- User Guide
- Options and settings
Options and settings#
Overview#
pandas has an options API configure and customize global behavior related toDataFrame
display, data behavior and more.
Options have a full “dotted-style”, case-insensitive name (e.g.display.max_rows
).You can get/set options directly as attributes of the top-leveloptions
attribute:
In [1]:importpandasaspdIn [2]:pd.options.display.max_rowsOut[2]:15In [3]:pd.options.display.max_rows=999In [4]:pd.options.display.max_rowsOut[4]:999
The API is composed of 5 relevant functions, available directly from thepandas
namespace:
get_option()
/set_option()
- get/set the value of a single option.reset_option()
- reset one or more options to their default value.describe_option()
- print the descriptions of one or more options.option_context()
- execute a codeblock with a set of optionsthat revert to prior settings after execution.
Note
Developers can check outpandas/core/config_init.py for more information.
All of the functions above accept a regexp pattern (re.search
style) as an argument,to match an unambiguous substring:
In [5]:pd.get_option("display.chop_threshold")In [6]:pd.set_option("display.chop_threshold",2)In [7]:pd.get_option("display.chop_threshold")Out[7]:2In [8]:pd.set_option("chop",4)In [9]:pd.get_option("display.chop_threshold")Out[9]:4
The following willnot work because it matches multiple option names, e.g.display.max_colwidth
,display.max_rows
,display.max_columns
:
In [10]:pd.get_option("max")---------------------------------------------------------------------------OptionErrorTraceback (most recent call last)CellIn[10],line1---->1pd.get_option("max")File ~/work/pandas/pandas/pandas/_config/config.py:274, inCallableDynamicDoc.__call__(self, *args, **kwds)273def__call__(self,*args,**kwds)->T:-->274returnself.__func__(*args,**kwds)File ~/work/pandas/pandas/pandas/_config/config.py:146, in_get_option(pat, silent)145def_get_option(pat:str,silent:bool=False)->Any:-->146key=_get_single_key(pat,silent)148# walk the nested dict149root,k=_get_root(key)File ~/work/pandas/pandas/pandas/_config/config.py:134, in_get_single_key(pat, silent)132raiseOptionError(f"No such keys(s):{repr(pat)}")133iflen(keys)>1:-->134raiseOptionError("Pattern matched multiple keys")135key=keys[0]137ifnotsilent:OptionError: Pattern matched multiple keys
Warning
Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.
Available options#
You can get a list of available options and their descriptions withdescribe_option()
. When calledwith no argumentdescribe_option()
will print out the descriptions for all available options.
In [11]:pd.describe_option()compute.use_bottleneck : bool Use the bottleneck library to accelerate if it is installed, the default is True Valid values: False,True [default: True] [currently: True]compute.use_numba : bool Use the numba engine option for select operations if it is installed, the default is False Valid values: False,True [default: False] [currently: False]compute.use_numexpr : bool Use the numexpr library to accelerate computation if it is installed, the default is True Valid values: False,True [default: True] [currently: True]display.chop_threshold : float or None if set to a float value, all float values smaller than the given threshold will be displayed as exactly 0 by repr and friends. [default: None] [currently: None]display.colheader_justify : 'left'/'right' Controls the justification of column headers. used by DataFrameFormatter. [default: right] [currently: right]display.date_dayfirst : boolean When True, prints and parses dates with the day first, eg 20/01/2005 [default: False] [currently: False]display.date_yearfirst : boolean When True, prints and parses dates with the year first, eg 2005/01/20 [default: False] [currently: False]display.encoding : str/unicode Defaults to the detected encoding of the console. Specifies the encoding to be used for strings returned by to_string, these are generally strings meant to be displayed on the console. [default: utf-8] [currently: utf8]display.expand_frame_repr : boolean Whether to print out the full DataFrame repr for wide DataFrames across multiple lines, `max_columns` is still respected, but the output will wrap-around across multiple "pages" if its width exceeds `display.width`. [default: True] [currently: True]display.float_format : callable The callable should accept a floating point number and return a string with the desired format of the number. This is used in some places like SeriesFormatter. See formats.format.EngFormatter for an example. [default: None] [currently: None]display.html.border : int A ``border=value`` attribute is inserted in the ``<table>`` tag for the DataFrame HTML repr. [default: 1] [currently: 1]display.html.table_schema : boolean Whether to publish a Table Schema representation for frontends that support it. (default: False) [default: False] [currently: False]display.html.use_mathjax : boolean When True, Jupyter notebook will process table contents using MathJax, rendering mathematical expressions enclosed by the dollar symbol. (default: True) [default: True] [currently: True]display.large_repr : 'truncate'/'info' For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can show a truncated table, or switch to the view from df.info() (the behaviour in earlier versions of pandas). [default: truncate] [currently: truncate]display.max_categories : int This sets the maximum number of categories pandas should output when printing out a `Categorical` or a Series of dtype "category". [default: 8] [currently: 8]display.max_columns : int If max_cols is exceeded, switch to truncate view. Depending on `large_repr`, objects are either centrally truncated or printed as a summary view. 'None' value means unlimited. In case python/IPython is running in a terminal and `large_repr` equals 'truncate' this can be set to 0 or None and pandas will auto-detect the width of the terminal and print a truncated object which fits the screen width. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection and defaults to 20. [default: 0] [currently: 0]display.max_colwidth : int or None The maximum width in characters of a column in the repr of a pandas data structure. When the column overflows, a "..." placeholder is embedded in the output. A 'None' value means unlimited. [default: 50] [currently: 50]display.max_dir_items : int The number of items that will be added to `dir(...)`. 'None' value means unlimited. Because dir is cached, changing this option will not immediately affect already existing dataframes until a column is deleted or added. This is for instance used to suggest columns from a dataframe to tab completion. [default: 100] [currently: 100]display.max_info_columns : int max_info_columns is used in DataFrame.info method to decide if per column information will be printed. [default: 100] [currently: 100]display.max_info_rows : int df.info() will usually show null-counts for each column. For large frames this can be quite slow. max_info_rows and max_info_cols limit this null check only to frames with smaller dimensions than specified. [default: 1690785] [currently: 1690785]display.max_rows : int If max_rows is exceeded, switch to truncate view. Depending on `large_repr`, objects are either centrally truncated or printed as a summary view. 'None' value means unlimited. In case python/IPython is running in a terminal and `large_repr` equals 'truncate' this can be set to 0 and pandas will auto-detect the height of the terminal and print a truncated object which fits the screen height. The IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to do correct auto-detection. [default: 60] [currently: 60]display.max_seq_items : int or None When pretty-printing a long sequence, no more then `max_seq_items` will be printed. If items are omitted, they will be denoted by the addition of "..." to the resulting string. If set to None, the number of items to be printed is unlimited. [default: 100] [currently: 100]display.memory_usage : bool, string or None This specifies if the memory usage of a DataFrame should be displayed when df.info() is called. Valid values True,False,'deep' [default: True] [currently: True]display.min_rows : int The numbers of rows to show in a truncated view (when `max_rows` is exceeded). Ignored when `max_rows` is set to None or 0. When set to None, follows the value of `max_rows`. [default: 10] [currently: 10]display.multi_sparse : boolean "sparsify" MultiIndex display (don't display repeated elements in outer levels within groups) [default: True] [currently: True]display.notebook_repr_html : boolean When True, IPython notebook will use html representation for pandas objects (if it is available). [default: True] [currently: True]display.pprint_nest_depth : int Controls the number of nested levels to process when pretty-printing [default: 3] [currently: 3]display.precision : int Floating point output precision in terms of number of places after the decimal, for regular formatting as well as scientific notation. Similar to ``precision`` in :meth:`numpy.set_printoptions`. [default: 6] [currently: 6]display.show_dimensions : boolean or 'truncate' Whether to print out dimensions at the end of DataFrame repr. If 'truncate' is specified, only print out the dimensions if the frame is truncated (e.g. not display all rows and/or columns) [default: truncate] [currently: truncate]display.unicode.ambiguous_as_wide : boolean Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]display.unicode.east_asian_width : boolean Whether to use the Unicode East Asian Width to calculate the display text width. Enabling this may affect to the performance (default: False) [default: False] [currently: False]display.width : int Width of the display in characters. In case python/IPython is running in a terminal this can be set to None and pandas will correctly auto-detect the width. Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a terminal and hence it is not possible to correctly detect the width. [default: 80] [currently: 80]future.infer_string Whether to infer sequence of str objects as pyarrow string dtype, which will be the default in pandas 3.0 (at which point this option will be deprecated). [default: False] [currently: False]future.no_silent_downcasting Whether to opt-in to the future behavior which will *not* silently downcast results from Series and DataFrame `where`, `mask`, and `clip` methods. Silent downcasting will be removed in pandas 3.0 (at which point this option will be deprecated). [default: False] [currently: False]io.excel.ods.reader : string The default Excel reader engine for 'ods' files. Available options: auto, odf, calamine. [default: auto] [currently: auto]io.excel.ods.writer : string The default Excel writer engine for 'ods' files. Available options: auto, odf. [default: auto] [currently: auto]io.excel.xls.reader : string The default Excel reader engine for 'xls' files. Available options: auto, xlrd, calamine. [default: auto] [currently: auto]io.excel.xlsb.reader : string The default Excel reader engine for 'xlsb' files. Available options: auto, pyxlsb, calamine. [default: auto] [currently: auto]io.excel.xlsm.reader : string The default Excel reader engine for 'xlsm' files. Available options: auto, xlrd, openpyxl, calamine. [default: auto] [currently: auto]io.excel.xlsm.writer : string The default Excel writer engine for 'xlsm' files. Available options: auto, openpyxl. [default: auto] [currently: auto]io.excel.xlsx.reader : string The default Excel reader engine for 'xlsx' files. Available options: auto, xlrd, openpyxl, calamine. [default: auto] [currently: auto]io.excel.xlsx.writer : string The default Excel writer engine for 'xlsx' files. Available options: auto, openpyxl, xlsxwriter. [default: auto] [currently: auto]io.hdf.default_format : format default format writing format, if None, then put will default to 'fixed' and append will default to 'table' [default: None] [currently: None]io.hdf.dropna_table : boolean drop ALL nan rows when appending to a table [default: False] [currently: False]io.parquet.engine : string The default parquet reader/writer engine. Available options: 'auto', 'pyarrow', 'fastparquet', the default is 'auto' [default: auto] [currently: auto]io.sql.engine : string The default sql reader/writer engine. Available options: 'auto', 'sqlalchemy', the default is 'auto' [default: auto] [currently: auto]mode.chained_assignment : string Raise an exception, warn, or no action if trying to use chained assignment, The default is warn [default: warn] [currently: warn]mode.copy_on_write : bool Use new copy-view behaviour using Copy-on-Write. Defaults to False, unless overridden by the 'PANDAS_COPY_ON_WRITE' environment variable (if set to "1" for True, needs to be set before pandas is imported). [default: False] [currently: False]mode.data_manager : string Internal data manager type; can be "block" or "array". Defaults to "block", unless overridden by the 'PANDAS_DATA_MANAGER' environment variable (needs to be set before pandas is imported). [default: block] [currently: block] (Deprecated, use `` instead.)mode.sim_interactive : boolean Whether to simulate interactive mode for purposes of testing [default: False] [currently: False]mode.string_storage : string The default storage for StringDtype. This option is ignored if ``future.infer_string`` is set to True. [default: python] [currently: python]mode.use_inf_as_na : boolean True means treat None, NaN, INF, -INF as NA (old way), False means None and NaN are null, but INF, -INF are not NA (new way). This option is deprecated in pandas 2.1.0 and will be removed in 3.0. [default: False] [currently: False] (Deprecated, use `` instead.)plotting.backend : str The plotting backend to use. The default value is "matplotlib", the backend provided with pandas. Other backends can be specified by providing the name of the module that implements the backend. [default: matplotlib] [currently: matplotlib]plotting.matplotlib.register_converters : bool or 'auto'. Whether to register converters with matplotlib's units registry for dates, times, datetimes, and Periods. Toggling to False will remove the converters, restoring any converters that pandas overwrote. [default: auto] [currently: auto]styler.format.decimal : str The character representation for the decimal separator for floats and complex. [default: .] [currently: .]styler.format.escape : str, optional Whether to escape certain characters according to the given context; html or latex. [default: None] [currently: None]styler.format.formatter : str, callable, dict, optional A formatter object to be used as default within ``Styler.format``. [default: None] [currently: None]styler.format.na_rep : str, optional The string representation for values identified as missing. [default: None] [currently: None]styler.format.precision : int The precision for floats and complex numbers. [default: 6] [currently: 6]styler.format.thousands : str, optional The character representation for thousands separator for floats, int and complex. [default: None] [currently: None]styler.html.mathjax : bool If False will render special CSS classes to table attributes that indicate Mathjax will not be used in Jupyter Notebook. [default: True] [currently: True]styler.latex.environment : str The environment to replace ``\begin{table}``. If "longtable" is used results in a specific longtable environment format. [default: None] [currently: None]styler.latex.hrules : bool Whether to add horizontal rules on top and bottom and below the headers. [default: False] [currently: False]styler.latex.multicol_align : {"r", "c", "l", "naive-l", "naive-r"} The specifier for horizontal alignment of sparsified LaTeX multicolumns. Pipe decorators can also be added to non-naive values to draw vertical rules, e.g. "\|r" will draw a rule on the left side of right aligned merged cells. [default: r] [currently: r]styler.latex.multirow_align : {"c", "t", "b"} The specifier for vertical alignment of sparsified LaTeX multirows. [default: c] [currently: c]styler.render.encoding : str The encoding used for output HTML and LaTeX files. [default: utf-8] [currently: utf-8]styler.render.max_columns : int, optional The maximum number of columns that will be rendered. May still be reduced to satisfy ``max_elements``, which takes precedence. [default: None] [currently: None]styler.render.max_elements : int The maximum number of data-cell (<td>) elements that will be rendered before trimming will occur over columns, rows or both if needed. [default: 262144] [currently: 262144]styler.render.max_rows : int, optional The maximum number of rows that will be rendered. May still be reduced to satisfy ``max_elements``, which takes precedence. [default: None] [currently: None]styler.render.repr : str Determine which output to use in Jupyter Notebook in {"html", "latex"}. [default: html] [currently: html]styler.sparse.columns : bool Whether to sparsify the display of hierarchical columns. Setting to False will display each explicit level element in a hierarchical key for each column. [default: True] [currently: True]styler.sparse.index : bool Whether to sparsify the display of a hierarchical index. Setting to False will display each explicit level element in a hierarchical key for each row. [default: True] [currently: True]
Getting and setting options#
As described above,get_option()
andset_option()
are available from the pandas namespace. To change an option, callset_option('optionregex',new_value)
.
In [12]:pd.get_option("mode.sim_interactive")Out[12]:FalseIn [13]:pd.set_option("mode.sim_interactive",True)In [14]:pd.get_option("mode.sim_interactive")Out[14]:True
Note
The option'mode.sim_interactive'
is mostly used for debugging purposes.
You can usereset_option()
to revert to a setting’s default value
In [15]:pd.get_option("display.max_rows")Out[15]:60In [16]:pd.set_option("display.max_rows",999)In [17]:pd.get_option("display.max_rows")Out[17]:999In [18]:pd.reset_option("display.max_rows")In [19]:pd.get_option("display.max_rows")Out[19]:60
It’s also possible to reset multiple options at once (using a regex):
In [20]:pd.reset_option("^display")
option_context()
context manager has been exposed throughthe top-level API, allowing you to execute code with given option values. Option valuesare restored automatically when you exit thewith
block:
In [21]:withpd.option_context("display.max_rows",10,"display.max_columns",5): ....:print(pd.get_option("display.max_rows")) ....:print(pd.get_option("display.max_columns")) ....:105In [22]:print(pd.get_option("display.max_rows"))60In [23]:print(pd.get_option("display.max_columns"))0
Setting startup options in Python/IPython environment#
Using startup scripts for the Python/IPython environment to import pandas and set options makes working with pandas more efficient.To do this, create a.py
or.ipy
script in the startup directory of the desired profile.An example where the startup folder is in a default IPython profile can be found at:
$IPYTHONDIR/profile_default/startup
More information can be found in theIPython documentation. An example startup script for pandas is displayed below:
importpandasaspdpd.set_option("display.max_rows",999)pd.set_option("display.precision",5)
Frequently used options#
The following is a demonstrates the more frequently used display options.
display.max_rows
anddisplay.max_columns
sets the maximum numberof rows and columns displayed when a frame is pretty-printed. Truncatedlines are replaced by an ellipsis.
In [24]:df=pd.DataFrame(np.random.randn(7,2))In [25]:pd.set_option("display.max_rows",7)In [26]:dfOut[26]: 0 10 0.469112 -0.2828631 -1.509059 -1.1356322 1.212112 -0.1732153 0.119209 -1.0442364 -0.861849 -2.1045695 -0.494929 1.0718046 0.721555 -0.706771In [27]:pd.set_option("display.max_rows",5)In [28]:dfOut[28]: 0 10 0.469112 -0.2828631 -1.509059 -1.135632.. ... ...5 -0.494929 1.0718046 0.721555 -0.706771[7 rows x 2 columns]In [29]:pd.reset_option("display.max_rows")
Once thedisplay.max_rows
is exceeded, thedisplay.min_rows
optionsdetermines how many rows are shown in the truncated repr.
In [30]:pd.set_option("display.max_rows",8)In [31]:pd.set_option("display.min_rows",4)# below max_rows -> all rows shownIn [32]:df=pd.DataFrame(np.random.randn(7,2))In [33]:dfOut[33]: 0 10 -1.039575 0.2718601 -0.424972 0.5670202 0.276232 -1.0874013 -0.673690 0.1136484 -1.478427 0.5249885 0.404705 0.5770466 -1.715002 -1.039268# above max_rows -> only min_rows (4) rows shownIn [34]:df=pd.DataFrame(np.random.randn(9,2))In [35]:dfOut[35]: 0 10 -0.370647 -1.1578921 -1.344312 0.844885.. ... ...7 0.276662 -0.4720358 -0.013960 -0.362543[9 rows x 2 columns]In [36]:pd.reset_option("display.max_rows")In [37]:pd.reset_option("display.min_rows")
display.expand_frame_repr
allows for the representation of aDataFrame
to stretch across pages, wrapped over the all the columns.
In [38]:df=pd.DataFrame(np.random.randn(5,10))In [39]:pd.set_option("expand_frame_repr",True)In [40]:dfOut[40]: 0 1 2 ... 7 8 90 -0.006154 -0.923061 0.895717 ... 1.340309 -1.170299 -0.2261691 0.410835 0.813850 0.132003 ... -1.436737 -1.413681 1.6079202 1.024180 0.569605 0.875906 ... -0.078638 0.545952 -1.2192173 -1.226825 0.769804 -1.281247 ... 0.341734 0.959726 -1.1103364 -0.619976 0.149748 -0.732339 ... 0.301624 -2.179861 -1.369849[5 rows x 10 columns]In [41]:pd.set_option("expand_frame_repr",False)In [42]:dfOut[42]: 0 1 2 3 4 5 6 7 8 90 -0.006154 -0.923061 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299 -0.2261691 0.410835 0.813850 0.132003 -0.827317 -0.076467 -1.187678 1.130127 -1.436737 -1.413681 1.6079202 1.024180 0.569605 0.875906 -2.211372 0.974466 -2.006747 -0.410001 -0.078638 0.545952 -1.2192173 -1.226825 0.769804 -1.281247 -0.727707 -0.121306 -0.097883 0.695775 0.341734 0.959726 -1.1103364 -0.619976 0.149748 -0.732339 0.687738 0.176444 0.403310 -0.154951 0.301624 -2.179861 -1.369849In [43]:pd.reset_option("expand_frame_repr")
display.large_repr
displays aDataFrame
that exceedmax_columns
ormax_rows
as a truncated frame or summary.
In [44]:df=pd.DataFrame(np.random.randn(10,10))In [45]:pd.set_option("display.max_rows",5)In [46]:pd.set_option("large_repr","truncate")In [47]:dfOut[47]: 0 1 2 ... 7 8 90 -0.954208 1.462696 -1.743161 ... 0.995761 2.396780 0.0148711 3.357427 -0.317441 -1.236269 ... 0.380396 0.084844 0.432390.. ... ... ... ... ... ... ...8 -0.303421 -0.858447 0.306996 ... 0.476720 0.473424 -0.2428619 -0.014805 -0.284319 0.650776 ... 1.613616 0.464000 0.227371[10 rows x 10 columns]In [48]:pd.set_option("large_repr","info")In [49]:dfOut[49]:<class 'pandas.core.frame.DataFrame'>RangeIndex: 10 entries, 0 to 9Data columns (total 10 columns): # Column Non-Null Count Dtype--- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64dtypes: float64(10)memory usage: 928.0 bytesIn [50]:pd.reset_option("large_repr")In [51]:pd.reset_option("display.max_rows")
display.max_colwidth
sets the maximum width of columns. Cellsof this length or longer will be truncated with an ellipsis.
In [52]:df=pd.DataFrame( ....:np.array( ....:[ ....:["foo","bar","bim","uncomfortably long string"], ....:["horse","cow","banana","apple"], ....:] ....:) ....:) ....:In [53]:pd.set_option("max_colwidth",40)In [54]:dfOut[54]: 0 1 2 30 foo bar bim uncomfortably long string1 horse cow banana appleIn [55]:pd.set_option("max_colwidth",6)In [56]:dfOut[56]: 0 1 2 30 foo bar bim un...1 horse cow ba... appleIn [57]:pd.reset_option("max_colwidth")
display.max_info_columns
sets a threshold for the number of columnsdisplayed when callinginfo()
.
In [58]:df=pd.DataFrame(np.random.randn(10,10))In [59]:pd.set_option("max_info_columns",11)In [60]:df.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 10 entries, 0 to 9Data columns (total 10 columns): # Column Non-Null Count Dtype--- ------ -------------- ----- 0 0 10 non-null float64 1 1 10 non-null float64 2 2 10 non-null float64 3 3 10 non-null float64 4 4 10 non-null float64 5 5 10 non-null float64 6 6 10 non-null float64 7 7 10 non-null float64 8 8 10 non-null float64 9 9 10 non-null float64dtypes: float64(10)memory usage: 928.0 bytesIn [61]:pd.set_option("max_info_columns",5)In [62]:df.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 10 entries, 0 to 9Columns: 10 entries, 0 to 9dtypes: float64(10)memory usage: 928.0 bytesIn [63]:pd.reset_option("max_info_columns")
display.max_info_rows
:info()
will usually show null-counts for each column.For a largeDataFrame
, this can be quite slow.max_info_rows
andmax_info_cols
limit this null check to the specified rows and columns respectively. Theinfo()
keyword argumentshow_counts=True
will override this.
In [64]:df=pd.DataFrame(np.random.choice([0,1,np.nan],size=(10,10)))In [65]:dfOut[65]: 0 1 2 3 4 5 6 7 8 90 0.0 NaN 1.0 NaN NaN 0.0 NaN 0.0 NaN 1.01 1.0 NaN 1.0 1.0 1.0 1.0 NaN 0.0 0.0 NaN2 0.0 NaN 1.0 0.0 0.0 NaN NaN NaN NaN 0.03 NaN NaN NaN 0.0 1.0 1.0 NaN 1.0 NaN 1.04 0.0 NaN NaN NaN 0.0 NaN NaN NaN 1.0 0.05 0.0 1.0 1.0 1.0 1.0 0.0 NaN NaN 1.0 0.06 1.0 1.0 1.0 NaN 1.0 NaN 1.0 0.0 NaN NaN7 0.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 NaN8 NaN NaN NaN 0.0 NaN NaN NaN NaN 1.0 NaN9 0.0 NaN 0.0 NaN NaN 0.0 NaN 1.0 1.0 0.0In [66]:pd.set_option("max_info_rows",11)In [67]:df.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 10 entries, 0 to 9Data columns (total 10 columns): # Column Non-Null Count Dtype--- ------ -------------- ----- 0 0 8 non-null float64 1 1 3 non-null float64 2 2 7 non-null float64 3 3 6 non-null float64 4 4 7 non-null float64 5 5 6 non-null float64 6 6 2 non-null float64 7 7 6 non-null float64 8 8 6 non-null float64 9 9 6 non-null float64dtypes: float64(10)memory usage: 928.0 bytesIn [68]:pd.set_option("max_info_rows",5)In [69]:df.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 10 entries, 0 to 9Data columns (total 10 columns): # Column Dtype--- ------ ----- 0 0 float64 1 1 float64 2 2 float64 3 3 float64 4 4 float64 5 5 float64 6 6 float64 7 7 float64 8 8 float64 9 9 float64dtypes: float64(10)memory usage: 928.0 bytesIn [70]:pd.reset_option("max_info_rows")
display.precision
sets the output display precision in terms of decimal places.
In [71]:df=pd.DataFrame(np.random.randn(5,5))In [72]:pd.set_option("display.precision",7)In [73]:dfOut[73]: 0 1 2 3 40 -1.1506406 -0.7983341 -0.5576966 0.3813531 1.33712171 -1.5310949 1.3314582 -0.5713290 -0.0266708 -1.08566302 -1.1147378 -0.0582158 -0.4867681 1.6851483 0.11257233 -1.4953086 0.8984347 -0.1482168 -1.5960698 0.15965304 0.2621358 0.0362196 0.1847350 -0.2550694 -0.2710197In [74]:pd.set_option("display.precision",4)In [75]:dfOut[75]: 0 1 2 3 40 -1.1506 -0.7983 -0.5577 0.3814 1.33711 -1.5311 1.3315 -0.5713 -0.0267 -1.08572 -1.1147 -0.0582 -0.4868 1.6851 0.11263 -1.4953 0.8984 -0.1482 -1.5961 0.15974 0.2621 0.0362 0.1847 -0.2551 -0.2710
display.chop_threshold
sets the rounding threshold to zero when displaying aSeries
orDataFrame
. This setting does not change theprecision at which the number is stored.
In [76]:df=pd.DataFrame(np.random.randn(6,6))In [77]:pd.set_option("chop_threshold",0)In [78]:dfOut[78]: 0 1 2 3 4 50 1.2884 0.2946 -1.1658 0.8470 -0.6856 0.60911 -0.3040 0.6256 -0.0593 0.2497 1.1039 -1.08752 1.9980 -0.2445 0.1362 0.8863 -1.3507 -0.88633 -1.0133 1.9209 -0.3882 -2.3144 0.6655 0.40264 0.3996 -1.7660 0.8504 0.3881 0.9923 0.74415 -0.7398 -1.0549 -0.1796 0.6396 1.5850 1.9067In [79]:pd.set_option("chop_threshold",0.5)In [80]:dfOut[80]: 0 1 2 3 4 50 1.2884 0.0000 -1.1658 0.8470 -0.6856 0.60911 0.0000 0.6256 0.0000 0.0000 1.1039 -1.08752 1.9980 0.0000 0.0000 0.8863 -1.3507 -0.88633 -1.0133 1.9209 0.0000 -2.3144 0.6655 0.00004 0.0000 -1.7660 0.8504 0.0000 0.9923 0.74415 -0.7398 -1.0549 0.0000 0.6396 1.5850 1.9067In [81]:pd.reset_option("chop_threshold")
display.colheader_justify
controls the justification of the headers.The options are'right'
, and'left'
.
In [82]:df=pd.DataFrame( ....:np.array([np.random.randn(6),np.random.randint(1,9,6)*0.1,np.zeros(6)]).T, ....:columns=["A","B","C"], ....:dtype="float", ....:) ....:In [83]:pd.set_option("colheader_justify","right")In [84]:dfOut[84]: A B C0 0.1040 0.1 0.01 0.1741 0.5 0.02 -0.4395 0.4 0.03 -0.7413 0.8 0.04 -0.0797 0.4 0.05 -0.9229 0.3 0.0In [85]:pd.set_option("colheader_justify","left")In [86]:dfOut[86]: A B C0 0.1040 0.1 0.01 0.1741 0.5 0.02 -0.4395 0.4 0.03 -0.7413 0.8 0.04 -0.0797 0.4 0.05 -0.9229 0.3 0.0In [87]:pd.reset_option("colheader_justify")
Number formatting#
pandas also allows you to set how numbers are displayed in the console.This option is not set through theset_options
API.
Use theset_eng_float_format
functionto alter the floating-point formatting of pandas objects to produce a particularformat.
In [88]:importnumpyasnpIn [89]:pd.set_eng_float_format(accuracy=3,use_eng_prefix=True)In [90]:s=pd.Series(np.random.randn(5),index=["a","b","c","d","e"])In [91]:s/1.0e3Out[91]:a 303.638ub -721.084uc -622.696ud 648.250ue -1.945mdtype: float64In [92]:s/1.0e6Out[92]:a 303.638nb -721.084nc -622.696nd 648.250ne -1.945udtype: float64
Useround()
to specifically control rounding of an individualDataFrame
Unicode formatting#
Warning
Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower).Use only when it is actually required.
Some East Asian countries use Unicode characters whose width corresponds to two Latin characters.If a DataFrame or Series contains these characters, the default output mode may not align them properly.
In [93]:df=pd.DataFrame({"国籍":["UK","日本"],"名前":["Alice","しのぶ"]})In [94]:dfOut[94]: 国籍 名前0 UK Alice1 日本 しのぶ
Enablingdisplay.unicode.east_asian_width
allows pandas to check each character’s “East Asian Width” property.These characters can be aligned properly by setting this option toTrue
. However, this will result in longer rendertimes than the standardlen
function.
In [95]:pd.set_option("display.unicode.east_asian_width",True)In [96]:dfOut[96]: 国籍 名前0 UK Alice1 日本 しのぶ
In addition, Unicode characters whose width is “ambiguous” can either be 1 or 2 characters wide depending on theterminal setting or encoding. The optiondisplay.unicode.ambiguous_as_wide
can be used to handle the ambiguity.
By default, an “ambiguous” character’s width, such as “¡” (inverted exclamation) in the example below, is taken to be 1.
In [97]:df=pd.DataFrame({"a":["xxx","¡¡"],"b":["yyy","¡¡"]})In [98]:dfOut[98]: a b0 xxx yyy1 ¡¡ ¡¡
Enablingdisplay.unicode.ambiguous_as_wide
makes pandas interpret these characters’ widths to be 2.(Note that this option will only be effective whendisplay.unicode.east_asian_width
is enabled.)
However, setting this option incorrectly for your terminal will cause these characters to be aligned incorrectly:
In [99]:pd.set_option("display.unicode.ambiguous_as_wide",True)In [100]:dfOut[100]: a b0 xxx yyy1 ¡¡ ¡¡
Table schema display#
DataFrame
andSeries
will publish a Table Schema representationby default. This can be enabled globally with thedisplay.html.table_schema
option:
In [101]:pd.set_option("display.html.table_schema",True)
Only'display.max_rows'
are serialized and published.