3-10-47144
11761192510121TCAGCAAACACTTGGCA3-10-47345
17781797509932AATTTATGCCTACAGCCTCC5-10-57646
17781794510122TTATGCCTACAGCCTCC3-10-47647
17791798509933CAATTTATGCCTACAGCCTC5-10-57248
17791795510123TTTATGCCTACAGCCTC3-10-47549
17801799509934CCAATTTATGCCTACAGCCT5-10-57550
17801796510124ATTTATGCCTACAGCCT3-10-47351
17811800509935ACCAATTTATGCCTACAGCC5-10-57252
17811797510125AATTTATGCCTACAGCC3-10-46953
17821798510126CAATTTATGCCTACAGC3-10-45954
17831799510127CCAATTTATGCCTACAG3-10-45855
17841800510128ACCAATTTATGCCTACA3-10-46056
120
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
18221838510129AGGCAGAGGTGAAAAAG3-10-44757
18231839510130TAGGCAGAGGTGAAAAA3-10-43058
18651884509936GCACAGCTTGGAGGCTTGAA5-10-53959
18651881510131CAGCTTGGAGGCTTGAA3-10-4460
18661885509937GGCACAGCTTGGAGGCTTGA5-10-53561
18661882510132ACAGCTTGGAGGCTTGA3-10-4062
18671886505370AGGCACAGCTTGGAGGCTTG5-10-53663
18671883510133CACAGCTTGGAGGCTTG3-10-41264
18681887509938AAGGCACAGCTTGGAGGCTT5-10-5765
18681884510134GCACAGCTTGGAGGCTT3-10-42066
18691888509939CAAGGCACAGCTTGGAGGCT5-10-53667
18691885510135GGCACAGCTTGGAGGCT3-10-42268
18701889505371CCAAGGCACAGCTTGGAGGC5-10-53569
18701886510136AGGCACAGCTTGGAGGC3-10-41470
18711887510137AAGGCACAGCTTGGAGG3-10-4071
18721888510138CAAGGCACAGCTTGGAG3-10-4672
18731889510139CCAAGGCACAGCTTGGA3-10-41773
19181934510140GCTCCAAATTCTTTATA3-10-45974
23782397509940TCTGCGAGGCGAGGGAGTTC3-10-41075
23782394510141GCGAGGCGAGGGAGTTC3-10-4576
23792395510142TGCGAGGCGAGGGAGTT3-10-4077
23802396510143CTGCGAGGCGAGGGAGT3-10-4878
23812397510144TCTGCGAGGCGAGGGAG3-10-41779
28202836510145TTCCCAAGAATATGGTG3-10-42280
28212837510146GTTCCCAAGAATATGGT3-10-41181
28222838510147TGTTCCCAAGAATATGG3-10-42182
Example 2: Antisense inhibition of HBV viral mRNA in HepG2.2.15 cells by MOE gapmers
Additional antisense oligonucleotides were designed targeting a HBV viral nucleic acid and were tested for their effects on HBV mRNA in vitro. Cultured HepG2.2.15 cells at a density of 25,000 cells per well were transfected using electroporation with 15,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3370 was used to measure mRNA levels. RTS3370 detects the full length mRNA and the second portions of the pre-Sl, pre-S2 and pre-C mRNA transcripts. The gapmers were also probed with additional primer probe sets. Viral primer probe set RTS3371 (forward sequence CCAAACCTTCGGACGGAAA, designated herein as SEQ ID NO: 311; reverse sequence TGAGGCCCACTCCCATAGG, designated herein as SEQ ID NO: 312; probe sequence CCCATCATCCTGGGCTTTCGGAAAAT, designated herein as SEQ ID NO: 313) was used also to measure mRNA levels. RTS3371 detects the full length mRNA and the second portions of the pre-Sl, pre-S2 and preC mRNA transcripts, similar to RTS3370, but at different regions. Viral primer probe set RTS3372 (forward
121
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 sequence ATCCTATCAACACTTCCGGAAACT, designated herein as SEQ ID NO: 314; reverse sequence CGACGCGGCGATTGAG, designated herein as SEQ ID NO: 315; probe sequence AAGAACTCCCTCGCCTCGCAGACG, designated herein as SEQ ID NO: 316) was used to measure mRNA levels. RTS3372 detects the full length genomic sequence. Viral primer probe set RTS3373MGB (forward sequence CCGACCTTGAGGCATACTTCA, designated herein as SEQ ID NO: 317; reverse sequence AATTTATGCCTACAGCCTCCTAGTACA, designated herein as SEQ ID NO: 318; probe sequence TTAAAGACTGGGAGGAGTTG, designated herein as SEQ ID NO: 319) was used to measure mRNA levels. RTS3373MGB detects the full length mRNA and the second portions of the pre-Sl, pre-S2, pre-C, and pre-X mRNA transcripts.
HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
The newly designed chimeric antisense oligonucleotides in Table 2 were designed as either 5-10-5 MOE gapmers, 3-10-3 MOE gapmers, or 2-10-2 MOE gapmers. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising five nucleosides each. The 3-10-3 MOE gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising three nucleosides each. The 210-2 MOE gapmers are 14 nucleosides in length, wherein the central gap segment comprises of ten 2’deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising two nucleosides each. Each nucleoside in the 5’ wing segment and each nucleoside in the 3’ wing segment has an MOE sugar modification. Each nucleoside in the central gap segment has a deoxy sugar modification. The intemucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each gapmer are 5’-methylcytosines.
“Start site” indicates the 5’-most nucleotide to which the gapmer is targeted in the viral gene sequence. “Stop site” indicates the 3’-most nucleotide to which the gapmer is targeted viral gene sequence. The ‘Motif column indicates the gap and wing structure of each gapmer. Each gapmer listed in Table 2 is targeted to the viral genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. U95551.1).
122
WO 2012/145697
PCT/US2012/034550
Table 2
Inhibition of viral HBV mRNA levels by MOE gapmers targeted to SEQ ID NO: 1 (detected by RTS3370,
RTS3371, RTS3372, and RTS3373MGB)
2019202856 24 Apr 2019
Start SiteStop SiteISIS NoSequenceRTS3370 % inhibitionRTS3371% inhibitionRTS3372 % inhibitionRTS3373 MGB % inhibitionMotifSEQ IDNO
5877146779GAACTGGA GCCACCAG CAGG768082815-10-583
5871510019GAGCCACCAGCAGG383245312-10-284
6180505314CCTGAACT GGAGCCAC CAGC687167665-10-585
6277509941GAACTGGA GCCACCAG363271533-10-386
196215505315AAAAACCC CGCCTGTA ACAC697480885-10-587
199218505316AAGAAAAA CCCCGCCTG TAA606064645-10-588
205224505317GTCAACAA GAAAAACC CCGC858379855-10-589
228241510020GTATTGTGAGGATT28180162-10-290
229242510021GGTATTGTGAGGAT403719342-10-291
244263146821CACCACGA GTCTAGACT CTG747362755-10-592
245260509942CACGAGTC TAGACTCT181545463-10-393
245258510022CGAGTCTA GACTCT322623192-10-294
246261509943CCACGAGT CTAGACTC343563603-10-395
247266505318GTCCACCA CGAGTCTA GACT 757764755-10-596
250269509921GAAGTCCA CCACGAGT CTAG464639405-10-597
250265509944TCCACCAC GAGTCTAG383965593-10-398
251270509922AGAAGTCCACCACGAGTCTA555617385-10-599
123
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
251266509945GTCCACCACGAGTCTA343564513-10-3100
252271509923GAGAAGTC CACCACGA GTCT393839335-10-5101
252267509946AGTCCACC ACGAGTCT475150453-10-3102
253272505319AGAGAAGT CCACCACG AGTC888380785-10-5103
253268509947AAGTCCACCACGAGTC465056463-10-3104
254273509924GAGAGAAG TCCACCAC GAGT434049445-10-5105
254269509948GAAGTCCA CCACGAGT414651443-10-3106
254267510023AGTCCACC ACGAGT413247482-10-2107
255274509925TGAGAGAA GTCCACCA CGAG505755555-10-5108
255270509949AGAAGTCC ACCACGAG404152343-10-3109
255268510024AAGTCCACCACGAG262919232-10-2110
256275505320TTGAGAGA AGTCCACC ACGA515755665-10-5111
256271509950GAGAAGTC CACCACGA303143333-10-3112
256269510025GAAGTCCACCACGA443853542-10-2113
257270510026AGAAGTCCACCACG394232252-10-2114
258273509952GAGAGAAG TCCACCAC545260483-10-3115
258271510027GAGAAGTCCACCAC293025192-10-2116
259274509953TGAGAGAA GTCCACCA394447383-10-3117
259272510028AGAGAAGTCCACCA31293152-10-2118
260273510029GAGAGAAGTCCACC211923182-10-2119
261274510030TGAGAGAAGTCCAC162221202-10-2120
262281505321AGAAAATT GAGAGAAG TCCA535852565-10-5121
124
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
265284505322CCTAGAAA ATTGAGAG AAGT626569675-10-5122
293312505323ATTTTGGCC AAGACACA CGG868481855-10-5123
296315505324CGAATTTTG GCCAAGAC ACA676769645-10-5124
302321505325GGACTGCG AATTTTGGC CAA777573765-10-5125
360379505326TCCAGCGA TAACCAGG ACAA899077915-10-5126
366385505327GACACATC CAGCGATA ACCA838575865-10-5127
369388505328GCAGACAC ATCCAGCG ATAA656849575-10-5128
384399509954GATAAAACGCCGCAGA374653353-10-3129
384397510031TAAAACGCCGCAGA363633332-10-2130
385398510032ATAAAACGCCGCAG12719152-10-2131
386401509955ATGATAAAACGCCGCA495557533-10-3132
386399510033GATAAAACGCCGCA393945372-10-2133
387400510034TGATAAAACGCCGC403729392-10-2134
388401510035ATGATAAAACGCCG22249222-10-2135
411430505329TGAGGCAT AGCAGCAG GATG606447555-10-5136
411426509956GCATAGCA GCAGGATG626471603-10-3137
411424510036ATAGCAGC AGGATG443430482-10-2138
412431509926ATGAGGCA TAGCAGCA GGAT455471625-10-5139
412427509957GGCATAGC AGCAGGAT727580713-10-3140
412425510037CATAGCAGCAGGAT292424202-10-2141
413432509927GATGAGGC ATAGCAGC AGGA545854495-10-5142
125
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
413428509958AGGCATAG CAGCAGGA636668643-10-3143
413426510038GCATAGCAGCAGGA555437462-10-2144
414433505330AGATGAGG CATAGCAG CAGG858774825-10-520
414429509959GAGGCATA GCAGCAGG646480683-10-3145
414427510039GGCATAGCAGCAGG585441452-10-2146
415430509960TGAGGCAT AGCAGCAG595966643-10-3147
415428510040AGGCATAGCAGCAG585538412-10-2148
416431509961ATGAGGCA TAGCAGCA565465563-10-3149
416429510041GAGGCATAGCAGCA646264572-10-2150
417432509962GATGAGGC ATAGCAGC575258493-10-3151
417430510042TGAGGCAT AGCAGC485055482-10-2152
418433509963AGATGAGG CATAGCAG505264513-10-3153
418431510043ATGAGGCA TAGCAG363136262-10-2154
419434509964AAGATGAG GCATAGCA484772653-10-3155
419432510044GATGAGGCATAGCA44280142-10-2156
420435509965GAAGATGA GGCATAGC454165623-10-3157
420433510045AGATGAGGCATAGC414337292-10-2158
421436509966AGAAGATG AGGCATAG322964513-10-3159
421434510046AAGATGAGGCATAG211826272-10-2160
422437509967AAGAAGAT GAGGCATA211755463-10-3161
422435510047GAAGATGA GGCATA252423252-10-2162
423436510048AGAAGATG AGGCAT211725192-10-2163
424437510049AAGAAGATGAGGCA171138272-10-2164
454473505331ACGGGCAA CATACCTTG ATA555765605-10-5165
126
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
457476505332CAAACGGG CAACATAC CTTG737777745-10-5166
457472509968CGGGCAAC ATACCTTG606173703-10-3167
458473509969ACGGGCAA CATACCTT586364583-10-3168
458471510050GGGCAACATACCTT585657462-10-2169
459472510051CGGGCAACATACCT494347372-10-2170
460473510052ACGGGCAACATACC505054512-10-2171
463482505333AGAGGACA AACGGGCA ACAT646864715-10-5172
466485505334ATTAGAGG ACAAACGG GCAA596242695-10-5173
472491505335CCTGGAATT AGAGGACA AAC788173865-10-5174
475494505336GATCCTGG AATTAGAG GACA566561725-10-5175
639654509970GGCCCACT CCCATAGG385574483-10-3176
641656509971GAGGCCCA CTCCCATA304677543-10-3177
642657509972TGAGGCCC ACTCCCAT585784663-10-3178
643658509973CTGAGGCC CACTCCCA385370663-10-3179
670689146823GGCACTAG TAAACTGA GCCA616463635-10-5180
670685509974CTAGTAAACTGAGCCA717178803-10-3181
670683510053AGTAAACTGAGCCA494852532-10-2182
671684510054TAGTAAACTGAGCC413819302-10-2183
672685510055CTAGTAAACTGAGC252742472-10-2184
673692505337AATGGCAC TAGTAAAC TGAG344649525-10-5185
679698505338TGAACAAA TGGCACTA GTAA747771805-10-5186
127
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
682701505339CACTGAAC AAATGGCA CTAG828371825-10-5187
687702509975CCACTGAACAAATGGC727376803-10-3188
688707505340ACGAACCA CTGAACAA ATGG696978765-10-5189
688703509976ACCACTGA ACAAATGG474867653-10-3190
689704509977AACCACTG AACAAATG333339413-10-3191
690705509978GAACCACT GAACAAAT504963483-10-3192
691710505341CCTACGAACCACTGAACAAA647070725-10-5193
691706509979CGAACCAC TGAACAAA676678773-10-3194
691704510056AACCACTG AACAAA363623322-10-2195
692705510057GAACCACT GAACAA454451432-10-2196
693706510058CGAACCACTGAACA595248492-10-2197
697716505342GAAAGCCC TACGAACC ACTG768073835-10-5198
738753509980CCACATCAT CCATATA403362543-10-3199
738751510059ACATCATCCATATA19930272-10-2200
739754509981ACCACATC ATCCATAT767893853-10-3201
739752510060CACATCATCCATAT453524172-10-2202
740753510061CCACATCATCCATA524943402-10-2203
741754510062ACCACATC ATCCAT444548472-10-2204
756775505343TGTACAGA CTTGGCCCC CAA475655685-10-5205
823842505344AGGGTTTA AATGTATA CCCA667164725-10-5206
11701189505345GCAAACAC TTGGCACA GACC768035705-10-5207
11761191509982CAGCAAACACTTGGCA424456543-10-3208
128
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
11771192509983TCAGCAAA CACTTGGC605474703-10-3209
12591278505346CCGCAGTATGGATCGGCAGA888257805-10-5210
12611276509984GCAGTATG GATCGGCA615865723-10-3211
12621281505347GTTCCGCA GTATGGAT CGGC848171835-10-5212
12681287505348CTAGGAGT TCCGCAGT ATGG786870795-10-5213
12711290505349CGGCTAGG AGTTCCGC AGTA475459615-10-5214
12771296505350AACAAGCG GCTAGGAG TTCC556269695-10-5215
12801299505351CAAAACAA GCGGCTAG GAGT204949545-10-5216
12831302505352GAGCAAAA CAAGCGGC TAGG538373875-10-5217
12861305505353TGCGAGCA AAACAAGC GGCT647368785-10-5218
14131426510063ACAAAGGACGTCCC148002-10-2219
15151534505354GAGGTGCG CCCCGTGGT CGG688161805-10-5220
15181537505355AGAGAGGT GCGCCCCG TGGT597575845-10-5221
15211540505356TAAAGAGA GGTGCGCC CCGT637683785-10-5222
15501563510064AAGGCACAGACGGG353825322-10-2223
15771596146786GTGAAGCG AAGTGCAC ACGG889184935-10-5224
15801599505357GAGGTGAA GCGAAGTG CACA707571825-10-5225
15831602505358GCAGAGGT GAAGCGAA GTGC778272845-10-5226
129
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
15861605505359CGTGCAGA GGTGAAGC GAAG727367805-10-5227
16551674505360AGTCCAAG AGTCCTCTT ATG666854685-10-5228
17061719510065CAGTCTTTGAAGTA191926172-10-2229
17781793509985TATGCCTACAGCCTCC646064633-10-3230
17791794509986TTATGCCTACAGCCTC666677733-10-3231
17801795509987TTTATGCCTACAGCCT565568673-10-3232
17811796509988ATTTATGCCTACAGCC525268633-10-3233
17821797509989AATTTATGCCTACAGC484470593-10-3234
17831798509990CAATTTATGCCTACAG241839403-10-3235
17841799509991CCAATTTATGCCTACA373755553-10-3236
17851800509992ACCAATTTATGCCTAC353660553-10-3237
18061825505361AAAGTTGC ATGGTGCT GGTG425575615-10-5238
18091828505362GAAAAAGT TGCATGGT GCTG455664535-10-5239
18121831505363GGTGAAAA AGTTGCAT GGTG717080725-10-5240
18151834505364AGAGGTGA AAAAGTTG CATG515777825-10-5241
18181837505365GGCAGAGG TGAAAAAG TTGC546376785-10-5242
18211840505366TTAGGCAG AGGTGAAA AAGT616580665-10-5243
18221837509993GGCAGAGG TGAAAAAG475174543-10-3244
18231838509994AGGCAGAG GTGAAAAA474076543-10-3245
18241843505367TGATTAGG CAGAGGTG AAAA413962295-10-5246
18241839509995TAGGCAGA GGTGAAAA464279593-10-3247
130
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
18261839510066TAGGCAGA GGTGAA403344312-10-2248
18271846505368AGATGATT AGGCAGAG GTGA274662515-10-5249
18611880146787AGCTTGGA GGCTTGAA CAGT596165725-10-5250
18641883505369CACAGCTT GGAGGCTT GAAC112148315-10-5251
18651880509996AGCTTGGA GGCTTGAA13145403-10-3252
18651878510067CTTGGAGG CTTGAA221720142-10-2253
18661881509997CAGCTTGG AGGCTTGA291951453-10-3254
18661879510068GCTTGGAG GCTTGA242537322-10-2255
18671886505370AGGCACAG CTTGGAGG CTTG323658335-10-563
18671882509998ACAGCTTG GAGGCTTG1423123-10-3256
18671880510069AGCTTGGA GGCTTG232417232-10-2257
18681883509999CACAGCTT GGAGGCTT5148413-10-3258
18681881510070CAGCTTGG AGGCTT21200182-10-2259
18691884510000GCACAGCT TGGAGGCT141050373-10-3260
18691882510071ACAGCTTG GAGGCT192224272-10-2261
18701889505371CCAAGGCA CAGCTTGG AGGC274068385-10-569
18701885510001GGCACAGC TTGGAGGC101243163-10-3262
18701883510072CACAGCTT GGAGGC283133302-10-2263
18711886510002AGGCACAG CTTGGAGG242046253-10-3264
18711884510073GCACAGCT TGGAGG201822152-10-2265
18721887510003AAGGCACA GCTTGGAG6045243-10-3266
18721885510074GGCACAGCTTGGAG181832232-10-2267
131
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
18731892505372CACCCAAG GCACAGCT TGGA18855165-10-5268
18731888510004CAAGGCAC AGCTTGGA9031153-10-3269
18731886510075AGGCACAG CTTGGA23927102-10-2270
18741889510005CCAAGGCA CAGCTTGG0039253-10-3271
18761895505373AGCCACCC AAGGCACA GCTT475069565-10-5272
18791898505374CAAAGCCA CCCAAGGC ACAG272755305-10-5273
18821901505375CCCCAAAGCCACCCAAGGCA344054395-10-5274
18851904505376ATGCCCCA AAGCCACC CAAG414354525-10-5275
18881907505377TCCATGCCC CAAAGCCA CCC404272405-10-5276
18911910505378ATGTCCATGCCCCAAAGCCA353370405-10-5277
19181933510006CTCCAAATTCTTTATA9253413-10-3278
19181931510076CCAAATTCTTTATA28227222-10-2279
19191934510007GCTCCAAA TTCTTTAT433972573-10-3280
19191932510077TCCAAATTCTTTAT1911022-10-2281
19201933510078CTCCAAATTCTTTA1911002-10-2282
19211934510079GCTCCAAATTCTTT504861552-10-2283
19571976505379GGAAAGAA GTCAGAAG GCAA171481395-10-5284
22702285510008GTGCGAAT CCACACTC21436113-10-3285
22702283510080GCGAATCCACACTC322941332-10-2286
22712284510081TGCGAATCCACACT282025112-10-2287
22722285510082GTGCGAATCCACAC282032222-10-2288
132
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
23682387505380GAGGGAGT TCTTCTTCT AGG242290485-10-5289
23782393510009CGAGGCGA GGGAGTTC12165103-10-3290
23782391510083AGGCGAGGGAGTTC171829252-10-2291
23792394510010GCGAGGCG AGGGAGTT181382373-10-3292
23792392510084GAGGCGAGGGAGTT292254302-10-2293
23802395510011TGCGAGGC GAGGGAGT131169443-10-3294
23802393510085CGAGGCGAGGGAGT252053422-10-2295
23812396510012CTGCGAGG CGAGGGAG171479533-10-3296
23812394510086GCGAGGCGAGGGAG332966482-10-2297
23822397510013TCTGCGAG GCGAGGGA18477473-10-3298
24202439505381CCGAGATTGAGATCTTCTGC121883285-10-5299
24592478505382CCCACCTTA TGAGTCCA AGG141980365-10-5300
28192838505383TGTTCCCAA GAATATGG TGA293278445-10-5301
28202835510014TCCCAAGA ATATGGTG101068403-10-3302
28212836510015TTCCCAAG AATATGGT5062243-10-3303
28222837510016GTTCCCAA GAATATGG6242163-10-3304
28232838510017TGTTCCCAA GAATATG181847183-10-3305
28242839510018TTGTTCCCA AGAATAT7557193-10-3306
28252838510087TGTTCCCAAGAATA252044252-10-2307
28732892505384GAAAGAAT CCCAGAGG ATTG8461225-10-5308
31613180146833ACTGCATG GCCTGAGG ATGA474682545-10-5309
31633182505385CCACTGCATGGCCTGAGGAT253469195-10-5310
133
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Example 3: Antisense inhibition of HBV viral mRNA in HepAD38 (Tet-HBV) cells by MOE gapmers
Certain antisense oligonucleotides selected from the study described in Example 2 were tested for their effects on HBV mRNA in another cell line, human hepatoma HepAD38 cells, in which HBV production is under the control of a tetracycline-regulated promoter. Cultured HepAD38 (Tet-HBV) cells at a density of 45,000 cells per well were transfected using electroporation with 15,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe sets RTS3372 and RTS3373MGB were used individually to measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented in Table 3 as percent inhibition of HBV, relative to untreated control cells.
Table 3
Inhibition of viral HBV mRNA levels by MOE gapmersin HepAD38 (Tet-HBV) cells (detected by RTS3372 andRTS3373MGB)
Start SiteStop SiteISIS NoMotifRTS3373MGB % inhibitionRTS3372 % inhibitionSEQ ID NO
58771467795-10-5768283
58715100195-10-50984
61805053145-10-5657585
1962155053155-10-5466587
1992185053165-10-5577188
2052245053175-10-5838789
2282415100202-10-26090
2292425100212-10-2192491
2442631468215-10-5727192
2452585100222-10-262494
2472665053185-10-5687796
2502695099215-10-5254797
2512705099225-10-5284699
2522715099235-10-51940101
2532725053195-10-56966103
2542735099245-10-5939105
2542675100232-10-21915107
2552745099255-10-52655108
2552685100242-10-205110
2562755053205-10-56268111
2562695100252-10-208113
2572705100262-10-2721114
2582715100272-10-200116
2592725100282-10-200118
2602735100292-10-209119
134
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
2612745100302-10-200120
2622815053215-10-55354121
2652845053225-10-55960122
2933125053235-10-56577123
2963155053245-10-57883124
3023215053255-10-57180125
3603795053265-10-57684126
3663855053275-10-57783127
3693885053285-10-56578128
3843975100312-10-2016130
3853985100322-10-200131
3863995100332-10-2121133
3874005100342-10-2828134
3884015100352-10-200135
4114305053295-10-55872136
4114245100362-10-2611138
4124315099265-10-52054139
4124255100372-10-2010141
4134325099275-10-55676142
4134265100382-10-25468144
4144335053305-10-5668120
4144275100392-10-26074146
4154285100402-10-23339148
4164295100412-10-23058150
4174305100422-10-23457152
4184315100432-10-202154
4194325100442-10-2029156
4204335100452-10-2331158
4214345100462-10-200160
4224355100472-10-200162
4234365100482-10-200163
4244375100492-10-200164
4544735053315-10-56077165
4574765053325-10-55574166
4584715100502-10-24747169
4594725100512-10-23555170
4604735100522-10-22741171
4634825053335-10-56678172
4664855053345-10-55363173
472491505335. 5-10-57076174
4754945053365-10-5' 6477175
6706891468235-10-57479180
6706835100532-10-21820182
135
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
6716845100542-10-21321183
6726855100552-10-242184
6736925053375-10-56072185
6796985053385-10-56275186
6827015053395-10-58190187
6887075053405-10-56781189
6917105053415-10-56880193
6917045100562-10-200195
6927055100572-10-23748196
6937065100582-10-24459197
6977165053425-10-58087198
7387515100592-10-200200
7397525100602-10-200202
7407535100612-10-22319203
7417545100622-10-22530204
7567755053435-10-56271205
8238425053445-10-55266206
117011895053455-10-58381207
125912785053465-10-58481210
126212815053475-10-58984212
126812875053485-10-5. 7878213
127112905053495-10-57477214
127712965053505-10-57577215
128012995053515-10-54962216
128313025053525-10-57066217
128613055053535-10-56260218
141314265100632-10-200219
151515345053545-10-58575220
151815375053555-10-58174221
152115405053565-10-55752222
155015635100642-10-200223
157715961467865-10-59485224
158015995053575-10-58679225
158316025053585-10-58979 .226
158616055053595-10-58268227
165516745053605-10-58474228
170617195100652-10-200229
180618255053615-10-56666238
180918285053625-10-55259239
181218315053635-10-57275240
181518345053645-10-57380241
181818375053655-10-56882242
182118405053665-10-55076243
136
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
182418435053675-10-55876246
182618395100662-10-2031248
182718465053685-10-57184249
186118801467875-10-52535250
186418835053695-10-52965251
186518785100672-10-200253
186618795100682-10-2020255
186718865053705-10-5457063
186718805100692-10-200257
186818815100702-10-200259
186918825100712-10-200261
187018895053715-10-5486669
187018835100722-10-200263
187118845100732-10-200265
187218855100742-10-202267
187318925053725-10-54867268
187318865100752-10-200270
187618955053735-10-52348272
187918985053745-10-5034273
188219015053755-10-53966274
188519045053765-10-5040275
188819075053775-10-5447276
189119105053785-10-56577277
191819315100762-10-200279
191919325100772-10-200281
192019335100782-10-200282
192119345100792-10-21850283
195719765053795-10-54284284
227022835100802-10-200286
227122845100812-10-200287
227222855100822-10-2010288
236823875053805-10-52979289
237823915100832-10-200291
237923925100842-10-23117293
238023935100852-10-208295
238123945100862-10-2102297
242024395053815-10-53086299
245924785053825-10-51687300
281928385053835-10-52681301
282528385100872-10-200307
287328925053845-10-53159308
316131801468335-10-55576309
316331825053855-10-55883310
137
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Example 4: Antisense inhibition of HBV viral mRNA in HepAD38 (Tet-HBV) cells by MOE gapmers
Certain antisense oligonucleotides from the study described in Examples 1 and 2 were tested for their effects on HBV mRNA in vitro. Cultured HepAD38 (Tet-HBV) cells at a density of 45,000 cells per well were transfected using electroporation with 15,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3372 was used to measure mRNA levels. The mRNA levels were also measured using the RTS3373MGB primer probe set. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented in Table 4 as percent inhibition of HBV, relative to untreated control cells.
Table 4
Inhibition of viral HBV mRNA levels by MOE gapmers (RTS3372 and RTS3373MGB)
Start SiteStopSiteISIS NoMotifRTS3372 % inhibitionRTS3373MGB % inhibitionSEQ ID NO
62775099413-10-336586
2452605099423-10-33093
2452615100883-10-424105
2462615099433-10-3271395
2502655099443-10-3463498
2502665100893-10-461336
2512665099453-10-35443100
2512675100903-10-458327
2522675099463-10-35028102
2522685100913-10-460428
2532685099473-10-34940104
2532695100923-10-44099
2542695099483-10-31322106
2542705100933-10-439210
2552705099493-10-33324109
2552715100943-10-4401611
2562715099503-10-33123112
2562725100953-10-424612
2572735100963-10-4624413
2582735099523-10-34240115
2582745100973-10-4654814
2592745099533-10-33529117
3843995099543-10-33518129
3844005100983-10-4624315
3854015100993-10-4675016
3864015099553-10-34437132
138
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
4114265099563-10-36753137
4114275101003-10-4886917
4124275099573-10-38676140
4124285101013-10-4714618
4134285099583-10-37874143
4134295101023-10-4775219
4144335053305-10-5816020
4144295099593-10-36249145
4144305101033-10-49521
4154345099285-10-5816622
4154305099603-10-36757147
4154315101043-10-4715723
4164355099295-10-5826924
4164315099613-10-36243149
4164325101053-10-4816425
4174365099305-10-5744526
4174325099623-10-35948151
4174335101063-10-4867027
4184371467835-10-519328
4184335099633-10-34828153
4184345101073-10-4745129
4194345099643-10-35039155
4194355101083-10-4675030
4204355099653-10-34938157
4204365101093-10-4121331
4214365099663-10-32322159
4214375101103-10-4341632
4224375099673-10-3312161
4574725099683-10-35638167
4574735101113-10-4685133
4584735099693-10-35339168
6396581467845-10-50034
6396545099703-10-35115176
6396555101123-10-4663235
6406565101133-10-4703136
6416565099713-10-35431177
6416575101143-10-4674537
6426575099723-10-35125178
6426585101153-10-4735038
6436585099733-10-34932179
6706855099743-10-37467181
6877065099315-10-5928339
6877025099753-10-37271188
139
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
6877035101163-10-4837440
6887035099763-10-34652190
6887045101173-10-4715741
6897045099773-10-31822191
6897055101183-10-4715042
6907055099783-10-35737192
6907065101193-10-4806443
6917065099793-10-36555194
7387535099803-10-34844199
7387545101203-10-4705444
7397545099813-10-35445201
117611915099823-10-34436208
117611925101213-10-4746945
117711925099833-10-35753209
126112765099843-10-35750211
177817975099325-10-5307646
177817935099853-10-3046230
177817945101223-10-406047
177917985099335-10-5547848
177917945099863-10-35681231
177917955101233-10-4748549
178017995099345-10-5698450
178017955099873-10-35278232
178017965101243-10-4758451
178118005099355-10-5728552
178117965099883-10-35768232
178117975101253-10-4687253
178217975099893-10-34641234
178217985101263-10-4565154
178317985099903-10-31625234
178317995101273-10-4616955
178417995099913-10-34141236
178418005101283-10-4616856
178518005099923-10-34343237
182218375099933-10-37244244
182218385101293-10-4663357
182318385099943-10-37932245
182318395101303-10-4493158
182418395099953-10-36330247
186518845099365-10-5745959
186518805099963-10-3360252
186518815101313-10-426060
186618855099375-10-5786361
140
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
186618815099973-10-350254
186618825101323-10-437462
186718865053705-10-5541763
186718825099983-10-3130256
186718835101333-10-4422564
186818875099385-10-59665
186818835099993-10-3476258
186818845101343-10-4562766
186918885099395-10-5642967
186918845100003-10-3241260
186918855101353-10-4704368
187018895053715-10-5634669
187018855100013-10-33912262
187018865101363-10-4522370
187118865100023-10-3100264
187118875101373-10-428071
187218875100033-10-3210266
187218885101383-10-425772
187318885100043-10-32138269
187318895101393-10-418073
187418895100053-10-380271
191819335100063-10-300278
191819345101403-10-4816774
191919345100073-10-36966280
227022855100083-10-3230285
237823975099403-10-466775
237823935100093-10-3230290
237823945101413-10-4101176
237923945100103-10-3396292
237923955101423-10-4462477
238023955100113-10-33323294
238023965101433-10-4593678
238123965100123-10-33822296
238123975101443-10-4542079
238223975100133-10-3420298
282028355100143-10-3519302
282028365101453-10-4681980
282128365100153-10-3352303
282128375101463-10-4651581
282228375100163-10-390304
282228385101473-10-430085
282328385100173-10-3180305
282428395100183-10-3245306
141
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Example 5: Dose-dependent inhibition of viral HBV RNA in HepG2.2.15 cells by MOE gapmers
Certain gapmers from the study described in Examples 3 and 4 were tested at various doses in human HepG2.2.15 cells. Cells were plated at a density of 25,000 cells per well and transfected using electroporation with 2.5 μΜ, 5.0 μΜ, 10.0 μΜ, and 20.0 μΜ concentrations of antisense oligonucleotide, as specified in Table 5. After a treatment period of approximately 16 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3370 was used to measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
The half maximal inhibitory concentration (IC5o) of each oligonucleotide is also presented in Table 5. As illustrated in Table 5, HBV mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
Table 5
Dose-dependent antisense inhibition of HBV RNA in HepG2.2.15 cells using RTS3370
ISIS No2.5 μΜ5.0 μΜ10.0 μΜ20.0μΜic50(μΜ)
146786335054815.7
505317354063676.6
5053231633486311.1
505326274464676.9
509929214460628.4
50993151637575<2.5
509957375357705.4
509974253554639.5
509975365562814.7
509981723355218.8
510039274660696.9
5100401028435913.4
510041294153668.3
510058934426311.9
Example 6: Dose-dependent inhibition of viral HBV RNA in HepG2.2.15 cells by MOE gapmers
Additional gapmers from the study described in Examples 3 and 4 were further tested at various doses in human HepG2.2.15 cells. Cells were plated at a density of 28,000 cells per well and transfected using LipofectAMINE 2000® reagent with 15.625 nM, 31.25 nM, 62.5 nM, 125.0 nM, and 250.0 nM
142
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 concentrations of antisense oligonucleotide, as specified in Table 6. After a treatment period of approximately 16 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3370 was used to measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
The half maximal inhibitory concentration (IC5o) of each oligonucleotide is also presented in Table 6. As illustrated in Table 6, HBV mRNA levels were significantly reduced in a dose-dependent manner in some antisense oligonucleotide treated cells.
Table 6
Dose-dependent antisense inhibition of HBV RNA inHepG2.2.15 cells using RTS3370
ISIS No15.625 nM31.25 nM62.5 nM125.0 nM250.0 nMIC5o (nM)
146779142544707873.1
1467S6103564859349.4
146833121632627299.8
505317193144698365.2
505319511243969152.8
50532321126689085.4
50532611545728973.7
50532704125674128.5
505329316335164130.4
505339263259829246.0
50534210434697495.7
505347202641709263.0
5053560003869182.0
50535882847718467.9
5053825032619>250.0
50992606184267159.3
509927317335576103.2
509929719366069102.9
509931182852768757.4
509934141440617689.3
509957202851717963.1
509958121737567696.4
5099591211185970121.7
509960919305774103.4
509972156172745>250.0
509974253557839245.3
509975334445618053.1
143
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
5099S1015113560224.4
51000700153145>250.0
510038121948738468.9
510039172544697277.3
5100401720235972108.6
510041112143647980.5
510050321165170132.4
51005879162246>250.0
51007906112932>250.0
510100183450798356.1
510106232535697478.4
510116204465799142.6
510140728305558136.5
The mRNA levels were also measured with primer probe set RTS3371. The results are presented in Table 7.
Table 7
Dose-dependent antisense inhibition of HBV RNA in HepG2.2.15 cells using RTS3371
ISIS No15.625 nM31.25 nM62.5 nM125.0 nM250.0 nMic50(nM)
1467791673869 .6896.9
146786283965869335
146833262252616582.3
505317183340778461.4
5053190001555>250.0
50532300336687100.5
50532602175785114.6
50532700405063132.3
505329112235667790.7
50534215014059190.1
50534733544659068.4
5053560034276153.2
505358201139717879.7
50538200000>250.0
50992604145572130.6
509927112531617888.4
509929112641707775.8
509931253955798546.6
509934025325465119.9
509957254448748050.6
5099582418205772114.5
144
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
50995929315265132.3
5099601628225775101.8
5099723513960236.3
509974384665839431.2
509975307244967148.2
5099812222234658194.7
51000730153339>250.0
510038162250768462.9
510039233632706879.7
5100401815415967101.9
51004102738628184.5
510050116175263149
5100582019404451214.1
5100790254149>250.0
510100355261869030.7
51010627235758187.9
510116114470729446.5
510140018264541>250.0
Example 7: Tolerability of MOE gapmers targeting HBV in BALB/c mice
BALB/c mice (Charles River, MA) are a multipurpose model of mice, frequently utilized for safety and efficacy testing. The mice were treated with ISIS antisense oligonucleotides selected from studies described above and evaluated for changes in the levels of various metabolic markers.
Study 1
Groups of four BALB/c mice each were injected subcutaneously twice a week for 3 weeks with 50 mg/kg of ISIS 146779, ISIS 146786, ISIS 505317, ISIS 505319, ISIS 505330, ISIS 505332, ISIS 505339, ISIS 505346, ISIS 505347, ISIS 505358, ISIS 509929, ISIS 509931, ISIS 509932, ISIS 509934, ISIS 509957, 10 ISIS 510100, ISIS 510106, ISIS 510116, and ISIS 510140. A group of four BALB/c mice were injected subcutaneously twice a week for 3 weeks with 50 mg/kg of ISIS 141923 (CCTTCCCTGAAGGTTCCTCC (SEQ ID NO: 320)), a 5-10-5 MOE gapmer with no known homology to any human or mouse gene sequence. Another group of 4 BALB/c mice was injected subcutaneously twice a week for 3 weeks with PBS. This group of mice served as the control group. Three days after the last dose at each time point, body weights were taken, mice were euthanized and organs and plasma were harvested for further analysis.
Body and organ weights
The body weights of the mice were measured pre-dose and at the end of each treatment period. The body weights are presented in Table 8, and are expressed as percent change from the weight taken before the
145
WO 2012/145697
PCT/US2012/034550 start of treatment. Liver, spleen and kidney weights were measured at the end of the study, and are presented in Table 9 as a percentage difference from the respective organ weights of the PBS control. The results indicate that most of the ISIS oligonucleotides did not cause any adverse effects on body or organ weights.
2019202856 24 Apr 2019
Table 8
Change in body weights of BALB/c mice after antisense oligonucleotide treatment (%)
Body weight
PBS9
ISIS 1419239
ISIS 146779ISIS 14678611
9
ISIS 50531710
ISIS 50531914
ISIS 50533011
ISIS 50533210
ISIS 50533914
ISIS 50534612
ISIS 50534716
ISIS 50535812
ISIS 5099298
ISIS 5099319
ISIS 50993221
ISIS 50993414
ISIS 50995710
ISIS 51010010
ISIS 51010615
ISIS 51011616
ISIS 51014019
Table 9
Change in organ weights of BALB/c mice after antisense oligonucleotide treatment (%)
LiverKidneySpleen
PBS---
ISIS 1419233-3-9
ISIS 14677910113
ISIS 14678619-34
ISIS 505317-4-79
ISIS 5053191-1623
ISIS 50533012-49
146
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
ISIS 5053327-214
ISIS 5053395-67
ISIS 5053467-60
ISIS 50534712-75
ISIS 505358803
ISIS 5099291714200
ISIS 509931-4-93
ISIS 50993218-979
ISIS 5099346-62
ISIS 5099570-215
ISIS 510100218
ISIS 5101065-258
ISIS 51011612-87
ISIS 51014020-849
Liver function
To evaluate the effect of ISIS oligonucleotides on hepatic function, plasma concentrations of transaminases were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, NY). Plasma concentrations of ALT (alanine transaminase) and AST (aspartate transaminase) were measured and the results are presented in Table 10 expressed in IU/L. Plasma levels of cholesterol and triglycerides were also measured using the same clinical chemistry analyzer and the results are also presented in Table 10.
Table 10
Effect of antisense oligonucleotide treatment on metabolic markers in the liver of BALB/c mice
ALT (IU/L)AST (IU/L)Cholesterol(mg/dL)Triglycerides (mg/dL)
PBS3758114238
ISIS 1419233657114234
ISIS 1467794356121221
ISIS 1467865376118327
ISIS 50531768103117206
ISIS 505319136152144168
ISIS 505330281194119188
ISIS 5053326770123226
ISIS 505339113111135249
ISIS 5053465663128234
ISIS 5053477983122347
ISIS 50535878175112214
147
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
ISIS 50992911116661175
ISIS 509931635508110179
ISIS 50993292113118131
ISIS 509934388997176
ISIS 50995715922985173
ISIS 510100908786222
ISIS 510106618879239
ISIS 5101167095124214
ISIS 5101401247996161167
Kidney function
To evaluate the effect of ISIS oligonucleotides on kidney function, plasma concentrations of blood urea nitrogen (BUN) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, NY). Results are presented in Table 11, expressed in mg/dL.
Table 11
Effect of antisense oligonucleotide treatment on kidney markers of BALB/c mice
BUN (mg/dL)
PBS29
ISIS 14192329
ISIS 14677928
ISIS 14678630
ISIS 50531730
ISIS 50531930
ISIS 50533029
ISIS 50533228
ISIS 50533929
ISIS 50534627
ISIS 50534726
ISIS 50535826
ISIS 50992925
ISIS 50993123
ISIS 50993228
ISIS 50993425
ISIS 50995724
ISIS 51010027
ISIS 51010627
ISIS 51011625
ISIS 51014022
148
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Study 2
Groups of four BALB/c mice each were injected subcutaneously twice a week for 3 weeks with 50 mg/kg of ISIS 505329, ISIS 509926, ISIS 509927, ISIS 50995S, ISIS 509959, ISIS 509960, ISIS 509974, ISIS 509975, ISIS 510038, ISIS 510039, ISIS 510040, ISIS 510041, and ISIS 510050. A group of 4 BALB/c mice was injected subcutaneously twice a week for 3 weeks with PBS. This group of mice served as the control group. Three days after the last dose at each time point, body weights were taken, mice were euthanized and organs and plasma were harvested for further analysis.
Organ weights
Liver, spleen and kidney weights were measured at the end of the study, and are also presented in Table 12 as a percentage change over the respective organ weights of the PBS control.
Table 12
Change in organ weights of BALB/c mice after antisense oligonucleotide treatment (%)
ISIS NoLiverKidneySpleen
50532912212
50992623330
5099278-427
5099581-49
5099597026
50996016630
509974587
5099751-17
5100386423
5100390159
510040312
5100416610
5100505518
Liver function
To evaluate the effect of ISIS oligonucleotides on hepatic function, plasma concentrations of transaminases were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, NY). Plasma concentrations of ALT (alanine transaminase) and AST (aspartate transaminase) were measured and the results are presented in Table 13 expressed in IU/L.
149
WO 2012/145697
PCT/US2012/034550
Table 13
Effect of antisense oligonucleotide treatment on transaminases (IU/L) in the liver of BALB/c mice
2019202856 24 Apr 2019
ALTAST
PBS3778
ISIS 5053294865
ISIS 50992677120
ISIS 5099277192
ISIS 509958106105
ISIS 509959119122
ISIS 5099604066
ISIS 5099743843
ISIS 5099753345
ISIS 5100386966
ISIS 5100393261
ISIS 51004083113
ISIS 5100413245
ISIS 5100502647
Kidney function
To evaluate the effect of ISIS oligonucleotides on kidney function, plasma concentrations of blood urea nitrogen (BUN) were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, NY). Results are presented in Table 14, expressed in mg/dL.
Table 14
Effect of antisense oligonucleotide treatment on kidney markers of BALB/c mice
BUN
PBS21
ISIS 50532922
ISIS 50992620
ISIS 50992720
ISIS 50995822
ISIS 50995921
ISIS 50996020
ISIS 50997419
ISIS 50997519
ISIS 51003819
ISIS 51003919
ISIS 51004022
ISIS 51004118
150
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
ISIS 51005022
Example 8: Dose response confirmation of MOE gapmers targeting HBV in HepG2.2.15 cells
Gapmers were chosen based on sequence conservation, activity and tolerability, as measured in the study described in Examples 7 and 8, and tested at various doses in HepG2.2.15 cells. Cells were plated at a density of 28,000 cells per well and transfected using LipofectAMINE 2000 reagent with 15.625 nM, 31.25 nM, 62.5 nM, 125.0 nM and 250.0 nM concentrations of antisense oligonucleotide. Two days posttransfection, the media was replaced with fresh media. Samples were collected 4 days post-transfection. DNA, RNA, HBsAg and HBeAg levels were measured in the supernatant.
HBV mRNA levels were measured by quantitative real-time PCR. HBV primer probe set RTS3370 was used to measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells. As illustrated in Table 15, HBV mRNA levels were reduced in a dose-dependent manner in most of the antisense oligonucleotide treated cells.
HBV antigens in the supernatants were detected with the ELISA technique. HBs antigen (HBsAg) levels were detected by ELISA from Abazyme LLC, MA. As presented in Table 16, treatment with ISIS oligonucleotides 146779, 146786, 505329, 505330, 505339, 505347, 505358, 509927, 509934, 509958, 509959, 509960, 509974, 5100038, 510039, 510040,510041, 510100, 510106, and 510116 caused significant reduction in HBsAg levels. HBe antigen (HBeAg) levels were detected by ELISA from International Immuno-diagnostics, CA. As presented in Table 17, treatment with ISIS oligonucleotides 146779, 146786, 505329, 505330, 505339, 505347, 505358, 509927, 509934, 509958, 509959, 509960, 509974, 5100038, 510039, 510040, 510041, 510100, 510106, and 510116 caused significant reduction in HBeAg levels. HBV DNA levels were measured using primer probe set RTS3370. As presented in Table 18, treatment with ISIS oligonucleotides 146779, 146786, 505329, 505330, 505339, 505347, 505358, 509927, 509934,509958,509959,509960,509974,5100038, 510039, 510040, 510041, 510100, 510106, and 510116 25 caused significant reduction in HBV DNA levels. The total protein in the supernatants was measured by a DC protein assay (BioRad), as presented in Table 19.
Table 15
Dose-dependent antisense inhibition of HBV RNA in HepG2.2.15cells
ISIS No15.625nM31.25nM62.5nM125nM250nM
1467791025426495
1467862359788490
5053294549576983
5053303161658093
151
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
5053393156788997
5053473050728796
5053582852758695
5099274161676176
5099343861648258
5099585067727989
5099595063738086
5099606361728274
5099742944759196
5100382940858993
5100393234638484
510040180517177
5100413453677671
5101002964708993
5101062865648185
5101161334788995
Table 16
Dose-dependent reduction of S antigen in HepG2.2.15 cell supernatant
ISIS No15.625nM31.25nM62.5nM125nM
14677940588092
14678647759298
50532937587189
50533045668495
50533962799396
50534768718997
50535869839296
50992754748894
50993440597889
50995857779193
509959547284100
50996044729191
50997458779295
51003858789498
51003953748995
51004039708090
51004147658292
51010074839596
51010654758692
51011661749194
152
WO 2012/145697
PCT/US2012/034550
Table 17
Dose-dependent reduction of E antigen in HepG2.2.15 cell supernatant
2019202856 24 Apr 2019
ISIS No15.625nM31.25nM62.5nM125nM
14677914456676
14678626587580
50532919266073
50533028706980
50533931577782
50534724336477
50535826457281
50992734547279
50993421425973
50995829457277
50995960647780
50996019366777
50997416487280
51003820357980
51003914416478
510040083769
5100419346376
51010026527381
5101067426276
51011627567681
Table 18
Dose-dependent antisense inhibition of HBV DNA in HepG2.2.15 cells
ISIS No15.625nM31.25nM62.5nM125nM
14677971718485
14678667818275
50532953657267
50533072768690
50533983858988
50534776788187
50535879829087
50992751757869
50993461606475
50995857736971
50995959547373
50996048666354
50997476908485
153
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
51003869769087
51003970798186
51004040676868
51004153716268
51010076818787
51010646747376
51011679848986
Table 19
Total protein levels in HepG2.2.15 cell supernatant
15.625nM31.25nM62.5nM125nM
PBS5601560156015601
1467796491663160275067
1467865408532848393518
5053295719528553844994
5053307514726266275179
5053396572634353494550
5053477315660263785908
5053586357687157985720
5099275581548751453601
5099345476561053944127
5099585193549250713957
5099595051531251443893
5099604726516050713305
5099746913762457985389
5100385707638157726733
5100395981762948026156
5100404302520950494188
5100415565560752053757
5101008466837879856402
5101065703594052314005
5101165880538047974757
Example 9: In vivo inhibition of HBV mRNA by MOE gapmers in HBV-transgenic mice
ISIS 146786, a 5-10-5 MOE gapmer, and ISIS 510100, a 3-10-4 MOE gapmer, both demonstrating significant inhibition of HBV mRNA, were tested in transgenic mice containing the HBV gene (Chisari 1.3.32 line) (Guidotti, L. G. et al., J. Virol. 1995, 69, 6158-6169) and the efficacy of the gapmers was evaluated.
Treatment
154
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Two groups of ten-eleven HBV-transgenic male and female mice each were administered subcutaneously twice a week for four weeks with 25 mg/kg of ISIS 146786 or ISIS 510100. Another group of 14 male and female HBV-transgenic mice was administered Entecavir, an oral antiviral drug used to treat Hepatitis B infection, at 1 mg/kg daily for two weeks. Another group of 10 male and female HBV-transgenic female mice were injected subcutaneously with PBS twice a week for four weeks. The mice injected with PBS served as a control group. Liver HBV mRNA and DNA levels, plasma ALT, and body and organ weights were measured.
RNA analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV using primer probe sets RTS3370, RTS3371, and RTS3372. Results are presented as percent inhibition of HBV mRNA, relative to PBS control. As shown in Table 20, treatment with ISIS antisense oligonucleotides resulted in significant reduction of HBV mRNA in comparison to the PBS control, irrespective of the primer probe set used for measurement. Entecavir did not decrease HBV mRNA expression.
Table 20
Inhibition of HBV mRNA in HBV-transgenic mice liver relative to the PBS control
ISIS NoRTS3370RTS3371RTS3372
146786827581
510100938389
DNA analysis
DNA was extracted from liver tissue for real-time PCR analysis of HBV using primer probe sets RTS3370 and RTS3371. The levels were normalized to RIBOGREEN®. Results are presented as percent 20 inhibition of HBV DNA, relative to PBS control. As shown in Table 21, treatment with ISIS antisense oligonucleotides resulted in significant reduction of HBV DNA in comparison to the PBS control, irrespective of the primer probe set used for measurement. Treatment with Entecavir also reduced DNA levels, as expected.
Table 21
Inhibition of HBV DNA in HBV-transgenic mice liver relative to the PBS control
ISIS NoRTS3370RTS3371
1467866569
5101006773
Entecavir7596
155
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Liver function
To evaluate the effect of ISIS oligonucleotides on hepatic function, plasma concentrations of transaminase was measured using a manual clinical chemistry analyzer (Teco Diagnostics, Anaheim, CA )Plasma concentrations of ALT (alanine transaminase) were measured and the results are presented in Table 22, expressed in IU/L. The results indicate that antisense inhibition of HBV had no adverse effects on the liver function of the mice.
Table 22
Effect of antisense oligonucleotide treatment on liver ALT of transgenic mice
IU/mL
PBS12.7
ISIS 14678624.1
ISIS 51010025.8
Entecavir23.7
The data from the study indicates that both ISIS 146786 and ISIS 510100 caused robust reductions in liver HBV RNA and DNA and treatment with these oligonucleotides were well tolerated in the transgenic mice.
Example 10: Antisense inhibition of HBV viral mRNA in HepG2.2.15 cells by MOE gapmers
Additional antisense oligonucleotides were designed targeting a HBV viral nucleic acid and were tested for their effects on HBV mRNA in vitro. Several of the antisense oligonucleotides from the studies described above were also included in the assay. Cultured HepG2.2.15 cells at a density of 28,000 cells per well were transfected using LipofectAMINE 2000® reagent with 100 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3370 was used to measure mRNA 20 levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®.
Results are presented as percent inhibition of HBV, relative to untreated control cells.
The newly designed chimeric antisense oligonucleotides in Table 23 were designed as 5-10-5 MOE gapmers. The gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2’deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising five 25 nucleosides each. Each nucleoside in the 5’ wing segment and each nucleoside in the 3’ wing segment has an MOE sugar modification. Each nucleoside in the central gap segment has a deoxy sugar modification. The intemucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines.
156
WO 2012/145697
PCT/US2012/034550 “Viral Target start site” indicates the 5’-most nucleotide to which the gapmer is targeted in the viral gene sequence. “Viral Target stop site” indicates the 3’-most nucleotide to which the gapmer is targeted viral gene sequence. Each gapmer listed in Table 23 is targeted to the viral genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. U95551.1).
Table 23
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides targeted to SEQ ID NO: 1 (RTS3370)
2019202856 24 Apr 2019
Viral Start SiteViral Stop SiteISIS NoSequence%inhibitionSEQ ID NO
120524410TGGTGAAAGGTTGTGGAATT70321
423524411GTTTGGTGAAAGGTTGTGGA51322
726524412AGAGTTTGGTGAAAGGTTGT47323
1029524413TGCAGAGTTTGGTGAAAGGT74324
1332524414TCTTGCAGAGTTTGGTGAAA91325
1635524415GGATCTTGCAGAGTTTGGTG93326
1938524416CTGGGATCTTGCAGAGTTTG85327
2241524417ACTCTGGGATCTTGCAGAGT66328
2544524418CTCACTCTGGGATCTTGCAG86329
2847524419CCTCTCACTCTGGGATCTTG81330
3150524420AGGCCTCTCACTCTGGGATC77331
3453524421TACAGGCCTCTCACTCTGGG71332
3756524422AAATACAGGCCTCTCACTCT68333
4059524423GGGAAATACAGGCCTCTCAC43334
4362524424GCAGGGAAATACAGGCCTCT76335
4665524425CCAGCAGGGAAATACAGGCC89336
4968524426CCACCAGCAGGGAAATACAG82337
5271524427GAGCCACCAGCAGGGAAATA53338
5574524428CTGGAGCCACCAGCAGGGAA76339
5675524429ACTGGAGCCACCAGCAGGGA55340
5776524430AACTGGAGCCACCAGCAGGG45341
5877146779GAACTGGAGCCACCAGCAGG5783
5978524431TGAACTGGAGCCACCAGCAG85342
6079524432CTGAACTGGAGCCACCAGCA90343
6180505314CCTGAACTGGAGCCACCAGC9385
6281524433TCCTGAACTGGAGCCACCAG79344
6382524434CTCCTGAACTGGAGCCACCA82345
6584524435TGCTCCTGAACTGGAGCCAC78346
6887524436TACTGCTCCTGAACTGGAGC58347
7190524437GTTTACTGCTCCTGAACTGG40348
7493524438AGGGTTTACTGCTCCTGAAC45349
157
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
7796524439AACAGGGTTTACTGCTCCTG69350
8099524440CGGAACAGGGTTTACTGCTC67351
83102524441AGTCGGAACAGGGTTTACTG47352
86105524442AGTAGTCGGAACAGGGTTTA59353
89108524443GGCAGTAGTCGGAACAGGGT47354
92111524444AGAGGCAGTAGTCGGAACAG54355
95114524445GGGAGAGGCAGTAGTCGGAA49356
98117524446TAAGGGAGAGGCAGTAGTCG81357
101120524447CGATAAGGGAGAGGCAGTAG86358
104123524448TGACGATAAGGGAGAGGCAG79359
107126524449GATTGACGATAAGGGAGAGG27360
110129524450GAAGATTGACGATAAGGGAG53361
113132524451CGAGAAGATTGACGATAAGG67362
116135524452CCTCGAGAAGATTGACGATA84363
119138524453AATCCTCGAGAAGATTGACG79364
122141524454CCCAATCCTCGAGAAGATTG65365
125144524455GTCCCCAATCCTCGAGAAGA66366
128147524456AGGGTCCCCAATCCTCGAGA67367
131150524457CGCAGGGTCCCCAATCCTCG76368
134153524458CAGCGCAGGGTCCCCAATCC59369
137156524459GTTCAGCGCAGGGTCCCCAA80370
140159524460CATGTTCAGCGCAGGGTCCC90371
143162524461CTCCATGTTCAGCGCAGGGT75372
146165524462GTTCTCCATGTTCAGCGCAG54373
149168524463GATGTTCTCCATGTTCAGCG27374
152171524464TGTGATGTTCTCCATGTTCA72375
158177524466TCCTGATGTGATGTTCTCCA91376
161180524467GAATCCTGATGTGATGTTCT77377
164183524468TAGGAATCCTGATGTGATGT77378
167186524469TCCTAGGAATCCTGATGTGA94379
170189524470GGGTCCTAGGAATCCTGATG56380
188207524471CGCCTGTAACACGAGAAGGG65381
191210524472CCCCGCCTGTAACACGAGAA71382
194213524473AAACCCCGCCTGTAACACGA74383
195214524474AAAACCCCGCCTGTAACACG72384
196215505315AAAAACCCCGCCTGTAACAC5287
197216524475GAAAAACCCCGCCTGTAACA38385
198217524476AGAAAAACCCCGCCTGTAAC18386
200219524477CAAGAAAAACCCCGCCTGTA86387
203222524478CAACAAGAAAAACCCCGCCT84388
204223524479TCAACAAGAAAAACCCCGCC80389
205224505317GTCAACAAGAAAAACCCCGC8489
206225524480TGTCAACAAGAAAAACCCCG79390
158
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
207226524481TTGTCAACAAGAAAAACCCC76391
209228524482TCTTGTCAACAAGAAAAACC86392
212231524483GATTCTTGTCAACAAGAAAA57393
215234524484GAGGATTCTTGTCAACAAGA51394
218237524485TGTGAGGATTCTTGTCAACA83395
221240524486TATTGTGAGGATTCTTGTCA61396
224243524487CGGTATTGTGAGGATTCTTG74397
227246524488CTGCGGTATTGTGAGGATTC49398
230249524489ACTCTGCGGTATTGTGAGGA67399
233252524490TAGACTCTGCGGTATTGTGA88400
236255524491GTCTAGACTCTGCGGTATTG84401
239258524492CGAGTCTAGACTCTGCGGTA82402
242261524493CCACGAGTCTAGACTCTGCG94403
243262524494ACCACGAGTCTAGACTCTGC87404
244263146821CACCACGAGTCTAGACTCTG8792
245264524495CCACCACGAGTCTAGACTCT80405
246265524496TCCACCACGAGTCTAGACTC65406
247266505318GTCCACCACGAGTCTAGACT6596
248267524497AGTCCACCACGAGTCTAGAC46407
249268524498AAGTCCACCACGAGTCTAGA54408
250269509921GAAGTCCACCACGAGTCTAG3597
251270509922AGAAGTCCACCACGAGTCTA5199
252271509923GAGAAGTCCACCACGAGTCT49101
253272505319AGAGAAGTCCACCACGAGTC60103
254273509924GAGAGAAGTCCACCACGAGT46105
255274509925TGAGAGAAGTCCACCACGAG79108
256275505320TTGAGAGAAGTCCACCACGA84111
257276524499ATTGAGAGAAGTCCACCACG83409
260279524500AAAATTGAGAGAAGTCCACC71410
263282524501TAGAAAATTGAGAGAAGTCC67411
266285524502CCCTAGAAAATTGAGAGAAG88412
269288524503TCCCCCTAGAAAATTGAGAG82413
272291524504AGTTCCCCCTAGAAAATTGA66414
275294524505GGTAGTTCCCCCTAGAAAAT0415
278297524506CACGGTAGTTCCCCCTAGAA65416
281300524507ACACACGGTAGTTCCCCCTA87417
284303524508AAGACACACGGTAGTTCCCC76418
287306524509GCCAAGACACACGGTAGTTC61419
290309524510TTGGCCAAGACACACGGTAG87420
291310524511TTTGGCCAAGACACACGGTA87421
292311524512TTTTGGCCAAGACACACGGT93422
293312505323ATTTTGGCCAAGACACACGG83123
294313524513AATTTTGGCCAAGACACACG79423
159
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
295314524514GAATTTTGGCCAAGACACAC74424
298317524515TGCGAATTTTGGCCAAGACA78425
300319524516ACTGCGAATTTTGGCCAAGA71426
301320524517GACTGCGAATTTTGGCCAAG71427
302321505325GGACTGCGAATTTTGGCCAA50125
303322524518GGGACTGCGAATTTTGGCCA55428
321340524519GTGAGTGATTGGAGGTTGGG68429
324343524520TTGGTGAGTGATTGGAGGTT84430
327346524521AGGTTGGTGAGTGATTGGAG64431
330349524522AGGAGGTTGGTGAGTGATTG58432
333352524523GACAGGAGGTTGGTGAGTGA62433
336355524524GAGGACAGGAGGTTGGTGAG56434
339358524525TTGGAGGACAGGAGGTTGGT81435
342361524526AAGTTGGAGGACAGGAGGTT77436
345364524527GACAAGTTGGAGGACAGGAG69437
348367524528CAGGACAAGTTGGAGGACAG82438
351370524529AACCAGGACAAGTTGGAGGA67439
354373524530GATAACCAGGACAAGTTGGA53440
357376524531AGCGATAACCAGGACAAGTT55441
358377524532CAGCGATAACCAGGACAAGT84442
359378524533CCAGCGATAACCAGGACAAG86443
360379505326TCCAGCGATAACCAGGACAA79126
361380524534ATCCAGCGATAACCAGGACA85444
362381524535CATCCAGCGATAACCAGGAC90445
364383524536CACATCCAGCGATAACCAGG82446
365384524537ACACATCCAGCGATAACCAG72447
366385505327GACACATCCAGCGATAACCA61127
367386524538AGACACATCCAGCGATAACC79448
368387524539CAGACACATCCAGCGATAAC73449
370389524540CGCAGACACATCCAGCGATA94450
373392524541CGCCGCAGACACATCCAGCG84451
390409524542AGAGGAAGATGATAAAACGC45452
393412524543TGAAGAGGAAGATGATAAAA62453
396415524544GGATGAAGAGGAAGATGATA58454
399418524545GCAGGATGAAGAGGAAGATG48455
402421524546GCAGCAGGATGAAGAGGAAG60456
405424524547ATAGCAGCAGGATGAAGAGG84457
408427524548GGCATAGCAGCAGGATGAAG56458
409428524549AGGCATAGCAGCAGGATGAA78459
410429524550GAGGCATAGCAGCAGGATGA67460
411430505329TGAGGCATAGCAGCAGGATG85136
412431509926ATGAGGCATAGCAGCAGGAT84139
413432509927GATGAGGCATAGCAGCAGGA68142
160
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
414433505330AGATGAGGCATAGCAGCAGG8220
415434509928AAGATGAGGCATAGCAGCAG8322
416435509929GAAGATGAGGCATAGCAGCA8024
417436509930AGAAGATGAGGCATAGCAGC7826
418437146783AAGAAGATGAGGCATAGCAG8028
419438524551CAAGAAGATGAGGCATAGCA55461
422441524552CAACAAGAAGATGAGGCATA90462
425444524553AACCAACAAGAAGATGAGGC82463
428447524554AAGAACCAACAAGAAGATGA79464
431450524555CAGAAGAACCAACAAGAAGA72465
434453524556GTCCAGAAGAACCAACAAGA87466
437456524557ATAGTCCAGAAGAACCAACA72467
440459524558TTGATAGTCCAGAAGAACCA76468
443462524559ACCTTGATAGTCCAGAAGAA78469
446465524560CATACCTTGATAGTCCAGAA77470
449468524561CAACATACCTTGATAGTCCA69471
452471524562GGGCAACATACCTTGATAGT39472
455474524563AACGGGCAACATACCTTGAT72473
456475524564AAACGGGCAACATACCTTGA86474
457476505332CAAACGGGCAACATACCTTG85166
458477524565ACAAACGGGCAACATACCTT80475
459478524566GACAAACGGGCAACATACCT42476
461480524567AGGACAAACGGGCAACATAC47477
464483524568TAGAGGACAAACGGGCAACA81478
467486524569AATTAGAGGACAAACGGGCA72479
470489524570TGGAATTAGAGGACAAACGG84480
471490524571CTGGAATTAGAGGACAAACG86481
472491505335CCTGGAATTAGAGGACAAAC89174
473492524572TCCTGGAATTAGAGGACAAA92482
474493524573ATCCTGGAATTAGAGGACAA86483
476495524574GGATCCTGGAATTAGAGGAC76484
479498524575TGAGGATCCTGGAATTAGAG77485
482501524576GGTTGAGGATCCTGGAATTA62486
485504524577GGTGGTTGAGGATCCTGGAA73487
488507524578GCTGGTGGTTGAGGATCCTG84488
491510524579CGTGCTGGTGGTTGAGGATC79489
494513524580TCCCGTGCTGGTGGTTGAGG83490
497516524581TGGTCCCGTGCTGGTGGTTG66491
500519524582GCATGGTCCCGTGCTGGTGG77492
503522524583TCGGCATGGTCCCGTGCTGG0493
506525524584GGTTCGGCATGGTCCCGTGC56494
509528524585GCAGGTTCGGCATGGTCCCG61495
512531524586CATGCAGGTTCGGCATGGTC87496
161
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
515534524587AGTCATGCAGGTTCGGCATG77497
518537524588AGTAGTCATGCAGGTTCGGC64498
521540524589AGCAGTAGTCATGCAGGTTC61499
524543524590TTGAGCAGTAGTCATGCAGG86500
527546524591TCCTTGAGCAGTAGTCATGC80501
530549524592GGTTCCTTGAGCAGTAGTCA50502
533552524593AGAGGTTCCTTGAGCAGTAG61503
536555524594CATAGAGGTTCCTTGAGCAG89504
539558524595ATACATAGAGGTTCCTTGAG87505
542561524596GGGATACATAGAGGTTCCTT0506
545564524597GGAGGGATACATAGAGGTTC38507
548567524598ACAGGAGGGATACATAGAGG73508
551570524599GCAACAGGAGGGATACATAG67509
554573524600ACAGCAACAGGAGGGATACA72510
557576524601GGTACAGCAACAGGAGGGAT59511
560579524602TTTGGTACAGCAACAGGAGG81512
563582524603AGGTTTGGTACAGCAACAGG74513
566585524604CGAAGGTTTGGTACAGCAAC85514
569588524605GTCCGAAGGTTTGGTACAGC76515
572591524606TCCGTCCGAAGGTTTGGTAC80516
575594524607ATTTCCGTCCGAAGGTTTGG88517
578597524608GCAATTTCCGTCCGAAGGTT50518
581600524609GGTGCAATTTCCGTCCGAAG55519
584603524610ACAGGTGCAATTTCCGTCCG81520
587606524611AATACAGGTGCAATTTCCGT88521
590609524612GGGAATACAGGTGCAATTTC32522
593612524613GATGGGAATACAGGTGCAAT49523
608627524614AGCCCAGGATGATGGGATGG89524
611630524615GAAAGCCCAGGATGATGGGA71525
614633524616TCCGAAAGCCCAGGATGATG86526
617636524617TTTTCCGAAAGCCCAGGATG97527
620639524618GAATTTTCCGAAAGCCCAGG80528
623642524619TAGGAATTTTCCGAAAGCCC95529
626645524620CCATAGGAATTTTCCGAAAG88530
629648524621CTCCCATAGGAATTTTCCGA83531
632651524622CCACTCCCATAGGAATTTTC68532
635654524623GGCCCACTCCCATAGGAATT60533
638657524624TGAGGCCCACTCCCATAGGA57534
641660524625GGCTGAGGCCCACTCCCATA62535
644663524626ACGGGCTGAGGCCCACTCCC57536
647666524627GAAACGGGCTGAGGCCCACT62537
650669524628GGAGAAACGGGCTGAGGCCC31538
653672524629CCAGGAGAAACGGGCTGAGG77539
162
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
656675524630GAGCCAGGAGAAACGGGCTG48540
659678524631ACTGAGCCAGGAGAAACGGG43541
662681524632TAAACTGAGCCAGGAGAAAC67542
665684524633TAGTAAACTGAGCCAGGAGA86543
668687524634CACTAGTAAACTGAGCCAGG96544
669688524635GCACTAGTAAACTGAGCCAG83545
671690524636TGGCACTAGTAAACTGAGCC84546
672691524637ATGGCACTAGTAAACTGAGC82547
674693524638AAATGGCACTAGTAAACTGA74548
677696524639AACAAATGGCACTAGTAAAC63549
678697524640GAACAAATGGCACTAGTAAA67550
679698505338TGAACAAATGGCACTAGTAA84186
680699524641CTGAACAAATGGCACTAGTA95551
681700524642ACTGAACAAATGGCACTAGT77552
682701505339CACTGAACAAATGGCACTAG95187
683702524643CCACTGAACAAATGGCACTA89553
684703524644ACCACTGAACAAATGGCACT90554
686705524646GAACCACTGAACAAATGGCA82555
687706509931CGAACCACTGAACAAATGGC9039
689708524647TACGAACCACTGAACAAATG79556
690709146824CTACGAACCACTGAACAAAT72557
692711524648CCCTACGAACCACTGAACAA73558
693712524649GCCCTACGAACCACTGAACA83559
695714524650AAGCCCTACGAACCACTGAA82560
696715524651AAAGCCCTACGAACCACTGA81561
697716505342GAAAGCCCTACGAACCACTG66198
698717524652GGAAAGCCCTACGAACCACT59562
699718524653GGGAAAGCCCTACGAACCAC46563
718737524654ACTGAAAGCCAAACAGTGGG64564
721740524655ATAACTGAAAGCCAAACAGT0565
724743524656CATATAACTGAAAGCCAAAC70566
727746524657ATCCATATAACTGAAAGCCA91567
730749524658ATCATCCATATAACTGAAAG69568
733752524659CACATCATCCATATAACTGA70569
736755524660TACCACATCATCCATATAAC57570
739758524661CAATACCACATCATCCATAT70571
742761524662CCCCAATACCACATCATCCA85572
745764524663GGCCCCCAATACCACATCAT70573
748767524664CTTGGCCCCCAATACCACAT82574
751770524665AGACTTGGCCCCCAATACCA77575
754773524666TACAGACTTGGCCCCCAATA77576
757776524667CTGTACAGACTTGGCCCCCA90577
760779524668ATGCTGTACAGACTTGGCCC79578
163
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
763782524669AAGATGCTGTACAGACTTGG79579
766785524670CTCAAGATGCTGTACAGACT84580
769788524671GGACTCAAGATGCTGTACAG24581
772791524672AAGGGACTCAAGATGCTGTA57582
775794524673AAAAAGGGACTCAAGATGCT66583
778797524674GGTAAAAAGGGACTCAAGAT30584
781800524675AGCGGTAAAAAGGGACTCAA68585
784803524676AACAGCGGTAAAAAGGGACT67586
787806524677GGTAACAGCGGTAAAAAGGG48587
790809524678ATTGGTAACAGCGGTAAAAA81588
793812524679AAAATTGGTAACAGCGGTAA89589
796815524680AAGAAAATTGGTAACAGCGG84590
799818524681CAAAAGAAAATTGGTAACAG41591
802821524682AGACAAAAGAAAATTGGTAA51592
805824524683CAAAGACAAAAGAAAATTGG66593
808827524684ACCCAAAGACAAAAGAAAAT61594
811830524685TATACCCAAAGACAAAAGAA79595
814833524686ATGTATACCCAAAGACAAAA84596
817836524687TAAATGTATACCCAAAGACA77597
820839524688GTTTAAATGTATACCCAAAG80598
821840524689GGTTTAAATGTATACCCAAA71599
822841524690GGGTTTAAATGTATACCCAA85600
823842505344AGGGTTTAAATGTATACCCA85206
824843524691TAGGGTTTAAATGTATACCC90601
825844524692TTAGGGTTTAAATGTATACC83602
827846524693TGTTAGGGTTTAAATGTATA53603
830849524694TTTTGTTAGGGTTTAAATGT67604
845864524695AACCCCATCTCITTGTTTTG81605
848867524696AGTAACCCCATCTCTTTGTT71606
851870524697GAGAGTAACCCCATCTCTTT65607
854873524698TCAGAGAGTAACCCCATCTC96608
857876524699AATTCAGAGAGTAACCCCAT94609
860879524700TAAAATTCAGAGAGTAACCC71610
863882524701CCATAAAATTCAGAGAGTAA90611
866885524702AACCCATAAAATTCAGAGAG86612
869888524703CATAACCCATAAAATTCAGA72613
872891524704TGACATAACCCATAAAATTC81614
875894524705CAATGACATAACCCATAAAA81615
878897524706TTCCAATGACATAACCCATA95616
881900524707AACTTCCAATGACATAACCC91617
884903524708CATAACTTCCAATGACATAA83618
887906524709ACCCATAACTTCCAATGACA95619
890909524710AGGACCCATAACTTCCAATG66620
164
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
893912524711GCAAGGACCCATAACTTCCA41621
896915524712GTGGCAAGGACCCATAACTT53622
899918524713CTTGTGGCAAGGACCCATAA91623
902921524714GTTCTTGTGGCAAGGACCCA77624
905924524715TGTGTTCTTGTGGCAAGGAC90625
908927524716TGATGTGTTCTTGTGGCAAG90626
911930524717GTATGATGTGTTCTTGTGGC82627
914933524718TTTGTATGATGTGTTCTTGT95628
930949524719AAACATTCITrGATTTTTTG61629
933952524720CTAAAACATTCTTTGATTTT43630
936955524721TTTCTAAAACATTCTTTGAT90631
939958524722AGITrTCTAAAACATTCTTT75632
942961524723GGAAGTTTTCTAAAACATTC52633
945964524724ATAGGAAGTTTTCTAAAACA74634
948967524725TTAATAGGAAGTTTTCTAAA40635
951970524726CTGTTAATAGGAAGTTTTCT93636
954973524727GGCCTGTTAATAGGAAGTTT87637
957976524728ATAGGCCTGTTAATAGGAAG85638
960979524729TCAATAGGCCTGTTAATAGG92639
963982524730CAATCAATAGGCCTGTTAAT90640
966985524731TTCCAATCAATAGGCCTGTT96641
969988524732ACTTTCCAATCAATAGGCCT77642
972991146826CATACTTTCCAATCAATAGG92643
975994524733TGACATACTTTCCAATCAAT91644
978997524734CGTTGACATACTTTCCAATC95645
9961015524735CCCAAAAGACCCACAATTCG92646
9991018524736AAACCCAAAAGACCCACAAT74647
10021021524737GCAAAACCCAAAAGACCCAC85648
10051024524738GCAGCAAAACCCAAAAGACC70649
10251044524739AACCACATTGTGTAAATGGG90650
10281047524740GATAACCACATTGTGTAAAT58651
10311050524741CAGGATAACCACATTGTGTA83652
10341053524742ACGCAGGATAACCACATTGT84653
10371056524743TTAACGCAGGATAACCACAT93654
10401059524744GCATTAACGCAGGATAACCA60655
10431062524745AGGGCATTAACGCAGGATAA58656
10461065524746ACAAGGGCATTAACGCAGGA75657
10491068524747CATACAAGGGCATTAACGCA89658
10521071524748ATGCATACAAGGGCATTAAC87659
10551074524749TACATGCATACAAGGGCATT86660
10581077524750GAATACATGCATACAAGGGC75661
10611080524751ATTGAATACATGCATACAAG81662
10641083524752TAGATTGAATACATGCATAC85 ·663
165
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
10671086524753GCTTAGATTGAATACATGCA69664
10701089524754CCTGCTTAGATTGAATACAT90665
10731092524755AAGCCTGCTTAGATTGAATA76666
10761095524756TGAAAGCCTGCTTAGATTGA76667
10791098524757AAGTGAAAGCCTGCTTAGAT68668
10821101524758AGAAAGTGAAAGCCTGCTTA81669
10851104524759GCGAGAAAGTGAAAGCCTGC61670
10881107524760TTGGCGAGAAAGTGAAAGCC89671
10911110524761AAGTTGGCGAGAAAGTGAAA74672
10941113524762TGTAAGTTGGCGAGAAAGTG85673
10971116524763CCTTGTAAGTTGGCGAGAAA90674
11001119524764AGGCCTTGTAAGTTGGCGAG93675
11031122524765GAAAGGCCTTGTAAGTTGGC78676
11061125524766ACAGAAAGGCCTTGTAAGTT76677
11091128524767TACACAGAAAGGCCTTGTAA94678
11121131524768GTTTACACAGAAAGGCCTTG80679
11151134524769ATTGTTTACACAGAAAGGCC83680
11181137524770GGTATTGTTTACACAGAAAG63681
11211140524771TCAGGTATTGTTTACACAGA93682
11241143524772GGTTCAGGTATTGTTTACAC68683
11271146524773AAAGGTTCAGGTATTGTTTA82684
11301149524774GGTAAAGGTTCAGGTATTGT68685
11501169524775TGGCCGTTGCCGGGCAACGG74686
11531172524776ACCTGGCCGTTGCCGGGCAA77687
11561175524777CAGACCTGGCCGTTGCCGGG88688
11591178524778GCACAGACCTGGCCGTTGCC80689
11621181524779TTGGCACAGACCTGGCCGTT85690
11651184524780CACTTGGCACAGACCTGGCC93691
11681187524781AAACACTTGGCACAGACCTG90692
11691188524782CAAACACTTGGCACAGACCT75693
11701189505345GCAAACACTTGGCACAGACC78207
11711190524783AGCAAACACTTGGCACAGAC84694
11721191524784CAGCAAACACTTGGCACAGA90695
11741193524785GTCAGCAAACACTTGGCACA79696
12001219524786ACCAAGCCCCAGCCAGTGGG57697
12031222524787ATGACCAAGCCCCAGCCAGT74698
12061225524788CCCATGACCAAGCCCCAGCC90699
12091228524789TGGCCCATGACCAAGCCCCA96700
12121231524790TGATGGCCCATGACCAAGCC79701
12151234524791CGCTGATGGCCCATGACCAA97702
12181237524792ACGCGCTGATGGCCCATGAC98703
12211240524793CGCACGCGCTGATGGCCCAT98704
12241243524794CCACGCACGCGCTGATGGCC98705
166
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
12271246524795GTTCCACGCACGCGCTGATG98706
12301249524796AAGGTTCCACGCACGCGCTG99707
12331252524797GAAAAGGTTCCACGCACGCG97708
12361255524798GCCGAAAAGGTTCCACGCAC98709
12391258524799GGAGCCGAAAAGGTTCCACG75710
12421261524800AGAGGAGCCGAAAAGGTTCC79711
12451264524801GGCAGAGGAGCCGAAAAGGT98712
12481267524802ATCGGCAGAGGAGCCGAAAA73713
12511270524803TGGATCGGCAGAGGAGCCGA91714
12541273524804GTATGGATCGGCAGAGGAGC98715
12571276524805GCAGTATGGATCGGCAGAGG98716
12581277524806CGCAGTATGGATCGGCAGAG98717
12591278505346CCGCAGTATGGATCGGCAGA98210
12601279146785TCCGCAGTATGGATCGGCAG98718
12611280524807TTCCGCAGTATGGATCGGCA98719
12621281505347GTTCCGCAGTATGGATCGGC98212
12631282524808AGTTCCGCAGTATGGATCGG96720
12641283524809GAGTTCCGCAGTATGGATCG97721
12661285524810AGGAGTTCCGCAGTATGGAT96722
12691288524811GCTAGGAGTTCCGCAGTATG96723
12721291524812GCGGCTAGGAGTTCCGCAGT75724
12751294524813CAAGCGGCTAGGAGTTCCGC86725
12781297524814AAACAAGCGGCTAGGAGTTC73726
12811300524815GCAAAACAAGCGGCTAGGAG71727
12821301524816AGCAAAACAAGCGGCTAGGA89728
12831302505352GAGCAAAACAAGCGGCTAGG76217
12841303524817CGAGCAAAACAAGCGGCTAG78729
12851304524818GCGAGCAAAACAAGCGGCTA71730
12861305505353TGCGAGCAAAACAAGCGGCT82218
12871306524819CTGCGAGCAAAACAAGCGGC82731
12881307524820GCTGCGAGCAAAACAAGCGG67732
12901309524821CTGCTGCGAGCAAAACAAGC79733
12931312524822GACCTGCTGCGAGCAAAACA87734
12961315524823CCAGACCTGCTGCGAGCAAA94735
12991318524824GCTCCAGACCTGCTGCGAGC80736
13021321524825TTTGCTCCAGACCTGCTGCG70737
13051324524826ATGTTTGCTCCAGACCTGCT75738
13081327524827ATAATGTTTGCTCCAGACCT55739
13111330524828CCGATAATGTTTGCTCCAGA87740
13141333524829GTCCCGATAATGTTTGCTCC80741
13171336524830TCAGTCCCGATAATGTTTGC76742
13201339524831TTATCAGTCCCGATAATGTT53743
15771596146786GTGAAGCGAAGTGCACACGG96224
167
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Example 11: Antisense inhibition of HBV viral mRNA in HepG2.2.15 cells by MOE gapmers
Additional antisense oligonucleotides were designed targeting a HBV viral nucleic acid and were tested for their effects on HBV mRNA in vitro. Several of the antisense oligonucleotides from the studies described above were also included in the assay. Cultured HepG2.2.15 cells at a density of 28,000 cells per well were transfected using LipofectAMINE 2000® reagent with 70 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3370 was used to measure mRNA levels. The mRNA levels of some of the gapmers were also measured using RTS3372. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
The newly designed chimeric antisense oligonucleotides in Tables 24 and 25 were designed as 5-10-5 MOE gapmers. The gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising five nucleosides each. Each nucleoside in the 5’ wing segment and each nucleoside in the 3’ wing segment has an MOE sugar modification. Each nucleoside in the central gap segment has a deoxy sugar modification. The intemucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each gapmer are 5-methylcytosines.
“Viral Target start site” indicates the 5’-most nucleotide to which the gapmer is targeted in the viral I gene sequence. “Viral Target stop site” indicates the 3’-most nucleotide to which the gapmer is targeted viral gene sequence. Each gapmer listed in Table 24 is targeted to the viral genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. U95551.1). Each gapmer listed in Table 25 is targeted to the viral genomic sequence, designated herein as SEQ ID NO: 1286 (a permuted version of GENBANK Accession No. U95551.1). ‘n/a’ indicates that the inhibition data for that particular gapmer was not measured 25 with that particular primer probe set.
Table 24
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides targeted to SEQ ID NO: 1 (RTS3370 and RTS3372)
Start SiteStop SiteISIS NoSequenceRTS3370 % inhibitionRTS3372 % inhibitionSEQID NO
13231342524832GAGTTATCAGTCCCGATAAT63n/a744
13261345524833ACAGAGTTATCAGTCCCGAT82n/a745
13291348524834ACAACAGAGTTATCAGTCCC52n/a746
13321351524835AGGACAACAGAGTTATCAGT57n/a747
13351354524836GAGAGGACAACAGAGTTATC49n/a748
168
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
13381357524837CGGGAGAGGACAACAGAGTT0n/a749
13411360524838TTGCGGGAGAGGACAACAGA17n/a750
13441363524839TATTTGCGGGAGAGGACAAC30n/a751
13471366524840GTATATTTGCGGGAGAGGAC22n/a752
13501369524841GATGTATATTTGCGGGAGAG32n/a753
13531372524842TACGATGTATATTTGCGGGA76n/a754
13561375524843GGATACGATGTATATTTGCG76n/a755
13591378524844CATGGATACGATGTATATTT87n/a756
13621381524845AGCCATGGATACGATGTATA70n/a757
13651384524846AGCAGCCATGGATACGATGT22n/a758
13681387524847CCTAGCAGCCATGGATACGA67n/a759
13711390524848CAGCCTAGCAGCCATGGATA56n/a760
13741393524849GCACAGCCTAGCAGCCATGG38n/a761
13771396524850GCAGCACAGCCTAGCAGCCA11n/a762
13801399524851TTGGCAGCACAGCCTAGCAG34n/a763
13831402524852CAGTTGGCAGCACAGCCTAG47n/a764
13861405524853ATCCAGTTGGCAGCACAGCC45n/a765
13891408524854AGGATCCAGTTGGCAGCACA36n/a766
13921411524855CGCAGGATCCAGTTGGCAGC41n/a767
13951414524856CCGCGCAGGATCCAGTTGGC72n/a768
13981417524857GTCCCGCGCAGGATCCAGTT55n/a769
14571476524858AGCGACCCCGAGAAGGGTCG17n/a770
14601479524859CCAAGCGACCCCGAGAAGGG45n/a771
14631482524860GTCCCAAGCGACCCCGAGAA8n/a772
14661485524861AGAGTCCCAAGCGACCCCGA51n/a773
14691488524862GAGAGAGTCCCAAGCGACCC28n/a774
14721491524863GACGAGAGAGTCCCAAGCGA37n/a775
14921511524864GAACGGCAGACGGAGAAGGG27n/a776
14981517524866CGGTCGGAACGGCAGACGGA78n/a777
15011520524867GGTCGGTCGGAACGGCAGAC78n/a778
15041523524868CGTGGTCGGTCGGAACGGCA79n/a779
15071526524869CCCCGTGGTCGGTCGGAACG70n/a780
15101529524870GCGCCCCGTGGTCGGTCGGA78n/a781
15131532524871GGTGCGCCCCGTGGTCGGTC74n/a782
15141533524872AGGTGCGCCCCGTGGTCGGT63n/a783
15151534505354GAGGTGCGCCCCGTGGTCGG70n/a220
15161535524873AGAGGTGCGCCCCGTGGTCG72n/a784
15171536524874GAGAGGTGCGCCCCGTGGTC49n/a785
15181537505355AGAGAGGTGCGCCCCGTGGT64n/a221
15191538524875AAGAGAGGTGCGCCCCGTGG57n/a786
15201539524876AAAGAGAGGTGCGCCCCGTG63n/a787
15211540505356TAAAGAGAGGTGCGCCCCGT68n/a222
15221541524877GTAAAGAGAGGTGCGCCCCG50n/a788
169
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
15231542524878CGTAAAGAGAGGTGCGCCCC64n/a789
15501569524879GATGAGAAGGCACAGACGGG70n/a790
15531572524880GCAGATGAGAAGGCACAGAC81n/a791
15561575524881CCGGCAGATGAGAAGGCACA80n/a792
15591578524882GGTCCGGCAGATGAGAAGGC84n/a793
15621581524883CACGGTCCGGCAGATGAGAA79n/a794
15651584524884GCACACGGTCCGGCAGATGA83n/a795
15681587524885AGTGCACACGGTCCGGCAGA77n/a796
15711590524886CGAAGTGCACACGGTCCGGC89n/a797
15741593524887AAGCGAAGTGCACACGGTCC85n/a798
15751594524888GAAGCGAAGTGCACACGGTC83n/a799
15761595524889TGAAGCGAAGTGCACACGGT83n/a800
15771596146786GTGAAGCGAAGTGCACACGG8885224
15781597524890GGTGAAGCGAAGTGCACACG83n/a801
15791598524891AGGTGAAGCGAAGTGCACAC82n/a802
15801599505357GAGGTGAAGCGAAGTGCACA79n/a803
15811600524892AGAGGTGAAGCGAAGTGCAC73n/a804
15821601524893CAGAGGTGAAGCGAAGTGCA80n/a805
15831602505358GCAGAGGTGAAGCGAAGTGC84n/a226
15841603524894TGCAGAGGTGAAGCGAAGTG74n/a806
15851604524895GTGCAGAGGTGAAGCGAAGT72n/a807
15861605505359CGTGCAGAGGTGAAGCGAAG78n/a227
16041623524896ACGGTGGTCTCCATGCGACG79n/a808
16071626524897TTCACGGTGGTCTCCATGCG75n/a809
16301649524898CCTTGGGCAACATTCGGTGG77n/a810
16331652524899AGACCTTGGGCAACATTCGG76n/a811
16361655524900GTAAGACCTTGGGCAACATT73n/a812
16391658524901TATGTAAGACCTTGGGCAAC60n/a813
16421661524902TCTTATGTAAGACCTTGGGC72n/a814
16451664524903TCCTCTTATGTAAGACCTTG75n/a815
16481667524904GAGTCCTCTTATGTAAGACC65n/a816
16511670524905CAAGAGTCCTCTTATGTAAG76n/a817
16541673524906GTCCAAGAGTCCTCTTATGT78n/a818
16571676524907AGAGTCCAAGAGTCCTCTTA82n/a819
16601679524908CAGAGAGTCCAAGAGTCCTC82n/a820
16631682524909TTGCAGAGAGTCCAAGAGTC76n/a821
16661685524910ACATTGCAGAGAGTCCAAGA76n/a822
16691688524911TTGACATTGCAGAGAGTCCA74n/a823
16891708524912GTATGCCTCAAGGTCGGTCG76n/a824
16921711524913GAAGTATGCCTCAAGGTCGG73n/a825
16951714524914TTTGAAGTATGCCTCAAGGT76n/a826
16981717524915GTCTTTGAAGTATGCCTCAA75n/a827
17011720524916ACAGTCTTTGAAGTATGCCT77n/a828
170
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17041723524917CAAACAGTCTTTGAAGTATG55n/a829
17071726524918AAACAAACAGTCTTTGAAGT59n/a830
17101729524919TTTAAACAAACAGTCTTTGA53n/a831
17131732524920GTCTTTAAACAAACAGTCTT3n/a832
17161735524921CCAGTCTTTAAACAAACAGT75n/a833
17191738524922CTCCCAGTCTTTAAACAAAC70n/a834
17221741524923CTCCTCCCAGTCTTTAAACA68n/a835
17251744524924CAACTCCTCCCAGTCTTTAA62n/a836
17281747524925CCCCAACTCCTCCCAGTCTT63n/a837
17311750524926CTCCCCCAACTCCTCCCAGT62n/a838
17341753524927CTCCTCCCCCAACTCCTCCC55n/a839
17371756524928AATCTCCTCCCCCAACTCCT61n/a840
17401759524929TCTAATCTCCTCCCCCAACT61n/a841
17431762524930TAATCTAATCTCCTCCCCCA70n/a842
17461765524931CTTTAATCTAATCTCCTCCC74n/a843
17491768524932GACCTTTAATCTAATCTCCT74n/a844
17521771524933AAAGACCTTTAATCTAATCT60n/a845
17551774524934TACAAAGACCTTTAATCTAA55n/a846
17581777' 524935TAGTACAAAGACCTTTAATC54n/a847
17611780524936TCCTAGTACAAAGACCTTTA69n/a848
17641783524937GCCTCCTAGTACAAAGACCT72n/a849
17671786524938ACAGCCTCCTAGTACAAAGA60n/a850
17701789524939CCTACAGCCTCCTAGTACAA66n/a851
17731792524940ATGCCTACAGCCTCCTAGTA70n/a852
17761795524941TTTATGCCTACAGCCTCCTA63n/a853
17771796524942ATTTATGCCTACAGCCTCCT70n/a854
17781797509932AATTTATGCCTACAGCCTCC68n/a46
17791798509933CAATTTATGCCTACAGCCTC68n/a48
17801799509934CCAATTTATGCCTACAGCCT65n/a50
17811800509935ACCAATTTATGCCTACAGCC64n/a52
17821801524943GACCAATTTATGCCTACAGC57n/a855
17831802524944AGACCAATTTATGCCTACAG60n/a856
17851804524945GCAGACCAATTTATGCCTAC54n/a857
17881807524946TGCGCAGACCAATTTATGCC68n/a858
17911810524947TGGTGCGCAGACCAATTTAT64n/a859
17941813524948TGCTGGTGCGCAGACCAATT75n/a860
17971816524949TGGTGCTGGTGCGCAGACCA68n/a861
18001819524950GCATGGTGCTGGTGCGCAGA69n/a862
18031822524951GTTGCATGGTGCTGGTGCGC59n/a863
18071826524952AAAAGTTGCATGGTGCTGGT61n/a864
18101829524953TGAAAAAGTTGCATGGTGCT60n/a865
18131832524954AGGTGAAAAAGTTGCATGGT61n/a866
18161835524955CAGAGGTGAAAAAGTTGCAT63n/a867
171
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
18191838524956AGGCAGAGGTGAAAAAGTTG57n/a868
18221841524957ATTAGGCAGAGGTGAAAAAG50n/a869
18231842524958GATTAGGCAGAGGTGAAAAA57n/a870
18251844524959ATGATTAGGCAGAGGTGAAA54n/a871
18281847524960GAGATGATTAGGCAGAGGTG59n/a872
18311850524961CAAGAGATGATTAGGCAGAG61n/a873
18341853524962GAACAAGAGATGATTAGGCA56n/a874
18371856524963CATGAACAAGAGATGATTAG24n/a875
18401859524964GGACATGAACAAGAGATGAT54n/a876
18431862524965GTAGGACATGAACAAGAGAT52n/a877
18461865524966ACAGTAGGACATGAACAAGA47n/a878
18491868524967TGAACAGTAGGACATGAACA33n/a879
18521871524968GCTTGAACAGTAGGACATGA44n/a880
18551874524969GAGGCTTGAACAGTAGGACA43n/a881
18581877524970TTGGAGGCTTGAACAGTAGG28n/a882
18621881524971CAGCTTGGAGGCTTGAACAG30n/a883
18711890524972CCCAAGGCACAGCTTGGAGG38n/a884
18741893524973CCACCCAAGGCACAGCTTGG47n/a885
18771896524974AAGCCACCCAAGGCACAGCT49n/a886
18801899524975CCAAAGCCACCCAAGGCACA32n/a887
18831902524976GCCCCAAAGCCACCCAAGGC56n/a888
18861905524977CATGCCCCAAAGCCACCCAA63n/a889
18891908524978GTCCATGCCCCAAAGCCACC64n/a890
18921911524979GATGTCCATGCCCCAAAGCC65n/a891
18951914524980GTCGATGTCCATGCCCCAAA80n/a892
18981917524981AGGGTCGATGTCCATGCCCC79n/a893
19011920524982ATAAGGGTCGATGTCCATGC79n/a894
19041923524983TTTATAAGGGTCGATGTCCA71n/a895
19071926524984TTCTTTATAAGGGTCGATGT77n/a896
19101929524985AAATTCTTTATAAGGGTCGA79n/a897
19131932524986TCCAAATTCTTTATAAGGGT80n/a898
19161935524987AGCTCCAAATTCTTTATAAG80n/a899
19191938524988AGTAGCTCCAAATTCTTTAT76n/a900
19221941524989CACAGTAGCTCCAAATTCTT59n/a901
19251944524990CTCCACAGTAGCTCCAAATT46n/a902
19281947524991TAACTCCACAGTAGCTCCAA63n/a903
19311950524992GAGTAACTCCACAGTAGCTC65n/a904
19341953524993CGAGAGTAACTCCACAGTAG69n/a905
19371956524994AAACGAGAGTAACTCCACAG61n/a906
19401959524995CAAAAACGAGAGTAACTCCA46n/a907
19431962524996AGGCAAAAACGAGAGTAACT39n/a908
19461965524997AGAAGGCAAAAACGAGAGTA53n/a909
19491968524998GTCAGAAGGCAAAAACGAGA56n/a910
172
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
19521971524999GAAGTCAGAAGGCAAAAACG49n/a911
19551974525000AAAGAAGTCAGAAGGCAAAA29n/a912
19581977525001AGGAAAGAAGTCAGAAGGCA41n/a913
19611980525002TGAAGGAAAGAAGTCAGAAG34n/a914
19641983525003TACTGAAGGAAAGAAGTCAG26n/a915
19842003525004GCGGTATCTAGAAGATCTCG24n/a916
19872006525005GAGGCGGTATCTAGAAGATC29n/a917
19902009525006GCTGAGGCGGTATCTAGAAG29n/a918
19932012525007AGAGCTGAGGCGGTATCTAG13n/a919
19962015525008TACAGAGCTGAGGCGGTATC6n/a920
19992018525009CGATACAGAGCTGAGGCGGT3n/a921
20022021525010TCCCGATACAGAGCTGAGGC27n/a922
20052024525011GCTTCCCGATACAGAGCTGA43n/a923
20082027525012AAGGCTTCCCGATACAGAGC33n/a924
20112030525013TCTAAGGCTTCCCGATACAG34n/a925
20142033525014GACTCTAAGGCTTCCCGATA38n/a926
20172036525015GGAGACTCTAAGGCTTCCCG16n/a927
20202039525016TCAGGAGACTCTAAGGCTTC16n/a928
20232042525017TGCTCAGGAGACTCTAAGGC14n/a929
20262045525018CAATGCTCAGGAGACTCTAA34n/a930
20292048525019GAACAATGCTCAGGAGACTC32n/a931
20322051525020GGTGAACAATGCTCAGGAGA9n/a932
20352054525021TGAGGTGAACAATGCTCAGG50n/a933
20382057525022TGGTGAGGTGAACAATGCTC54n/a934
20412060525023GTATGGTGAGGTGAACAATG47n/a935
20442063525024GCAGTATGGTGAGGTGAACA40n/a936
20472066525025AGTGCAGTATGGTGAGGTGA35n/a937
20502069525026CTGAGTGCAGTATGGTGAGG43n/a938
20532072525027TGCCTGAGTGCAGTATGGTG45n/a939
20562075525028GCTTGCCTGAGTGCAGTATG42n/a940
20592078525029ATTGCTTGCCTGAGTGCAGT39n/a941
20622081525030AGAATTGCTTGCCTGAGTGC27n/a942
20652084525031CAAAGAATTGCTTGCCTGAG42n/a943
20682087525032CAGCAAAGAATTGCTTGCCT49n/a944
20712090525033CCCCAGCAAAGAATTGCTTG41n/a945
20742093525034TCCCCCCAGCAAAGAATTGC39n/a946
20772096525035AGTTCCCCCCAGCAAAGAAT39n/a947
20802099525036ATTAGTTCCCCCCAGCAAAG43n/a948
20832102525037GTCATTAGTTCCCCCCAGCA64n/a949
20862105525038AGAGTCATTAGTTCCCCCCA45n/a950
20892108525039GCTAGAGTCATTAGTTCCCC58n/a951
20922111525040GTAGCTAGAGTCATTAGTTC45n/a952
20952114525041CAGGTAGCTAGAGTCATTAG44n/a953
173
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
20982117525042ACCCAGGTAGCTAGAGTCAT39n/a954
21012120525043CCCACCCAGGTAGCTAGAGT51n/a955
21042123525044ACACCCACCCAGGTAGCTAG27n/a956
21072126525045TTAACACCCACCCAGGTAGC41n/a957
21102129525046AAATTAACACCCACCCAGGT44n/a958
21132132525047TCCAAATTAACACCCACCCA29n/a959
21162135525048TCTTCCAAATTAACACCCAC31n/a960
21192138525049GGATCTTCCAAATTAACACC42n/a961
21222141525050GCTGGATCTTCCAAATTAAC53n/a962
21252144525051GATGCTGGATCTTCCAAATT41n/a963
21282147525052CTAGATGCTGGATCTTCCAA62n/a964
21312150525053TCTCTAGATGCTGGATCTTC4183965
21342153525054AGGTCTCTAGATGCTGGATC2673966
21372156525055ACTAGGTCTCTAGATGCTGG3674967
21402159525056ACTACTAGGTCTCTAGATGC2263968
21432162525057CTGACTACTAGGTCTCTAGA2880969
21462165525058TAACTGACTACTAGGTCTCT4783970
21492168525059ACATAACTGACTACTAGGTC3177971
21522171525060TTGACATAACTGACTACTAG3475972
21552174525061GTGTTGACATAACTGACTAC4275973
21582177525062TTAGTGTTGACATAACTGAC4881974
21612180525063ATATTAGTGTTGACATAACT3373975
21642183525064CCCATATTAGTGTTGACATA4182976
21672186525065AGGCCCATATTAGTGTTGAC3977977
21702189525066TTTAGGCCCATATTAGTGTT4683978
21732192525067AACTTTAGGCCCATATTAGT3869979
21762195525068CTGAACTTTAGGCCCATATT4185980
21792198525069TGCCTGAACTTTAGGCCCAT3881981
21822201525070AGTTGCCTGAACTTTAGGCC1767982
21852204525071AAGAGTTGCCTGAACTTTAG2762983
21882207525072CACAAGAGTTGCCTGAACTT2764984
21912210525073AACCACAAGAGTTGCCTGAA4180985
21942213525074TGAAACCACAAGAGTTGCCT3275986
21972216525075ATGTGAAACCACAAGAGTTG4367987
22002219525076GAAATGTGAAACCACAAGAG3474988
22032222525077CAAGAAATGTGAAACCACAA2265989
22062225525078AGACAAGAAATGTGAAACCA3970990
22092228525079GTGAGACAAGAAATGTGAAA3274991
22122231525080AAAGTGAGACAAGAAATGTG3063992
22152234525081CCAAAAGTGAGACAAGAAAT2558993
22182237525082CTTCCAAAAGTGAGACAAGA3674994
22212240525083TCTCTTCCAAAAGTGAGACA4284995
22242243525084GTTTCTCTTCCAAAAGTGAG3375996
174
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
22272246525085ACGGTTTCTCTTCCAAAAGT3268997
22302249525086ATAACGGTTTCTCTTCCAAA5180998
22332252525087TCTATAACGGTTTCTCTTCC3677999
22362255525088TACTCTATAACGGTTTCTCT23691000
22392258525089AAATACTCTATAACGGTTTC45771001
22422261525090ACCAAATACTCTATAACGGT57821002
22452264525091GACACCAAATACTCTATAAC36771003
22482267525092AAAGACACCAAATACTCTAT42801004
22512270525093CCGAAAGACACCAAATACTC41891005
22542273525094ACTCCGAAAGACACCAAATA29731006
22572276525095CACACTCCGAAAGACACCAA33921007
22602279525096ATCCACACTCCGAAAGACAC18741008
22632282525097CGAATCCACACTCCGAAAGA30571009
22662285525098GTGCGAATCCACACTCCGAA28671010
22692288146789GGAGTGCGAATCCACACTCC37721011
22722291525099GGAGGAGTGCGAATCCACAC36641012
22752294525100GCTGGAGGAGTGCGAATCCA52901013
22782297525101TAAGCTGGAGGAGTGCGAAT49961014
22812300525102CTATAAGCTGGAGGAGTGCG37961015
22842303525103GGTCTATAAGCTGGAGGAGT30971016
22872306525104GGTGGTCTATAAGCTGGAGG22771017
22902309525105TTTGGTGGTCTATAAGCTGG41761018
22932312525106GCATTTGGTGGTCTATAAGC39761019
23132332525107GAAGTGTTGATAGGATAGGG27971020
23162335525108CCGGAAGTGTTGATAGGATA42971021
23192338525109TTTCCGGAAGTGTTGATAGG48991022
23222341525110TAGTTTCCGGAAGTGTTGAT18981023
23252344525111CAGTAGTTTCCGGAAGTGTT19981024
23282347525112CAACAGTAGTTTCCGGAAGT29961025
23312350525113TAACAACAGTAGTTTCCGGA39951026
23342353525114GTCTAACAACAGTAGTTTCC40991027
23692388525115CGAGGGAGTTCTTCTTCTAG42981028
23722391525116AGGCGAGGGAGTTCTTCTTC31971029
23752394525117GCGAGGCGAGGGAGTTCTTC22981030
23792398525118GTCTGCGAGGCGAGGGAGTT20991031
23982417525119CGCGGCGATTGAGACCTTCG26971032
24012420525120CGACGCGGCGATTGAGACCT23971033
24042423525121CTGCGACGCGGCGATTGAGA47921034
24072426525122CTTCTGCGACGCGGCGATTG27741035
24102429525123GATCTTCTGCGACGCGGCGA36871036
24132432146790TGAGATCTTCTGCGACGCGG25851037
24162435525124GATTGAGATCTTCTGCGACG17841038
24192438525125CGAGATTGAGATCTTCTGCG24821039
175
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
24222441525126TCCCGAGATTGAGATCTTCT29741040
24252444525127GGTTCCCGAGATTGAGATCT14791041
24282447525128TGAGGTTCCCGAGATTGAGA41761042
24312450525129CATTGAGGTTCCCGAGATTG39721043
24342453525130TAACATTGAGGTTCCCGAGA37711044
24372456525131TACTAACATTGAGGTTCCCG42761045
24402459525132GAATACTAACATTGAGGTTC21751046
24432462525133AAGGAATACTAACATTGAGG36751047
24462465525134TCCAAGGAATACTAACATTG29771048
24492468525135GAGTCCAAGGAATACTAACA32761049
24522471525136TATGAGTCCAAGGAATACTA23621050
24552474525137CCTTATGAGTCCAAGGAATA27571051
24582477525138CCACCTTATGAGTCCAAGGA52821052
24612480525139TCCCCACCTTATGAGTCCAA46801053
24642483525140AGTTCCCCACCTTATGAGTC14591054
24672486525141TAAAGTTCCCCACCTTATGA20451055
24702489525142CAGTAAAGTTCCCCACCTTA14721056
24732492525143GACCAGTAAAGTTCCCCACC30771057
24762495525144AAAGACCAGTAAAGTTCCCC19721058
24792498525145AATAAAGACCAGTAAAGTTC18551059
24822501525146AAGAATAAAGACCAGTAAAG16511060
24852504525147TAGAAGAATAAAGACCAGTA22681061
24882507525148CAGTAGAAGAATAAAGACCA13591062
24912510525149GTACAGTAGAAGAATAAAGA0451063
24942513525150CAGGTACAGTAGAAGAATAA31621064
24972516525151AGACAGGTACAGTAGAAGAA8621065
25002519525152TAAAGACAGGTACAGTAGAA29611066
25032522525153GATTAAAGACAGGTACAGTA28671067
25062525525154GAGGATTAAAGACAGGTACA38761068
25092528525155AATGAGGATTAAAGACAGGT30721069
25122531525156TCCAATGAGGATTAAAGACA24671070
25152534525157TTTTCCAATGAGGATTAAAG0441071
25182537525158GTGTTTTCCAATGAGGATTA20741072
25212540525159ATGGTGTTTTCCAATGAGGA30711073
25242543525160AAGATGGTGTTTTCCAATGA22681074
25272546525161GAAAAGATGGTGTTTTCCAA19611075
25302549525162TAGGAAAAGATGGTGTTTTC14521076
25332552525163TATTAGGAAAAGATGGTGTT1471077
25362555525164GTATATTAGGAAAAGATGGT0601078
25392558525165AATGTATATTAGGAAAAGAT0301079
25422561525166GTAAATGTATATTAGGAAAA1181080
25452564525167GGTGTAAATGTATATTAGGA23721081
25482567525168CTTGGTGTAAATGTATATTA32751082
176
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
25512570525169TGTCTTGGTGTAAATGTATA12651083
25542573525170TAATGTCTTGGTGTAAATGT3511084
25572576525171TGATAATGTCTTGGTGTAAA24621085
25602579525172TTTTGATAATGTCTTGGTGT18661086
25632582525173ATTITTTGATAATGTCTTGG11631087
25662585525174CACATTTTTTGATAATGTCT20681088
25692588525175GTTCACATTTTTTGATAATG38681089
25722591525176ACTGlTCACAITmTGATA12611090
25752594525177CAAACTGITCACAITTTTTG25561091
25782597525178CTACAAACTGTTCACATTTT21471092
25812600525179GGCCTACAAACTGTTCACAT28831093
25842603525180GTGGGCCTACAAACTGTTCA7721094
25872606525181TAAGTGGGCCTACAAACTGT26751095
25902609525182CTGTAAGTGGGCCTACAAAC35781096
25932612525183TAACTGTAAGTGGGCCTACA29691097
25962615525184CATTAACTGTAAGTGGGCCT22731098
25992618525185TCTCATTAACTGTAAGTGGG31811099
26022621525186TTTTCTCATTAACTGTAAGT15581100
26052624525187TTCTTTTCTCATTAACTGTA14711101
26082627525188ATCTTCTTTTCTCATTAACT19711102
26112630525189GCAATCTTCTTTTCTCATTA36791103
26142633525190ATTGCAATCTTCTTTTCTCA38821104
26172636525191TCAATTGCAATCTTCTTTTC23611105
26202639525192TAATCAATTGCAATCTTCTT10671106
26232642525193GCATAATCAATTGCAATCTT27711107
26262645525194CAGGCATAATCAATTGCAAT23711108
26292648525195TAGCAGGCATAATCAATTGC30771109
26322651525196ACCTAGCAGGCATAATCAAT7701110
26352654525197AAAACCTAGCAGGCATAATC47701111
26382657525198GATAAAACCTAGCAGGCATA41811112
26412660525199TTGGATAAAACCTAGCAGGC30781113
26442663525200CCTTTGGATAAAACCTAGCA31761114
26472666525201TAACCTTTGGATAAAACCTA25631115
26502669525202TGGTAACCTTTGGATAAAAC24761116
26532672525203ATTTGGTAACCTTTGGATAA20641117
26562675525204AATATTTGGTAACCTTTGGA16771118
26592678525205GTAAATATTTGGTAACCTTT39801119
26622681525206ATGGTAAATATTTGGTAACC40751120
26652684525207CCAATGGTAAATATTTGGTA38751121
26682687525208TATCCAATGGTAAATATTTG001122
26712690525209CCTTATCCAATGGTAAATAT28571123
26742693525210TACCCTTATCCAATGGTAAA18711124
26772696525211TAATACCCTTATCCAATGGT35761125
177
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
26802699525212GTTTAATACCCTTATCCAAT41771126
26832702525213AAGGTTTAATACCCTTATCC11791127
26862705525214AATAAGGTTTAATACCCTTA35751128
26892708525215GATAATAAGGTTTAATACCC22541129
26922711525216CTGGATAATAAGGTTTAATA19351130
26952714525217GTTCTGGATAATAAGGTTTA24581131
26982717525218GATGTTCTGGATAATAAGGT20731132
27012720525219CTAGATGTTCTGGATAATAA26661133
27042723525220TAACTAGATGTTCTGGATAA21661134
27072726525221GATTAACTAGATGTTCTGGA30781135
27102729525222AATGATTAACTAGATGTTCT30611136
27132732525223AGTAATGATTAACTAGATGT9571137
27162735525224GGAAGTAATGATTAACTAGA18721138
27192738525225TTTGGAAGTAATGATTAACT7671139
27222741525226TAGTTTGGAAGTAATGATTA2301140
27252744525227GTCTAGTTTGGAAGTAATGA27781141
27282747525228AGTGTCTAGTTTGGAAGTAA27751142
27312750525229AATAGTGTCTAGTTTGGAAG34731143
27342753525230GTAAATAGTGTCTAGTTTGG28681144
27372756525231TGTGTAAATAGTGTCTAGTT27791145
27402759525232GAGTGTGTAAATAGTGTCTA27711146
27432762525233ATAGAGTGTGTAAATAGTGT17751147
27462765525234TCCATAGAGTGTGTAAATAG18751148
27492768525235CCTTCCATAGAGTGTGTAAA23801149
27522771525236CCGCCTTCCATAGAGTGTGT26821150
27552774525237TACCCGCCTTCCATAGAGTG19801151
27582777525238ATATACCCGCCTTCCATAGA0671152
27612780525239ATAATATACCCGCCTTCCAT19701153
27642783525240TATATAATATACCCGCCTTC9731154
27672786525241TCTTATATAATATACCCGCC20801155
27702789525242CTCTCTTATATAATATACCC29761156
27732792525243TTTCTCTCTTATATAATATA16581157
27762795525244TTGTTTCTCTCTTATATAAT26571158
27792798525245GTGTTGTTTCTCTCTTATAT35851159
27822801525246TATGTGTTGTTTCTCTCTTA34821160
27852804525247CGCTATGTGTTGTTTCTCTC34861161
28022821525248TGACCCACAAAATGAGGCGC17711162
28052824525249TGGTGACCCACAAAATGAGG31671163
28082827525250ATATGGTGACCCACAAAATG38691164
28112830525251AGAATATGGTGACCCACAAA37771165
28142833525252CCAAGAATATGGTGACCCAC35791166
28172836146831TTCCCAAGAATATGGTGACC27751167
28202839525253TTGTTCCCAAGAATATGGTG33691168
178
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
28232842525254ATCTTGTTCCCAAGAATATG27651169
28262845525255TAGATCTTGTTCCCAAGAAT31701170
28292848525256CTGTAGATCTTGTTCCCAAG42811171
28322851525257ATGCTGTAGATCTTGTTCCC34801172
28352854525258CCCATGCTGTAGATCTTGTT38801173
28382857525259TGCCCCATGCTGTAGATCTT36801174
28412860525260TTCTGCCCCATGCTGTAGAT32741175
28442863525261AGATTCTGCCCCATGCTGTA27751176
28472866525262GAAAGATTCTGCCCCATGCT34701177
28502869525263GTGGAAAGATTCTGCCCCAT22761178
28532872525264CTGGTGGAAAGATTCTGCCC36721179
28562875525265TTGCTGGTGGAAAGATTCTG32711180
28592878525266GGATTGCTGGTGGAAAGATT20741181
28622881525267AGAGGATTGCTGGTGGAAAG25731182
28652884525268CCCAGAGGATTGCTGGTGGA40821183
28682887525269AATCCCAGAGGATTGCTGGT32791184
28712890525270AAGAATCCCAGAGGATTGCT23691185
28742893525271GGAAAGAATCCCAGAGGATT10661186
28772896525272TCGGGAAAGAATCCCAGAGG29731187
28802899525273TGGTCGGGAAAGAATCCCAG31771188
28832902525274TGGTGGTCGGGAAAGAATCC38711189
28862905525275AACTGGTGGTCGGGAAAGAA33781190
28892908525276TCCAACTGGTGGTCGGGAAA29761191
28922911525277GGATCCAACTGGTGGTCGGG19811192
28952914525278GCTGGATCCAACTGGTGGTC24741193
28982917525279AAGGCTGGATCCAACTGGTG33831194
29012920525280CTGAAGGCTGGATCCAACTG18811195
29042923525286GCTCTGAAGGCTGGATCCAA40791196
29072926525287TTTGCTCTGAAGGCTGGATC34691197
29102929525288GTGTTTGCTCTGAAGGCTGG38721198
29132932525289GCTGTGTTTGCTCTGAAGGC40821199
29162935525290TTTGCTGTGTTTGCTCTGAA44781200
29192938525291GGATTTGCTGTGTTTGCTCT38761201
29222941525292TCTGGATTTGCTGTGTTTGC28791202
29252944525293CAATCTGGATTTGCTGTGTT26611203
29282947525294TCCCAATCTGGATTTGCTGT32681204
29312950525295AAGTCCCAATCTGGATTTGC33591205
29342953146832TTGAAGTCCCAATCTGGATT17351206
29372956525296GGATTGAAGTCCCAATCTGG35621207
29402959525297TTGGGATTGAAGTCCCAATC10361208
29432962525298TTGTTGGGATTGAAGTCCCA24491209
29462965525299TCCTTGTTGGGATTGAAGTC16521210
29492968525300GTGTCCTTGTTGGGATTGAA18711211
179
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
29522971525301CAGGTGTCCTTGTTGGGATT25731212
29552974525302GGCCAGGTGTCCTTGTTGGG31701213
29582977525303TCTGGCCAGGTGTCCTTGTT29751214
29782997525304CAGCTCCTACCTTGTTGGCG29711215
29813000525305CTCCAGCTCCTACCTTGTTG19631216
29843003525306ATGCTCCAGCTCCTACCTTG35751217
29873006525307CGAATGCTCCAGCTCCTACC13771218
29903009525308GCCCGAATGCTCCAGCTCCT28721219
29933012525309CCAGCCCGAATGCTCCAGCT32771220
29963015525310AACCCAGCCCGAATGCTCCA34721221
29993018525311TGAAACCCAGCCCGAATGCT28691222
30023021525312GGGTGAAACCCAGCCCGAAT18681223
30203039525313AAAGGCCTCCGTGCGGTGGG36771224
30233042525314CCAAAAGGCCTCCGTGCGGT34831225
30263045525315ACCCCAAAAGGCCTCCGTGC28701226
30293048525316TCCACCCCAAAAGGCCTCCG26651227
30323051525317GGCTCCACCCCAAAAGGCCT19361228
30353054525318GAGGGCTCCACCCCAAAAGG14361229
30383057525319CCTGAGGGCTCCACCCCAAA32711230
30413060525320GAGCCTGAGGGCTCCACCCC37611231
30443063525321CCTGAGCCTGAGGGCTCCAC42701232
30473066525322TGCCCTGAGCCTGAGGGCTC24561233
30503069525323GTATGCCCTGAGCCTGAGGG14751234
30533072525324GTAGTATGCCCTGAGCCTGA29831235
30563075525325TTTGTAGTATGCCCTGAGCC32611236
30593078525326AAGTTTGTAGTATGCCCTGA35701237
30623081525327GCAAAGTTTGTAGTATGCCC37611238
30653084525328CTGGCAAAGTTTGTAGTATG26631239
30683087525329TTGCTGGCAAAGTTTGTAGT37741240
30713090525330GATTTGCTGGCAAAGTTTGT20561241
30743093525331GCGGATTTGCTGGCAAAGTT28801242
30773096525332GAGGCGGATTTGCTGGCAAA38741243
30803099525333CAGGAGGCGGATTTGCTGGC41661244
30833102525334AGGCAGGAGGCGGATTTGCT27551245
30863105525335TGGAGGCAGGAGGCGGATTT13171246
30893108525336TGGTGGAGGCAGGAGGCGGA7211247
30923111525337GATTGGTGGAGGCAGGAGGC21441248
30953114525338GGCGATTGGTGGAGGCAGGA31651249
30983117525339TCTGGCGATTGGTGGAGGCA15761250
31013120525340CTGTCTGGCGATTGGTGGAG35731251
31043123525341TTCCTGTCTGGCGATTGGTG32721252
31073126525342GCCTTCCTGTCTGGCGATTG28641253
31103129525343GCTGCCTTCCTGTCTGGCGA25691254
180
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
31133132525344TAGGCTGCCTTCCTGTCTGG32791255
31163135525345GGGTAGGCTGCCTTCCTGTC35801256
31343153525346TCAAAGGTGGAGACAGCGGG4571257
31373156525347TTCTCAAAGGTGGAGACAGC32721258
31403159525348TGTTTCTCAAAGGTGGAGAC32661259
31433162525349GAGTGTTTCTCAAAGGTGGA34631260
31463165525350GATGAGTGTTTCTCAAAGGT35681261
31493168525351GAGGATGAGTGTTTCTCAAA36841262
31523171525352CCTGAGGATGAGTGTTTCTC44771263
31553174525353TGGCCTGAGGATGAGTGTTT32721264
31583177525354GCATGGCCTGAGGATGAGTG27731265
31623181525355CACTGCATGGCCTGAGGATG40691266
Table 25
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides targeted to SEQ ID NO: 1286 (RTS3370 and RTS3372)
Viral Start SiteViral Stop SiteISIS NoSequenceRTS3370 % inhibitionRTS3372 % inhibitionSEQ ID NO
85104525356TTCCACTGCATGGCCTGAGG53781267
88107525357GAATTCCACTGCATGGCCTG44681268
91110525358GTGGAATTCCACTGCATGGC42801269
94113525359GTTGTGGAATTCCACTGCAT45771270
97116525360AAGGTTGTGGAATTCCACTG65671271
100119525361TGAAAGGTTGTGGAATTCCA56611272
Example 12: Dose-dependent inhibition of viral HBV RNA in HepG2.2.15 cells by MOE gapmers
Certain gapmers from the study described in Examples 11 and 12 were tested at various doses in human HepG2.2.15 cells. Cells were plated at a density of 28,000 cells per well and transfected using LipofectAMINE 2000® reagent with 5.56 nM, 16.67 nM, 50.0 nM, and 150.0 nM concentrations of antisense 10 oligonucleotide, as specified in Table 26. After a treatment period of approximately 16 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3370 was used to measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented in Table
26. As illustrated in Table 26, HBV mRNA levels were reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
181
WO 2012/145697
PCT/US2012/034550
Table 26
Dose-dependent antisense inhibition of HBV RNA in HepG2.2.15 cells using RTS3370
2019202856 24 Apr 2019
ISIS No5.5556 nM16.6667 nM50.0 nM150.0 nMic50(nM)
146785001466120.8
146786406478888.5
5053142335588428.8
5053392842628423.2
505347921457553.5
5144691122697935.4
5244931339568132.8
5245401538548034.0
5246171432788327.1
5246193342608421.3
5246342045638026.3
5246413949628614.9
5246983434496447.4
5246992531446366.1
52470629203658128.8
5247093226485689.1
5247184641617915.8
524731495368838.1
5247344231356487.2
5247671938628427.8
5247683538627523.5
5247691626617538.1
52480600035>150.0
524807322397460.2
5249072235638029.1
5249082545677822.9
52497673016>150.0
52497860027>150.0
524979301134>150.0
5249801851485951.5
5249811627496165.8
52498221192954>150.0
5249832340506053.2
5249841925457450.0
52498513194056107.2
5249862948466439.3
5249871704361102.8
5249882239526347.6
182
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
524991071920>150.0
52499717019>150.0
52499815834>150.0
52509550018>150.0
5251001451426>150.0
525101001519>150.0
525102001823>150.0
52510300315>150.0
525179187918>150.0
5252450088>150.0
52524712151623>150.0
525289111530>150.0
5253141701825>150.0
525324061316>150.0
52535128132230>150.0
Some of the ISIS-oligonucleotides were also tested using primer probe set RTS3372. The results are presented in Table 27.
Table 27
Dose-dependent antisense inhibition of HBV RNA in HepG2.2.15 cells using RTS3372
ISIS No5.5556 nM16.6667 nM50.0 nM150.0 nMic50(nM)
14678500051>150.0
146786416881917.9
505347013447559.7
5241030019>150.0
52424500610>150.0
5247671846608525.8
5247683441667920.5
5247691238607734.5
5248060000>150.0
52480709347078.6
5249072041628426.4
5249082745668221.3
52497600016>150.0
52497830022>150.0
52497900033>150.0
5249802851526730.1
524981729516655.8
5249822229376383.5
5249832051436250.9
183
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
5249842030387551.7
5249853033406083.6
5249862551516633.8
5249871902465157.6
5249881241456259.2
5249910048>150.0
524997190015>150.0
52499800142>150.0
52509500017>150.0
525100100419>150.0
5251011002125>150.0
525102001015>150.0
52524711121528>150.0
525289091133>150.0
525314101824>150.0
525324981510>150.0
Example 13: Dose-dependent inhibition of viral HBV RNA in HepG2.2.15 cells by MOE gapmers
Certain gapmers from the studies described above were tested at various doses in human HepG2.2.15 cells. Cells were plated at a density of 30,000 cells per well and transfected using LipofectAMINE 2000® reagent with 7.8125 nM, 15.625 nM, 31.25 nM, 62.5 nM, 125.0 nM and 250.0 nM concentrations of antisense oligonucleotide, as specified in Table 28. After a treatment period of approximately 16 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3370 was used to measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented in Table 28. As illustrated in Table 28, HBV mRNA levels were reduced in a dose-dependent manner in several antisense oligonucleotide treated cells.
Table 28
Dose-dependent antisense inhibition of HBV RNA in HepG2.2.15 cells using RTS3370
ISIS No7.8125 nM15.625 nM31.25 nM62.5 nM125.0 nM250.0nMIC50 (11M)
1467860014493350161.2
51010001730284453177.8
5101060400290>250.0
5099340007160>250.0
184
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
510116008212725>250.0
5053473133063808148.7
Example 14: Antisense inhibition of HBV viral mRNA in HepG2 cells by MOE gapmers
Antisense oligonucleotides were designed targeting a HBV viral nucleic acid and were tested for their effects on HBV mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables. ISIS 146786, 509934, ISIS 509959, and ISIS 510100, from the studies described above, were also included. Cultured HepG2 cells at a density of 28,000 cells per well were transfected using LipofectAMINE2000® with 70 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3370 (forward sequence CTTGGTCATGGGCCATCAG, designated herein as SEQ ID NO: 2; reverse sequence CGGCTAGGAGTTCCGCAGTA, designated herein as SEQ ID NO: 3; probe sequence
CCAAACCTTCGGACGGAAA,
TGCGTGGAACCTTTTCGGCTCC, designated herein as I levels. Levels were also measured using primer designated herein as designated herein as
EQ ID NO:4) was used to measure mRNA
probesetRTS3371(forwardsequence
SEQIDNO:3Π;reversesequence
SEQIDNO:312:; probesequence
TGAGGCCCACTCCCATAGG,
CCCATCATCCTGGGCTTTCGGAAAAT, designated herein as SEQ ID NO: 313). HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells. In some of the assays shown in Tables 32, 35, 42, 45, and 46, the potency of ISIS 146786 was measured in two wells in a single plate. In those cases, the values of inhibition levels in both wells have been presented.
The newly designed chimeric antisense oligonucleotides in Tables below were designed as either 2-95 MOE gapmers, 2-9-6 MOE gapmers, 2-10-8 MOE gapmers, 3-9-4 MOE gapmers, 3-9-5 MOE gapmers, 310-3 MOE gapmers, 3-10-4 MOE gapmers, 3-10-7 MOE gapmers, 4-9-3 MOE gapmers, 4-9-4 MOE gapmers, 4-10-6 MOE gapmers, 5-9-2 MOE gapmers, 5-9-3 MOE gapmers, 5-10-5 MOE gapmers, 6-9-2 25 MOE gapmers, 6-10-4 MOE gapmers, 7-10-3 MOE gapmers, or 8-10-2 MOE gapmers. The 2-9-5 MOE gapmers are 16 nucleosides in length, wherein the central gap segment comprises of nine 2’deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising two and five nucleosides respectively. The 2-9-6 MOE gapmers are 17 nucleosides in length, wherein the central gap segment comprises of nine 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by 30 wings comprising two and six nucleosides respectively. The 2-10-8 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising two and eight nucleosides respectively. The 3-9-4 MOE gapmers are 16 nucleosides in length, wherein the central gap segment comprises of nine 2’185
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising three and four nucleosides respectively. The 3-9-5 MOE gapmers are 17 nucleosides in length, wherein the central gap segment comprises of nine 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising three and five nucleosides respectively. The 3-10-3 MOE gapmers are 16 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising three nucleosides each. The 3-10-4 MOE gapmers are 17 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5 ’ and 3 ’ directions) by wings comprising three and four nucleosides respectively. The 3-10-7 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2’deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising three and seven nucleosides respectively. The 4-9-3 MOE gapmers are 16 nucleosides in length, wherein the central gap segment comprises of nine 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising four and three nucleosides respectively. The 4-9-4 MOE gapmers are 17 nucleosides in length, wherein the central gap segment comprises of nine 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising four nucleosides each. The 4-10-6 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising four and six nucleosides respectively. The 59-2 MOE gapmers are 16 nucleosides in length, wherein the central gap segment comprises of nine 2’deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising five and two nucleosides respectively. The 5-9-3 MOE gapmers are 17 nucleosides in length, wherein the central gap segment comprises of nine 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising five and three nucleosides respectively. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising five nucleosides each. The 6-9-2 MOE gapmers are 17 25 nucleosides in length, wherein the central gap segment comprises of nine 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising six and two nucleosides respectively. The 610-4 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2’deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising six and four nucleosides respectively. The 7-10-3 MOE gapmers are 20 nucleosides in length, wherein the central gap 30 segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising seven and three nucleosides respectively. The 8-10-2 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3’ directions) by wings comprising eight and two nucleosides respectively. Each nucleoside in the 5’ wing segment and each nucleoside in the 3’ wing segment has an MOE sugar modification. The 35 ‘Motif column indicates the motifs with the number of nucleosides in the wings and the gap segment of each
186
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 of the oligonucleotides. The intemucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each oligonucleotide are 5-methylcytosines.
“Viral Target start site” indicates the 5’-most nucleotide to which the gapmer is targeted in the viral gene sequence. “Viral Target stop site” indicates the 3’-most nucleotide to which the gapmer is targeted viral gene sequence. The ‘Motif column indicates the gap and wing stmcture of each gapmer. Each gapmer listed in the Tables is targeted to the viral genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. U95551.1). The potency of the newly designed oligonucleotides was compared with ISIS 146786, 509934, ISIS 509959, and ISIS 510100, the information of which have been placed at the top of each table.
Table 29
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
ViralTarget Start SiteViral TargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-550224
411427GGCATAGCAGCAGGATG5101003-10-46217
5874CTGGAGCCACCAGCAGG5522765-9-3421288
5975ACTGGAGCCACCAGCAG5522775-9-3461289
6076AACTGGAGCCACCAGCA5522785-9-3311290
6177GAACTGGAGCCACCAGC5522795-9-3411291
253269GAAGTCCACCACGAGTC5522805-9-359
254270AGAAGTCCACCACGAGT5522815-9-31110
255271GAGAAGTCCACCACGAG5522825-9-32011
256272AGAGAAGTCCACCACGA5522835-9-32812
411427GGCATAGCAGCAGGATG5522304-9-45717
411427GGCATAGCAGCAGGATG5522845-9-3017
412428AGGCATAGCAGCAGGAT5522314-9-42918
412428AGGCATAGCAGCAGGAT5522855-9-36118
413429GAGGCATAGCAGCAGGA5522324-9-43519
413429GAGGCATAGCAGCAGGA5522865-9-34719
414430TGAGGCATAGCAGCAGG5522334-9-43821
414430TGAGGCATAGCAGCAGG5522875-9-34521
415431ATGAGGCATAGCAGCAG5522344-9-4023
415431ATGAGGCATAGCAGCAG5522885-9-35023
416432GATGAGGCATAGCAGCA5522354-9-4025
416432GATGAGGCATAGCAGCA5522895-9-34625
417433AGATGAGGCATAGCAGC5522364-9-44527
417433AGATGAGGCATAGCAGC5522905-9-34127
418434AAGATGAGGCATAGCAG5522374-9-44429
187
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
418434AAGATGAGGCATAGCAG5522915-9-32629
670686ACTAGTAAACTGAGCCA5522394-9-4621292
670686ACTAGTAAACTGAGCCA5522935-9-3671292
671687CACTAGTAAACTGAGCC5522404-9-4611293
671687CACTAGTAAACTGAGCC5522945-9-3711293
672688GCACTAGTAAACTGAGC5522414-9-4551294
672688GCACTAGTAAACTGAGC5522955-9-3581294
687703ACCACTGAACAAATGGC5522424-9-46040
687703ACCACTGAACAAATGGC5522965-9-35940
688704AACCACTGAACAAATGG5522434-9-45741
688704AACCACTGAACAAATGG5522975-9-35541
689705GAACCACTGAACAAATG5522444-9-43342
689705GAACCACTGAACAAATG5522985-9-34842
690706CGAACCACTGAACAAAT5522454-9-44843
690706CGAACCACTGAACAAAT5522995-9-33443
12611277CGCAGTATGGATCGGCA5522464-9-4811295
12611277CGCAGTATGGATCGGCA5523005-9-3561295
12621278CCGCAGTATGGATCGGC5522474-9-4871296
12621278CCGCAGTATGGATCGGC5523015-9-3861296
12631279TCCGCAGTATGGATCGG5522484-9-4721297
12631279TCCGCAGTATGGATCGG5523025-9-3771297
12641280TTCCGCAGTATGGATCG5522494-9-4561298
12641280TTCCGCAGTATGGATCG5523035-9-3651298
12651281GTTCCGCAGTATGGATC5522504-9-4521299
12651281GTTCCGCAGTATGGATC5523045-9-3571299
12661282AGTTCCGCAGTATGGAT5522514-9-4431300
12661282AGTTCCGCAGTATGGAT5523055-9-3561300
12671283GAGTTCCGCAGTATGGA5522524-9-4621301
12671283GAGTTCCGCAGTATGGA5523065-9-3751301
12681284GGAGTTCCGCAGTATGG5522534-9-4821302
12681284GGAGTTCCGCAGTATGG5523075-9-3901302
12691285AGGAGTTCCGCAGTATG5522544-9-4741303
15771593AAGCGAAGTGCACACGG5522554-9-4781304
15781594GAAGCGAAGTGCACACG5522564-9-4651305
15791595TGAAGCGAAGTGCACAC5522574-9-4621306
15801596GTGAAGCGAAGTGCACA5522584-9-4721307
15811597GGTGAAGCGAAGTGCAC5522594-9-4631308
15821598AGGTGAAGCGAAGTGCA5522604-9-4581309
15831599GAGGTGAAGCGAAGTGC5522614-9-4631310
15841600AGAGGTGAAGCGAAGTG5522624-9-4501311
15851601CAGAGGTGAAGCGAAGT5522634-9-4601312
15861602GCAGAGGTGAAGCGAAG5522644-9-4521313
15871603TGCAGAGGTGAAGCGAA5522654-9-4681314
188
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
15881604GTGCAGAGGTGAAGCGA5522664-9-4621315
15891605CGTGCAGAGGTGAAGCG5522674-9-4581316
15901606ACGTGCAGAGGTGAAGC5522684-9-4621317
17781794TTATGCCTACAGCCTCC5522694-9-45247
17791795TTTATGCCTACAGCCTC5522704-9-45449
17801796ATTTATGCCTACAGCCT5522714-9-45851
17811797AATTTATGCCTACAGCC5522724-9-44053
17821798CAATTTATGCCTACAGC5522734-9-43454
17831799CCAATTTATGCCTACAG5522744-9-43455
17841800ACCAATTTATGCCTACA5522754-9-43956
Table 30
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
ViralTarget Start SiteViral TargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-549224
414429GAGGCATAGCAGCAGG5099593-10-343145
411427GGCATAGCAGCAGGATG5101003-10-45417
5873TGGAGCCACCAGCAGG5523842-9-5291318
5873TGGAGCCACCAGCAGG5524403-9-4581318
5974CTGGAGCCACCAGCAG5523852-9-5571319
5974CTGGAGCCACCAGCAG5524413-9-4421319
6075ACTGGAGCCACCAGCA5523862-9-5531320
6075ACTGGAGCCACCAGCA5524423-9-4531320
6176AACTGGAGCCACCAGC5523872-9-5481321
6176AACTGGAGCCACCAGC5524433-9-4591321
6277GAACTGGAGCCACCAG5523882-9-54086
6277GAACTGGAGCCACCAG5524443-9-45186
411426GCATAGCAGCAGGATG5523892-9-539137
411426GCATAGCAGCAGGATG5524453-9-460137
412427GGCATAGCAGCAGGAT5523902-9-552140
412427GGCATAGCAGCAGGAT5524463-9-454140
413428AGGCATAGCAGCAGGA5523912-9-557143
413428AGGCATAGCAGCAGGA5524473-9-454143
414429GAGGCATAGCAGCAGG5523922-9-50145
414429GAGGCATAGCAGCAGG5524483-9-458145
415430TGAGGCATAGCAGCAG5523932-9-559147
415430TGAGGCATAGCAGCAG5524493-9-460147
416431ATGAGGCATAGCAGCA5523942-9-553149
416431ATGAGGCATAGCAGCA5524503-9-453149
417432GATGAGGCATAGCAGC5523952-9-557151
189
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
417432GATGAGGCATAGCAGC5524513-9-439151
418433AGATGAGGCATAGCAG5523962-9-562153
418433AGATGAGGCATAGCAG5524523-9-457153
457473ACGGGCAACATACCTTG5522384-9-43833
457473ACGGGCAACATACCTTG5522925-9-34833
457473ACGGGCAACATACCTTG5523466-9-2033
457472CGGGCAACATACCTTG5523972-9-563167
457472CGGGCAACATACCTTG5524533-9-456167
458473ACGGGCAACATACCTT5523982-9-561168
458473ACGGGCAACATACCTT5524543-9-448168
670685CTAGTAAACTGAGCCA5523992-9-552181
671686ACTAGTAAACTGAGCC5524002-9-5571322
672687CACTAGTAAACTGAGC5524012-9-5521323
673688GCACTAGTAAACTGAG5524022-9-5541324
687702CCACTGAACAAATGGC5524032-9-574188
688703ACCACTGAACAAATGG5524042-9-543190
689704AACCACTGAACAAATG5524052-9-515191
690705GAACCACTGAACAAAT5524062-9-537192
691706CGAACCACTGAACAAA5524072-9-537194
12611276GCAGTATGGATCGGCA5524082-9-576211
12621277CGCAGTATGGATCGGC5524092-9-5761325
12631278CCGCAGTATGGATCGG5524102-9-5631326
12641279TCCGCAGTATGGATCG5524112-9-5701327
12651280TTCCGCAGTATGGATC5524122-9-5621328
12661281GTTCCGCAGTATGGAT5524132-9-5561329
12671282AGTTCCGCAGTATGGA5524142-9-5631330
12681283GAGTTCCGCAGTATGG5524152-9-5521331
12691284GGAGTTCCGCAGTATG5524162-9-5671332
12701285AGGAGTTCCGCAGTAT5524172-9-5501333
15771592AGCGAAGTGCACACGG5524182-9-5791334
15781593AAGCGAAGTGCACACG5524192-9-5701335
15791594GAAGCGAAGTGCACAC5524202-9-5711336
15801595TGAAGCGAAGTGCACA5524212-9-5691337
15811596GTGAAGCGAAGTGCAC5524222-9-5681338
15821597GGTGAAGCGAAGTGCA5524232-9-5651339
15831598AGGTGAAGCGAAGTGC5524242-9-5701340
15841599GAGGTGAAGCGAAGTG5524252-9-5511341
15851600AGAGGTGAAGCGAAGT5524262-9-5401342
15861601CAGAGGTGAAGCGAAG5524272-9-5351343
15871602GCAGAGGTGAAGCGAA5524282-9-5581344
15881603TGCAGAGGTGAAGCGA5524292-9-5461345
15891604GTGCAGAGGTGAAGCG5524302-9-5531346
15901605CGTGCAGAGGTGAAGC5524312-9-5511347
190
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
15911606ACGTGCAGAGGTGAAG5524322-9-5571348
17781793TATGCCTACAGCCTCC5524332-9-554230
17791794TTATGCCTACAGCCTC5524342-9-544231
17801795TTTATGCCTACAGCCT5524352-9-546232
17811796ATTTATGCCTACAGCC5524362-9-536233
17821797AATTTATGCCTACAGC5524372-9-527234
17831798CAATTTATGCCTACAG5524382-9-527235
17841799CCAATTTATGCCTACA5524392-9-513236
Table 31
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS 3 3 70
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-535224
414429GAGGCATAGCAGCAGG5099593-10-352145
5873TGGAGCCACCAGCAGG5524964-9-3471318
5974CTGGAGCCACCAGCAG5524974-9-3571319
6075ACTGGAGCCACCAGCA5524984-9-3451320
6176AACTGGAGCCACCAGC5524994-9-3521321
6277GAACTGGAGCCACCAG5525004-9-34686
411426GCATAGCAGCAGGATG5525014-9-344137
412427GGCATAGCAGCAGGAT5525024-9-357140
413428AGGCATAGCAGCAGGA5525034-9-352143
414429GAGGCATAGCAGCAGG5525044-9-345145
415430TGAGGCATAGCAGCAG5525054-9-356147
416431ATGAGGCATAGCAGCA5525064-9-354149
417432GATGAGGCATAGCAGC5525074-9-334151
418433AGATGAGGCATAGCAG5525084-9-334153
457472CGGGCAACATACCTTG5525094-9-348167
458473ACGGGCAACATACCTT5525104-9-350168
670685CTAGTAAACTGAGCCA5524553-9-466181
670685CTAGTAAACTGAGCCA5525114-9-366181
671686ACTAGTAAACTGAGCC5524563-9-4641322
671686ACTAGTAAACTGAGCC5525124-9-3621322
672687CACTAGTAAACTGAGC5524573-9-4141323
672687CACTAGTAAACTGAGC5525134-9-3561323
673688GCACTAGTAAACTGAG5524583-9-4591324
673688GCACTAGTAAACTGAG5525144-9-3521324
687702CCACTGAACAAATGGC5524593-9-469188
687702CCACTGAACAAATGGC5525154-9-357188
688703ACCACTGAACAAATGG5524603-9-40190
191
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
68S703ACCACTGAACAAATGG5525164-9-354190
689704AACCACTGAACAAATG5524613-9-420191
689704AACCACTGAACAAATG5525174-9-352191
690705GAACCACTGAACAAAT5524623-9-446192
690705GAACCACTGAACAAAT5525184-9-334192
691706CGAACCACTGAACAAA5524633-9-448194
691706CGAACCACTGAACAAA5525194-9-344194
12611276GCAGTATGGATCGGCA5524643-9-481211
12611276GCAGTATGGATCGGCA5525204-9-369211
12621277CGCAGTATGGATCGGC5524653-9-4841325
12621277CGCAGTATGGATCGGC5525214-9-3801325
12631278CCGCAGTATGGATCGG5524663-9-4751326
12631278CCGCAGTATGGATCGG5525224-9-3761326
12641279TCCGCAGTATGGATCG5524673-9-4651327
12641279TCCGCAGTATGGATCG5525234-9-3711327
12651280TTCCGCAGTATGGATC5524683-9-4531328
12651280TTCCGCAGTATGGATC5525244-9-3431328
12661281GTTCCGCAGTATGGAT5524693-9-4511329
12661281GTTCCGCAGTATGGAT5525254-9-3571329
12671282AGTTCCGCAGTATGGA5524703-9-4461330
12671282AGTTCCGCAGTATGGA5525264-9-3601330
12681283GAGTTCCGCAGTATGG5524713-9-4541331
12681283GAGTTCCGCAGTATGG5525274-9-3721331
12691284GGAGTTCCGCAGTATG5524723-9-4781332
12691284GGAGTTCCGCAGTATG5525284-9-3781332
12701285AGGAGTTCCGCAGTAT5524733-9-4671333
12701285AGGAGTTCCGCAGTAT5525294-9-3771333
15771592AGCGAAGTGCACACGG5524743-9-4791334
15771592AGCGAAGTGCACACGG5525304-9-3781334
15781593AAGCGAAGTGCACACG5524753-9-4741335
15781593AAGCGAAGTGCACACG5525314-9-3681335
15791594GAAGCGAAGTGCACAC5524763-9-4521336
15801595TGAAGCGAAGTGCACA5524773-9-4761337
15811596GTGAAGCGAAGTGCAC5524783-9-4701338
15821597GGTGAAGCGAAGTGCA5524793-9-4671339
15831598AGGTGAAGCGAAGTGC5524803-9-4681340
15841599GAGGTGAAGCGAAGTG5524813-9-4571341
15851600AGAGGTGAAGCGAAGT5524823-9-4511342
15861601CAGAGGTGAAGCGAAG5524833-9-4481343
15871602GCAGAGGTGAAGCGAA5524843-9-4581344
15881603TGCAGAGGTGAAGCGA5524853-9-4511345
15891604GTGCAGAGGTGAAGCG5524863-9-4551346
15901605CGTGCAGAGGTGAAGC5524873-9-4621347
192
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
15911606ACGTGCAGAGGTGAAG5524883-9-4511348
17781793TATGCCTACAGCCTCC5524893-9-449230
17791794TTATGCCTACAGCCTC5524903-9-451231
17801795TTTATGCCTACAGCCT5524913-9-451232
17811796ATTTATGCCTACAGCC5524923-9-438233
17821797AATTTATGCCTACAGC5524933-9-452234
17831798CAATTTATGCCTACAG5524943-9-417235
17841799CCAATTTATGCCTACA5524953-9-449236
Table 32
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-543224
52
414429GAGGCATAGCAGCAGG5099593-10-338145
5873TGGAGCCACCAGCAGG5525525-9-2331318
5974CTGGAGCCACCAGCAG5525535-9-2461319
6075ACTGGAGCCACCAGCA5525545-9-2541320
6176AACTGGAGCCACCAGC5525555-9-2501321
6277GAACTGGAGCCACCAG5525565-9-24686
411426GCATAGCAGCAGGATG5525575-9-257137
412427GGCATAGCAGCAGGAT5525585-9-255140
413428AGGCATAGCAGCAGGA5525595-9-266143
414429GAGGCATAGCAGCAGG5525605-9-244145
415430TGAGGCATAGCAGCAG5525615-9-248147
416431ATGAGGCATAGCAGCA5525625-9-252149
417432GATGAGGCATAGCAGC5525635-9-245151
418433AGATGAGGCATAGCAG5525645-9-241153
457472CGGGCAACATACCTTG5525655-9-254167
458473ACGGGCAACATACCTT5525665-9-256168
670685CTAGTAAACTGAGCCA5525675-9-271181
671686ACTAGTAAACTGAGCC5525685-9-2641322
672687CACTAGTAAACTGAGC5525695-9-2591323
673688GCACTAGTAAACTGAG5525705-9-2601324
687702CCACTGAACAAATGGC5525715-9-255188
688703ACCACTGAACAAATGG5525725-9-260190
689704AACCACTGAACAAATG5525735-9-224191
690705GAACCACTGAACAAAT5525745-9-234192
691706CGAACCACTGAACAAA5525755-9-236194
12611276GCAGTATGGATCGGCA5525765-9-267211
193
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
12621277CGCAGTATGGATCGGC5525775-9-2641325
12631278CCGCAGTATGGATCGG5525785-9-2751326
12641279TCCGCAGTATGGATCG5525795-9-2751327
12651280TTCCGCAGTATGGATC5525805-9-2591328
12661281GTTCCGCAGTATGGAT5525815-9-2541329
12671282AGTTCCGCAGTATGGA5525825-9-2611330
12681283GAGTTCCGCAGTATGG5525835-9-2691331
12691284GGAGTTCCGCAGTATG5525845-9-2741332
12701285AGGAGTTCCGCAGTAT5525855-9-2621333
15771592AGCGAAGTGCACACGG5525865-9-2791334
15781593AAGCGAAGTGCACACG5525875-9-2711335
15791594GAAGCGAAGTGCACAC5525324-9-3481336
15791594GAAGCGAAGTGCACAC5525885-9-2701336
15801595TGAAGCGAAGTGCACA5525334-9-3431337
15801595TGAAGCGAAGTGCACA5525895-9-2591337
15811596GTGAAGCGAAGTGCAC5525344-9-3621338
15811596GTGAAGCGAAGTGCAC5525905-9-2701338
15821597GGTGAAGCGAAGTGCA5525354-9-3551339
15821597GGTGAAGCGAAGTGCA5525915-9-2511339
15831598AGGTGAAGCGAAGTGC5525364-9-331340
15831598AGGTGAAGCGAAGTGC5525925-9-2501340
15841599GAGGTGAAGCGAAGTG5525374-9-3141341
15841599GAGGTGAAGCGAAGTG5525935-9-2461341
15851600AGAGGTGAAGCGAAGT5525384-9-3521342
15851600AGAGGTGAAGCGAAGT5525945-9-2551342
15861601CAGAGGTGAAGCGAAG5525394-9-3471343
15861601CAGAGGTGAAGCGAAG5525955-9-2601343
15871602GCAGAGGTGAAGCGAA5525404-9-3601344
15871602GCAGAGGTGAAGCGAA5525965-9-2631344
15881603TGCAGAGGTGAAGCGA5525414-9-3601345
15881603TGCAGAGGTGAAGCGA5525975-9-2611345
15891604GTGCAGAGGTGAAGCG5525424-9-3641346
15891604GTGCAGAGGTGAAGCG5525985-9-2571346
15901605CGTGCAGAGGTGAAGC5525434-9-3461347
15901605CGTGCAGAGGTGAAGC5526005-9-2591347
15911606ACGTGCAGAGGTGAAG5525444-9-3531348
15911606ACGTGCAGAGGTGAAG5526025-9-261348
17781793TATGCCTACAGCCTCC5525454-9-333230
17781793TATGCCTACAGCCTCC5526045-9-247230
17791794TTATGCCTACAGCCTC5525464-9-342231
17791794TTATGCCTACAGCCTC5526065-9-253231
17801795TTTATGCCTACAGCCT5525474-9-351232
17801795TTTATGCCTACAGCCT5526085-9-253232
194
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17811796ATTTATGCCTACAGCC5525484-9-352233
17811796ATTTATGCCTACAGCC5526105-9-247233
17821797AATTTATGCCTACAGC5525494-9-338234
17821797AATTTATGCCTACAGC5526125-9-239234
17831798CAATTTATGCCTACAG5525504-9-319235
17831798CAATTTATGCCTACAG5526145-9-224235
17841799CCAATTTATGCCTACA5525514-9-324236
17841799CCAATTTATGCCTACA5526165-9-215236
Table 33
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-551224
17801799CCAATTTATGCCTACAGCCT5099345-10-57650
5877GAACTGGAGCCACCAGCAGG5520076-10-46183
5877GAACTGGAGCCACCAGCAGG5520397-10-38483
253272AGAGAAGTCCACCACGAGTC5520086-10-448103
253272AGAGAAGTCCACCACGAGTC5520407-10-348103
411430TGAGGCATAGCAGCAGGATG5520096-10-477136
411430TGAGGCATAGCAGCAGGATG5520417-10-373136
412431ATGAGGCATAGCAGCAGGAT5520106-10-463139
412431ATGAGGCATAGCAGCAGGAT5520427-10-366139
413432GATGAGGCATAGCAGCAGGA5520116-10-452142
413432GATGAGGCATAGCAGCAGGA5520437-10-354142
414433AGATGAGGCATAGCAGCAGG5520126-10-47320
414433AGATGAGGCATAGCAGCAGG5520447-10-38620
415434AAGATGAGGCATAGCAGCAG5520136-10-47322
415434AAGATGAGGCATAGCAGCAG5520457-10-36522
416435GAAGATGAGGCATAGCAGCA5520146-10-47624
416435GAAGATGAGGCATAGCAGCA5520467-10-39324
417436AGAAGATGAGGCATAGCAGC5520156-10-47026
417436AGAAGATGAGGCATAGCAGC5520477-10-37726
418437AAGAAGATGAGGCATAGCAG5520166-10-46128
418437AAGAAGATGAGGCATAGCAG5520487-10-36628
687706CGAACCACTGAACAAATGGC5520176-10-47339
687706CGAACCACTGAACAAATGGC5520497-10-37339
12611280TTCCGCAGTATGGATCGGCA5520186-10-498719
12611280TTCCGCAGTATGGATCGGCA5520507-10-398719
12621281GTTCCGCAGTATGGATCGGC5520196-10-498212
12621281GTTCCGCAGTATGGATCGGC5520517-10-399212
195
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
12631282AGTTCCGCAGTATGGATCGG5519864-10-692720
12631282AGTTCCGCAGTATGGATCGG5520206-10-497720
12631282AGTTCCGCAGTATGGATCGG5520527-10-398720
12641283GAGTTCCGCAGTATGGATCG5519874-10-695721
12641283GAGTTCCGCAGTATGGATCG5520216-10-497721
12641283GAGTTCCGCAGTATGGATCG5520537-10-398721
12651284GGAGTTCCGCAGTATGGATC5519884-10-6501349
12651284GGAGTTCCGCAGTATGGATC5520055-10-5991349
12651284GGAGTTCCGCAGTATGGATC5520226-10-4991349
12651284GGAGTTCCGCAGTATGGATC5520547-10-3991349
12661285AGGAGTTCCGCAGTATGGAT5519894-10-696722
12661285AGGAGTTCCGCAGTATGGAT5520236-10-499722
12661285AGGAGTTCCGCAGTATGGAT5520557-10-398722
15771596GTGAAGCGAAGTGCACACGG5519904-10-686224
15771596GTGAAGCGAAGTGCACACGG5520246-10-489224
15771596GTGAAGCGAAGTGCACACGG5520567-10-388224
15781597GGTGAAGCGAAGTGCACACG5519914-10-60801
15781597GGTGAAGCGAAGTGCACACG5520256-10-490801
15781597GGTGAAGCGAAGTGCACACG5520577-10-392801
15791598AGGTGAAGCGAAGTGCACAC5519924-10-672802
15791598AGGTGAAGCGAAGTGCACAC5520266-10-488802
15791598AGGTGAAGCGAAGTGCACAC5520587-10-386802
15801599GAGGTGAAGCGAAGTGCACA5519934-10-682225
15801599GAGGTGAAGCGAAGTGCACA5520276-10-487225
15801599GAGGTGAAGCGAAGTGCACA5520597-10-388225
15811600AGAGGTGAAGCGAAGTGCAC5519944-10-685804
15811600AGAGGTGAAGCGAAGTGCAC5520286-10-483804
15811600AGAGGTGAAGCGAAGTGCAC5520607-10-382804
15821601CAGAGGTGAAGCGAAGTGCA5519954-10-684805
15821601CAGAGGTGAAGCGAAGTGCA5520296-10-488805
15821601CAGAGGTGAAGCGAAGTGCA5520617-10-385805
15831602GCAGAGGTGAAGCGAAGTGC5519964-10-687226
15831602GCAGAGGTGAAGCGAAGTGC5520306-10-488226
15831602GCAGAGGTGAAGCGAAGTGC5520627-10-385226
15841603TGCAGAGGTGAAGCGAAGTG5519974-10-683806
15841603TGCAGAGGTGAAGCGAAGTG5520316-10-482806
15851604GTGCAGAGGTGAAGCGAAGT5519984-10-685807
15851604GTGCAGAGGTGAAGCGAAGT5520326-10-487807
15861605CGTGCAGAGGTGAAGCGAAG5519994-10-682227
15861605CGTGCAGAGGTGAAGCGAAG5520336-10-487227
15871606ACGTGCAGAGGTGAAGCGAA5520004-10-6831350
15871606ACGTGCAGAGGTGAAGCGAA5520065-10-5881350
15871606ACGTGCAGAGGTGAAGCGAA5520346-10-4891350
196
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17781797AATTTATGCCTACAGCCTCC5520014-10-66546
17781797AATTTATGCCTACAGCCTCC5520356-10-46046
17791798CAATTTATGCCTACAGCCTC5520024-10-66348
17791798CAATTTATGCCTACAGCCTC5520366-10-46548
17801799CCAATTTATGCCTACAGCCT5520034-10-66550
17801799CCAATTTATGCCTACAGCCT5520376-10-45850
17811800ACCAATTTATGCCTACAGCC5520044-10-65852
17811800ACCAATTTATGCCTACAGCC5520386-10-47052
Table 34
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
ViralTarget Start SiteViralTargetStop SiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-564224
411427GGCATAGCAGCAGGATG5101003-10-46217
5874CTGGAGCCACCAGCAGG5521683-9-5791288
5874CTGGAGCCACCAGCAGG5522224-9-4791288
5975ACTGGAGCCACCAGCAG5521693-9-5671289
5975ACTGGAGCCACCAGCAG5522234-9-4401289
6076AACTGGAGCCACCAGCA5521703-9-5691290
6076AACTGGAGCCACCAGCA5522244-9-4641290
6177GAACTGGAGCCACCAGC5521713-9-5651291
6177GAACTGGAGCCACCAGC5522254-9-4691291
253269GAAGTCCACCACGAGTC5521723-9-5339
253269GAAGTCCACCACGAGTC5522264-9-4489
254270AGAAGTCCACCACGAGT5521733-9-54110
254270AGAAGTCCACCACGAGT5522274-9-43210
255271GAGAAGTCCACCACGAG5521743-9-53111
255271GAGAAGTCCACCACGAG5522284-9-44211
256272AGAGAAGTCCACCACGA5521753-9-55912
411427GGCATAGCAGCAGGATG5521763-9-56817
412428AGGCATAGCAGCAGGAT5521773-9-55518
413429GAGGCATAGCAGCAGGA5521783-9-56619
414430TGAGGCATAGCAGCAGG5521793-9-57021
415431ATGAGGCATAGCAGCAG5521803-9-56623
416432GATGAGGCATAGCAGCA5521813-9-55125
417433AGATGAGGCATAGCAGC5521823-9-56927
418434AAGATGAGGCATAGCAG5521833-9-56929
457473ACGGGCAACATACCTTG5521843-9-54333
670686ACTAGTAAACTGAGCCA5521853-9-5661292
671687CACTAGTAAACTGAGCC5521863-9-5541293
197
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
672688GCACTAGTAAACTGAGC5521873-9-5741294
687703ACCACTGAACAAATGGC5521883-9-57840
688704AACCACTGAACAAATGG5521893-9-55741
689705GAACCACTGAACAAATG5521903-9-53942
690706CGAACCACTGAACAAAT5521913-9-56043
12611277CGCAGTATGGATCGGCA5521923-9-5851295
12621278CCGCAGTATGGATCGGC5521933-9-5861296
12631279TCCGCAGTATGGATCGG5521943-9-5681297
12641280TTCCGCAGTATGGATCG5521953-9-5731298
12651281GTTCCGCAGTATGGATC5521963-9-5601299
12661282AGTTCCGCAGTATGGAT5521973-9-5601300
12671283GAGTTCCGCAGTATGGA5521983-9-5611301
12681284GGAGTTCCGCAGTATGG5521993-9-5891302
12691285AGGAGTTCCGCAGTATG5522003-9-5851303
15771593AAGCGAAGTGCACACGG5522013-9-5811304
15781594GAAGCGAAGTGCACACG5522023-9-5761305
15791595TGAAGCGAAGTGCACAC5522033-9-5741306
15801596GTGAAGCGAAGTGCACA5522043-9-5711307
15811597GGTGAAGCGAAGTGCAC5521512-9-6771308
15811597GGTGAAGCGAAGTGCAC5522053-9-5781308
15821598AGGTGAAGCGAAGTGCA5521522-9-6721309
15821598AGGTGAAGCGAAGTGCA5522063-9-5771309
15831599GAGGTGAAGCGAAGTGC5521532-9-6671310
15831599GAGGTGAAGCGAAGTGC5522073-9-5811310
15841600AGAGGTGAAGCGAAGTG5521542-9-6561311
15841600AGAGGTGAAGCGAAGTG5522083-9-5701311
15851601CAGAGGTGAAGCGAAGT5521552-9-6611312
15851601CAGAGGTGAAGCGAAGT5522093-9-5631312
15861602GCAGAGGTGAAGCGAAG5521562-9-6201313
15861602GCAGAGGTGAAGCGAAG5522103-9-5751313
15871603TGCAGAGGTGAAGCGAA5521572-9-6391314
15871603TGCAGAGGTGAAGCGAA5522113-9-5751314
15881604GTGCAGAGGTGAAGCGA5521582-9-6701315
15881604GTGCAGAGGTGAAGCGA5522123-9-5671315
15891605CGTGCAGAGGTGAAGCG5521592-9-6741316
15891605CGTGCAGAGGTGAAGCG5522133-9-5701316
15901606ACGTGCAGAGGTGAAGC5521602-9-6781317
15901606ACGTGCAGAGGTGAAGC5522143-9-5791317
17781794TTATGCCTACAGCCTCC5521612-9-65647
17781794TTATGCCTACAGCCTCC5522153-9-56147
17791795TTTATGCCTACAGCCTC5521622-9-66449
17791795TTTATGCCTACAGCCTC5522163-9-56249
17801796ATTTATGCCTACAGCCT5521632-9-67151
198
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17801796ATTTATGCCTACAGCCT5522173-9-55851
17811797AATTTATGCCTACAGCC5521642-9-65253
17811797AATTTATGCCTACAGCC5522183-9-55653
17821798CAATTTATGCCTACAGC5521652-9-65354
17821798CAATTTATGCCTACAGC5522193-9-53354
17831799CCAATTTATGCCTACAG5521662-9-64155
17831799CCAATTTATGCCTACAG5522203-9-55355
17841800ACCAATTTATGCCTACA5521672-9-65456
17841800ACCAATTTATGCCTACA5522213-9-53156
Table 35
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif% inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-560224
85
17801799CCAATTTATGCCTACAGCCT5099345-10-57650
411427GGCATAGCAGCAGGATG5101003-10-47317
5877GAACTGGAGCCACCAGCAGG5520718-10-27983
5874CTGGAGCCACCAGCAGG5521142-9-6661288
5975ACTGGAGCCACCAGCAG5521152-9-6701289
6076AACTGGAGCCACCAGCA5521162-9-6681290
6177GAACTGGAGCCACCAGC5521172-9-6701291
253272AGAGAAGTCCACCACGAGTC5520728-10-250103
253269GAAGTCCACCACGAGTC5521182-9-6669
254270AGAAGTCCACCACGAGT5521192-9-66210
255271GAGAAGTCCACCACGAG5521202-9-63511
256272AGAGAAGTCCACCACGA5521212-9-63912
411430TGAGGCATAGCAGCAGGATG5520738-10-280136
411427GGCATAGCAGCAGGATG5521222-9-65517
412431ATGAGGCATAGCAGCAGGAT5520748-10-273139
412428AGGCATAGCAGCAGGAT5521232-9-67518
413432GATGAGGCATAGCAGCAGGA5520758-10-278142
413429GAGGCATAGCAGCAGGA5521242-9-66419
414433AGATGAGGCATAGCAGCAGG5520768-10-27020
414430TGAGGCATAGCAGCAGG5521252-9-67321
415434AAGATGAGGCATAGCAGCAG5520778-10-28322
415431ATGAGGCATAGCAGCAG5521262-9-66423
416435GAAGATGAGGCATAGCAGCA5520788-10-28024
416432GATGAGGCATAGCAGCA5521272-9-67225
417436AGAAGATGAGGCATAGCAGC5520798-10-28626
199
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
417433AGATGAGGCATAGCAGC5521282-9-67627
418437AAGAAGATGAGGCATAGCAG5520808-10-28328
418434AAGATGAGGCATAGCAG5521292-9-67229
670686ACTAGTAAACTGAGCCA5521312-9-6611292
671687CACTAGTAAACTGAGCC5521322-9-6731293
672688GCACTAGTAAACTGAGC5521332-9-6751294
687706CGAACCACTGAACAAATGGC5520818-10-27639
687703ACCACTGAACAAATGGC5521342-9-65840
688704AACCACTGAACAAATGG5521352-9-66741
689705GAACCACTGAACAAATG5521362-9-66542
690706CGAACCACTGAACAAAT5521372-9-65543
12611280TTCCGCAGTATGGATCGGCA5520828-10-298719
12611277CGCAGTATGGATCGGCA5521382-9-6821295
12621281GTTCCGCAGTATGGATCGGC5520838-10-299212
12621278CCGCAGTATGGATCGGC5521392-9-6861296
12631282AGTTCCGCAGTATGGATCGG5520848-10-299720
12631279TCCGCAGTATGGATCGG5521402-9-6741297
12641283GAGTTCCGCAGTATGGATCG5520858-10-2100721
12641280TTCCGCAGTATGGATCG5521412-9-6671298
12651284GGAGTTCCGCAGTATGGATC5520868-10-21001349
12651281GTTCCGCAGTATGGATC5521422-9-6451299
12661285AGGAGTTCCGCAGTATGGAT5520878-10-2100722
12661282AGTTCCGCAGTATGGAT5521432-9-6681300
12671283GAGTTCCGCAGTATGGA5521442-9-6781301
12681284GGAGTTCCGCAGTATGG5521452-9-6881302
12691285AGGAGTTCCGCAGTATG5521462-9-6811303
15771596GTGAAGCGAAGTGCACACGG5520888-10-295224
15771593AAGCGAAGTGCACACGG5521472-9-6881304
15781597GGTGAAGCGAAGTGCACACG5520898-10-293801
15781594GAAGCGAAGTGCACACG5521482-9-6791305
15791598AGGTGAAGCGAAGTGCACAC5520908-10-287802
15791595TGAAGCGAAGTGCACAC5521492-9-681 .1306
15801599GAGGTGAAGCGAAGTGCACA5520918-10-288225
15811600AGAGGTGAAGCGAAGTGCAC5520928-10-290804
15821601CAGAGGTGAAGCGAAGTGCA5520938-10-291805
15831602GCAGAGGTGAAGCGAAGTGC5520948-10-288226
15841603TGCAGAGGTGAAGCGAAGTG5520637-10-381806
15841603TGCAGAGGTGAAGCGAAGTG5520958-10-289806
15851604GTGCAGAGGTGAAGCGAAGT5520647-10-385807
15851604GTGCAGAGGTGAAGCGAAGT5520968-10-292807
15861605CGTGCAGAGGTGAAGCGAAG5520657-10-386227
15861605CGTGCAGAGGTGAAGCGAAG5520978-10-293227
15871606ACGTGCAGAGGTGAAGCGAA5520667-10-3331350
200
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
15871606ACGTGCAGAGGTGAAGCGAA5520988-10-2881350
17781797AATTTATGCCTACAGCCTCC5520677-10-35046
17781797AATTTATGCCTACAGCCTCC5520998-10-27046
17791798CAATTTATGCCTACAGCCTC5520687-10-37348
17791798CAATTTATGCCTACAGCCTC5521008-10-27048
17801799CCAATTTATGCCTACAGCCT5520697-10-37350
17801799CCAATTTATGCCTACAGCCT5521018-10-27650
17811800ACCAATTTATGCCTACAGCC5520707-10-37152
17811800ACCAATTTATGCCTACAGCC5521028-10-26452
Table 36
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-584224
411427GGCATAGCAGCAGGATG5101003-10-47617
5874CTGGAGCCACCAGCAGG5523306-9-2541288
5975ACTGGAGCCACCAGCAG5523316-9-2661289
6076AACTGGAGCCACCAGCA5523326-9-2701290
6177GAACTGGAGCCACCAGC5523336-9-2551291
253269GAAGTCCACCACGAGTC5523346-9-2429
254270AGAAGTCCACCACGAGT5523356-9-23910
255271GAGAAGTCCACCACGAG5523366-9-22711
256272AGAGAAGTCCACCACGA5523376-9-27412
411427GGCATAGCAGCAGGATG5523386-9-26817
412428AGGCATAGCAGCAGGAT5523396-9-27118
413429GAGGCATAGCAGCAGGA5523406-9-26119
414430TGAGGCATAGCAGCAGG5523416-9-25821
415431ATGAGGCATAGCAGCAG5523426-9-25523
416432GATGAGGCATAGCAGCA5523436-9-26325
417433AGATGAGGCATAGCAGC5523446-9-25127
418434AAGATGAGGCATAGCAG5523456-9-26529
457473ACGGGCAACATACCTTG5523466-9-2033
670686ACTAGTAAACTGAGCCA5523476-9-2841292
671687CACTAGTAAACTGAGCC5523486-9-2871293
672688GCACTAGTAAACTGAGC5523496-9-2741294
687703ACCACTGAACAAATGGC5523506-9-25940
688704AACCACTGAACAAATGG5523516-9-26041
689705GAACCACTGAACAAATG5523526-9-25342
690706CGAACCACTGAACAAAT5523536-9-2043
12611277CGCAGTATGGATCGGCA5523546-9-2831295
201
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
12621278CCGCAGTATGGATCGGC5523556-9-2901296
12631279TCCGCAGTATGGATCGG5523566-9-201297
12641280TTCCGCAGTATGGATCG5523576-9-2451298
12651281GTTCCGCAGTATGGATC5523586-9-2741299
12661282AGTTCCGCAGTATGGAT5523596-9-2721300
12671283GAGTTCCGCAGTATGGA5523606-9-2871301
12681284GGAGTTCCGCAGTATGG5523616-9-2961302
12691285AGGAGTTCCGCAGTATG5523085-9-3811303
12691285AGGAGTTCCGCAGTATG5523626-9-2921303
15771593AAGCGAAGTGCACACGG5523095-9-3771304
15771593AAGCGAAGTGCACACGG5523636-9-2921304
15781594GAAGCGAAGTGCACACG5523105-9-3801305
15781594GAAGCGAAGTGCACACG5523646-9-2871305
15791595TGAAGCGAAGTGCACAC5523115-9-3131306
15791595TGAAGCGAAGTGCACAC5523656-9-2841306
15801596GTGAAGCGAAGTGCACA5521502-9-6731307
15801596GTGAAGCGAAGTGCACA5523125-9-3771307
15801596GTGAAGCGAAGTGCACA5523666-9-2871307
15811597GGTGAAGCGAAGTGCAC5523135-9-3641308
15811597GGTGAAGCGAAGTGCAC5523676-9-2851308
15821598AGGTGAAGCGAAGTGCA5523145-9-3731309
15821598AGGTGAAGCGAAGTGCA5523686-9-2771309
15831599GAGGTGAAGCGAAGTGC5523155-9-3751310
15831599GAGGTGAAGCGAAGTGC5523696-9-2751310
15841600AGAGGTGAAGCGAAGTG5523165-9-3641311
15841600AGAGGTGAAGCGAAGTG5523706-9-2631311
15851601CAGAGGTGAAGCGAAGT5523175-9-3991312
15851601CAGAGGTGAAGCGAAGT5523716-9-2811312
15861602GCAGAGGTGAAGCGAAG5523185-9-3761313
15861602GCAGAGGTGAAGCGAAG5523726-9-2651313
15871603TGCAGAGGTGAAGCGAA5523195-9-3551314
15871603TGCAGAGGTGAAGCGAA5523736-9-2741314
15881604GTGCAGAGGTGAAGCGA5523205-9-3681315
15881604GTGCAGAGGTGAAGCGA5523746-9-2781315
15891605CGTGCAGAGGTGAAGCG5523215-9-3741316
15891605CGTGCAGAGGTGAAGCG5523756-9-2811316
15901606ACGTGCAGAGGTGAAGC5523225-9-3731317
15901606ACGTGCAGAGGTGAAGC5523766-9-2781317
17781794TTATGCCTACAGCCTCC5523235-9-37547
17781794TTATGCCTACAGCCTCC5523776-9-27047
17791795TTTATGCCTACAGCCTC5523245-9-3049
17791795TTTATGCCTACAGCCTC5523786-9-27249
17801796ATTTATGCCTACAGCCT5523255-9-37051
202
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17801796ATTTATGCCTACAGCCT5523796-9-27451
17811797AATTTATGCCTACAGCC5523265-9-36353
17811797AATTTATGCCTACAGCC5523806-9-25353
17821798CAATTTATGCCTACAGC5523275-9-33054
17821798CAATTTATGCCTACAGC5523816-9-22654
17831799CCAATTTATGCCTACAG5523285-9-32555
17831799CCAATTTATGCCTACAG5523826-9-21355
17841800ACCAATTTATGCCTACA5523295-9-33356
17841800ACCAATTTATGCCTACA5523836-9-2556
Table 37
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ IDNO
17801799CCAATTTATGCCTACAGCCT5099345-10-53050
5877GAACTGGAGCCACCAGCAGG5519092-10-86283
5877GAACTGGAGCCACCAGCAGG5519413-10-77483
5877GAACTGGAGCCACCAGCAGG5519734-10-66483
253272AGAGAAGTCCACCACGAGTC5519102-10-852103
253272AGAGAAGTCCACCACGAGTC5519423-10-754103
253272AGAGAAGTCCACCACGAGTC5519744-10-651103
411430TGAGGCATAGCAGCAGGATG5519112-10-858136
411430TGAGGCATAGCAGCAGGATG5519433-10-764136
411430TGAGGCATAGCAGCAGGATG5519754-10-657136
412431ATGAGGCATAGCAGCAGGAT5519122-10-859139
412431ATGAGGCATAGCAGCAGGAT5519443-10-766139
412431ATGAGGCATAGCAGCAGGAT5519764-10-657139
413432GATGAGGCATAGCAGCAGGA5519132-10-858142
413432GATGAGGCATAGCAGCAGGA5519453-10-756142
413432GATGAGGCATAGCAGCAGGA5519774-10-656142
414433AGATGAGGCATAGCAGCAGG5519142-10-8020
414433AGATGAGGCATAGCAGCAGG5519463-10-74820
414433AGATGAGGCATAGCAGCAGG5519784-10-65320
415434AAGATGAGGCATAGCAGCAG5519152-10-84422
415434AAGATGAGGCATAGCAGCAG5519473-10-75322
415434AAGATGAGGCATAGCAGCAG5519794-10-66422
416435GAAGATGAGGCATAGCAGCA5519162-10-85724
416435GAAGATGAGGCATAGCAGCA5519483-10-76824
416435GAAGATGAGGCATAGCAGCA5519804-10-65624
417436AGAAGATGAGGCATAGCAGC5519172-10-85826
417436AGAAGATGAGGCATAGCAGC5519493-10-76426
203
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
417436AGAAGATGAGGCATAGCAGC5519814-10-66326
418437AAGAAGATGAGGCATAGCAG5519182-10-85928
418437AAGAAGATGAGGCATAGCAG5519503-10-77128
418437AAGAAGATGAGGCATAGCAG5519824-10-66328
687706CGAACCACTGAACAAATGGC5519192-10-87639
687706CGAACCACTGAACAAATGGC5519513-10-77139
687706CGAACCACTGAACAAATGGC5519834-10-67339
12611280TTCCGCAGTATGGATCGGCA5519202-10-868719
12611280TTCCGCAGTATGGATCGGCA5519523-10-776719
12611280TTCCGCAGTATGGATCGGCA5519844-10-681719
12621281GTTCCGCAGTATGGATCGGC5519212-10-883212
12621281GTTCCGCAGTATGGATCGGC5519533-10-782212
12621281GTTCCGCAGTATGGATCGGC5519854-10-676212
12631282AGTTCCGCAGTATGGATCGG5519222-10-873720
12631282AGTTCCGCAGTATGGATCGG5519543-10-768720
12641283GAGTTCCGCAGTATGGATCG5519232-10-859721
12641283GAGTTCCGCAGTATGGATCG5519553-10-771721
12651284GGAGTTCCGCAGTATGGATC5519242-10-8801349
12651284GGAGTTCCGCAGTATGGATC5519563-10-7801349
12661285AGGAGTTCCGCAGTATGGAT5519252-10-882722
12661285AGGAGTTCCGCAGTATGGAT5519573-10-788722
15771596GTGAAGCGAAGTGCACACGG5519262-10-871224
15771596GTGAAGCGAAGTGCACACGG5519583-10-774224
15781597GGTGAAGCGAAGTGCACACG5519272-10-868801
15781597GGTGAAGCGAAGTGCACACG5519593-10-769801
15791598AGGTGAAGCGAAGTGCACAC5519282-10-869802
15791598AGGTGAAGCGAAGTGCACAC5519603-10-762802
15801599GAGGTGAAGCGAAGTGCACA5519292-10-854225
15801599GAGGTGAAGCGAAGTGCACA5519613-10-720225
15811600AGAGGTGAAGCGAAGTGCAC5519302-10-853804
15811600AGAGGTGAAGCGAAGTGCAC5519623-10-760804
15821601CAGAGGTGAAGCGAAGTGCA5519312-10-847805
15821601CAGAGGTGAAGCGAAGTGCA5519633-10-763805
15831602GCAGAGGTGAAGCGAAGTGC5519322-10-868226
15831602GCAGAGGTGAAGCGAAGTGC5519643-10-756226
15841603TGCAGAGGTGAAGCGAAGTG5519332-10-872806
15841603TGCAGAGGTGAAGCGAAGTG5519653-10-767806
15851604GTGCAGAGGTGAAGCGAAGT5519342-10-864807
15851604GTGCAGAGGTGAAGCGAAGT5519663-10-773807
15861605CGTGCAGAGGTGAAGCGAAG5519352-10-868227
15861605CGTGCAGAGGTGAAGCGAAG5519673-10-760227
15871606ACGTGCAGAGGTGAAGCGAA5519362-10-8671350
15871606ACGTGCAGAGGTGAAGCGAA5519683-10-7631350
204
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17781797AATTTATGCCTACAGCCTCC5519372-10-84746
17781797AATTTATGCCTACAGCCTCC5519693-10-73646
17791798CAATTTATGCCTACAGCCTC5519382-10-84148
17791798CAATTTATGCCTACAGCCTC5519703-10-74348
17801799CCAATTTATGCCTACAGCCT5519392-10-85350
17801799CCAATTTATGCCTACAGCCT5519713-10-75550
17811800ACCAATTTATGCCTACAGCC5519402-10-85052
17811800ACCAATTTATGCCTACAGCC5519723-10-75852
Table 38
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTarget Start SiteViralTarget Stop SiteSequenceISIS NoMotif%inhibitionSEQ ID NO
17801799CCAATTTATGCCTACAGCCT5099345-10-52150
5877GAACTGGAGCCACCAGCAGG5519092-10-85283
5877GAACTGGAGCCACCAGCAGG5519413-10-76283
5877GAACTGGAGCCACCAGCAGG5519734-10-65883
253272AGAGAAGTCCACCACGAGTC5519102-10-848103
253272AGAGAAGTCCACCACGAGTC5519423-10-736103
253272AGAGAAGTCCACCACGAGTC5519744-10-645103
411430TGAGGCATAGCAGCAGGATG5519112-10-861136
411430TGAGGCATAGCAGCAGGATG5519433-10-756136
411430TGAGGCATAGCAGCAGGATG5519754-10-660136
412431ATGAGGCATAGCAGCAGGAT5519122-10-853139
412431ATGAGGCATAGCAGCAGGAT5519443-10-748139
412431ATGAGGCATAGCAGCAGGAT5519764-10-648139
413432GATGAGGCATAGCAGCAGGA5519132-10-853142
413432GATGAGGCATAGCAGCAGGA5519453-10-754142
413432GATGAGGCATAGCAGCAGGA5519774-10-648142
414433AGATGAGGCATAGCAGCAGG5519142-10-8020
414433AGATGAGGCATAGCAGCAGG5519463-10-75620
414433AGATGAGGCATAGCAGCAGG5519784-10-63620
415434AAGATGAGGCATAGCAGCAG5519152-10-84722
415434AAGATGAGGCATAGCAGCAG5519473-10-74522
415434AAGATGAGGCATAGCAGCAG5519794-10-65422
416435GAAGATGAGGCATAGCAGCA5519162-10-84424
416435GAAGATGAGGCATAGCAGCA5519483-10-75924
416435GAAGATGAGGCATAGCAGCA5519804-10-64924
417436AGAAGATGAGGCATAGCAGC5519172-10-84826
417436AGAAGATGAGGCATAGCAGC5519493-10-76026
417436AGAAGATGAGGCATAGCAGC5519814-10-65726
205
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
418437AAGAAGATGAGGCATAGCAG5519182-10-85328
418437AAGAAGATGAGGCATAGCAG5519503-10-75728
418437AAGAAGATGAGGCATAGCAG5519824-10-65728
687706CGAACCACTGAACAAATGGC5519192-10-86539
687706CGAACCACTGAACAAATGGC5519513-10-75739
687706CGAACCACTGAACAAATGGC5519834-10-65339
12611280TTCCGCAGTATGGATCGGCA5519202-10-857719
12611280TTCCGCAGTATGGATCGGCA5519523-10-767719
12611280TTCCGCAGTATGGATCGGCA5519844-10-662719
12621281GTTCCGCAGTATGGATCGGC5519212-10-860212
12621281GTTCCGCAGTATGGATCGGC5519533-10-757212
12621281GTTCCGCAGTATGGATCGGC5519855519224-10-658212
12631282AGTTCCGCAGTATGGATCGG2-10-863720
12631282AGTTCCGCAGTATGGATCGG5519543-10-761720
12641283GAGTTCCGCAGTATGGATCG5519232-10-850721
12641283GAGTTCCGCAGTATGGATCG5519553-10-744721
12651284GGAGTTCCGCAGTATGGATC5519242-10-8521349
12651284GGAGTTCCGCAGTATGGATC5519563-10-7461349
12661285AGGAGTTCCGCAGTATGGAT5519252-10-854722
12661285AGGAGTTCCGCAGTATGGAT5519573-10-751722
15771596GTGAAGCGAAGTGCACACGG5519262-10-870224
15771596GTGAAGCGAAGTGCACACGG5519583-10-772224
15781597GGTGAAGCGAAGTGCACACG5519272-10-860801
15781597GGTGAAGCGAAGTGCACACG5519593-10-761801
15791598AGGTGAAGCGAAGTGCACAC5519282-10-857802
15791598AGGTGAAGCGAAGTGCACAC5519603-10-758802
15801599GAGGTGAAGCGAAGTGCACA5519292-10-849225
15801599GAGGTGAAGCGAAGTGCACA5519613-10-726225
15811600AGAGGTGAAGCGAAGTGCAC5519302-10-854804
15811600AGAGGTGAAGCGAAGTGCAC5519623-10-757804
15821601CAGAGGTGAAGCGAAGTGCA5519312-10-846805
15821601CAGAGGTGAAGCGAAGTGCA5519633-10-756805
15831602GCAGAGGTGAAGCGAAGTGC5519322-10-857226
15831602GCAGAGGTGAAGCGAAGTGC5519643-10-753226
15841603TGCAGAGGTGAAGCGAAGTG5519332-10-865806
15841603TGCAGAGGTGAAGCGAAGTG5519653-10-754806
15851604GTGCAGAGGTGAAGCGAAGT5519342-10-858807
15851604GTGCAGAGGTGAAGCGAAGT5519663-10-769807
15861605CGTGCAGAGGTGAAGCGAAG5519352-10-863227
15861605CGTGCAGAGGTGAAGCGAAG5519673-10-753227
15871606ACGTGCAGAGGTGAAGCGAA5519362-10-8671350
15871606ACGTGCAGAGGTGAAGCGAA5519683-10-7601350
17781797AATTTATGCCTACAGCCTCC5519372-10-85146
206
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17781797AATTTATGCCTACAGCCTCC5519693-10-74246
17791798CAATTTATGCCTACAGCCTC5519382-10-84048
17791798CAATTTATGCCTACAGCCTC5519703-10-73848
17801799CCAATTTATGCCTACAGCCT5519392-10-83250
17801799CCAATTTATGCCTACAGCCT5519713-10-74650
17811800ACCAATTTATGCCTACAGCC5519402-10-83952
17811800ACCAATTTATGCCTACAGCC5519723-10-75152
Table 39
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-540224
411427GGCATAGCAGCAGGATG5101003-10-46017
5874CTGGAGCCACCAGCAGG5522765-9-3441288
5975ACTGGAGCCACCAGCAG5522775-9-3391289
6076AACTGGAGCCACCAGCA5522785-9-3371290
6177GAACTGGAGCCACCAGC5522795-9-3501291
253269GAAGTCCACCACGAGTC5522805-9-329
254270AGAAGTCCACCACGAGT5522815-9-3010
255271GAGAAGTCCACCACGAG5522825-9-31311
256272AGAGAAGTCCACCACGA5522294-9-41712
256272AGAGAAGTCCACCACGA5522835-9-32712
411427GGCATAGCAGCAGGATG5522304-9-45317
411427GGCATAGCAGCAGGATG5522845-9-3017
412428AGGCATAGCAGCAGGAT5522314-9-43118
412428AGGCATAGCAGCAGGAT5522855-9-35618
413429GAGGCATAGCAGCAGGA5522324-9-43519
413429GAGGCATAGCAGCAGGA5522865-9-34319
414430TGAGGCATAGCAGCAGG5522334-9-44021
414430TGAGGCATAGCAGCAGG5522875-9-34421
415431ATGAGGCATAGCAGCAG5522344-9-4023
415431ATGAGGCATAGCAGCAG5522885-9-34423
416432GATGAGGCATAGCAGCA5522354-9-41325
416432GATGAGGCATAGCAGCA5522895-9-32125
417433AGATGAGGCATAGCAGC5522364-9-44027
417433AGATGAGGCATAGCAGC5522905-9-33427
418434AAGATGAGGCATAGCAG5522374-9-43729
418434AAGATGAGGCATAGCAG5522915-9-33429
670686ACTAGTAAACTGAGCCA5522394-9-4581292
670686ACTAGTAAACTGAGCCA5522935-9-3611292
207
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
671687CACTAGTAAACTGAGCC5522404-9-4541293
671687CACTAGTAAACTGAGCC5522945-9-3621293
672688GCACTAGTAAACTGAGC5522414-9-4471294
672688GCACTAGTAAACTGAGC5522955-9-3631294
687703ACCACTGAACAAATGGC5522424-9-46140
687703ACCACTGAACAAATGGC5522965-9-36140
688704AACCACTGAACAAATGG5522434-9-45541
688704AACCACTGAACAAATGG5522975-9-35241
689705GAACCACTGAACAAATG5522444-9-44542
689705GAACCACTGAACAAATG5522985-9-32742
690706CGAACCACTGAACAAAT5522454-9-44143
690706CGAACCACTGAACAAAT5522995-9-33243
12611277CGCAGTATGGATCGGCA5522464-9-4671295
12611277CGCAGTATGGATCGGCA5523005-9-3571295
12621278CCGCAGTATGGATCGGC5522474-9-4741296
12621278CCGCAGTATGGATCGGC5523015-9-3761296
12631279TCCGCAGTATGGATCGG5522484-9-4651297
12631279TCCGCAGTATGGATCGG5523025-9-3681297
12641280TTCCGCAGTATGGATCG5522494-9-4381298
12641280TTCCGCAGTATGGATCG5523035-9-3591298
12651281GTTCCGCAGTATGGATC5522504-9-4431299
12651281GTTCCGCAGTATGGATC5523045-9-3301299
12661282AGTTCCGCAGTATGGAT5522514-9-4521300
12661282AGTTCCGCAGTATGGAT5523055-9-3491300
12671283GAGTTCCGCAGTATGGA5522524-9-4511301
12671283GAGTTCCGCAGTATGGA5523065-9-3561301
12681284GGAGTTCCGCAGTATGG5522534-9-4471302
12681284GGAGTTCCGCAGTATGG5523075-9-3491302
12691285AGGAGTTCCGCAGTATG5522544-9-4501303
15771593AAGCGAAGTGCACACGG5522554-9-4641304
15781594GAAGCGAAGTGCACACG5522564-9-4571305
15791595TGAAGCGAAGTGCACAC5522574-9-4511306
15801596GTGAAGCGAAGTGCACA5522584-9-4621307
15811597GGTGAAGCGAAGTGCAC5522594-9-4591308
15821598AGGTGAAGCGAAGTGCA5522604-9-4561309
15831599GAGGTGAAGCGAAGTGC5522614-9-4541310
15841600AGAGGTGAAGCGAAGTG5522624-9-4471311
15851601CAGAGGTGAAGCGAAGT5522634-9-4451312
15861602GCAGAGGTGAAGCGAAG5522644-9-4521313
15871603TGCAGAGGTGAAGCGAA5522654-9-4581314
15881604GTGCAGAGGTGAAGCGA5522664-9-4541315
15891605CGTGCAGAGGTGAAGCG5522674-9-4431316
15901606ACGTGCAGAGGTGAAGC5522684-9-4571317
208
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17781794TTATGCCTACAGCCTCC5522694-9-43447
17791795TTTATGCCTACAGCCTC5522704-9-43749
17801796ATTTATGCCTACAGCCT5522714-9-44251
17811797AATTTATGCCTACAGCC5522724-9-43653
17821798CAATTTATGCCTACAGC5522734-9-42554
17831799CCAATTTATGCCTACAG5522744-9-41155
17841800ACCAATTTATGCCTACA5522754-9-43856
Table 40
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-5381354
414429GAGGCATAGCAGCAGG5099593-10-349145
411427GGCATAGCAGCAGGATG5101003-10-45517
5873TGGAGCCACCAGCAGG5523842-9-5411318
5873TGGAGCCACCAGCAGG5524403-9-4571318
5974CTGGAGCCACCAGCAG5523852-9-5531319
5974CTGGAGCCACCAGCAG5524413-9-4381319
6075ACTGGAGCCACCAGCA5523862-9-5421320
6075ACTGGAGCCACCAGCA5524423-9-4721320
6176AACTGGAGCCACCAGC5523872-9-5431321
6176AACTGGAGCCACCAGC5524433-9-4561321
6277GAACTGGAGCCACCAG5523882-9-51886
6277GAACTGGAGCCACCAG5524443-9-43986
411426GCATAGCAGCAGGATG5523892-9-524137
411426GCATAGCAGCAGGATG5524453-9-453137
412427GGCATAGCAGCAGGAT5523902-9-540140
412427GGCATAGCAGCAGGAT5524463-9-457140
413428AGGCATAGCAGCAGGA5523912-9-551143
413428AGGCATAGCAGCAGGA5524473-9-453143
414429GAGGCATAGCAGCAGG5523922-9-50145
414429GAGGCATAGCAGCAGG5524483-9-457145
415430TGAGGCATAGCAGCAG5523932-9-552147
415430TGAGGCATAGCAGCAG5524493-9-449147
416431ATGAGGCATAGCAGCA5523942-9-532149
416431ATGAGGCATAGCAGCA5524503-9-444149
417432GATGAGGCATAGCAGC5523952-9-533151
417432GATGAGGCATAGCAGC5524513-9-438151
418433AGATGAGGCATAGCAG5523962-9-546153
418433AGATGAGGCATAGCAG5524523-9-430153
209
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
457473ACGGGCAACATACCTTG5521302-9-64633
457473ACGGGCAACATACCTTG5521843-9-53433
457473ACGGGCAACATACCTTG5522384-9-44133
457473ACGGGCAACATACCTTG5522925-9-34533
457473ACGGGCAACATACCTTG5523466-9-2033
457472CGGGCAACATACCTTG5523972-9-537167
457472CGGGCAACATACCTTG5524533-9-445167
458473ACGGGCAACATACCTT5523982-9-542168
458473ACGGGCAACATACCTT5524543-9-439168
670685CTAGTAAACTGAGCCA5523992-9-534181
671686ACTAGTAAACTGAGCC5524002-9-5471322
672687CACTAGTAAACTGAGC5524012-9-5531323
673688GCACTAGTAAACTGAG5524022-9-5471324
687702CCACTGAACAAATGGC5524032-9-570188
688703ACCACTGAACAAATGG5524042-9-544190
689' 704AACCACTGAACAAATG5524052-9-50191
690705GAACCACTGAACAAAT5524062-9-525192
691706CGAACCACTGAACAAA5524072-9-523194
12611276GCAGTATGGATCGGCA5524082-9-573211
12621277CGCAGTATGGATCGGC5524092-9-5711325
12631278CCGCAGTATGGATCGG5524102-9-5521326
12641279TCCGCAGTATGGATCG5524112-9-5621327
12651280TTCCGCAGTATGGATC5524122-9-5501328
12661281GTTCCGCAGTATGGAT5524132-9-5551329
12671282AGTTCCGCAGTATGGA5524142-9-5641330
12681283GAGTTCCGCAGTATGG5524152-9-5451331
12691284GGAGTTCCGCAGTATG5524162-9-5451332
12701285AGGAGTTCCGCAGTAT5524172-9-5371333
15771592AGCGAAGTGCACACGG5524182-9-5731334
15781593AAGCGAAGTGCACACG5524192-9-5681335
15791594GAAGCGAAGTGCACAC5524202-9-5641336
15801595TGAAGCGAAGTGCACA5524212-9-5541337
15811596GTGAAGCGAAGTGCAC5524222-9-5601338
15821597GGTGAAGCGAAGTGCA5524232-9-5621339
15831598AGGTGAAGCGAAGTGC5524242-9-5601340
15841599GAGGTGAAGCGAAGTG5524252-9-5461341
15851600AGAGGTGAAGCGAAGT5524262-9-5481342
15861601CAGAGGTGAAGCGAAG5524272-9-5361343
15871602GCAGAGGTGAAGCGAA5524282-9-5571344
15881603TGCAGAGGTGAAGCGA5524292-9-5361345
15891604GTGCAGAGGTGAAGCG5524302-9-5421346
15901605CGTGCAGAGGTGAAGC5524312-9-5601347
15911606ACGTGCAGAGGTGAAG5524322-9-5441348
210
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17781793TATGCCTACAGCCTCC5524332-9-555230
17791794TTATGCCTACAGCCTC5524342-9-546231
17801795TTTATGCCTACAGCCT5524352-9-547232
17811796ATTTATGCCTACAGCC5524362-9-525233
17821797AATTTATGCCTACAGC5524372-9-519234
17831798CAATTTATGCCTACAG5524382-9-525235
17841799CCAATTTATGCCTACA5524392-9-522236
Table 41
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
414429GAGGCATAGCAGCAGG5099593-10-349145
5873TGGAGCCACCAGCAGG5524964-9-3351318
5974CTGGAGCCACCAGCAG5524974-9-3601319
6075ACTGGAGCCACCAGCA5524984-9-3201320
6176AACTGGAGCCACCAGC5524994-9-3451321
6277GAACTGGAGCCACCAG5525004-9-35386
411426GCATAGCAGCAGGATG5525014-9-356137
412427GGCATAGCAGCAGGAT5525024-9-350140
413428AGGCATAGCAGCAGGA5525034-9-336143
414429GAGGCATAGCAGCAGG5525044-9-350145
415430TGAGGCATAGCAGCAG5525054-9-353147
416431ATGAGGCATAGCAGCA5525064-9-349149
417432GATGAGGCATAGCAGC5525074-9-335151
418433AGATGAGGCATAGCAG5525084-9-362153
457472CGGGCAACATACCTTG5525094-9-365167
458473ACGGGCAACATACCTT5525104-9-354168
670685CTAGTAAACTGAGCCA5524553-9-460181
670685CTAGTAAACTGAGCCA5525114-9-365181
671686ACTAGTAAACTGAGCC5524563-9-4691322
671686ACTAGTAAACTGAGCC5525124-9-3631322
672687CACTAGTAAACTGAGC5524573-9-441323
672687CACTAGTAAACTGAGC5525134-9-3501323
673688GCACTAGTAAACTGAG5524583-9-4591324
673688GCACTAGTAAACTGAG5525144-9-3531324
687702CCACTGAACAAATGGC5524593-9-469188
687702CCACTGAACAAATGGC5525154-9-368188
688703ACCACTGAACAAATGG5524603-9-43190
688703ACCACTGAACAAATGG5525164-9-365190
689704AACCACTGAACAAATG5524613-9-437191
211
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
689704AACCACTGAACAAATG5525174-9-354191
690705GAACCACTGAACAAAT5524623-9-442192
690705GAACCACTGAACAAAT5525184-9-323192
691706CGAACCACTGAACAAA5524633-9-428194
691706CGAACCACTGAACAAA5525194-9-332194
12611276GCAGTATGGATCGGCA5524643-9-472211
12611276GCAGTATGGATCGGCA5525204-9-361211
12621277CGCAGTATGGATCGGC5524653-9-4681325
12621277CGCAGTATGGATCGGC5525214-9-3681325
12631278CCGCAGTATGGATCGG5524663-9-4761326
12631278CCGCAGTATGGATCGG5525224-9-3711326
12641279TCCGCAGTATGGATCG5524673-9-4721327
12641279TCCGCAGTATGGATCG5525234-9-3731327
12651280TTCCGCAGTATGGATC5524683-9-4501328
12651280TTCCGCAGTATGGATC5525244-9-3491328
12661281GTTCCGCAGTATGGAT5524693-9-4651329
12661281GTTCCGCAGTATGGAT5525254-9-3451329
12671282AGTTCCGCAGTATGGA5524703-9-4581330
12671282AGTTCCGCAGTATGGA5525264-9-3391330
12681283GAGTTCCGCAGTATGG5524713-9-4301331
12681283GAGTTCCGCAGTATGG5525274-9-3391331
12691284GGAGTTCCGCAGTATG5524723-9-4431332
12691284GGAGTTCCGCAGTATG5525284-9-3431332
12701285AGGAGTTCCGCAGTAT5524733-9-4251333
12701285AGGAGTTCCGCAGTAT5525294-9-3501333
15771592AGCGAAGTGCACACGG5524743-9-4701334
15771592AGCGAAGTGCACACGG5525304-9-3731334
15781593AAGCGAAGTGCACACG5524753-9-4641335
15781593AAGCGAAGTGCACACG5525314-9-3621335
15791594GAAGCGAAGTGCACAC5524763-9-4501336
15801595TGAAGCGAAGTGCACA5524773-9-4661337
15811596GTGAAGCGAAGTGCAC5524783-9-4681338
15821597GGTGAAGCGAAGTGCA5524793-9-4601339
15831598AGGTGAAGCGAAGTGC5524803-9-4581340
15841599GAGGTGAAGCGAAGTG5524813-9-4541341
15851600AGAGGTGAAGCGAAGT5524823-9-4441342
15861601CAGAGGTGAAGCGAAG5524833-9-4171343
15871602GCAGAGGTGAAGCGAA5524843-9-4641344
15881603TGCAGAGGTGAAGCGA5524853-9-4561345
15891604GTGCAGAGGTGAAGCG5524863-9-4261346
15901605CGTGCAGAGGTGAAGC5524873-9-4421347
15911606ACGTGCAGAGGTGAAG5524883-9-4351348
17781793TATGCCTACAGCCTCC5524893-9-446230
212
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17791794TTATGCCTACAGCCTC5524903-9-441231
17801795TTTATGCCTACAGCCT5524913-9-438232
17811796ATTTATGCCTACAGCC5524923-9-447233
17821797AATTTATGCCTACAGC5524933-9-449234
17831798CAATTTATGCCTACAG5524943-9-422235
17841799CCAATTTATGCCTACA5524953-9-40236
Table 42
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTargetStartSiteViral TargetStop SiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-556224
55
414429GAGGCATAGCAGCAGG5099593-10-354145
5873TGGAGCCACCAGCAGG5525525-9-2321355
5974CTGGAGCCACCAGCAG5525535-9-2531319
6075ACTGGAGCCACCAGCA5525545-9-2481320
6176AACTGGAGCCACCAGC5525555-9-2391321
6277GAACTGGAGCCACCAG5525565-9-23986
411426GCATAGCAGCAGGATG5525575-9-254137
412427GGCATAGCAGCAGGAT5525585-9-241140
413428AGGCATAGCAGCAGGA5525595-9-256143
414429GAGGCATAGCAGCAGG5525605-9-239145
415430TGAGGCATAGCAGCAG5525615-9-251147
416431ATGAGGCATAGCAGCA5525625-9-256149
417432GATGAGGCATAGCAGC5525635-9-231151
418433AGATGAGGCATAGCAG5525645-9-231153
457472CGGGCAACATACCTTG5525655-9-253167
458473ACGGGCAACATACCTT5525665-9-246168
670685CTAGTAAACTGAGCCA5525675-9-263181
671686ACTAGTAAACTGAGCC5525685-9-2661322
672687CACTAGTAAACTGAGC5525695-9-2601323
673688GCACTAGTAAACTGAG5525705-9-2601324
687702CCACTGAACAAATGGC5525715-9-244188
688703ACCACTGAACAAATGG5525725-9-252190
689704AACCACTGAACAAATG5525735-9-220191
690705GAACCACTGAACAAAT5525745-9-236192
691706CGAACCACTGAACAAA5525755-9-219194
12611276GCAGTATGGATCGGCA5525765-9-261211
12621277CGCAGTATGGATCGGC5525775-9-2571325
12631278CCGCAGTATGGATCGG5525785-9-2711326
213
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
12641279TCCGCAGTATGGATCG5525795-9-2591327
12651280TTCCGCAGTATGGATC5525805-9-2581328
12661281GTTCCGCAGTATGGAT5525815-9-2511329
12671282AGTTCCGCAGTATGGA5525825-9-2401330
12681283GAGTTCCGCAGTATGG5525835-9-2351331
12691284GGAGTTCCGCAGTATG5525845-9-2501332
12701285AGGAGTTCCGCAGTAT5525855-9-2481333
15771592AGCGAAGTGCACACGG5525865-9-2741334
15781593AAGCGAAGTGCACACG5525875-9-2681335
15791594GAAGCGAAGTGCACAC5525324-9-3591336
15791594GAAGCGAAGTGCACAC5525885-9-2. 671336
15801595TGAAGCGAAGTGCACA5525334-9-3521337
15801595TGAAGCGAAGTGCACA5525895-9-2471337
15811596GTGAAGCGAAGTGCAC5525344-9-3711338
15811596GTGAAGCGAAGTGCAC5525905-9-2581338
15821597GGTGAAGCGAAGTGCA5525354-9-3591339
15821597GGTGAAGCGAAGTGCA5525915-9-2461339
15831598AGGTGAAGCGAAGTGC5525364-9-3191340
15831598AGGTGAAGCGAAGTGC5525925-9-2441340
15841599GAGGTGAAGCGAAGTG5525374-9-3261341
15841599GAGGTGAAGCGAAGTG5525935-9-2391341
15851600AGAGGTGAAGCGAAGT5525384-9-3541342
15851600AGAGGTGAAGCGAAGT5525945-9-2521342
15861601CAGAGGTGAAGCGAAG5525394-9-3501343
15861601CAGAGGTGAAGCGAAG5525955-9-2571343
15871602GCAGAGGTGAAGCGAA5525404-9-3601344
15871602GCAGAGGTGAAGCGAA5525965-9-2581344
15881603TGCAGAGGTGAAGCGA5525414-9-3681345
15881603TGCAGAGGTGAAGCGA5525975-9-2521345
15891604GTGCAGAGGTGAAGCG5525424-9-3631346
1589159016041605GTGCAGAGGTGAAGCG5525985-9-2511346
CGTGCAGAGGTGAAGC5525434-9-3441347
15901605CGTGCAGAGGTGAAGC5526005-9-2511347
15911606ACGTGCAGAGGTGAAG5525444-9-3451348
15911606ACGTGCAGAGGTGAAG5526025-9-2131348
17781793TATGCCTACAGCCTCC5525454-9-342230
17781793TATGCCTACAGCCTCC5526045-9-242230
17791794TTATGCCTACAGCCTC5525464-9-346231
17791794TTATGCCTACAGCCTC5526065-9-242231
17801795TTTATGCCTACAGCCT5525474-9-338232
17801795TTTATGCCTACAGCCT5526085-9-237232
17811796ATTTATGCCTACAGCC5525484-9-349233
17811796ATTTATGCCTACAGCC5526105-9-241233
214
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17821797AATTTATGCCTACAGC5525494-9-334234
17821797AATTTATGCCTACAGC5526125-9-223234
17831798CAATTTATGCCTACAG5525504-9-313235
17831798CAATTTATGCCTACAG5526145-9-211235
17841799CCAATTTATGCCTACA5525514-9-38236
17841799CCAATTTATGCCTACA5526165-9-26236
Table 43
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-547224
17801799CCAATTTATGCCTACAGCCT5099345-10-56750
5877GAACTGGAGCCACCAGCAGG5520076-10-45383
5877GAACTGGAGCCACCAGCAGG5520397-10-37483
253272AGAGAAGTCCACCACGAGTC5520086-10-447103
253272AGAGAAGTCCACCACGAGTC5520407-10-357103
411430TGAGGCATAGCAGCAGGATG5520096-10-470136
411430TGAGGCATAGCAGCAGGATG5520417-10-365136
412431ATGAGGCATAGCAGCAGGAT5520106-10-451139
412431ATGAGGCATAGCAGCAGGAT5520427-10-359139
413432GATGAGGCATAGCAGCAGGA5520116-10-447142
413432GATGAGGCATAGCAGCAGGA5520437-10-336142
414433AGATGAGGCATAGCAGCAGG5520126-10-46220
414433AGATGAGGCATAGCAGCAGG5520447-10-38220
415434AAGATGAGGCATAGCAGCAG5520136-10-47222
415434AAGATGAGGCATAGCAGCAG5520457-10-36222
416435GAAGATGAGGCATAGCAGCA5520146-10-47324
416435GAAGATGAGGCATAGCAGCA5520467-10-37424
417436AGAAGATGAGGCATAGCAGC5520156-10-46626
417436AGAAGATGAGGCATAGCAGC5520477-10-36026
418437AAGAAGATGAGGCATAGCAG5520166-10-46728
418437AAGAAGATGAGGCATAGCAG5520487-10-36028
687706CGAACCACTGAACAAATGGC5520176-10-47239
687706CGAACCACTGAACAAATGGC5520497-10-36839
12611280TTCCGCAGTATGGATCGGCA5520186-10-489719
12611280TTCCGCAGTATGGATCGGCA5520507-10-386719
12621281GTTCCGCAGTATGGATCGGC5520196-10-487212
12621281GTTCCGCAGTATGGATCGGC5520517-10-386212
12631282AGTTCCGCAGTATGGATCGG5519864-10-664720
12631282AGTTCCGCAGTATGGATCGG5520206-10-486720
215
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
12631282AGTTCCGCAGTATGGATCGG5520527-10-387720
12641283GAGTTCCGCAGTATGGATCG5519874-10-676721
12641283GAGTTCCGCAGTATGGATCG5520216-10-484721
12641283GAGTTCCGCAGTATGGATCG5520537-10-375721
12651284GGAGTTCCGCAGTATGGATC5519884-10-651349
12651284GGAGTTCCGCAGTATGGATC5520055-10-5721349
12651284GGAGTTCCGCAGTATGGATC5520226-10-4801349
12651284GGAGTTCCGCAGTATGGATC5520547-10-3831349
12661285AGGAGTTCCGCAGTATGGAT5519894-10-664722
12661285AGGAGTTCCGCAGTATGGAT5520236-10-478722
12661285AGGAGTTCCGCAGTATGGAT5520557-10-357722
15771596GTGAAGCGAAGTGCACACGG5519904-10-683224
15771596GTGAAGCGAAGTGCACACGG5520246-10-489224
15771596GTGAAGCGAAGTGCACACGG5520567-10-382224
15781597GGTGAAGCGAAGTGCACACG5519914-10-60801
15781597GGTGAAGCGAAGTGCACACG5520256-10-489801
15781597GGTGAAGCGAAGTGCACACG5520577-10-389801
15791598AGGTGAAGCGAAGTGCACAC5519924-10-667802
15791598AGGTGAAGCGAAGTGCACAC5520266-10-484802
15791598AGGTGAAGCGAAGTGCACAC5520587-10-382802
15801599GAGGTGAAGCGAAGTGCACA5519934-10-678225
15801599GAGGTGAAGCGAAGTGCACA5520276-10-485225
15801599GAGGTGAAGCGAAGTGCACA5520597-10-385225
15811600AGAGGTGAAGCGAAGTGCAC5519944-10-682804
15811600AGAGGTGAAGCGAAGTGCAC5520286-10-482804
15811600AGAGGTGAAGCGAAGTGCAC5520607-10-374804
15821601CAGAGGTGAAGCGAAGTGCA5519954-10-681805
15821601CAGAGGTGAAGCGAAGTGCA5520296-10-481805
15821601CAGAGGTGAAGCGAAGTGCA5520617-10-381805
15831602GCAGAGGTGAAGCGAAGTGC5519964-10-679226
15831602GCAGAGGTGAAGCGAAGTGC5520306-10-486226
15831602GCAGAGGTGAAGCGAAGTGC5520627-10-385226
15841603TGCAGAGGTGAAGCGAAGTG5519974-10-680806
15841603TGCAGAGGTGAAGCGAAGTG5520316-10-486806
15851604GTGCAGAGGTGAAGCGAAGT5519984-10-674807
15851604GTGCAGAGGTGAAGCGAAGT5520326-10-478807
15861605CGTGCAGAGGTGAAGCGAAG5519994-10-679227
15861605CGTGCAGAGGTGAAGCGAAG5520336-10-480227
15871606ACGTGCAGAGGTGAAGCGAA5520004-10-6841350
15871606ACGTGCAGAGGTGAAGCGAA5520065-10-5861350
15871606ACGTGCAGAGGTGAAGCGAA5520346-10-4811350
17781797AATTTATGCCTACAGCCTCC5520014-10-66646
17781797AATTTATGCCTACAGCCTCC5520356-10-45546
216
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17791798CAATTTATGCCTACAGCCTC5520024-10-65448
17791798CAATTTATGCCTACAGCCTC5520366-10-45848
17801799CCAATTTATGCCTACAGCCT5520034-10-65050
17801799CCAATTTATGCCTACAGCCT5520376-10-44350
17811800ACCAATTTATGCCTACAGCC5520044-10-65652
17811800ACCAATTTATGCCTACAGCC5520386-10-46652
Table 44
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTarget Start SiteViralTarget Stop SiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-561224
411427GGCATAGCAGCAGGATG5101003-10-46617
5874CTGGAGCCACCAGCAGG5521683-9-5641288
5874CTGGAGCCACCAGCAGG5522224-9-4761288
5975ACTGGAGCCACCAGCAG5521693-9-5651289
5975ACTGGAGCCACCAGCAG5522234-9-4411289
6076AACTGGAGCCACCAGCA5521703-9-5581290
6076AACTGGAGCCACCAGCA5522244-9-4581290
6177GAACTGGAGCCACCAGC5521713-9-5511291
6177GAACTGGAGCCACCAGC5522254-9-4491291
253269GAAGTCCACCACGAGTC5521723-9-5239
253269GAAGTCCACCACGAGTC5522264-9-4369
254270AGAAGTCCACCACGAGT5521733-9-54410
254270AGAAGTCCACCACGAGT5522274-9-42010
255271GAGAAGTCCACCACGAG5521743-9-52811
255271GAGAAGTCCACCACGAG5522284-9-42911
256272AGAGAAGTCCACCACGA5521753-9-55612
411427GGCATAGCAGCAGGATG5521763-9-56617
412428AGGCATAGCAGCAGGAT5521773-9-55318
413429GAGGCATAGCAGCAGGA5521783-9-55719
414430TGAGGCATAGCAGCAGG5521793-9-55621
415431ATGAGGCATAGCAGCAG5521803-9-55123
416432GATGAGGCATAGCAGCA5521813-9-55125
417433AGATGAGGCATAGCAGC5521823-9-56327
418434AAGATGAGGCATAGCAG5521833-9-56029
670686ACTAGTAAACTGAGCCA5521853-9-5671292
671687CACTAGTAAACTGAGCC5521863-9-5371293
672688GCACTAGTAAACTGAGC5521873-9-5681294
687703ACCACTGAACAAATGGC5521883-9-57140
688704AACCACTGAACAAATGG5521893-9-55141
217
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
689705GAACCACTGAACAAATG5521903-9-54742
690706CGAACCACTGAACAAAT5521913-9-55043
12611277CGCAGTATGGATCGGCA5521923-9-5801295
12621278CCGCAGTATGGATCGGC5521933-9-5731296
12631279TCCGCAGTATGGATCGG5521943-9-5581297
12641280TTCCGCAGTATGGATCG5521953-9-5601298
12651281GTTCCGCAGTATGGATC5521963-9-5541299
12661282AGTTCCGCAGTATGGAT5521973-9-5641300
12671283GAGTTCCGCAGTATGGA5521983-9-5621301
12681284GGAGTTCCGCAGTATGG5521993-9-5571302
12691285AGGAGTTCCGCAGTATG5522003-9-5521303
15771593AAGCGAAGTGCACACGG5522013-9-5731304
15781594GAAGCGAAGTGCACACG5522023-9-5601305
15791595TGAAGCGAAGTGCACAC5522033-9-5601306
15801596GTGAAGCGAAGTGCACA5522043-9-5631307
15811597GGTGAAGCGAAGTGCAC5521512-9-6711308
15811597GGTGAAGCGAAGTGCAC5522053-9-5641308
15821598AGGTGAAGCGAAGTGCA5521522-9-6691309
15821598AGGTGAAGCGAAGTGCA5522063-9-5711309
15831599GAGGTGAAGCGAAGTGC5521532-9-6631310
15831599GAGGTGAAGCGAAGTGC5522073-9-5711310
15841600AGAGGTGAAGCGAAGTG5521542-9-6561311
15841600AGAGGTGAAGCGAAGTG5522083-9-5521311
15851601CAGAGGTGAAGCGAAGT5521552-9-6611312
15851601CAGAGGTGAAGCGAAGT5522093-9-5501312
15861602GCAGAGGTGAAGCGAAG5521562-9-6401313
15861602GCAGAGGTGAAGCGAAG5522103-9-5661313
15871603TGCAGAGGTGAAGCGAA5521572-9-6451314
15871603TGCAGAGGTGAAGCGAA5522113-9-5631314
15881604GTGCAGAGGTGAAGCGA5521582-9-6661315
15881604GTGCAGAGGTGAAGCGA5522123-9-5621315
15891605CGTGCAGAGGTGAAGCG5521592-9-6681316
15891605CGTGCAGAGGTGAAGCG5522133-9-5641316
15901606ACGTGCAGAGGTGAAGC5521602-9-6781317
15901606ACGTGCAGAGGTGAAGC5522143-9-5721317
17781794TTATGCCTACAGCCTCC5521612-9-65747
17781794TTATGCCTACAGCCTCC5522153-9-55447
17791795TTTATGCCTACAGCCTC5521622-9-65449
17791795TTTATGCCTACAGCCTC5522163-9-54949
17801796ATTTATGCCTACAGCCT5521632-9-66551
17801796ATTTATGCCTACAGCCT5522173-9-55051
17811797AATTTATGCCTACAGCC5521642-9-64853
17811797AATTTATGCCTACAGCC5522183-9-53953
218
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17821798CAATTTATGCCTACAGC5521652-9-64654
17821798CAATTTATGCCTACAGC5522193-9-54154
17831799CCAATTTATGCCTACAG5521662-9-64255
17831799CCAATTTATGCCTACAG5522203-9-53255
17841800ACCAATTTATGCCTACA5521672-9-64756
17841800ACCAATTTATGCCTACA5522213-9-53356
Table 45
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTarget Start SiteViralTarget Stop SiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-58756224
17801799CCAATTTATGCCTACAGCCT5099345-10-55650
411427GGCATAGCAGCAGGATG5101003-10-46917
5877GAACTGGAGCCACCAGCAGG5520718-10-27383
5874CTGGAGCCACCAGCAGG5521142-9-6641288
5975ACTGGAGCCACCAGCAG5521152-9-6611289
6076AACTGGAGCCACCAGCA5521162-9-6531290
6177GAACTGGAGCCACCAGC5521172-9-6691291
253272AGAGAAGTCCACCACGAGTC5520728-10-239103
253269GAAGTCCACCACGAGTC5521182-9-6499
254270AGAAGTCCACCACGAGT5521192-9-64910
255271GAGAAGTCCACCACGAG5521202-9-62111
256272AGAGAAGTCCACCACGA5521212-9-62712
411430TGAGGCATAGCAGCAGGATG5520738-10-273136
411427GGCATAGCAGCAGGATG5521222-9-64817
412431ATGAGGCATAGCAGCAGGAT5520748-10-269139
412428AGGCATAGCAGCAGGAT5521232-9-66818
413432GATGAGGCATAGCAGCAGGA5520758-10-278142
413429GAGGCATAGCAGCAGGA5521242-9-64719
414'433AGATGAGGCATAGCAGCAGG5520768-10-26320
414430TGAGGCATAGCAGCAGG5521252-9-67221
415434AAGATGAGGCATAGCAGCAG5520778-10-26222
415431ATGAGGCATAGCAGCAG5521262-9-66423
416435GAAGATGAGGCATAGCAGCA5520788-10-25924
416432GATGAGGCATAGCAGCA5521272-9-66525
417436AGAAGATGAGGCATAGCAGC5520798-10-28026
417433AGATGAGGCATAGCAGC5521282-9-67827
418437AAGAAGATGAGGCATAGCAG5520808-10-27428
418434AAGATGAGGCATAGCAG5521292-9-66829
219
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
457473ACGGGCAACATACCTTG5521302-9-64633
670686ACTAGTAAACTGAGCCA5521312-9-6611292
671687CACTAGTAAACTGAGCC5521322-9-6661293
672688GCACTAGTAAACTGAGC5521332-9-6781294
687706CGAACCACTGAACAAATGGC5520818-10-26939
687703ACCACTGAACAAATGGC5521342-9-66840
688704AACCACTGAACAAATGG5521352-9-65941
689705GAACCACTGAACAAATG5521362-9-63942
690706CGAACCACTGAACAAAT5521372-9-63643
12611280TTCCGCAGTATGGATCGGCA5520828-10-286719
12611277CGCAGTATGGATCGGCA5521382-9-6801295
12621281GTTCCGCAGTATGGATCGGC5520838-10-285212
12621278CCGCAGTATGGATCGGC5521392-9-6801296
12631282AGTTCCGCAGTATGGATCGG5520848-10-286720
12631279TCCGCAGTATGGATCGG5521402-9-6701297
12641283GAGTTCCGCAGTATGGATCG5520858-10-283721
12641280TTCCGCAGTATGGATCG5521412-9-6721298
12651284GGAGTTCCGCAGTATGGATC5520868-10-2831349
12651281GTTCCGCAGTATGGATC5521422-9-6581299
12661285AGGAGTTCCGCAGTATGGAT5520878-10-277722
12661282AGTTCCGCAGTATGGAT5521432-9-6701300
12671283GAGTTCCGCAGTATGGA5521442-9-666 .1301
12681284GGAGTTCCGCAGTATGG5521452-9-6781302
12691285AGGAGTTCCGCAGTATG5521462-9-6631303
15771596GTGAAGCGAAGTGCACACGG5520888-10-290224
15771593AAGCGAAGTGCACACGG5521472-9-6801304
15781597GGTGAAGCGAAGTGCACACG5520898-10-287801
15781594GAAGCGAAGTGCACACG5521482-9-6741305
157915.98AGGTGAAGCGAAGTGCACAC5520908-10-285802
15791595TGAAGCGAAGTGCACAC5521492-9-6791306
15801599GAGGTGAAGCGAAGTGCACA5520918-10-284225
15811600AGAGGTGAAGCGAAGTGCAC5520928-10-286804
15821601CAGAGGTGAAGCGAAGTGCA5520938-10-282805
15831602GCAGAGGTGAAGCGAAGTGC5520948-10-284226
15841603TGCAGAGGTGAAGCGAAGTG5520637-10-379806
15841603TGCAGAGGTGAAGCGAAGTG5520958-10-285806
15851604GTGCAGAGGTGAAGCGAAGT5520647-10-383807
15851604GTGCAGAGGTGAAGCGAAGT5520968-10-288807
15861605CGTGCAGAGGTGAAGCGAAG5520657-10-386227
15861605CGTGCAGAGGTGAAGCGAAG5520978-10-290227
15871606ACGTGCAGAGGTGAAGCGAA5520667-10-3351350
15871606ACGTGCAGAGGTGAAGCGAA5520988-10-2861350
17781797AATTTATGCCTACAGCCTCC5520677-10-35346
220
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17781797AATTTATGCCTACAGCCTCC5520998-10-26646
17791798CAATTTATGCCTACAGCCTC5520687-10-37048
17791798CAATTTATGCCTACAGCCTC5521008-10-26748
17801799CCAATTTATGCCTACAGCCT5520697-10-36850
17801799CCAATTTATGCCTACAGCCT5521018-10-26550
17811800ACCAATTTATGCCTACAGCC5520707-10-36452
17811800ACCAATTTATGCCTACAGCC5521028-10-25452
Table 46
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG1467865-10-569224
57
411427GGCATAGCAGCAGGATG5101003-10-45917
5874CTGGAGCCACCAGCAGG5523306-9-2501288
5975ACTGGAGCCACCAGCAG5523316-9-2461289
6076AACTGGAGCCACCAGCA5523326-9-2501290
6177GAACTGGAGCCACCAGC5523336-9-2481291
253269GAAGTCCACCACGAGTC5523346-9-2429
254270AGAAGTCCACCACGAGT5523356-9-23010
255271GAGAAGTCCACCACGAG5523366-9-22311
256272AGAGAAGTCCACCACGA5523376-9-24212
411427GGCATAGCAGCAGGATG5523386-9-24017
412428AGGCATAGCAGCAGGAT5523396-9-25018
413429GAGGCATAGCAGCAGGA5523406-9-24519
414430TGAGGCATAGCAGCAGG5523416-9-24421
415431ATGAGGCATAGCAGCAG5523426-9-25123
416432GATGAGGCATAGCAGCA5523436-9-24425
417433AGATGAGGCATAGCAGC5523446-9-22427
418434AAGATGAGGCATAGCAG5523456-9-24129
457473ACGGGCAACATACCTTG5523466-9-2033
670686ACTAGTAAACTGAGCCA5523476-9-2751292
671687CACTAGTAAACTGAGCC5523486-9-2721293
672688GCACTAGTAAACTGAGC5523496-9-2651294
687703ACCACTGAACAAATGGC5523506-9-24240
688704AACCACTGAACAAATGG5523516-9-24541
689705GAACCACTGAACAAATG5523526-9-24342
690706CGAACCACTGAACAAAT5523536-9-22043
12611277CGCAGTATGGATCGGCA5523546-9-2701295
12621278CCGCAGTATGGATCGGC5523556-9-2661296
221
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
12631279TCCGCAGTATGGATCGG5523566-9-2621297
12641280TTCCGCAGTATGGATCG5523576-9-2531298
12651281GTTCCGCAGTATGGATC5523586-9-2571299
12661282AGTTCCGCAGTATGGAT5523596-9-2461300
12671283GAGTTCCGCAGTATGGA5523606-9-2451301
12681284GGAGTTCCGCAGTATGG5523616-9-2441302
12691285AGGAGTTCCGCAGTATG5523085-9-3381303
12691285AGGAGTTCCGCAGTATG5523626-9-2511303
15771593AAGCGAAGTGCACACGG5523095-9-3761304
15771593AAGCGAAGTGCACACGG5523636-9-2731304
15781594GAAGCGAAGTGCACACG5523105-9-3581305
15781594GAAGCGAAGTGCACACG5523646-9-2661305
15791595TGAAGCGAAGTGCACAC5523115-9-3381306
15791595TGAAGCGAAGTGCACAC5523656-9-2641306
15801596GTGAAGCGAAGTGCACA5521502-9-6681307
15801596GTGAAGCGAAGTGCACA5523125-9-3751307
15801596GTGAAGCGAAGTGCACA5523666-9-2551307
15811597GGTGAAGCGAAGTGCAC5523135-9-3661308
15811597GGTGAAGCGAAGTGCAC5523676-9-2671308
15821598AGGTGAAGCGAAGTGCA5523145-9-3561309
15821598AGGTGAAGCGAAGTGCA5523686-9-2411309
15831599GAGGTGAAGCGAAGTGC5523155-9-3461310
15831599GAGGTGAAGCGAAGTGC5523696-9-2521310
15841600AGAGGTGAAGCGAAGTG5523165-9-3551311
15841600AGAGGTGAAGCGAAGTG5523706-9-2351311
15851601CAGAGGTGAAGCGAAGT5523175-9-3531312
15851601CAGAGGTGAAGCGAAGT5523716-9-2581312
15861602GCAGAGGTGAAGCGAAG5523185-9-3591313
15861602GCAGAGGTGAAGCGAAG5523726-9-2681313
15871603TGCAGAGGTGAAGCGAA5523195-9-3561314
15871603TGCAGAGGTGAAGCGAA5523736-9-2631314
15881604GTGCAGAGGTGAAGCGA5523205-9-3621315
15881604GTGCAGAGGTGAAGCGA5523746-9-2701315
15891605CGTGCAGAGGTGAAGCG5523215-9-3631316
15891605CGTGCAGAGGTGAAGCG5523756-9-2641316
15901606ACGTGCAGAGGTGAAGC5523225-9-3521317
15901606ACGTGCAGAGGTGAAGC5523766-9-2581317
17781794TTATGCCTACAGCCTCC5523235-9-34547
17781794TTATGCCTACAGCCTCC5523776-9-24247
17791795TTTATGCCTACAGCCTC5523245-9-34949
17791795TTTATGCCTACAGCCTC5523786-9-23749
17801796ATTTATGCCTACAGCCT5523255-9-34851
17801796ATTTATGCCTACAGCCT5523796-9-25751
222
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
17811797AATTTATGCCTACAGCC5523265-9-35053
17811797AATTTATGCCTACAGCC5523806-9-24853
17821798CAATTTATGCCTACAGC5523275-9-31354
17821798CAATTTATGCCTACAGC5523816-9-22254
17831799CCAATTTATGCCTACAG5523285-9-3955
17831799CCAATTTATGCCTACAG5523826-9-22055
17841800ACCAATTTATGCCTACA5523295-9-31856
17841800ACCAATTTATGCCTACA5523836-9-21856
Example 15: Antisense inhibition of HBV viral mRNA in HepG2 cells by deoxy, MOE and (S)-cEt gapmers
Antisense oligonucleotides were designed targeting a HBV viral nucleic acid and were tested for their effects on HBV mRNA in vitro. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. ISIS 146786 and ISIS 509934, which were described in an earlier application (U.S. Provisional Application No. 61/478,040 filed on April 21, 2011), were also included in these studies for comparison. Cultured HepG2 cells at a density of 28,000 cells per well were transfected using LipofectAMINE2000® with 70 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3370 (forward sequence CTTGGTCATGGGCCATCAG, designated herein as SEQ ID NO: 1; reverse sequence CGGCTAGGAGTTCCGCAGTA, designated herein as SEQ ID NO: 2; probe sequence
CCAAACCTTCGGACGGAAA,
TGCGTGGAACCTTTTCGGCTCC, designated herein as 1 levels. Levels were also measured using primer designated herein as designated herein as
EQ ID NO:3) was used to measure mRNA
probesetRTS3371 (forwardsequence
SEQEDNO:311; reversesequence
SEQIDNO:312; probesequence
TGAGGCCCACTCCCATAGG,
CCCATCATCCTGGGCTTTCGGAAAAT, designated herein as SEQ ID NO: 313). HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
The newly designed chimeric antisense oligonucleotides in Tables below were designed as deoxy, MOE and (S)-cEt gapmers. The gapmers are 16 nucleosides in length wherein the nucleoside have either a MOE sugar modification, an (S)-cEt sugar modification, or a deoxy modification. The ‘Chemistry’ column describes the sugar modifications of each oligonucleotide, ‘k’ indicates an (S)-cEt sugar modification; the 25 number indicates the number of deoxynucleosides; and ‘e’ indicates a MOE modification. The intemucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each oligonucleotide are 5-methylcytosines.
223
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 “Viral Target start site” indicates the 5’-most nucleotide to which the gapmer is targeted in the viral gene sequence. “Viral Target stop site” indicates the 3’-most nucleotide to which the gapmer is targeted viral gene sequence. Each gapmer listed in the Tables is targeted to the viral genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. U95551.1). The potency of the newly designed oligonucleotides was compared with ISIS 146786, 509934, ISIS 509959, and ISIS 510100.
Table 47
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
Viral Target Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
17801799CCAATTTATGCCTACAGCCT509934eeeee-10-eeeee3050
5873TGGAGCCACCAGCAGG552787ekk-10-kke571318
5974CTGGAGCCACCAGCAG552788ekk-10-kke601319
6075ACTGGAGCCACCAGCA552789ekk-10-kke671320
6176AACTGGAGCCACCAGC552790ekk-10-kke671321
6277GAACTGGAGCCACCAG552791ekk-10-kke6586
245260CACGAGTCTAGACTCT552792ekk-10-kke4493
246261CCACGAGTCTAGACTC552793ekk-10-kke095
250265TCCACCACGAGTCTAG552794ekk-10-kke5498
251266GTCCACCACGAGTCTA552795ekk-10-kke55100
252267AGTCCACCACGAGTCT552796ekk-10-kke62102
253268AAGTCCACCACGAGTC552797ekk-10-kke59104
254269GAAGTCCACCACGAGT552798ekk-10-kke59106
255270AGAAGTCCACCACGAG552799ekk-10-kke58109
256271GAGAAGTCCACCACGA552800ekk-10-kke62112
258273GAGAGAAGTCCACCAC552801ekk-10-kke65115
259274TGAGAGAAGTCCACCA552802ekk-10-kke53117
411426GCATAGCAGCAGGATG552803ekk-10-kke67137
412427GGCATAGCAGCAGGAT552804ekk-10-kke75140
413428AGGCATAGCAGCAGGA552805ekk-10-kke72143
414429GAGGCATAGCAGCAGG552806ekk-10-kke64145
415430TGAGGCATAGCAGCAG552807ekk-10-kke68147
416431ATGAGGCATAGCAGCA552808ekk-10-kke65149
417432GATGAGGCATAGCAGC552809ekk-10-kke60151
418433AGATGAGGCATAGCAG552810ekk-10-kke59153
419434AAGATGAGGCATAGCA552811ekk-10-kke64155
420435GAAGATGAGGCATAGC552812ekk-10-kke69157
421436AGAAGATGAGGCATAG552813ekk-10-kke64159
422437AAGAAGATGAGGCATA552814ekk-10-kke62161
457472CGGGCAACATACCTTG552815ekk-10-kke61167
458473ACGGGCAACATACCTT552816ekk-10-kke63168
224
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
639654GGCCCACTCCCATAGG552817ekk-10-kke42176
641656GAGGCCCACTCCCATA552818ekk-10-kke44177
642657TGAGGCCCACTCCCAT552819ekk-10-kke56178
643658CTGAGGCCCACTCCCA552820ekk-10-kke59179
670685CTAGTAAACTGAGCCA552821ekk-10-kke76181
671686ACTAGTAAACTGAGCC552822ekk-10-kke771322
672687CACTAGTAAACTGAGC552823ekk-10-kke731323
673688GCACTAGTAAACTGAG552824ekk-10-kke731324
678693AAATGGCACTAGTAAA552825ekk-10-kke511364
679694CAAATGGCACTAGTAA552826ekk-10-kke551365
680695ACAAATGGCACTAGTA552827ekk-10-kke671366
681696AACAAATGGCACTAGT552828ekk-10-kke781367
682697GAACAAATGGCACTAG552829ekk-10-kke721368
683698TGAACAAATGGCACTA552830ekk-10-kke711369
684699CTGAACAAATGGCACT552831ekk-10-kke691370
685700ACTGAACAAATGGCAC552832ekk-10-kke671371
686701CACTGAACAAATGGCA552833ekk-10-kke651372
687702CCACTGAACAAATGGC552834ekk-10-kke78188
688703ACCACTGAACAAATGG552835ekk-10-kke70190
689704AACCACTGAACAAATG552836ekk-10-kke64191
690705GAACCACTGAACAAAT552837ekk-10-kke65192
691706CGAACCACTGAACAAA552838ekk-10-kke64194
738753CCACATCATCCATATA552839ekk-10-kke60199
739754ACCACATCATCCATAT552840ekk-10-kke35201
11761191CAGCAAACACTTGGCA552841ekk-10-kke62208
11771192TCAGCAAACACTTGGC552842ekk-10-kke67209
12611276GCAGTATGGATCGGCA552843ekk-10-kke77211
12621277CGCAGTATGGATCGGC552844ekk-10-kke811325
12631278CCGCAGTATGGATCGG552845ekk-10-kke631326
12641279TCCGCAGTATGGATCG552846ekk-10-kke791327
12651280TTCCGCAGTATGGATC552847ekk-10-kke471328
12661281GTTCCGCAGTATGGAT552848ekk-10-kke691329
12671282AGTTCCGCAGTATGGA552849ekk-10-kke591330
12681283GAGTTCCGCAGTATGG552850ekk-10-kke831331
12691284GGAGTTCCGCAGTATG552851ekk-10-kke901332
12701285AGGAGTTCCGCAGTAT552852ekk-10-kke891333
15771592AGCGAAGTGCACACGG552853ekk-10-kke831334
15781593AAGCGAAGTGCACACG552854ekk-10-kke801335
15791594GAAGCGAAGTGCACAC552855ekk-10-kke751336
15801595TGAAGCGAAGTGCACA552856ekk-10-kke691337
15811596GTGAAGCGAAGTGCAC552857ekk-10-kke681338
15821597GGTGAAGCGAAGTGCA552858ekk-10-kke791339
15831598AGGTGAAGCGAAGTGC552859ekk-10-kke791340
225
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
15841599GAGGTGAAGCGAAGTG552860ekk-10-kke711341
15851600AGAGGTGAAGCGAAGT552861ekk-10-kke681342
15861601CAGAGGTGAAGCGAAG552862ekk-10-kke651343
15871602GCAGAGGTGAAGCGAA552863ekk-10-kke701344
15881603TGCAGAGGTGAAGCGA552864ekk-10-kke711345
Table 48
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTarget Start SiteViral TargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ED NO
5873TGGAGCCACCAGCAGG552787ekk-10-kke531318
5974CTGGAGCCACCAGCAG552788ekk-10-kke451319
6075ACTGGAGCCACCAGCA552789ekk-10-kke751320
6176AACTGGAGCCACCAGC552790ekk-10-kke681321
6277GAACTGGAGCCACCAG552791ekk-10-kke5186
245260CACGAGTCTAGACTCT552792ekk-10-kke3893
246261CCACGAGTCTAGACTC552793ekk-10-kke095
250265TCCACCACGAGTCTAG552794ekk-10-kke4498
251266GTCCACCACGAGTCTA552795ekk-10-kke56100
252267AGTCCACCACGAGTCT552796ekk-10-kke45102
253268AAGTCCACCACGAGTC552797ekk-10-kke46104
254269GAAGTCCACCACGAGT552798ekk-10-kke53106
255270AGAAGTCCACCACGAG552799ekk-10-kke48109
256271GAGAAGTCCACCACGA552800ekk-10-kke54112
258273GAGAGAAGTCCACCAC552801ekk-10-kke63115
259274TGAGAGAAGTCCACCA552802ekk-10-kke49117
411426GCATAGCAGCAGGATG552803ekk-10-kke71137
412427GGCATAGCAGCAGGAT552804ekk-10-kke64140
413428AGGCATAGCAGCAGGA552805ekk-10-kke70143
414429GAGGCATAGCAGCAGG552806ekk-10-kke67145
415430TGAGGCATAGCAGCAG552807ekk-10-kke61147
416431ATGAGGCATAGCAGCA552808ekk-10-kke83149
417432GATGAGGCATAGCAGC552809ekk-10-kke59151
418433AGATGAGGCATAGCAG552810ekk-10-kke56153
419434AAGATGAGGCATAGCA552811ekk-10-kke62155
420435GAAGATGAGGCATAGC552812ekk-10-kke66157
421436AGAAGATGAGGCATAG552813ekk-10-kke63159
422437AAGAAGATGAGGCATA552814ekk-10-kke65161
457472CGGGCAACATACCTTG552815ekk-10-kke63167
458473ACGGGCAACATACCTT552816ekk-10-kke88168
639654GGCCCACTCCCATAGG552817ekk-10-kke94176
226
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
641656GAGGCCCACTCCCATA552818ekk-10-kke82177
642657TGAGGCCCACTCCCAT552819ekk-10-kke80178
643658CTGAGGCCCACTCCCA552820ekk-10-kke84179
670685CTAGTAAACTGAGCCA552821ekk-10-kke71181
671686ACTAGTAAACTGAGCC552822ekk-10-kke851322
672687CACTAGTAAACTGAGC552823ekk-10-kke711323
673688GCACTAGTAAACTGAG552824ekk-10-kke811324
678693AAATGGCACTAGTAAA552825ekk-10-kke511364
679694CAAATGGCACTAGTAA552826ekk-10-kke641365
680695ACAAATGGCACTAGTA552827ekk-10-kke611366
681696AACAAATGGCACTAGT552828ekk-10-kke761367
682697GAACAAATGGCACTAG552829ekk-10-kke611368
683698TGAACAAATGGCACTA552830ekk-10-kke591369
684699CTGAACAAATGGCACT552831ekk-10-kke581370
685700ACTGAACAAATGGCAC552832ekk-10-kke641371
686701CACTGAACAAATGGCA552833ekk-10-kke751372
687702CCACTGAACAAATGGC552834ekk-10-kke84188
688703ACCACTGAACAAATGG552835ekk-10-kke57190
689704AACCACTGAACAAATG552836ekk-10-kke51191
690705GAACCACTGAACAAAT552837ekk-10-kke53192
691706CGAACCACTGAACAAA552838ekk-10-kke48194
738753CCACATCATCCATATA552839ekk-10-kke50199
739754ACCACATCATCCATAT552840ekk-10-kke54201
11761191CAGCAAACACTTGGCA552841ekk-10-kke61208
11771192TCAGCAAACACTTGGC552842ekk-10-kke71209
12611276GCAGTATGGATCGGCA552843ekk-10-kke75211
12621277CGCAGTATGGATCGGC552844ekk-10-kke781325
12631278CCGCAGTATGGATCGG552845ekk-10-kke521326
12641279TCCGCAGTATGGATCG552846ekk-10-kke761327
12651280TTCCGCAGTATGGATC552847ekk-10-kke611328
12661281GTTCCGCAGTATGGAT552848ekk-10-kke721329
12671282AGTTCCGCAGTATGGA552849ekk-10-kke871330
12681283GAGTTCCGCAGTATGG552850ekk-10-kke761331
12691284GGAGTTCCGCAGTATG552851ekk-10-kke761332
12701285AGGAGTTCCGCAGTAT552852ekk-10-kke791333
15771592AGCGAAGTGCACACGG552853ekk-10-kke821334
15781593AAGCGAAGTGCACACG552854ekk-10-kke851335
15791594GAAGCGAAGTGCACAC552855ekk-1O-kke781336
15801595TGAAGCGAAGTGCACA552856ekk-1 O-kke771337
15811596GTGAAGCGAAGTGCAC552857ekk-1 O-kke751338
15821597GGTGAAGCGAAGTGCA552858ekk-1 O-kke751339
15831598AGGTGAAGCGAAGTGC552859ekk-1 O-kke791340
15841599GAGGTGAAGCGAAGTG552860ekk-1O-kke711341
227
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
15851600AGAGGTGAAGCGAAGT552861ekk-10-kke741342
15861601CAGAGGTGAAGCGAAG552862ekk-10-kke661343
15871602GCAGAGGTGAAGCGAA552863ekk-10-kke701344
15881603TGCAGAGGTGAAGCGA552864ekk-10-kke731345
Table 49
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
15771596GTGAAGCGAAGTGCACACGG146786eeeee-10-eeeee60224
5873TGGAGCCACCAGCAGG552889ek-10-keke591318
5974CTGGAGCCACCAGCAG552890ek-10-keke561319
6075ACTGGAGCCACCAGCA552891ek-10-keke671320
6176AACTGGAGCCACCAGC552892ek-10-keke651321
6277GAACTGGAGCCACCAG552893ek-10-keke6886
250265TCCACCACGAGTCTAG552894ek-10-keke7198
251266GTCCACCACGAGTCTA552895ek-10-keke51100
252267AGTCCACCACGAGTCT552896ek-10-keke51102
253268AAGTCCACCACGAGTC552897ek-10-keke43104
254269GAAGTCCACCACGAGT552898ek-10-keke43106
255270AGAAGTCCACCACGAG552899ek-10-keke55109
256271GAGAAGTCCACCACGA552900ek-10-keke34112
258273GAGAGAAGTCCACCAC552901ek-10-keke42115
259274TGAGAGAAGTCCACCA552902ek-10-keke60117
411426GCATAGCAGCAGGATG552903ek-10-keke76137
412427GGCATAGCAGCAGGAT552904ek-10-keke74140
413428AGGCATAGCAGCAGGA552905ek-10-keke66143
415430TGAGGCATAGCAGCAG552907ek-10-keke69147
416431ATGAGGCATAGCAGCA552908ek-10-keke63149
417432GATGAGGCATAGCAGC552909ek-10-keke70151
418433AGATGAGGCATAGCAG552910ek-10-keke72153
457472CGGGCAACATACCTTG552911ek-10-keke72167
458473ACGGGCAACATACCTT552912ek-10-keke67168
670685CTAGTAAACTGAGCCA552913ek-10-keke74181
682697GAACAAATGGCACTAG552914ek-10-keke751368
684699CTGAACAAATGGCACT552915ek-10-keke581370
686701CACTGAACAAATGGCA552916ek-10-keke741372
687702CCACTGAACAAATGGC552917ek-10-keke76188
688703ACCACTGAACAAATGG552918ek-10-keke75190
689704AACCACTGAACAAATG552919ek-10-keke55191
690705GAACCACTGAACAAAT552920ek-10-keke49192
228
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
691706CGAACCACTGAACAAA552921ek-10-keke45194
12611276GCAGTATGGATCGGCA552922ek-10-keke83211
12621277CGCAGTATGGATCGGC552923ek-10-keke831325
12631278CCGCAGTATGGATCGG552924ek-10-keke01326
12641279TCCGCAGTATGGATCG552925ek-10-keke851327
12651280TTCCGCAGTATGGATC552926ek-10-keke501328
12661281GTTCCGCAGTATGGAT552927ek-10-keke761329
12671282AGTTCCGCAGTATGGA552928ek-10-keke781330
12681283GAGTTCCGCAGTATGG552929ek-10-keke751331
12691284GGAGTTCCGCAGTATG552930ek-10-keke781332
12701285AGGAGTTCCGCAGTAT552931ek-10-keke741333
15771592AGCGAAGTGCACACGG552932ek-10-keke861334
15781593AAGCGAAGTGCACACG552933ek-10-keke821335
15791594GAAGCGAAGTGCACAC552934ek-10-keke741336
15801595TGAAGCGAAGTGCACA552935ek-10-keke761337
15811596GTGAAGCGAAGTGCAC552936ek-10-keke811338
15821597GGTGAAGCGAAGTGCA552937ek-10-keke801339
15831598AGGTGAAGCGAAGTGC552938ek-10-keke781340
15841599GAGGTGAAGCGAAGTG552939ek-10-keke751341
15851600AGAGGTGAAGCGAAGT552940ek-10-keke631342
15861601CAGAGGTGAAGCGAAG552941ekk-10-kke781343
15871602GCAGAGGTGAAGCGAA552942ek-10-keke801344
15891604GTGCAGAGGTGAAGCG552865ekk-10-kke671346
15901605CGTGCAGAGGTGAAGC552866ekk-10-kke681347
17781793TATGCCTACAGCCTCC552868ekk-10-kke55230
17791794TTATGCCTACAGCCTC552869ekk-10-kke48231
17801795TTTATGCCTACAGCCT552870ekk-10-kke55232
17811796ATTTATGCCTACAGCC552871ekk-10-kke57233
17821797AATTTATGCCTACAGC552872ekk-10-kke70234
17831798CAATTTATGCCTACAG552873ekk-10-kke49235
17841799CCAATTTATGCCTACA552874ekk-10-kke42236
17851800ACCAATTTATGCCTAC552875ekk-10-kke41237
18221837GGCAGAGGTGAAAAAG552876ekk-10-kke50244
18231838AGGCAGAGGTGAAAAA552877ek-10-keke39245
18241839TAGGCAGAGGTGAAAA552878ekk-10-kke31247
18651880AGCTTGGAGGCTTGAA552879ekk-10-kke5252
18661881CAGCTTGGAGGCTTGA552880ekk-10-kke5254
18671882ACAGCTTGGAGGCTTG552881ekk-10-kke10256
18681883CACAGCTTGGAGGCTT552882ekk-10-kke11258
18691884GCACAGCTTGGAGGCT552883ekk-10-kke27260
18701885GGCACAGCTTGGAGGC552884ekk-10-kke36262
18711886AGGCACAGCTTGGAGG552885ekk-10-kke12264
18721887AAGGCACAGCTTGGAG552886ekk-10-kke32266
229
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
18741889CCAAGGCACAGCTTGG552888ekk-10-kke1271
Table 50
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3371
ViralTargetStartSiteViralTargetStopSiteSequenceISIS NoMotif% inhibitionSEQ EDNO
15771596GTGAAGCGAAGTGCACACGG146786eeeee-10-eeeee59224
5873TGGAGCCACCAGCAGG552955eee-10-kkk601318
5974CTGGAGCCACCAGCAG552956eee-10-kkk601319
6075ACTGGAGCCACCAGCA552957eee-10-kkk641320
6176AACTGGAGCCACCAGC552958eee-10-kkk561321
6277GAACTGGAGCCACCAG552959eee-10-kkk5986
250265TCCACCACGAGTCTAG552960eee-10-kkk4298
251266GTCCACCACGAGTCTA552961eee-10-kkk41100
252267AGTCCACCACGAGTCT552962eee-10-kkk35102
253268AAGTCCACCACGAGTC552963eee-10-kkk19104
254269GAAGTCCACCACGAGT552964eee-10-kkk34106
255270AGAAGTCCACCACGAG552965eee-10-kkk42109
256271GAGAAGTCCACCACGA552966eee-10-kkk60112
258273GAGAGAAGTCCACCAC552967eee-10-kkk38115
259274TGAGAGAAGTCCACCA552968eee-10-kkk35117
411426GCATAGCAGCAGGATG552969eee-10-kkk67137
412427GGCATAGCAGCAGGAT552970eee-10-kkk56140
413428AGGCATAGCAGCAGGA552971eee-10-kkk69143
414429GAGGCATAGCAGCAGG552972eee-10-kkk75145
415430TGAGGCATAGCAGCAG552973eee-10-kkk59145
416431ATGAGGCATAGCAGCA552974eee-10-kkk71149
417432GATGAGGCATAGCAGC552975eee-10-kkk56151
418433AGATGAGGCATAGCAG552976eee-10-kkk50153
457472CGGGCAACATACCTTG552977eee-10-kkk56167
458473ACGGGCAACATACCTT552978eee-10-kkk43168
670685CTAGTAAACTGAGCCA552979eee-10-kkk71181
682697GAACAAATGGCACTAG552980eee-10-kkk801368
684699CTGAACAAATGGCACT552981eee-10-kkk641370
686701CACTGAACAAATGGCA552982ek-10-keke611372
687702CCACTGAACAAATGGC552983eee-10-kkk77188
688703ACCACTGAACAAATGG552984eee-10-kkk65190
689704AACCACTGAACAAATG552985eee-10-kkk41191
690705GAACCACTGAACAAAT552986eee-10-kkk30192
691706CGAACCACTGAACAAA552987eee-10-kkk41194
12611276GCAGTATGGATCGGCA552988eee-10-kkk74211
230
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1262
1263
1264
1265
1266
1267
1268
1269
1270
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1590
1591
1591
1778
1778
1779
1779
1780
1780
1781
1781
1782
1782
1783
1783
1784
1784
1785
1277
1278
1279
1280
1281
1282
1283
1284
1285
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1603
1604
1604
1605
1605
1606
1606
1793
1793
1794
1794
1795
1795
1796
1796
1797
1797
1798
1798
1799
1799
1800
CGCAGTATGGATCGGC CCGCAGTATGGATCGG TCCGCAGTATGGATCG TTCCGCAGTATGGATC GTTCCGCAGTATGGAT AGTTCCGCAGTATGGA GAGTTCCGCAGTATGG GGAGTTCCGCAGTATG AGGAGTTCCGCAGTAT AGCGAAGTGCACACGG AAGCGAAGTGCACACG GAAGCGAAGTGCACAC TGAAGCGAAGTGCACA GTGAAGCGAAGTGCAC GGTGAAGCGAAGTGCA AGGTGAAGCGAAGTGC GAGGTGAAGCGAAGTG AGAGGTGAAGCGAAGT CAGAGGTGAAGCGAAG GCAGAGGTGAAGCGAA TGCAGAGGTGAAGCGA TGCAGAGGTGAAGCGA GTGCAGAGGTGAAGCG GTGCAGAGGTGAAGCG CGTGCAGAGGTGAAGC CGTGCAGAGGTGAAGC ACGTGCAGAGGTGAAG ACGTGCAGAGGTGAAG TATGCCTACAGCCTCC TATGCCTACAGCCTCC TTATGCCTACAGCCTC TTATGCCTACAGCCTC TTTATGCCTACAGCCT TTTATGCCTACAGCCT ATTTATGCCTACAGCC ATTTATGCCTACAGCC AATTTATGCCTACAGC AATTTATGCCTACAGC CAATTTATGCCTACAG CAATTTATGCCTACAG CCAATTTATGCCTACA CCAATTTATGCCTACA ACCAATTTATGCCTAC
552989
552990
552991
552992
552993
552994
552995
552996
552997
552998
552999
553000
553001
553002
553003
553004
553005
553006
553007
553008
552943
553009
552944
553010
552945
553011
552946
553012
552947
553013
552948
553014
552949
553015
552950
553016
552951
553017
552952
553018
552953
553019
552954 eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke eee-10-kkk ek-10-keke
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1345
1346
1346
1347
1347
1348
1348
230
230
231
231
232
232
233
233
234
234
235
235
236
236
237
231
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1800ACCAATTTATGCCTAC553020eee-10-kkk24237
Table 51
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
5873TGGAGCCACCAGCAGG552889ek-10-keke421318
5974CTGGAGCCACCAGCAG552890ek-10-keke561319
6075ACTGGAGCCACCAGCA552891ek-10-keke551320
6176AACTGGAGCCACCAGC552892ek-10-keke531321
6277GAACTGGAGCCACCAG552893ek-10-keke5686
250265TCCACCACGAGTCTAG552894ek-10-keke5398
251266GTCCACCACGAGTCTA552895ek-10-keke38100
252267AGTCCACCACGAGTCT552896ek-10-keke43102
253268AAGTCCACCACGAGTC552897ek-10-keke40104
254269GAAGTCCACCACGAGT552898ek-10-keke50106
255270AGAAGTCCACCACGAG552899ek-10-keke37109
256271GAGAAGTCCACCACGA552900ek-10-keke43112
258273GAGAGAAGTCCACCAC552901ek-10-keke56115
259274TGAGAGAAGTCCACCA552902ek-10-keke43117
411426GCATAGCAGCAGGATG552903ek-10-keke78137
412427GGCATAGCAGCAGGAT552904ek-10-keke75140
413428AGGCATAGCAGCAGGA552905ek-10-keke52143
415430TGAGGCATAGCAGCAG552907ek-10-keke75147
416431ATGAGGCATAGCAGCA552908ek-10-keke57149
417432GATGAGGCATAGCAGC552909ek-10-keke66151
418433AGATGAGGCATAGCAG552910ek-10-keke60153
457472CGGGCAACATACCTTG552911ek-10-keke65167
458473ACGGGCAACATACCTT552912ek-10-keke37168
670685CTAGTAAACTGAGCCA552913ek-10-keke76181
682697GAACAAATGGCACTAG552914ek-10-keke791368
684699CTGAACAAATGGCACT552915ek-10-keke711370
686701CACTGAACAAATGGCA552916ek-10-keke821372
687702CCACTGAACAAATGGC552917ek-10-keke78188
688703ACCACTGAACAAATGG552918ek-10-keke64190
689704AACCACTGAACAAATG552919ek-10-keke38191
690705GAACCACTGAACAAAT552920ek-10-keke43192
691706CGAACCACTGAACAAA552921ek-10-keke49194
12611276GCAGTATGGATCGGCA552922ek-10-keke90211
12621277CGCAGTATGGATCGGC552923ek-10-keke921325
12631278CCGCAGTATGGATCGG552924ek-10-keke301326
232
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
12641279TCCGCAGTATGGATCG552925ek-10-keke811327
12651280TTCCGCAGTATGGATC552926ek-10-keke391328
12661281GTTCCGCAGTATGGAT552927ek-10-keke531329
12671282AGTTCCGCAGTATGGA552928ek-10-keke481330
12681283GAGTTCCGCAGTATGG552929ek-10-keke6813U
12691284GGAGTTCCGCAGTATG552930ek-10-keke871332
12701285AGGAGTTCCGCAGTAT552931ek-10-keke871333
15771592AGCGAAGTGCACACGG552932ek-10-keke881334
15781593AAGCGAAGTGCACACG552933ek-10-keke751335
15791594GAAGCGAAGTGCACAC552934ek-10-keke761336
15801595TGAAGCGAAGTGCACA552935ek-10-keke711337
15811596GTGAAGCGAAGTGCAC552936ek-10-keke801338
15821597GGTGAAGCGAAGTGCA552937ek-10-keke811339
15831598AGGTGAAGCGAAGTGC552938ek-10-keke851340
15841599GAGGTGAAGCGAAGTG552939ek-10-keke821341
15851600AGAGGTGAAGCGAAGT552940ek-10-keke761342
15861601CAGAGGTGAAGCGAAG552941ekk-10-kke721343
15871602GCAGAGGTGAAGCGAA552942ek-10-keke851344
15891604GTGCAGAGGTGAAGCG552865ekk-10-kke701346
15901605CGTGCAGAGGTGAAGC552866ekk-10-kke651347
17781793TATGCCTACAGCCTCC552868ekk-10-kke36230
17791794TTATGCCTACAGCCTC552869ekk-10-kke23231
17801795TTTATGCCTACAGCCT552870ekk-10-kke49232
17811796ATTTATGCCTACAGCC552871ekk-10-kke46233
17821797AATTTATGCCTACAGC552872ekk-10-kke73234
17831798CAATTTATGCCTACAG552873ekk-10-kke41235
17841799CCAATTTATGCCTACA552874ekk-10-kke18236
17851800ACCAATTTATGCCTAC552875ekk-10-kke0237
18221837GGCAGAGGTGAAAAAG552876ekk-10-kke49244
18231838AGGCAGAGGTGAAAAA552877ek-10-keke37245
18241839TAGGCAGAGGTGAAAA552878ekk-10-kke28247
18651880AGCTTGGAGGCTTGAA552879ekk-10-kke0252
18661881CAGCTTGGAGGCTTGA552880ekk-10-kke12254
18671882ACAGCTTGGAGGCTTG552881ekk-10-kke0256
18681883CACAGCTTGGAGGCTT552882ekk-10-kke0258
18691884GCACAGCTTGGAGGCT552883ekk-10-kke12260
18701885GGCACAGCTTGGAGGC552884ekk-10-kke39262
18711886AGGCACAGCTTGGAGG552885ekk-10-kke37264
18721887AAGGCACAGCTTGGAG552886ekk-10-kke15266
18741889CCAAGGCACAGCTTGG552888ekk-10-kke0271
233
WO 2012/145697
PCT/US2012/034550
Table 52
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370
2019202856 24 Apr 2019
ViralTarget Start SiteViralTargetStopSiteSequenceISIS NoMotif%inhibitionSEQ ID NO
5873TGGAGCCACCAGCAGG552955eee-10-kkk671318
5974CTGGAGCCACCAGCAG552956eee-10-kkk601319
6075ACTGGAGCCACCAGCA552957eee-10-kkk731320
6176AACTGGAGCCACCAGC552958eee-10-kkk631321
6277GAACTGGAGCCACCAG552959eee-10-kkk5886
250265TCCACCACGAGTCTAG552960eee-10-kkk6798
251266GTCCACCACGAGTCTA552961eee-10-kkk78100
252267AGTCCACCACGAGTCT552962eee-10-kkk29102
253268AAGTCCACCACGAGTC552963eee-10-kkk25104
254269GAAGTCCACCACGAGT552964eee-10-kkk33106
255270AGAAGTCCACCACGAG552965eee-10-kkk55109
256271GAGAAGTCCACCACGA552966eee-10-kkk71112
258273GAGAGAAGTCCACCAC552967eee-10-kkk23115
259274TGAGAGAAGTCCACCA552968eee-10-kkk41117
411426GCATAGCAGCAGGATG552969eee-10-kkk76137
412427GGCATAGCAGCAGGAT552970eee-10-kkk44140
413428AGGCATAGCAGCAGGA552971eee-10-kkk77143
414429GAGGCATAGCAGCAGG552972eee-10-kkk74145
415430TGAGGCATAGCAGCAG552973eee-10-kkk61145
416431ATGAGGCATAGCAGCA552974eee-10-kkk73149
417432GATGAGGCATAGCAGC552975eee-10-kkk66151
418433AGATGAGGCATAGCAG552976eee-10-kkk70153
457472CGGGCAACATACCTTG552977eee-10-kkk65167
458473ACGGGCAACATACCTT552978eee-10-kkk40168
670685CTAGTAAACTGAGCCA552979eee-10-kkk79181
682697GAACAAATGGCACTAG552980eee-10-kkk8164
684699CTGAACAAATGGCACT552981eee-10-kkk7466
686701CACTGAACAAATGGCA552982ek-10-keke5268
687702CCACTGAACAAATGGC552983eee-10-kkk78188
688703ACCACTGAACAAATGG552984eee-10-kkk71190
689704AACCACTGAACAAATG552985eee-10-kkk38191
690705GAACCACTGAACAAAT552986eee-10-kkk48192
691706CGAACCACTGAACAAA552987eee-10-kkk54194
12611276GCAGTATGGATCGGCA552988eee-10-kkk85211
12621277CGCAGTATGGATCGGC552989eee-10-kkk841325
12631278CCGCAGTATGGATCGG552990eee-10-kkk791326
12641279TCCGCAGTATGGATCG552991eee-10-kkk531327
234
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
12651280TTCCGCAGTATGGATC552992eee-10-kkk681328
12661281GTTCCGCAGTATGGAT552993eee-10-kkk671329
12671282AGTTCCGCAGTATGGA552994eee-10-kkk691330
12681283GAGTTCCGCAGTATGG552995eee-10-kkk621331
12691284GGAGTTCCGCAGTATG552996eee-10-kkk821332
12701285AGGAGTTCCGCAGTAT552997eee-10-kkk581333
15771592AGCGAAGTGCACACGG552998eee-10-kkk861334
15781593AAGCGAAGTGCACACG552999eee-10-kkk631335
15791594GAAGCGAAGTGCACAC553000eee-10-kkk671336
15801595TGAAGCGAAGTGCACA553001eee-10-kkk701337
15811596GTGAAGCGAAGTGCAC553002eee-10-kkk841338
15821597GGTGAAGCGAAGTGCA553003eee-10-kkk831339
15831598AGGTGAAGCGAAGTGC553004eee-10-kkk681340
15841599GAGGTGAAGCGAAGTG553005eee-10-kkk571341
15851600AGAGGTGAAGCGAAGT553006eee-10-kkk741342
15861601CAGAGGTGAAGCGAAG553007eee-10-kkk621343
15871602GCAGAGGTGAAGCGAA553008eee-10-kkk501344
15881603TGCAGAGGTGAAGCGA552943ek-10-keke861345
15881603TGCAGAGGTGAAGCGA553009eee-10-kkk791345
15891604GTGCAGAGGTGAAGCG552944ek-10-keke831346
15891604GTGCAGAGGTGAAGCG553010eee-10-kkk741346
15901605CGTGCAGAGGTGAAGC552945ek-10-keke791347
15901605CGTGCAGAGGTGAAGC553011eee-10-kkk601347
15911606ACGTGCAGAGGTGAAG552946ek-10-keke681348
15911606ACGTGCAGAGGTGAAG553012eee-10-kkk781348
17781793TATGCCTACAGCCTCC552947ek-10-keke51230
17781793TATGCCTACAGCCTCC553013eee-10-kkk45230
17791794TTATGCCTACAGCCTC552948ek-10-keke56231
17791794TTATGCCTACAGCCTC553014eee-10-kkk53231
17801795TTTATGCCTACAGCCT552949ek-10-keke1232
17801795TTTATGCCTACAGCCT553015eee-10-kkk55232
17811796ATTTATGCCTACAGCC552950ek-10-keke52233
17811796ATTTATGCCTACAGCC553016eee-10-kkk65233
17821797AATTTATGCCTACAGC552951ek-10-keke59234
17821797AATTTATGCCTACAGC553017eee-10-kkk36234
17831798CAATTTATGCCTACAG552952ek-10-keke34235
17831798CAATTTATGCCTACAG553018eee-10-kkk20235
17841799CCAATTTATGCCTACA552953ek-10-keke55236
17841799CCAATTTATGCCTACA553019eee-10-kkk34236
17851800ACCAATTTATGCCTAC552954ek-10-keke51237
17851800ACCAATTTATGCCTAC553020eee-10-kkk28237
235
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Example 16: Dose-dependent antisense inhibition of HBV mRNA in HepG2 cells by MOE gapmers
Antisense oligonucleotides from the study described in Example 14 exhibiting in vitro inhibition of HBV mRNA were selected and tested at various doses in HepG2 cells. Cells were plated at a density of 28,000 cells per well and transfected using LipofectAMINE2000® with 9.26 nM, 27.78 nM, 83.33 nM, and 250.00 nM concentrations of antisense oligonucleotide, as specified in Table 53. After a treatment period of approximately 16 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. HBV primer probe set RTS3371 was used to measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
As illustrated in Table 53, HBV mRNA levels were reduced in a dose-dependent manner in antisense oligonucleotide treated cells, ‘n/a’ indicates that the data for that dosage is not available.
Table 53
Dose-dependent antisense inhibition of human HBV in HepG2 cells
ISIS No9.2593 nM27.7778 nM83.3333 nM250.0 nM
14678610437489
50993412315279
5099594244967
51010011286077
5101243111341
5519261265176
55195815175682
5519874406581
5519907557891
55199315307080
5519940303958
5519956417385
55199613477185
55199716386889
5519984366985
55199910316786
5520000176178
5520066377489
552009153960
552013028372
5520140263277
5520186276381
55201915346590
236
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
5520202356591
5520214115382
5520226355779
55202311335981
55202415436991
55202517356987
55202614266686
5520273466288
55202S9435878
5520298407289
55203018487792
5520310386689
55203242488088
5520332406484
5520346407081
5520392335683
55204419306384
5520464214777
55205015447092
5520518336990
55205217387191
5520530405986
5520547155875
55205619628692
55205711336986
55205830557990
55205911256990
5520609326186
5520616406988
55206222487589
55206423496990
5520651086986
5520691142860
5520739316278
55207521183365
5520770174072
5520791124470
5520803123469
55208213296687
55208324546988
55208410254882
55208528356485
5520860246584
237
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
55208833537793
5520890416992
55209017357087
55209113316989
5520926236689
5520930176189
55209412386588
55209520427388
552096n/a396691
55209724436788
5520980245685
5521013132861
55214711275880
55216020256989
5521630212253
55217616114066
5521927387889
5522220246579
5522470386986
5522555276981
5523015386586
5523098266285
552312043262
5523472153875
55234812404265
55235410354476
5523612255574
55236320365476
552374743876
5523790122446
5524038275476
5524082254477
5524096315680
5524180307284
5524209345381
5524424234656
5524660235679
55247411346687
55247711224464
55253025377387
5525599132951
238
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Example 17: Dose-dependent antisense inhibition of HBV mRNA in HepG2 cells by deoxy, MOE and (S)-cEt gapmers
Antisense oligonucleotides from the study described in Example 15 exhibiting in vitro inhibition of HBV mRNA were selected and tested at various doses in HepG2 cells. Cells were plated at a density of 28,000 cells per well and transfected using LipofectAMINE2000® with 9.26 nM, 27.78 nM, 83.33 nM, and 250.00 nM concentrations of antisense oligonucleotide, as specified in Table 54. After a treatment period of approximately 16 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. HBV primer probe set RTS3371 was used to measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN® Results are presented as percent inhibition of HBV, relative to untreated control cells.
As illustrated in Table 54, HBV mRNA levels were reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
Table 54
Dose-dependent antisense inhibition of human HBV in HepG2 cells
ISIS No9.2593 nM27.7778 nM83.3333 nM250.0 nM
14678610437489
55280813145570
55281638738792
55281829638785
55282058839090
55282133497188
55282224557488
5528248246587
55283411286889
55284912257384
55285113427489
5528524357087
55285319528693
55285428578089
5529165266482
55292225447789
55292322498291
55292533568092
55293012497989
55293112406282
55293224628491
55293320407589
239
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
55293618367588
55293722518288
55293812366780
55293917406579
55294221487488
5529435397085
55294414337077
55298015406986
5529884365884
5529890507481
5529960255372
55299817497990
5530020326886
55300315426788
Example 18: Antisense inhibition of HBV viral mRNA in HepG2 cells by deoxy, MOE and (S)-cEt gapmers
Additional antisense oligonucleotides were designed targeting a HBV viral nucleic acid and were tested for their effects on HBV mRNA in vitro. ISIS 5808 and ISIS 9591, disclosed in US5985662, as well as ISIS 146781, ISIS 146786, 524518, ISIS 552859, and ISIS 552870 were also included in these studies for comparison and are distinguished with an asterisk. Cultured HepG2 cells at a density of 28,000 cells per well were transfected using LipofectAMINE2000® with 100 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe sets RTS3370 and RTS3371 and were used to separately measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
The newly designed chimeric antisense oligonucleotides in Table below were designed as MOE gapmers or deoxy, MOE and (S)-cEt gapmers. The 5-10-5 MOE gapmers are 20 nucleosides in length, 15 wherein the central gap segment comprises of ten 2’-deoxynucleosides and is flanked on both sides (in the 5’ and 3 ’ directions) by wings comprising five nucleosides each. The deoxy, MOE and (S)-cEt gapmers are 16 nucleosides in length wherein the nucleoside have either a MOE sugar modification, an (S)-cEt sugar modification, or a deoxy modification. The ‘Chemistry’ column describes the sugar modifications of each oligonucleotide, ‘k’ indicates an (S)-cEt sugar modification; the number indicates the number of 20 deoxynucleosides; otherwise, ‘d’ indicates a deoxynucleoside; and ‘e’ indicates a MOE modification. The intemucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each oligonucleotide are 5-methylcytosines.
240
WO 2012/145697
PCT/US2012/034550 “Viral Target start site” indicates the 5’-most nucleotide to which the gapmer is targeted in the viral gene sequence. “Viral Target stop site” indicates the 3’-most nucleotide to which the gapmer is targeted viral gene sequence. Each gapmer listed in Table 55 is targeted to the viral genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. U95551.1).
2019202856 24 Apr 2019
Table 55
Inhibition of viral HBV mRNA levels by chimeric antisense oligonucleotides measured with RTS3370 or RTS3371
ViralTarget Start SiteViralTarget Stop SiteISIS NoMotif% inhibition (RTS3370)% inhibition (RTS3371)SequenceSEQID NO
1561765808*Uniform deoxy5764CCTGATGTGATGTTCTCCATG1373
303322524518*eeeee-10-eeeee6272GGGACTGCGAATTTTGGCCA428
376395146781*eeeee-10-eeeee7293AAACGCCGCAGACACATCCA1374
380399582665eeeee-10-eeeee5759GATAAAACGCCGCAGACACA1375
382401582666eeeee-10-eeeee4992ATGATAAAACGCCGCAGACA1376
411426566831kdkdk-9-ee9673GCATAGCAGCAGGATG137
411427577123eekk-9-ekee8496GGCATAGCAGCAGGATG17
411427577124kdkdk-8-eeee9296GGCATAGCAGCAGGATG17
411426577126kkk-8-eeeee8790GCATAGCAGCAGGATG137
413428566830kdkdk-9-ee9395AGGCATAGCAGCAGGA143
415430577130eek-10-kke8794TGAGGCATAGCAGCAG147
415430577131kdkdk-9-ee8393TGAGGCATAGCAGCAG147
12631278566828kdkdk-9-ee9790CCGCAGTATGGATCGG1236
15771596146786*eeeee-10-eeeee9371GTGAAGCGAAGTGCACACGG224
15771592566829kdkdk-9-ee9884AGCGAAGTGCACACGG1334
15771596577120kdkdk-10-eeeee9493GTGAAGCGAAGTGCACACGG224
15771592577127kkk-8-eeeee9570AGCGAAGTGCACACGG1334
15771592577134kek-8-eeeee9489AGCGAAGTGCACACGG1334
15771592577135kek-10-kek9694AGCGAAGTGCACACGG1334
15831598552859*ekk-1 O-kke9291AGGTGAAGCGAAGTGC1340
15831602577121kdkdk-10-eeeee9174GCAGAGGTGAAGCGAAGTGC226
15831598577128kkk-8-eeeee9285AGGTGAAGCGAAGTGC1340
15831598577132kdkdk-9-ee9781AGGTGAAGCGAAGTGC1340
15831598577136kek-10-kek9595AGGTGAAGCGAAGTGC1340
15881603566832kdkdk-9-ee9578TGCAGAGGTGAAGCGA1345
17801795552870*ekk-1 O-kke7193TTTATGCCTACAGCCT232
17801799577122kdkdk-10-eeeee7096CCAATTTATGCCTACAGCCT50
17801796577125kdkdk-8-eeee7094ATTTATGCCTACAGCCT51
17801795577129kkk-8-eeeee7651TTTATGCCTACAGCCT232
17801795577133kdkdk-9-ee8052TTTATGCCTACAGCCT232
187318929591*Uniform deoxy3014CACCCAAGGCACAGCTTGG1377
241
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Example 19: Efficacy of gapmers targeting HBV in transgenic mice
Transgenic mice were treated with ISIS antisense oligonucleotides in a number of studies to evaluate the efficacy of the gapmers. HBV DNA and RNA levels were assessed.
Study 1
Groups of 12 mice each were injected subcutaneously twice a week for 4 weeks with 50 mg/kg of ISIS 510106, ISIS 510116, ISIS 505347, or ISIS 509934. A control group of 12 mice was injected subcutaneously twice a week for 4 weeks with PBS. Mice were euthanized 48 hours after the last dose, and livers were harvested for further analysis.
DNA and RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe sets RTS3370, RTS3371, and RTS3372. The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe sets RTS3370 and RTS3371 after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. The data is presented in Table 56, expressed as percent inhibition compared to the control group. As shown in Table 56, most of the antisense oligonucleotides achieved reduction of HBV DNA and RNA over the PBS control. Results are presented as percent inhibition of HBV mRNA or DNA, relative to control. The Chemistry column indicates the gap-wing motif of each gapmer.
Table 56
Percent inhibition of HBV RNA and DNA in the liver of transgenic mice
ISIS NoChemistry% inhibition DNA (RTS3370)% inhibition DNA (RTS3371)%inhibition DNA (RTS3372)% inhibition RNA (RTS3370)% inhibition RNA (RTS3371)%inhibition RNA (RTS3372)
5053475-10-5 MOE727975542830
5099345-10-5 MOE939594727592
5101063-10-4 MOE00510012
5101163-10-4 MOE687968495466
Study 2
Groups of 6 mice each were injected subcutaneously twice a week for 4 weeks with 50 mg/kg of ISIS 146779, ISIS 505358, ISIS 146786, ISIS 509974, ISIS 509958, or ISIS 509959. A control group of 10 mice was injected subcutaneously twice a week for 4 weeks with PBS. Mice were euthanized 48 hours after the 25 last dose, and livers were harvested for further analysis.
242
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
DNA and RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe sets RTS3370. The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe sets RTS337O after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. The data is presented in Table 57, expressed as percent inhibition compared to the control group. As shown in Table 57, most of the antisense oligonucleotides achieved reduction of HBV DNA and RNA over the PBS control. Results are presented as percent inhibition of HBV mRNA or DNA, relative to control. The Chemistry column indicates the gap-wing motif of each gapmer.
Table 57
Percent inhibition of HBV RNA and DNA in the liver of transgenic mice
ISIS NoChemistry% inhibition DNA%inhibition RNA
1467795-10-5 MOE395
1467865-10-5 MOE8373
5053585-10-5 MOE8477
5099583-10-3 MOE8229
5099593-10-3 MOE5430
5099743-10-3 MOE5628
Study 3
Groups of 6 mice each were injected subcutaneously twice a week for 4 weeks with 50 mg/kg of ISIS 509960, ISIS 505329, ISIS 146786, ISIS 505339, or ISIS 509927. Another group of 6 mice was administered 15 Entecavir, an oral antiviral drug used to treate Hepatitis B infection, at 1 mg/kg daily for two weeks. A control group of 10 mice was injected subcutaneously twice a week for 4 weeks with PBS. Mice were euthanized 48 hours after the last dose, and livers were harvested for further analysis.
DNA and RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe 20 sets RTS3371. The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe sets RTS3371 after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. The data is presented in Table 58, expressed as percent inhibition compared to the control group. As shown in Table 58, most of the antisense oligonucleotides achieved reduction of HBV DNA and RNA over the PBS control. Results are presented as percent inhibition of HBV mRNA or DNA, relative to control. The 25 Chemistry column indicates the gap-wing motif of each gapmer.
243
WO 2012/145697
PCT/US2012/034550
Table 58
Percent inhibition of HBV RNA and DNA in the liver of transgenic mice
2019202856 24 Apr 2019
Oligo Chemistry% inhibition DNA%inhibition RNA
entecavir-940
ISIS 1467865-10-5 MOE9792
ISIS 5053295-10-5 MOE7063
ISIS 5053395-10-5 MOE7463
ISIS 5099275-10-5 MOE8057
ISIS 5099603-10-3 MOE8660
Study 4
Groups of 6 mice each were injected subcutaneously twice a week for 4 weeks with 25 mg/kg of ISIS 146786, ISIS 552176, and ISIS 552073. One group of 10 mice was injected subcutaneously twice a week for 4 weeks with PBS. Mice were euthanized 48 hours after the last dose, and organs and plasma were harvested for further analysis.
DNA and RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe set RTS3371. The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe set RTS3371 after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. The data is presented in Table 59. As shown in Table 59, the antisense oligonucleotides achieved reduction of HBV DNA and RNA over the PBS control. Results are presented as percent inhibition of HBV mRNA or 15 DNA, relative to control. The Chemistry column indicates the gap-wing motif of each gapmer.
Table 59
Percent inhibition of HBV RNA and DNA in transgenic mice
ISIS NoChemistry% inhibition of RNA% inhibition of DNA
1467865-10-5 MOE8191
5520738-10-2 MOE3922
5521763-9-5 MOE5556
Liver function
To evaluate the effect of ISIS oligonucleotides on hepatic function, plasma concentrations of ALT were measured using an automated clinical chemistry analyzer (Hitachi Olympus AU400e, Melville, NY) 244
WO 2012/145697
PCT/US2012/034550 (Nyblom, H. et al., Alcohol & Alcoholism 39: 336-339, 2004; Tietz NW (Ed): Clinical Guide to Laboratory
Tests, 3rd ed. W. B. Saunders, Philadelphia, PA, 1995). The results are presented in Table 60 expressed in
IU/L. Both the ISIS oligonucleotides were considered tolerable in the mice, as demonstrated by their liver transaminase profile.
2019202856 24 Apr 2019
Table 60
ALT levels (IU/L) of transgenic mice
ALT
PBS77
ISIS 14678621
ISIS 55207319
ISIS 55217627
Study 5
Groups of 6 mice each were injected subcutaneously twice a week for 4 weeks with 25 mg/kg of ISIS 146786, ISIS 552056, ISIS 552088, and ISIS 552309. One group of 10 mice was injected subcutaneously i twice a week for 4 weeks with PBS. Mice were euthanized 48 hours after the last dose, and organs and plasma were harvested for further analysis.
DNA and RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe set RTS3371. The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe set RTS3371 after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. As shown in Table 61, the antisense oligonucleotides achieved reduction of HBV DNA and RNA over the PBS control. Results are presented as percent inhibition of HBV mRNA or DNA, relative to control. The Chemistry column indicates the gap-wing motif of each gapmer.
Table 61
Percent inhibition of HBV DNA and RNA in transgenic mice
Chemistry% inhibition (RNA)% inhibition (DNA)
ISIS 1467865-10-5 MOE6090
ISIS 5520567-10-3 MOE2558
ISIS 5520888-10-2 MOE80
ISIS 5523095-9-3 MOE3584
245
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
Study 6
Groups of 6 mice each were injected subcutaneously twice a week for 4 weeks with 25 mg/kg of ISIS 146786, ISIS 505330, ISIS 509932, ISIS 552032, ISIS 552057, ISIS 552075, ISIS 552092, and ISIS 552255. One group of 10 mice was injected subcutaneously twice a week for 4 weeks with PBS. Mice were euthanized 48 hours after the last dose, and organs and plasma were harvested for further analysis.
DNA and RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe set RTS3371. The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe set RTS3371 after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. As shown in Table 62, the antisense oligonucleotides achieved reduction of HBV DNA and RNA over the PBS control. Results are presented as percent inhibition of HBV mRNA or DNA, relative to control. The Chemistry column indicates the gap-wing motif of each gapmer.
Table 62
Percent inhibition of HBV DNA and RNA in transgenic mice
ISIS NoChemistry%inhibition (RNA)% inhibition (DNA)
1467865-10-5 MOE5295
5053305-10-5 MOE761
5099325-10-5 MOE8398
5520326-10-4 MOE5497
5520577-10-3 MOE1962
5520758-10-2 MOE1218
5520928-10-2 MOE2574
5522554-9-4 MOE4189
Study 7
Groups of 6 mice each were injected subcutaneously twice a week for 4 weeks with 20 mg/kg of ISIS 552859, ISIS 577121, ISIS 577122, ISIS 577123, ISIS 577132, ISIS 577133, and ISIS 577134. These 20 gapmers have deoxy, MOE and (S)-cEt chemistry. One group of 10 mice was injected subcutaneously twice a week for 4 weeks with PBS. Mice were euthanized 48 hours after the last dose, and organs and plasma were harvested for further analysis.
DNA and RNA Analysis
246
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe set RTS3371. The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe set RTS3371 after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. As shown in Table 63, the antisense oligonucleotides achieved reduction of HBV DNA and RNA over the PBS control. Results are presented as percent inhibition of HBV mRNA or DNA, relative to control. The ‘Chemistry’ column describes the sugar modifications of each oligonucleotide, ‘k’ indicates an (S)-cEt sugar modification; the number indicates the number of deoxynucleosides; otherwise, ‘d’ indicates a deoxynucleoside; and ‘e’ indicates a MOE modification.
Table 63
Percent inhibition of HBV DNA and RNA in transgenic mice
ISIS NoChemistry% inhibition (RNA)% inhibition (DNA)
552859ekk-10-kke6086
577121kdkdk-10-eeeee5993
577122kdkdk-10-eeeee4268
577123eekk-9-ekee077
577132kdkdk-9-ee424
577133kdkdk-9-ee4664
577134kek-8-eeeee017
Study 8
A group of 6 mice was injected subcutaneously twice a week for 4 weeks with 25 mg/kg of ISIS 146786, the 5-10-5 MOE gapmer. Groups of 6 mice each were injected subcutaneously twice a week for 4 15 weeks with 10 mg/kg of ISIS 552803, ISIS 552903, ISIS 552817, ISIS 552822, and ISIS 552907. These gapmers all had deoxy, MOE, and (S)-cEt chemistry. One group of 10 mice was injected subcutaneously twice a week for 4 weeks with PBS. Mice were euthanized 48 hours after the last dose, and organs and plasma were harvested for further analysis.
DNA and RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe set RTS3371. The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe set RTS3371 after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. The data is presented in Table 64. As shown in Table 64, the antisense oligonucleotides achieved reduction of 25 HBV DNA and RNA over the PBS control. The ‘Chemistry’ column describes the sugar modifications of
247
WO 2012/145697
PCT/US2012/034550 each oligonucleotide, ‘k’ indicates an (S)-cEt sugar modification; the number indicates the number of deoxynucleosides; otherwise, ‘d’ indicates a deoxynucleoside; and ‘e’ indicates a MOE modification; in case of the MOE gapmers, the Chemistry column defines the gap-wing structure.
2019202856 24 Apr 2019
Table 64
Percent inhibition of HBV RNA and DNA in transgenic mice
ISIS NoChemistryDose (mg/kg/wk)% inhibition of RNA% inhibition of DNA
1467865-10-5 MOE508191
552803ekk-10-kke207195
552817ekk-10-kke208651
552822ekk-10-kke209089
552903ek-10-keke205682
552907ek-10-keke204145
Study 9
A group of 6 mice was injected subcutaneously twice a week for 4 weeks with 25 mg/kg of ISIS 146786. Groups of 6 mice each were injected subcutaneously twice a week for 4 weeks with 10 mg/kg of ISIS 552853, ISIS 552854, ISIS 552932, and ISIS 552938. One group of 10 mice was injected subcutaneously twice a week for 4 weeks with PBS. Mice were euthanized 48 hours after the last dose, and organs and plasma were harvested for further analysis.
DNA and RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe set RTS3371. The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe set RTS3371 after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. As shown in Table 65, the antisense oligonucleotides achieved reduction of HBV DNA and RNA over the PBS control. Results are presented as percent inhibition of HBV mRNA or DNA, relative to control. The ‘Chemistry’ column describes the sugar modifications of each oligonucleotide, ‘k’ indicates an (S)-cEt sugar modification; the number indicates the number of deoxynucleosides; otherwise, ‘d’ indicates a deoxynucleoside; and ‘e’ indicates a MOE modification; in case of the MOE gapmers, the Chemistry column defines the gap-wing structure.
248
WO 2012/145697
PCT/US2012/034550
Table 65
Percent inhibition of HBV DNA and RNA in transgenic mice
2019202856 24 Apr 2019
ChemistryDose (mg/kg/wk)% inhibition (DNA)% inhibition (RNA)
ISIS 1467865-10-5 MOE509060
ISIS 552853ekk-10-kke209460
ISIS 552854ekk-10-kke206123
ISIS 552932ek-10-keke207570
ISIS 552938ek-10-keke206756
Study 10
A group of 6 mice was injected subcutaneously twice a week for 4 weeks with 25 mg/kg of ISIS 146786. Groups of 6 mice each were injected subcutaneously twice a week for 4 weeks with 10 mg/kg of ISIS 552922, ISIS 552923, ISIS 552942, ISIS 552872, ISIS 552925, ISIS 552937, and ISIS 552939. One group of 10 mice was injected subcutaneously twice a week for 4 weeks with PBS. Mice were euthanized 48 hours after the last dose, and organs and plasma were harvested for further analysis.
DNA and RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe set RTS3371. The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe set RTS3371 after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. As shown in Table 66, the antisense oligonucleotides achieved reduction of HBV DNA and RNA over the PBS control. Results are presented as percent inhibition of HBV mRNA or DNA, relative to control. The ‘Chemistry’ column describes the sugar modifications of each oligonucleotide, ‘k’ indicates an (S)-cEt sugar modification; the number indicates the number of deoxynucleosides; otherwise, ‘d’ indicates a deoxynucleoside; and ‘e’ indicates a MOE modification; in case of the MOE gapmers, the Chemistry column defines the gap-wing structure.
Table 66
Percent inhibition of HBV DNA and RNA in transgenic mice
ISIS NoChemistryDose (mg/kg/wk)% inhibition (DNA)% inhibition (RNA)
1467865-10-5 MOE505257
552922ekk-10-kke206150
552923ek-10-keke208976
552942ek-10-keke205852
249
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
552872ek-10-keke207746
552925ek-10-keke208965
552937ek-10-keke205935
552939ek-10-keke205719
Example 20: Efficacy of gapmers targeting HBV in transgenic mice
Mice harboring a HBV gene fragment (Guidotti, L. G. et al., J. Virol. 1995, 69, 6158-6169) were used. The mice were treated with ISIS antisense oligonucleotides selected from studies described above and evaluated for their efficacy in this model. HBV DNA, RNA, and antigen levels were assessed.
Groups of 10 mice each were injected subcutaneously twice a week for the first with 50 mg/kg and, subsequently, twice a week for the next 3 weeks with 25 mg/kg of ISIS 146786 or ISIS 510100. Control groups of 10 mice each were treated in a similar manner with ISIS 141923 (CCTTCCCTGAAGGTTCCTCC, SEQ ID NO: 320; 5-10-5 MOE gapmer with no known murine target) or ISIS 459024 (CGGTCCTTGGAGGATGC, SEQ ID NO: 1351; 3-10-4 MOE gapmer with no known murine target). Mice were euthanized 48 hours after the last dose, and organs and serum were harvested for further analysis.
DNA and RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of HBV DNA, using primer probe sets RTS3370, RTS3371, or RTS3372 (forward sequence ATCCTATCAACACTTCCGGAAACT, designated SEQ ID NO: 314; reverse sequence CGACGCGGCGATTGAG, designated SEQ ID NO: 315; probe sequence AAGAACTCCCTCGCCTCGCAGACG, designated SEQ ID NO: 316). The DNA levels were normalized to picogreen. HBV RNA samples were also assayed with primer probe sets RTS3370 and RTS3371 after RT-PCR analysis. The mRNA levels were normalized to RIBOGREEN®. The data is presented in Table 67. Serum DNA samples were analyzed after the study period. The data is presented in Table 68, expressed relative to the levels measured in the control group. As shown in Tables 67 and 68, the 20 antisense oligonucleotides achieved reduction of HBV DNA and RNA over the PBS control. Results are presented as percent inhibition of HBV mRNA or DNA, relative to control. The Chemistry column defines the gap-wing structure of each gapmer.
Table 67
Percent inhibition of HBV RNA and DNA in the liver of transgenic mice
ISIS NoChemistry% inhibition DNA (RTS3370)%inhibition DNA (RTS3371)% inhibition DNA (RTS3372)%inhibition RNA (RTS3370)%inhibition RNA (RTS3371)% inhibition RNA (RTS3372)
1467865-10-5 MOE979795868589
5101003-10-4 MOE959494566477
250
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019
1419235-10-5 MOE20130731
4590243-10-4 MOE1908000
Table 68
Percent inhibition of HBV DNA in the serum of transgenic mice
ISIS No% inhibition(RTS3370)% inhibition(RTS3371)
1467869898
5101009998
14192300
45902400
HBVantigen Analysis
HBV antigens in the supernatants were detected with the ELISA technique. HBs antigen (HBsAg) levels were detected by ELISA from Abazyme LLC, MA. As presented in Table 57, treatment with ISIS oligonucleotides 146786 or 510100 caused reduction in HBsAg levels. HBe antigen (HBeAg) levels were detected by ELISA from International Immuno-diagnostics, CA. As presented in Table 69, treatment with ISIS oligonucleotides 146786 or 510100 also caused reduction in HBeAg levels.
Table 69
HBV antigen levels (PEI U/mL) in transgenic mice
HBsAgHBeAg
PBS4080
146786315
5101001522
1419233280
4590244451
Example 21: Antisense inhibition of HBV viral mRNA in HepG2 cells by deoxy, MOE and (S)-cEt gapmers
Additional antisense oligonucleotides were designed targeting a HBV viral nucleic acid and were tested for their effects on HBV mRNA in vitro. ISIS 146786, ISIS 505358, ISIS 509932, and ISIS 510100, disclosed in U.S. Provisional Application No. 61/478,040 filed on April 21, 2011; ISIS 552859 disclosed in U.S. Provisional Application No. 61/596692 filed on February 8, 2012; ISIS 577121, ISIS 577122, ISIS 577123, ISIS 577132, ISIS 577133, and ISIS 577134, disclosed in the study described above, were also
251
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 included in the assay. Cultured HepG2 cells at a density of 28,000 cells per well were transfected using Cytofectin with 9.375 nM, 18.75 nM, 37.50 nM, 75.00 nM, 150.00 nM, or 300.00 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3371 was used to measure mRNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. Results are presented as percent inhibition of HBV, relative to untreated control cells.
The newly designed chimeric antisense oligonucleotides in Tables below were designed as deoxy, MOE and (S)-cEt gapmers. The deoxy, MOE and (S)-cEt gapmers are 16, 17, or 18 nucleosides in length wherein the nucleosides have either a MOE sugar modification, an (S)-cEt sugar modification, or a deoxy modification. The ‘Chemistry’ column describes the sugar modifications of each oligonucleotide, ‘k’ indicates an (S)-cEt sugar modification; the number indicates the number of deoxynucleosides; otherwise, ‘d’ indicates a deoxynucleoside; and ‘e’ indicates a MOE modification. The intemucleoside linkages throughout each gapmer are phosphorothioate (P=S) linkages. All cytosine residues throughout each oligonucleotide are 5 -methylcytosines.
“Viral Target start site” indicates the 5’-most nucleotide to which the gapmer is targeted in the viral gene sequence. “Viral Target stop site” indicates the 3’-most nucleotide to which the gapmer is targeted viral gene sequence. Each gapmer listed in Table 70 is targeted to the viral genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. U95551.1).
Table 70
Chimeric antisense oligonucleotides targeting SEQ ID NO: 1
Viral Target Start SiteViral Target Stop SiteISIS NoMotifSequenceSEQ ID NO
411427585163eeekk-8-eeeeGGCATAGCAGCAGGATG17
414430585164eeekk-7-kkeeeTGAGGCATAGCAGCAGG21
414430585165eeek-9-keeeTGAGGCATAGCAGCAGG21
15771593585170eeekk-7-kkeeeAAGCGAAGTGCACACGG1304
15771593585171eeek-9-keeeAAGCGAAGTGCACACGG1304
15771593585172eeeekk-7-eeeeAAGCGAAGTGCACACGG1304
15771593585173ekek-9-eeeeAAGCGAAGTGCACACGG1304
15771593585174ekekdk-7-eeeeAAGCGAAGTGCACACGG1304
15831599585166eeekk-7-kkeeeGAGGTGAAGCGAAGTGC1310
15831599585167eeek-9-keeeGAGGTGAAGCGAAGTGC1310
17801797577119kdkdk-8-eeeeeAATTTATGCCTACAGCCT1379
17801796585168eeekk-7-kkeeeATTTATGCCTACAGCCT51
17801796585169eeek-9-keeeATTTATGCCTACAGCCT51
252
WO 2012/145697
PCT/US2012/034550
Table 71
Dose dependent inhibition of HBV mRNA levels by chimeric antisense oligonucleotides
2019202856 24 Apr 2019
ISIS No9.375 nM18.75 nM37.5 nM75.0 nM150.0 nM300.0 nM
146786373758708193
505358302628577485
510100423043617791
552859213039617991
577119424346667475
577121101542648289
577122213053667884
577123272945567884
577132142142618092
577133121432476277
577134373959728690
585174312848618090
Table 72
Dose dependent inhibition of HBV mRNA levels by chimeric antisense oligonucleotides
ISIS No9.375 nM18.75 nM37.5 nM75.0 nM150.0 nM300.0 nM
146786253457718592
50993292859627074
585163173252687781
58516423429313656
58516563142586682
585166192735485063
585167222550697688
58516843044526776
585169323242627680
585170231939496675
585171282742598188
585172262930648091
585173293041718688
Example 22: Analysis of the potency of uniform deoxyoligonucleotides in inhibition of HBV mRNA in HepG2 cells
Additional antisense oligonucleotides were tested for their effects on HBV mRNA in vitro. ISIS 5808 and ISIS 9591, disclosed in US5985662 were also included in the assay. ISIS 146786 was included in
253
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019 the assay as the benchmark. Cultured HepG2 cells at a density of 28,000 cells per well were transfected using LipofectAMINE2000® with 18.75 nM, 37.50 nM, 75.00 nM, 150.00 nM, or 300.00 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and HBV mRNA levels were measured by quantitative real-time PCR. Viral primer probe set RTS3371 was used to measure mRNA and DNA levels. HBV mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. S antigen and E antigen levels were also measured by ELISA. Results are presented as percent inhibition, relative to untreated control cells.
The antisense oligonucleotides tested, ISIS 582699, ISIS 582700, and ISIS 582701, were designed according to the sequences and chemistries disclosed in Korba and Gerin, Antiviral Research, 1995, Vol. 28, 225-242; the corresponding names for the oligonucleotides in the reference are SI, Cl, and L2c, respectively. The antisense oligonucleotides in Tables below were designed as uniform deoxy oligonucleotides, 16 or 21 nucleosides in length wherein the nucleosides have deoxy modifications. “Viral Target start site” indicates the 5’-most nucleotide to which the oligonucleotide is targeted in the viral gene sequence. “Viral Target stop site” indicates the 3’-most nucleotide to which the oligonucleotide is targeted viral gene sequence. Each oligonucleotide listed in Table 73 is targeted to the viral genomic sequence, designated herein as SEQ ID NO: 1 (GENBANK Accession No. U95551.1). The results indicate that the deoxy oligonucleotides had negligible effect on HBV mRNA expression levels DNA levels and HBV antigen levels.
Table 73
Uniform deoxy oligonucleotides targeting SEQ ID NO: 1
Viral Target Start SiteViral Target Stop SiteISIS NoSequenceSEQ ID NO
160180582699GAATCCTGATGTGATGTTCTC1378
18841899582701CCAAAGCCACCCAAGG1380
19101930582700CAAATTCTTTATAAGGGTCGA1381
Table 74
Dose dependent inhibition of HBV mRNA levels after treatment with oligonucleotides
ISIS No18.75 nM37.5 nM75.0 nM150.0 nM300.0 nM
58083823294054
95913520322640
146786115456692
5826993228273952
5827001812201623
582701400313
Table 75
254
WO 2012/145697
PCT/US2012/034550
Dose dependent inhibition of HBV DNA levels in HepG2 cells after treatment with oligonucleotides
2019202856 24 Apr 2019
ISIS No18.75 nM37.5 nM75.0 nM150.0 nM
5808201700
95910000
14678632507783
582699044017
5827000000
5827010000
Table 76
HBV S antigen levels after treatment with oligonucleotides (arbitrary units)
ISIS No18.75 nM37.5 nM75.0 nM150.0 nM
58089,2548,2284,1682,540
959110,9248,6839,33412,142
14678612,5017,2653,4081,017
5826999,3409,3257,5894,712
5827009,6978,35011,16810,703
58270115,28318,20914,63215,299
Table 77
HBV E antigen levels after treatment with oligonucleotides (arbitrary units)
ISIS No18.75 nM37.5 nM75.0 nM150.0 nM
58088,0758,5875,0363,286
95919,2428,0938,2576,944
1467868,5324,0342,301449
5826997,8157,1917,0265,278
5827008,6909,3047,9416,315
5827018,8478,2578,2116,276
255
WO 2012/145697
PCT/US2012/034550
2019202856 24 Apr 2019

Claims (54)

  1. What is claimed is:
    1. A compound, comprising a modified oligonucleotide consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 5-310, 321-802, 804-1272, or 1288-1350, 1364-1372, 1375, 1376, and 1379.
  2. 2. A compound, comprising a modified oligonucleotide consisting of 10 to 30 linked nucleosides, wherein said modified oligonucleotide is complementary to SEQ ID NO: 1
  3. 3. The compound of claim 1 or 2, wherein said modified oligonucleotide is at least 96% complementary to SEQ ID NO: 1.
  4. 4. The compound of claim 1 or 2, wherein said modified oligonucleotide is at least 97% complementary to SEQ ID NO: 1.
  5. 5. The compound of claim 1 or 2, wherein said modified oligonucleotide is at least 98% complementary to SEQ ID NO: 1.
  6. 6. The compound of claim 1 or 2, wherein said modified oligonucleotide is at least 99% complementary to SEQ ID NO: 1.
  7. 7. The compound of claim 1 or 2, wherein said modified oligonucleotide is 100% complementary to SEQ ID NO: 1.
  8. 8. The compound of claim 1 or 2, consisting of a single-stranded modified oligonucleotide.
  9. 9. The compound of claim 1 or 2, wherein at least one intemucleoside linkage is a modified intemucleoside linkage.
  10. 10. The compound of claim 9, wherein each intemucleoside linkage is a phosphorothioate intemucleoside linkage.
    256
    WO 2012/145697
    PCT/US2012/034550
    2019202856 24 Apr 2019
  11. 11. The compound of claim 1 or 2, wherein at least one nucleoside of the modified oligonucleotide comprises a modified sugar.
  12. 12. The compound of claim 11, wherein the at least one modified sugar is a bicyclic sugar.
  13. 13. The compound of claim 11, wherein at least one modified sugar comprises a 2’-0-methoxyethyl group.
  14. 14. The compound of claim 11, wherein the modified sugar comprises a 2’-O(CH2)2-OCH3 group.
  15. 15. The compound of claim 11, wherein the modified sugar comprises a 4’-CH(CH3)-O-2’ group.
  16. 16. The compound of claim 1 or 2, wherein at least one nucleoside comprises a modified nucleobase.
  17. 17. The compound of claim 16, wherein the modified nucleobase is a 5-methylcytosine.
  18. 18. The compound of claim 1 or 2, wherein the modified oligonucleotide comprises:
    a gap segment consisting of linked deoxynucleosides;
    a 5’ wing segment consisting of linked nucleosides; and a 3’ wing segment consisting of linked nucleosides;
    wherein the gap segment is positioned between the 5’ wing segment and the 3’ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.
  19. 19. The compound of claim 18, wherein the gap segment consists of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 linked nucleosides.
  20. 20. The compound of claim 18, wherein the modified oligonucleotide comprises:
    a gap segment consisting of ten linked deoxynucleosides;
    a 5’ wing segment consisting of 2-3 linked nucleosides; and a 3’ wing segment consisting of 3-4 linked nucleosides;
    257
    WO 2012/145697
    PCT/US2012/034550
    2019202856 24 Apr 2019 wherein the gap segment is positioned between the 5’ wing segment and the 3’ wing segment, wherein each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar or a constrained ethyl sugar; and wherein each intemucleoside linkage is a phosphorothioate linkage.
  21. 21. The compound of claim 20, wherein the modified oligonucleotide comprises:
    a gap segment consisting of ten linked deoxynucleosides;
    a 5’ wing segment consisting of 3 linked nucleosides; and a 3’ wing segment consisting of 3 linked nucleosides;
    wherein the gap segment is positioned between the 5’ wing segment and the 3’ wing segment, wherein each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar or a constrained ethyl sugar; and wherein each intemucleoside linkage is a phosphorothioate linkage.
  22. 22. The compound of claim 21, wherein each of the 3 linked nucleosides of the 5’ wing segment comprises a 2’-O-methoxyethyl sugar and each of the 3 linked nucleosides of the 3’ wing segment comprises a constrained ethyl sugar.
  23. 23. The compound of claim 21, wherein the 3 linked nucleosides of the 5’ wing segment comprise a 2’-Omethoxyethyl sugar, a constrained ethyl sugar, and a constrained ethyl sugar in the 5’ to 3’ direction, and the 3 linked nucleosides of the 3’ wing segment comprise a constrained ethyl sugar, a constrained ethyl sugar, and a 2’-O-methoxyethyl sugar in the 5’ to 3’ direction.
  24. 24. The compound of claim 20, wherein the modified oligonucleotide comprises:
    a gap segment consisting of ten linked deoxynucleosides;
    a 5’ wing segment consisting of 2 linked nucleosides; and a 3’ wing segment consisting of 4 linked nucleosides;
    wherein the gap segment is positioned between the 5’ wing segment and the 3’ wing segment, wherein each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar or a constrained ethyl sugar; and wherein each intemucleoside linkage is a phosphorothioate linkage.
  25. 25. The compound of claim 24, wherein the 2 linked nucleosides of the 5’ wing segment comprise a 2’-Omethoxyethyl sugar and a constrained ethyl sugar in the 5’ to 3’ direction, and the 4 linked nucleosides of
    258
    WO 2012/145697
    PCT/US2012/034550
    2019202856 24 Apr 2019 the 3’ wing segment comprise a constrained ethyl sugar, a 2’-O-methoxyethyl sugar, a constrained ethyl sugar, and a 2’-O-methoxyethyl sugar in the 5’ to 3’ direction.
  26. 26. The compound of claim 18, wherein the modified oligonucleotide comprises:
    a gap segment consisting of ten linked deoxynucleosides,· a 5 ’ wing segment consisting of five linked nucleosides; and a 3’ wing segment consisting of five linked nucleosides;
    wherein the gap segment is positioned between the 5’ wing segment and the 3’ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.
  27. 27. The compound of claim 18, wherein the modified oligonucleotide comprises:
    a gap segment consisting of ten linked deoxynucleosides;
    a 5’ wing segment consisting of four linked nucleosides; and a 3’ wing segment consisting of four linked nucleosides;
    wherein the gap segment is positioned between the 5’ wing segment and the 3’ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.
  28. 28. The compound of claim 18, wherein the modified oligonucleotide comprises:
    a gap segment consisting of ten linked deoxynucleosides;
    a 5’ wing segment consisting of three linked nucleosides; and a 3’ wing segment consisting of three linked nucleosides;
    wherein the gap segment is positioned between the 5’ wing segment and the 3’ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.
  29. 29. The compound of claim 18, wherein the modified oligonucleotide comprises:
    a gap segment consisting of ten linked deoxynucleosides;
    a 5’ wing segment consisting of two linked nucleosides; and
    259
    WO 2012/145697
    PCT/US2012/034550
    2019202856 24 Apr 2019 a 3 ’ wing segment consisting of two linked nucleosides;
    wherein the gap segment is positioned between the 5’ wing segment and the 3’ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.
  30. 30. The compound of claim 18, wherein the modified oligonucleotide comprises:
    a gap segment consisting of ten linked deoxynucleosides;
    a 5’ wing segment consisting of three linked nucleosides; and a 3’ wing segment consisting of four linked nucleosides;
    wherein the gap segment is positioned between the 5’ wing segment and the 3’ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.
  31. 31. The compound of claim 18, wherein the modified oligonucleotide comprises:
    a gap segment consisting of ten linked deoxynucleosides;
    a 5’ wing segment consisting of 1-5 linked nucleosides; and a 3’ wing segment consisting of 1-5 linked nucleosides;
    wherein the gap segment is positioned between the 5’ wing segment and the 3’ wing segment, wherein each nucleoside of each wing segment comprises a 2’-O-methoxyethyl sugar; and wherein each intemucleoside linkage is a phosphorothioate linkage.
  32. 32. The compound of claim 1 or 2, wherein the modified oligonucleotide consists of 20 linked nucleosides.
  33. 33. The compound of claim 1 or 2, wherein the modified oligonucleotide consists of 16 linked nucleosides.
  34. 34. The compound of claim or 2, wherein said modified oligonucleotide consists of 15 to
    30 linked nucleosides.
  35. 35. The compound of claim or
    2, wherein said modified oligonucleotide consists of 18 to linked
  36. 36. The compound of claim or
    2, wherein said modified oligonucleotide consists of 20 to linked nucleosides.
    nucleosides.
    260
    WO 2012/145697
    PCT/US2012/034550
    2019202856 24 Apr 2019
  37. 37. A compound comprising a modified oligonucleotide consisting of 10 to 30 linked nucleosides complementary within nucleotides 1-20, 10-29, 10-56, 13-38, 13-35, 19-38, 25-47, 25-50, 25-56, 43-68, 43-63, 55-74, 58-73, 58-74, 58-77, 58-79, 58-80, 58-84, 59-74, 59-75, 59-80, 60-75, 60-76, 60-79, 61-76, 61-77, 61-80, 62-77, 63-84, 68-114, 101-123, 98-123, 113-138, 116-138, 131-150, 137-162, 152-186, 158-177, 167-186, 191-215, 196-224, 196-215, 196-218, 199-228, 199-218, 199-224, 200-224, 205-224,
    206-228, 218-237, 224-243, 233-264, 242-263, 243-262, 244-263, 245-274; 245-260, 245-264, 246-266,
    247-266, 247-269, 247-270, 245-267, 251-267, 245-266, 250-269, 251-266, 251-268, 251-269, 245-269,
    245-266, 245-261, 250-265, 250-266, 250-267, 250-268, 250-269, 251-270, 252-267, 253-268, 253-269,
    253-272, 253-274, 254-269, 254-270, 254-274, 255-270, 255-271, 255-274, 255-401, 255-400, 255-274,
    255-273, 255-272, 255-271, 256-271, 256-275, 255-276, 256-272, 256-276, 253-275, 256-279, 257-276,
    258-273, 259-274, 260-279, 262-281, 262-321, 262-315, 262-312, 265-312, 266-288, 266-291, 266-285,
    281-321, 281-303, 290-321, 290-312, 292-311, 290-312, 293-312, 293-315, 293-321, 296-321, 302-321,
    324-343, 339-361, 339-367, 348-367, 342-367, 358-392, 358-378, 360-392, 360-383, 360-388, 360-385,
    362-381, 366-388, 369-388, 366-385, 366-392, 370-389, 370-392, 380-399, 382-401, 384-433, 384-400,
    384-401, 385-401, 405-424, 409-428, 405-428, 411-426, 411-427, 411-430, 411-431, 411-437, 412-431,
    411-426, 411-427, 412-428, 412-431, 412-427, 413-433, 413-432, 413-428, 413-429, 413-432, 413-433,
    414-427, 415-427, 414-429, 414-430, 414-433, 415-428, 415-429, 415-430, 415-431, 415-434, 416-431,
    416-432, 416-429, 416-435, 417-432, 417-433, 417-436, 418-433, 418-435, 418-434, 418-437, 419-435,
    419-434, 420-435, 419-432, 419-434, 421-436, 422-437, 422-441, 423-436, 425-465, 454-473, 454-472,
    457-476, 457-472, 457-473, 454-476, 455-472, 457-485, 458-485, 458-483, 458-477, 458-473, 459-485,
    460-485, 463-498, 463-485, 466-485, 463-482, 457-491, 458-491, 459-491, 460-491, 463-491, 466-491,
    472-491, 472-493, 473-492, 475-491, 459-494, 460-494, 463-494, 466-494, 467-498, 472-494, 475-494,
    457.473, 457-472, 458-494, 454-494, 457-494, 457-473, 485-513, 470-493, 476-519, 485-519, 500-519,
    512-534, 512-550, 524-546, 536-559, 548-567, 548-570, 550-570, 548-594, 554-573, 548-576, 560-594,
    584-606, 611-645, 617-363, 623-642, 617-645, 639-754, 639-658, 639-654, 641-656, 642-657, 643-658,
    642-754, 653-672, 662-685, 665-685,665-689, 668-687, 670-754, 670-706, 670-685, 670-686, 670-689, 671-690, 671-691, 671-686, 671-687, 672-693, 672-697, 672-707, 672-687, 672-688, 673-688, 674-693,
    678-693, 679-694, 679-707, 679-698, 679-701, 679-702, 679-707, 680-695, 680-699, 679-699, 681-706,
    681-696, 682-697, 682-706, 682-707, 682-702, 682-701, 683-698, 684-699, 685-700, 686-701, 687-754,
    688-704, 689-709, 689-710, 690-705, 679-705, 679-710, 679-706, 690-710, 691-710, 690-754, 690-706,
    684-703, 687-705, 687-702, 687-703, 687-706, 688-703, 688-704, 688-705, 689-704, 689-705, 689-708,
    690-705, 690-706, 690-709, 691-706, 692-711, 693-716, 693-712, 695-715, 697-716, 697-716, 690-716,
    724-746, 724-752, 724-754, 724-758, 733-752, 738-754, 738-753, 739-758, 739-754, 739-775, 739-754,
    740-754, 742-785, 742-773, 757-776, 757-785, 790-815, 793-812, 811-833, 811-844, 814-833, 811-906,
    261
    WO 2012/145697
    PCT/US2012/034550
    2019202856 24 Apr 2019
    820-839, 822-844, 822-867, 823-842, 845-864, 845-867, 854-906, 845-909, 845-906, 854-876, 863-882, 863-885, 878-900, 887-906, 899-918, 899-933, 899-958, 905-927, 905-933, 914-933, 936-958, 936-955, 945-964, 951-970, 951-985, 951-1044, 951-1024, 951-1056, 951-997, 960-985, 963-1044, 963-1024, 963-997, 972-1015, 1025-1044, 1031-1056, 1037-1056, 1046-1083, 1049-1068, 1070-1089, 1070-1095, 1082-1101, 1081-1134, 1081-1143, 1082-1101, 1088-1107, 1088-1134, 1094-1119, 1097-1119, 11121134, 1118-1143, 1118-1146, 1088-1146, 1121-1140, 1127-1146, 1127-1193, 1150-1193, 1156-1187, 1165-1187, 1170-1192, 1171-1191, 1172-1191, 1176-1192, 1176-1285, 1177-1192, 1176-1191, 12031297, 1206-1228, 1206-1255, 1209-1228, 1215-1255, 1245-1265, 1251-1280, 1262-1285, 1251-1285, 1259-1296, 1259-1290, 1259-1287, 1261-1296, 1261-1285, 1261-1276, 1261-1277, 1261-1280, 12621296, 1262-1277, 1262-1278, 1262-1281, 1263-1278, 1263-1279, 1263-1282, 1264-1279, 1264-1280, 1264-1283, 1264-1297, 1265-1280, 1265-1281, 1265-1284, 1266-1281, 1266-1282, 1266-1285, 12671282, 1267-1283, 1268-1283, 1268-1284, 1268-1296, 1269-1284, 1269-1285, 1269-1288, 1270-1285, 1271-1290, 1271-1296, 1277-1296, 1261-1290, 1262-1290, 1268-1290, 1263-1305, 1259-1305, 12591305, 1266-1305, 1259-1302, 1275-1294, 1281-1306, 1281-1324, 1281-1336, 1282-1301, 1286-1306, 1290-1324, 1293-1318, 1290-1324, 1293-1315, 1296-1315, 1311-1336, 1311-1333, 1326-1345, 13531381, 1359-1378, 1395-1414, 1498-1532, 1498-1523, 1498-1535, 1510-1529, 1515-1535, 1515-1563, 1515-1596, 1515-1605, 1515-1602, 1515-1540, 1515-1535, 1518-1605, 1518-1602, 1518-1537, 15211563, 1521-1540, 1550-1655, 1550-1563, 1550-1569, 1553-1578, 1553-1599, 1553-1590, 1565-1584, 1571-1595, 1577-1605, 1577-1606, 1577-1592, 1577-1593, 1577-1596, 1578-1593, 1578-1594, 15781597, 1578-1598, 1571-1598, 1579-1594, 1579-1594, 1579-1598, 1580-1595, 1580-1596, 1580-1599, 1580-1605, 1580-1602, 1581-1596, 1581-1597, 1581-1600, 1582-1597, 1582-1598, 1582-1601, 15821602, 1553-1655, 1583-1598, 1583-1599, 1583-1602, 1584-1599, 1584-1600, 1584-1603, 1585-1600, 1585-1601, 1585-1604, 1586-1601, 1586-1602, 1586-1605, 1587-1602, 1587-1603, 1587-1606, 15881603, 1588-1604, 1589-1604, 1589-1605, 1590-1605, 1590-1606, 1591-1606, 1586-1652, 1642-1664, 1651-1720, 1651-1673, 1655-1679, 1695-1720, 1716-1738, 1743-1763, 1743-1768, 1764-1783, 17731792, 1777-1796, 1777-1800, 1778-1800, 1778-1793, 1778-1794, 1778-1797, 1779-1798, 1779-1797, 1779-1796, 1779-1795, 1779-1794, 1780-1799, 1780-1796, 1780-1795, 1781-1797, 1781-1796, 17811796, 1781-1800, 1781-1797, 1782-1799, 1782-1797, 1782-1798, 1783-1798, 1783-1799, 1784-1800, 1784-1799, 1779-1799, 1778-1889, 1778-1794, 1779-1795, 1780-1799, 1785-1800, 1794-1813, 18061837, 1806-1828, 1806-1825, 1809-1828, 1812-1843, 1812-1837, 1812-1831, 1815-1843, 1815-1844, 1815-1840, 1815-1834, 1818-1837, 1821-1840, 1821-1844, 1821-1837, 1822-1843, 1822-1839, 18221837, 1823-1843, 1823-1838, 1824-1839, 1827-1846, 1861-1884, 1861-1880, 1865-1885, 1866-1881, 1867-1882, 1867-1886, 1868-1883, 1869-1885, 1869-1884, 1870-1885, 1871-1886, 1872-1887, 18741889, 1876-1895, 1888-1914, 1888-1908, 1891-1910, 1891-1914, 1895-1938, 1895-1935, 1913-1935, 1898-1920, 1907-1929, 1913-1935, 1918-1934, 1919-1938, 1919-1934, 1921-1934, 1928-1956, 1957262
    WO 2012/145697
    PCT/US2012/034550
    2019202856 24 Apr 2019
    1976, 2035-2057, 2083-2141, 2230-2261, 2368-2393, 2381-2397, 2368-2394, 2379-2394, 2381-2396,
    2368-2397, 2368-2396, 2420-2439, 2458-2476, 2459-2478, 2819-2838, 2818-2838, 2873-2892, or 31613182 of SEQ ID NO: 1, wherein said modified oligonucleotide is at least 90% complementary to SEQ ID
    NO: 1.
  38. 38. A compound comprising a modified oligonucleotide consisting of 10 to 30 linked nucleosides having a nucleobase sequence comprising a portion of at least 8 contiguous nucleobases 100% complementary to an equal length portion of nucleobases 1-20, 10-29, 10-56, 13-38, 13-35, 19-38, 25-47, 25-50, 25-56, 4368, 43-63, 55-74, 58-73, 58-74, 58-77, 58-79, 58-80, 58-84, 59-74, 59-75, 59-80, 60-75, 60-76, 60-79, 61-76, 61-77, 61-80, 62-77, 63-84, 68-114, 101-123, 98-123, 113-138, 116-138, 131-150, 137-162, 152186, 158-177, 167-186, 191-215, 196-224, 196-215, 196-218, 199-228, 199-218, 199-224, 200-224, 205224, 206-228, 218-237, 224-243, 233-264, 242-263, 243-262, 244-263, 245-274; 245-260, 245-264, 246266, 247-266, 247-269, 247-270, 245-267, 251-267, 245-266, 250-269, 251-266, 251-268, 251-269, 245-269, 245-266, 245-261, 250-265, 250-266, 250-267, 250-268, 250-269, 251-270, 252-267, 253-268,
    253-269, 253-272, 253-274, 254-269, 254-270, 254-274, 255-270, 255-271, 255-274, 255-401, 255-400,
    255-274, 255-273, 255-272, 255-271, 256-271, 256-275, 255-276, 256-272, 256-276, 253-275, 256-279,
    257-276, 258-273, 259-274, 260-279, 262-281, 262-321, 262-315, 262-312, 265-312, 266-288, 266-291,
    266-285, 281-321, 281-303, 290-321, 290-312, 292-311, 290-312, 293-312, 293-315, 293-321, 296-321, 302-321, 324-343, 339-361, 339-367, 348-367, 342-367, 358-392, 358-378, 360-392, 360-383, 360-388,
    360-385, 362-381, 366-388, 369-388, 366-385, 366-392, 370-389, 370-392, 380-399, 382-401, 384-433,
    384-400, 384-401, 385-401, 405-424, 409-428, 405-428, 411-426, 411-427, 411-430, 411-431, 411-437,
    412- 431, 411-426, 411-427, 412-428, 412-431, 412-427, 413-433, 413-432, 413-428, 413-429, 413-432,
    413- 433, 414-427, 415-427, 414-429, 414-430, 414-433, 415-428, 415-429, 415-430, 415-431, 415-434,
    416-431, 416-432, 416-429, 416-435, 417-432, 417-433, 417-436, 418-433, 418-435, 418-434, 418-437,
    419-435, 419-434, 420-435, 419-432, 419-434, 421-436, 422-437, 422-441, 423-436, 425-465, 454-473,
    454-472, 457-476, 457-472, 457-473, 454-476, 455-472, 457-485, 458-485, 458-483, 458-477, 458-473,
    459-485, 460-485, 463-498, 463-485, 466-485, 463-482, 457-491, 458-491, 459-491, 460-491, 463-491,
    466-491, 472-491, 472-493, 473-492, 475-491, 459-494, 460-494, 463-494, 466-494, 467-498, 472-494,
    475.494, 457-473, 457-472, 458-494, 454-494, 457-494, 457-473, 485-513, 470-493, 476-519, 485-519,
    500-519, 512-534, 512-550, 524-546, 536-559, 548-567, 548-570, 550-570, 548-594, 554-573, 548-576,
    560-594, 584-606, 611-645, 617-363, 623-642, 617-645, 639-754, 639-658, 639-654, 641-656, 642-657,
    643-658, 642-754, 653-672, 662-685, 665-685,665-689, 668-687, 670-754, 670-706, 670-685, 670-686,
    670-689, 671-690, 671-691, 671-686, 671-687, 672-693, 672-697, 672-707, 672-687, 672-688, 673-688,
    674-693, 678-693, 679-694, 679-707, 679-698, 679-701, 679-702, 679-707, 680-695, 680-699, 679-699,
    681-706, 681-696, 682-697, 682-706, 682-707, 682-702, 682-701, 683-698, 684-699, 685-700, 686-701,
    263
    WO 2012/145697
    PCT/US2012/034550
    2019202856 24 Apr 2019
    687-754, 688-704, 689-709, 689-710, 690-705, 679-705, 679-710, 679-706, 690-710, 691-710, 690-754,
    690-706, 684-703, 687-705, 687-702, 687-703, 687-706, 688-703, 688-704, 688-705, 689-704, 689-705,
    689- 708, 690-705, 690-706, 690-709, 691-706, 692-711, 693-716, 693-712, 695-715, 697-716, 697-716,
    690- 716, 724-746, 724-752, 724-754, 724-758, 733-752, 738-754, 738-753, 739-758, 739-754, 739-775,
    739-754, 740-754, 742-785, 742-773, 757-776, 757-785, 790-815, 793-812, 811-833, 811-844, 814-833,
    811-906, 820-839, 822-844, 822-867, 823-842, 845-864, 845-867, 854-906, 845-909, 845-906, 854-876,
    863-882, 863-885, 878-900, 887-906, 899-918, 899-933, 899-958, 905-927, 905-933, 914-933, 936-958,
    936-955, 945-964, 951-970, 951-985, 951-1044, 951-1024, 951-1056, 951-997, 960-985, 963-1044, 963-1024, 963-997, 972-1015, 1025-1044, 1031-1056, 1037-1056, 1046-1083, 1049-1068, 1070-1089, 1070-1095, 1082-1101, 1081-1134, 1081-1143, 1082-1101, 1088-1107, 1088-1134, 1094-1119, 10971119, 1112-1134, 1118-1143, 1118-1146, 1088-1146, 1121-1140, 1127-1146, 1127-1193, 1150-1193, 1156-1187, 1165-1187, 1170-1192, 1171-1191, 1172-1191, 1176-1192, 1176-1285, 1177-1192, 11761191, 1203-1297, 1206-1228, 1206-1255, 1209-1228, 1215-1255, 1245-1265, 1251-1280, 1262-1285, 1251-1285, 1259-1296, 1259-1290, 1259-1287, 1261-1296, 1261-1285, 1261-1276, 1261-1277, 12611280, 1262-1296, 1262-1277, 1262-1278, 1262-1281, 1263-1278, 1263-1279, 1263-1282, 1264-1279, 1264-1280, 1264-1283, 1264-1297, 1265-1280, 1265-1281, 1265-1284, 1266-1281, 1266-1282, 12661285, 1267-1282, 1267-1283, 1268-1283, 1268-1284, 1268-1296, 1269-1284, 1269-1285, 1269-1288, 1270-1285, 1271-1290, 1271-1296, 1277-1296, 1261-1290, 1262-1290, 1268-1290, 1263-1305, 12591305, 1259-1305, 1266-1305, 1259-1302, 1275-1294, 1281-1306, 1281-1324, 1281-1336, 1282-1301, 1286-1306, 1290-1324, 1293-1318, 1290-1324, 1293-1315, 1296-1315, 1311-1336, 1311-1333, 13261345, 1353-1381, 1359-1378, 1395-1414, 1498-1532, 1498-1523, 1498-1535, 1510-1529, 1515-1535, 1515-1563, 1515-1596, 1515-1605, 1515-1602, 1515-1540, 1515-1535, 1518-1605, 1518-1602, 15181537, 1521-1563, 1521-1540, 1550-1655, 1550-1563, 1550-1569, 1553-1578, 1553-1599, 1553-1590, 1565-1584, 1571-1595, 1577-1605, 1577-1606, 1577-1592, 1577-1593, 1577-1596, 1578-1593, 15781594, 1578-1597, 1578-1598, 1571-1598, 1579-1594, 1579-1594, 1579-1598, 1580-1595, 1580-1596, 1580-1599, 1580-1605, 1580-1602, 1581-1596, 1581-1597, 1581-1600, 1582-1597, 1582-1598, 15821601, 1582-1602, 1553-1655, 1583-1598, 1583-1599, 1583-1602, 1584-1599, 1584-1600, 1584-1603, 1585-1600, 1585-1601, 1585-1604, 1586-1601, 1586-1602, 1586-1605, 1587-1602, 1587-1603, 15871606, 1588-1603, 1588-1604, 1589-1604, 1589-1605, 1590-1605, 1590-1606, 1591-1606, 1586-1652, 1642-1664, 1651-1720, 1651-1673, 1655-1679, 1695-1720, 1716-1738, 1743-1763, 1743-1768, 17641783, 1773-1792, 1777-1796, 1777-1800, 1778-1800, 1778-1793, 1778-1794, 1778-1797, 1779-1798, 1779-1797, 1779-1796, 1779-1795, 1779-1794, 1780-1799, 1780-1796, 1780-1795, 1781-1797, 17811796, 1781-1796, 1781-1800, 1781-1797, 1782-1799, 1782-1797, 1782-1798, 1783-1798, 1783-1799, 1784-1800, 1784-1799, 1779-1799, 1778-1889, 1778-1794, 1779-1795, 1780-1799, 1785-1800, 17941813, 1806-1837, 1806-1828, 1806-1825, 1809-1828, 1812-1843, 1812-1837, 1812-1831, 1815-1843,
    264
    WO 2012/145697
    PCT/US2012/034550
    2019202856 24 Apr 2019
    1815-1844, 1815-1840, 1815-1834, 1818-1837, 1821-1840, 1821-1844, 1821-1837, 1822-1843, 18221839, 1822-1837, 1823-1843, 1823-1838, 1824-1839, 1827-1846, 1861-1884, 1861-1880, 1865-1885, 1866-1881, 1867-1882, 1867-1886, 1868-1883, 1869-1885, 1869-1884, 1870-1885, 1871-1886, 18721887, 1874-1889, 1876-1895, 1888-1914, 1888-1908, 1891-1910, 1891-1914, 1895-1938, 1895-1935, 1913-1935, 1898-1920, 1907-1929, 1913-1935, 1918-1934, 1919-1938, 1919-1934, 1921-1934, 19281956, 1957-1976, 2035-2057, 2083-2141, 2230-2261, 2368-2393, 2381-2397, 2368-2394, 2379-2394, 2381-2396, 2368-2397, 2368-2396, 2420-2439, 2458-2476, 2459-2478, 2819-2838, 2818-2838, 28732892, or 3161-3182, wherein the nucleobase sequence of the modified oligonucleotide is complementary to SEQ ED NO: 1.
  39. 39. The compound of claim 36, wherein at least one nucleoside of the modified oligonucleotide comprises at least one 2’-O-methoxyethyl sugar or constrained ethyl sugar.
  40. 40. A compound, comprising a modified oligonucleotide consisting of 10 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8 contiguous nucleobases of any of the nucleobase sequences of SEQ ID NOs: 1, 1273, 1274, 1275, 1276, 1277, 1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1287, 1352, 1353, 1354, 1359, 1360, 1361, 1362, and 1363.
  41. 41. A composition comprising the compound of any of claims 1-40 or salt thereof and at least one of a pharmaceutically acceptable carrier or diluent.
  42. 42. A method comprising administering to an animal the compound or composition of any of claims 1-41.
  43. 43. The method of claim 42, wherein the animal is a human.
  44. 44. The method of claim 43, wherein administering the compound prevents, treats, ameliorates, or slows progression of a HBV-related disease, disorder or condition.
  45. 45. The method of claim 44, wherein the disease, disorder or condition is liver disease.
  46. 46. The method of claim 44, wherein the disease, disorder or condition is jaundice, liver inflammation, liver fibrosis, inflammation, liver cirrhosis, liver failure, diffuse hepatocellular inflammatory disease, hemophagocytic syndrome, serum hepatitis, HBV viremia, or liver disease-related transplantation.
  47. 47. The method of claim 44, wherein the disease or condition is a hyperproliferative condition.
    265
    WO 2012/145697
    PCT/US2012/034550
    2019202856 24 Apr 2019
  48. 48. The method of claim 47, wherein the hyperproliferative condition is liver cancer.
  49. 49. A method of reducing antigen levels in an animal comprising administering to said animal the compound or composition of any of claims 1-41.
  50. 50. The method of claim 49, wherein HBsAG levels are reduced.
  51. 51. The method of claim 49, wherein HBeAG levels are reduced.
  52. 52. The method of claim 49, wherein the animal is human.
  53. 53. The method of claim 49, comprising co-administering the compound or composition and a second agent.
  54. 54. The method of claim 53, wherein the compound or composition and the second agent are administered concomitantly.
AU2019202856A2011-04-212019-04-24Modulation of hepatitis b virus (hbv) expressionAbandonedAU2019202856A1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
AU2019202856AAU2019202856A1 (en)2011-04-212019-04-24Modulation of hepatitis b virus (hbv) expression

Applications Claiming Priority (8)

Application NumberPriority DateFiling DateTitle
US61/478,0402011-04-21
US61/478,0382011-04-21
US61/596,6902012-02-08
US61/596,6922012-02-08
AU2012245243AAU2012245243B2 (en)2011-04-212012-04-20Modulation of Hepatitis B virus (HBV) expression
AU2015201226AAU2015201226A1 (en)2011-04-212015-03-10Modulation of hepatitis b virus (hbv) expression
AU2017201608AAU2017201608B2 (en)2011-04-212017-03-09Modulation of hepatitis b virus (hbv) expression
AU2019202856AAU2019202856A1 (en)2011-04-212019-04-24Modulation of hepatitis b virus (hbv) expression

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
AU2017201608ADivisionAU2017201608B2 (en)2011-04-212017-03-09Modulation of hepatitis b virus (hbv) expression

Publications (1)

Publication NumberPublication Date
AU2019202856A1true AU2019202856A1 (en)2019-05-16

Family

ID=52746565

Family Applications (3)

Application NumberTitlePriority DateFiling Date
AU2015201226AAbandonedAU2015201226A1 (en)2011-04-212015-03-10Modulation of hepatitis b virus (hbv) expression
AU2017201608AActiveAU2017201608B2 (en)2011-04-212017-03-09Modulation of hepatitis b virus (hbv) expression
AU2019202856AAbandonedAU2019202856A1 (en)2011-04-212019-04-24Modulation of hepatitis b virus (hbv) expression

Family Applications Before (2)

Application NumberTitlePriority DateFiling Date
AU2015201226AAbandonedAU2015201226A1 (en)2011-04-212015-03-10Modulation of hepatitis b virus (hbv) expression
AU2017201608AActiveAU2017201608B2 (en)2011-04-212017-03-09Modulation of hepatitis b virus (hbv) expression

Country Status (1)

CountryLink
AU (3)AU2015201226A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP7650242B2 (en)*2019-04-182025-03-24ツールゲン インコーポレイテッド Composition and method for inhibiting proliferation of hepatitis B virus
KR20240131441A (en)*2022-01-102024-08-30오스퍼바이오 테라퓨틱스 인크. Regulation of hepatitis B virus (HBV) expression
CN118667808B (en)*2023-08-222025-04-18浙江柏拉阿图医药科技有限公司 Double-Gap modified oligonucleotides and their applications in anti-hepatitis B and hepatitis D viruses

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20040054156A1 (en)*1992-05-142004-03-18Kenneth DraperMethod and reagent for inhibiting hepatitis B viral replication
US20030068301A1 (en)*1992-05-142003-04-10Kenneth DraperMethod and reagent for inhibiting hepatitis B virus replication

Also Published As

Publication numberPublication date
AU2017201608A1 (en)2017-03-30
AU2015201226A1 (en)2015-04-02
AU2017201608B2 (en)2019-05-02
AU2015201226A2 (en)2015-05-14

Similar Documents

PublicationPublication DateTitle
US20220064650A1 (en)Modulation of hepatitis b virus (hbv) expression
US20120295961A1 (en)Modulation of hepatitis b virus (hbv) expression
AU2019202856A1 (en)Modulation of hepatitis b virus (hbv) expression
HK40060878A (en)Modulation of hepatitis b virus (hbv) expression
HK40026431A (en)Modulation of hepatitis b virus (hbv) expression
HK40003952A (en)Modulation of hepatitis b virus (hbv) expression
BR112013027046B1 (en) MODIFIED OLIGONUCLEOTIDE COMPOUNDS, THEIR USES IN MODULATING HEPATITIS B VIRUS (HBV) EXPRESSION AND PHARMACEUTICAL COMPOSITION THEREOF

Legal Events

DateCodeTitleDescription
PC1Assignment before grant (sect. 113)

Owner name:GLAXO GROUP LIMITED

Free format text:FORMER APPLICANT(S): IONIS PHARMACEUTICALS, INC.

MK5Application lapsed section 142(2)(e) - patent request and compl. specification not accepted

[8]ページ先頭

©2009-2025 Movatter.jp