Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

Options and settings#

Overview#

pandas has an options API configure and customize global behavior related toDataFrame display, data behavior and more.

Options have a full “dotted-style”, case-insensitive name (e.g.display.max_rows).You can get/set options directly as attributes of the top-leveloptions attribute:

In [1]:importpandasaspdIn [2]:pd.options.display.max_rowsOut[2]:15In [3]:pd.options.display.max_rows=999In [4]:pd.options.display.max_rowsOut[4]:999

The API is composed of 5 relevant functions, available directly from thepandasnamespace:

Note

Developers can check outpandas/core/config_init.py for more information.

All of the functions above accept a regexp pattern (re.search style) as an argument,to match an unambiguous substring:

In [5]:pd.get_option("display.chop_threshold")In [6]:pd.set_option("display.chop_threshold",2)In [7]:pd.get_option("display.chop_threshold")Out[7]:2In [8]:pd.set_option("chop",4)In [9]:pd.get_option("display.chop_threshold")Out[9]:4

The following willnot work because it matches multiple option names, e.g.display.max_colwidth,display.max_rows,display.max_columns:

In [10]:pd.get_option("max")---------------------------------------------------------------------------OptionErrorTraceback (most recent call last)CellIn[10],line1---->1pd.get_option("max")File ~/work/pandas/pandas/pandas/_config/config.py:274, inCallableDynamicDoc.__call__(self, *args, **kwds)273def__call__(self,*args,**kwds)->T:-->274returnself.__func__(*args,**kwds)File ~/work/pandas/pandas/pandas/_config/config.py:146, in_get_option(pat, silent)145def_get_option(pat:str,silent:bool=False)->Any:-->146key=_get_single_key(pat,silent)148# walk the nested dict149root,k=_get_root(key)File ~/work/pandas/pandas/pandas/_config/config.py:134, in_get_single_key(pat, silent)132raiseOptionError(f"No such keys(s):{repr(pat)}")133iflen(keys)>1:-->134raiseOptionError("Pattern matched multiple keys")135key=keys[0]137ifnotsilent:OptionError: Pattern matched multiple keys

Warning

Using this form of shorthand may cause your code to break if new options with similar names are added in future versions.

Available options#

You can get a list of available options and their descriptions withdescribe_option(). When calledwith no argumentdescribe_option() will print out the descriptions for all available options.

In [11]:pd.describe_option()compute.use_bottleneck : bool    Use the bottleneck library to accelerate if it is installed,    the default is True    Valid values: False,True    [default: True] [currently: True]compute.use_numba : bool    Use the numba engine option for select operations if it is installed,    the default is False    Valid values: False,True    [default: False] [currently: False]compute.use_numexpr : bool    Use the numexpr library to accelerate computation if it is installed,    the default is True    Valid values: False,True    [default: True] [currently: True]display.chop_threshold : float or None    if set to a float value, all float values smaller than the given threshold    will be displayed as exactly 0 by repr and friends.    [default: None] [currently: None]display.colheader_justify : 'left'/'right'    Controls the justification of column headers. used by DataFrameFormatter.    [default: right] [currently: right]display.date_dayfirst : boolean    When True, prints and parses dates with the day first, eg 20/01/2005    [default: False] [currently: False]display.date_yearfirst : boolean    When True, prints and parses dates with the year first, eg 2005/01/20    [default: False] [currently: False]display.encoding : str/unicode    Defaults to the detected encoding of the console.    Specifies the encoding to be used for strings returned by to_string,    these are generally strings meant to be displayed on the console.    [default: utf-8] [currently: utf8]display.expand_frame_repr : boolean    Whether to print out the full DataFrame repr for wide DataFrames across    multiple lines, `max_columns` is still respected, but the output will    wrap-around across multiple "pages" if its width exceeds `display.width`.    [default: True] [currently: True]display.float_format : callable    The callable should accept a floating point number and return    a string with the desired format of the number. This is used    in some places like SeriesFormatter.    See formats.format.EngFormatter for an example.    [default: None] [currently: None]display.html.border : int    A ``border=value`` attribute is inserted in the ``<table>`` tag    for the DataFrame HTML repr.    [default: 1] [currently: 1]display.html.table_schema : boolean    Whether to publish a Table Schema representation for frontends    that support it.    (default: False)    [default: False] [currently: False]display.html.use_mathjax : boolean    When True, Jupyter notebook will process table contents using MathJax,    rendering mathematical expressions enclosed by the dollar symbol.    (default: True)    [default: True] [currently: True]display.large_repr : 'truncate'/'info'    For DataFrames exceeding max_rows/max_cols, the repr (and HTML repr) can    show a truncated table, or switch to the view from    df.info() (the behaviour in earlier versions of pandas).    [default: truncate] [currently: truncate]display.max_categories : int    This sets the maximum number of categories pandas should output when    printing out a `Categorical` or a Series of dtype "category".    [default: 8] [currently: 8]display.max_columns : int    If max_cols is exceeded, switch to truncate view. Depending on    `large_repr`, objects are either centrally truncated or printed as    a summary view. 'None' value means unlimited.    In case python/IPython is running in a terminal and `large_repr`    equals 'truncate' this can be set to 0 or None and pandas will auto-detect    the width of the terminal and print a truncated object which fits    the screen width. The IPython notebook, IPython qtconsole, or IDLE    do not run in a terminal and hence it is not possible to do    correct auto-detection and defaults to 20.    [default: 0] [currently: 0]display.max_colwidth : int or None    The maximum width in characters of a column in the repr of    a pandas data structure. When the column overflows, a "..."    placeholder is embedded in the output. A 'None' value means unlimited.    [default: 50] [currently: 50]display.max_dir_items : int    The number of items that will be added to `dir(...)`. 'None' value means    unlimited. Because dir is cached, changing this option will not immediately    affect already existing dataframes until a column is deleted or added.    This is for instance used to suggest columns from a dataframe to tab    completion.    [default: 100] [currently: 100]display.max_info_columns : int    max_info_columns is used in DataFrame.info method to decide if    per column information will be printed.    [default: 100] [currently: 100]display.max_info_rows : int    df.info() will usually show null-counts for each column.    For large frames this can be quite slow. max_info_rows and max_info_cols    limit this null check only to frames with smaller dimensions than    specified.    [default: 1690785] [currently: 1690785]display.max_rows : int    If max_rows is exceeded, switch to truncate view. Depending on    `large_repr`, objects are either centrally truncated or printed as    a summary view. 'None' value means unlimited.    In case python/IPython is running in a terminal and `large_repr`    equals 'truncate' this can be set to 0 and pandas will auto-detect    the height of the terminal and print a truncated object which fits    the screen height. The IPython notebook, IPython qtconsole, or    IDLE do not run in a terminal and hence it is not possible to do    correct auto-detection.    [default: 60] [currently: 60]display.max_seq_items : int or None    When pretty-printing a long sequence, no more then `max_seq_items`    will be printed. If items are omitted, they will be denoted by the    addition of "..." to the resulting string.    If set to None, the number of items to be printed is unlimited.    [default: 100] [currently: 100]display.memory_usage : bool, string or None    This specifies if the memory usage of a DataFrame should be displayed when    df.info() is called. Valid values True,False,'deep'    [default: True] [currently: True]display.min_rows : int    The numbers of rows to show in a truncated view (when `max_rows` is    exceeded). Ignored when `max_rows` is set to None or 0. When set to    None, follows the value of `max_rows`.    [default: 10] [currently: 10]display.multi_sparse : boolean    "sparsify" MultiIndex display (don't display repeated    elements in outer levels within groups)    [default: True] [currently: True]display.notebook_repr_html : boolean    When True, IPython notebook will use html representation for    pandas objects (if it is available).    [default: True] [currently: True]display.pprint_nest_depth : int    Controls the number of nested levels to process when pretty-printing    [default: 3] [currently: 3]display.precision : int    Floating point output precision in terms of number of places after the    decimal, for regular formatting as well as scientific notation. Similar    to ``precision`` in :meth:`numpy.set_printoptions`.    [default: 6] [currently: 6]display.show_dimensions : boolean or 'truncate'    Whether to print out dimensions at the end of DataFrame repr.    If 'truncate' is specified, only print out the dimensions if the    frame is truncated (e.g. not display all rows and/or columns)    [default: truncate] [currently: truncate]display.unicode.ambiguous_as_wide : boolean    Whether to use the Unicode East Asian Width to calculate the display text    width.    Enabling this may affect to the performance (default: False)    [default: False] [currently: False]display.unicode.east_asian_width : boolean    Whether to use the Unicode East Asian Width to calculate the display text    width.    Enabling this may affect to the performance (default: False)    [default: False] [currently: False]display.width : int    Width of the display in characters. In case python/IPython is running in    a terminal this can be set to None and pandas will correctly auto-detect    the width.    Note that the IPython notebook, IPython qtconsole, or IDLE do not run in a    terminal and hence it is not possible to correctly detect the width.    [default: 80] [currently: 80]future.infer_string Whether to infer sequence of str objects as pyarrow string dtype, which will be the default in pandas 3.0 (at which point this option will be deprecated).    [default: False] [currently: False]future.no_silent_downcasting Whether to opt-in to the future behavior which will *not* silently downcast results from Series and DataFrame `where`, `mask`, and `clip` methods. Silent downcasting will be removed in pandas 3.0 (at which point this option will be deprecated).    [default: False] [currently: False]io.excel.ods.reader : string    The default Excel reader engine for 'ods' files. Available options:    auto, odf, calamine.    [default: auto] [currently: auto]io.excel.ods.writer : string    The default Excel writer engine for 'ods' files. Available options:    auto, odf.    [default: auto] [currently: auto]io.excel.xls.reader : string    The default Excel reader engine for 'xls' files. Available options:    auto, xlrd, calamine.    [default: auto] [currently: auto]io.excel.xlsb.reader : string    The default Excel reader engine for 'xlsb' files. Available options:    auto, pyxlsb, calamine.    [default: auto] [currently: auto]io.excel.xlsm.reader : string    The default Excel reader engine for 'xlsm' files. Available options:    auto, xlrd, openpyxl, calamine.    [default: auto] [currently: auto]io.excel.xlsm.writer : string    The default Excel writer engine for 'xlsm' files. Available options:    auto, openpyxl.    [default: auto] [currently: auto]io.excel.xlsx.reader : string    The default Excel reader engine for 'xlsx' files. Available options:    auto, xlrd, openpyxl, calamine.    [default: auto] [currently: auto]io.excel.xlsx.writer : string    The default Excel writer engine for 'xlsx' files. Available options:    auto, openpyxl, xlsxwriter.    [default: auto] [currently: auto]io.hdf.default_format : format    default format writing format, if None, then    put will default to 'fixed' and append will default to 'table'    [default: None] [currently: None]io.hdf.dropna_table : boolean    drop ALL nan rows when appending to a table    [default: False] [currently: False]io.parquet.engine : string    The default parquet reader/writer engine. Available options:    'auto', 'pyarrow', 'fastparquet', the default is 'auto'    [default: auto] [currently: auto]io.sql.engine : string    The default sql reader/writer engine. Available options:    'auto', 'sqlalchemy', the default is 'auto'    [default: auto] [currently: auto]mode.chained_assignment : string    Raise an exception, warn, or no action if trying to use chained assignment,    The default is warn    [default: warn] [currently: warn]mode.copy_on_write : bool    Use new copy-view behaviour using Copy-on-Write. Defaults to False,    unless overridden by the 'PANDAS_COPY_ON_WRITE' environment variable    (if set to "1" for True, needs to be set before pandas is imported).    [default: False] [currently: False]mode.data_manager : string    Internal data manager type; can be "block" or "array". Defaults to "block",    unless overridden by the 'PANDAS_DATA_MANAGER' environment variable (needs    to be set before pandas is imported).    [default: block] [currently: block]    (Deprecated, use `` instead.)mode.sim_interactive : boolean    Whether to simulate interactive mode for purposes of testing    [default: False] [currently: False]mode.string_storage : string    The default storage for StringDtype. This option is ignored if    ``future.infer_string`` is set to True.    [default: python] [currently: python]mode.use_inf_as_na : boolean    True means treat None, NaN, INF, -INF as NA (old way),    False means None and NaN are null, but INF, -INF are not NA    (new way).    This option is deprecated in pandas 2.1.0 and will be removed in 3.0.    [default: False] [currently: False]    (Deprecated, use `` instead.)plotting.backend : str    The plotting backend to use. The default value is "matplotlib", the    backend provided with pandas. Other backends can be specified by    providing the name of the module that implements the backend.    [default: matplotlib] [currently: matplotlib]plotting.matplotlib.register_converters : bool or 'auto'.    Whether to register converters with matplotlib's units registry for    dates, times, datetimes, and Periods. Toggling to False will remove    the converters, restoring any converters that pandas overwrote.    [default: auto] [currently: auto]styler.format.decimal : str    The character representation for the decimal separator for floats and complex.    [default: .] [currently: .]styler.format.escape : str, optional    Whether to escape certain characters according to the given context; html or latex.    [default: None] [currently: None]styler.format.formatter : str, callable, dict, optional    A formatter object to be used as default within ``Styler.format``.    [default: None] [currently: None]styler.format.na_rep : str, optional    The string representation for values identified as missing.    [default: None] [currently: None]styler.format.precision : int    The precision for floats and complex numbers.    [default: 6] [currently: 6]styler.format.thousands : str, optional    The character representation for thousands separator for floats, int and complex.    [default: None] [currently: None]styler.html.mathjax : bool    If False will render special CSS classes to table attributes that indicate Mathjax    will not be used in Jupyter Notebook.    [default: True] [currently: True]styler.latex.environment : str    The environment to replace ``\begin{table}``. If "longtable" is used results    in a specific longtable environment format.    [default: None] [currently: None]styler.latex.hrules : bool    Whether to add horizontal rules on top and bottom and below the headers.    [default: False] [currently: False]styler.latex.multicol_align : {"r", "c", "l", "naive-l", "naive-r"}    The specifier for horizontal alignment of sparsified LaTeX multicolumns. Pipe    decorators can also be added to non-naive values to draw vertical    rules, e.g. "\|r" will draw a rule on the left side of right aligned merged cells.    [default: r] [currently: r]styler.latex.multirow_align : {"c", "t", "b"}    The specifier for vertical alignment of sparsified LaTeX multirows.    [default: c] [currently: c]styler.render.encoding : str    The encoding used for output HTML and LaTeX files.    [default: utf-8] [currently: utf-8]styler.render.max_columns : int, optional    The maximum number of columns that will be rendered. May still be reduced to    satisfy ``max_elements``, which takes precedence.    [default: None] [currently: None]styler.render.max_elements : int    The maximum number of data-cell (<td>) elements that will be rendered before    trimming will occur over columns, rows or both if needed.    [default: 262144] [currently: 262144]styler.render.max_rows : int, optional    The maximum number of rows that will be rendered. May still be reduced to    satisfy ``max_elements``, which takes precedence.    [default: None] [currently: None]styler.render.repr : str    Determine which output to use in Jupyter Notebook in {"html", "latex"}.    [default: html] [currently: html]styler.sparse.columns : bool    Whether to sparsify the display of hierarchical columns. Setting to False will    display each explicit level element in a hierarchical key for each column.    [default: True] [currently: True]styler.sparse.index : bool    Whether to sparsify the display of a hierarchical index. Setting to False will    display each explicit level element in a hierarchical key for each row.    [default: True] [currently: True]

Getting and setting options#

As described above,get_option() andset_option()are available from the pandas namespace. To change an option, callset_option('optionregex',new_value).

In [12]:pd.get_option("mode.sim_interactive")Out[12]:FalseIn [13]:pd.set_option("mode.sim_interactive",True)In [14]:pd.get_option("mode.sim_interactive")Out[14]:True

Note

The option'mode.sim_interactive' is mostly used for debugging purposes.

You can usereset_option() to revert to a setting’s default value

In [15]:pd.get_option("display.max_rows")Out[15]:60In [16]:pd.set_option("display.max_rows",999)In [17]:pd.get_option("display.max_rows")Out[17]:999In [18]:pd.reset_option("display.max_rows")In [19]:pd.get_option("display.max_rows")Out[19]:60

It’s also possible to reset multiple options at once (using a regex):

In [20]:pd.reset_option("^display")

option_context() context manager has been exposed throughthe top-level API, allowing you to execute code with given option values. Option valuesare restored automatically when you exit thewith block:

In [21]:withpd.option_context("display.max_rows",10,"display.max_columns",5):   ....:print(pd.get_option("display.max_rows"))   ....:print(pd.get_option("display.max_columns"))   ....:105In [22]:print(pd.get_option("display.max_rows"))60In [23]:print(pd.get_option("display.max_columns"))0

Setting startup options in Python/IPython environment#

Using startup scripts for the Python/IPython environment to import pandas and set options makes working with pandas more efficient.To do this, create a.py or.ipy script in the startup directory of the desired profile.An example where the startup folder is in a default IPython profile can be found at:

$IPYTHONDIR/profile_default/startup

More information can be found in theIPython documentation. An example startup script for pandas is displayed below:

importpandasaspdpd.set_option("display.max_rows",999)pd.set_option("display.precision",5)

Frequently used options#

The following is a demonstrates the more frequently used display options.

display.max_rows anddisplay.max_columns sets the maximum numberof rows and columns displayed when a frame is pretty-printed. Truncatedlines are replaced by an ellipsis.

In [24]:df=pd.DataFrame(np.random.randn(7,2))In [25]:pd.set_option("display.max_rows",7)In [26]:dfOut[26]:          0         10  0.469112 -0.2828631 -1.509059 -1.1356322  1.212112 -0.1732153  0.119209 -1.0442364 -0.861849 -2.1045695 -0.494929  1.0718046  0.721555 -0.706771In [27]:pd.set_option("display.max_rows",5)In [28]:dfOut[28]:           0         10   0.469112 -0.2828631  -1.509059 -1.135632..       ...       ...5  -0.494929  1.0718046   0.721555 -0.706771[7 rows x 2 columns]In [29]:pd.reset_option("display.max_rows")

Once thedisplay.max_rows is exceeded, thedisplay.min_rows optionsdetermines how many rows are shown in the truncated repr.

In [30]:pd.set_option("display.max_rows",8)In [31]:pd.set_option("display.min_rows",4)# below max_rows -> all rows shownIn [32]:df=pd.DataFrame(np.random.randn(7,2))In [33]:dfOut[33]:          0         10 -1.039575  0.2718601 -0.424972  0.5670202  0.276232 -1.0874013 -0.673690  0.1136484 -1.478427  0.5249885  0.404705  0.5770466 -1.715002 -1.039268# above max_rows -> only min_rows (4) rows shownIn [34]:df=pd.DataFrame(np.random.randn(9,2))In [35]:dfOut[35]:           0         10  -0.370647 -1.1578921  -1.344312  0.844885..       ...       ...7   0.276662 -0.4720358  -0.013960 -0.362543[9 rows x 2 columns]In [36]:pd.reset_option("display.max_rows")In [37]:pd.reset_option("display.min_rows")

display.expand_frame_repr allows for the representation of aDataFrame to stretch across pages, wrapped over the all the columns.

In [38]:df=pd.DataFrame(np.random.randn(5,10))In [39]:pd.set_option("expand_frame_repr",True)In [40]:dfOut[40]:          0         1         2  ...         7         8         90 -0.006154 -0.923061  0.895717  ...  1.340309 -1.170299 -0.2261691  0.410835  0.813850  0.132003  ... -1.436737 -1.413681  1.6079202  1.024180  0.569605  0.875906  ... -0.078638  0.545952 -1.2192173 -1.226825  0.769804 -1.281247  ...  0.341734  0.959726 -1.1103364 -0.619976  0.149748 -0.732339  ...  0.301624 -2.179861 -1.369849[5 rows x 10 columns]In [41]:pd.set_option("expand_frame_repr",False)In [42]:dfOut[42]:          0         1         2         3         4         5         6         7         8         90 -0.006154 -0.923061  0.895717  0.805244 -1.206412  2.565646  1.431256  1.340309 -1.170299 -0.2261691  0.410835  0.813850  0.132003 -0.827317 -0.076467 -1.187678  1.130127 -1.436737 -1.413681  1.6079202  1.024180  0.569605  0.875906 -2.211372  0.974466 -2.006747 -0.410001 -0.078638  0.545952 -1.2192173 -1.226825  0.769804 -1.281247 -0.727707 -0.121306 -0.097883  0.695775  0.341734  0.959726 -1.1103364 -0.619976  0.149748 -0.732339  0.687738  0.176444  0.403310 -0.154951  0.301624 -2.179861 -1.369849In [43]:pd.reset_option("expand_frame_repr")

display.large_repr displays aDataFrame that exceedmax_columns ormax_rows as a truncated frame or summary.

In [44]:df=pd.DataFrame(np.random.randn(10,10))In [45]:pd.set_option("display.max_rows",5)In [46]:pd.set_option("large_repr","truncate")In [47]:dfOut[47]:           0         1         2  ...         7         8         90  -0.954208  1.462696 -1.743161  ...  0.995761  2.396780  0.0148711   3.357427 -0.317441 -1.236269  ...  0.380396  0.084844  0.432390..       ...       ...       ...  ...       ...       ...       ...8  -0.303421 -0.858447  0.306996  ...  0.476720  0.473424 -0.2428619  -0.014805 -0.284319  0.650776  ...  1.613616  0.464000  0.227371[10 rows x 10 columns]In [48]:pd.set_option("large_repr","info")In [49]:dfOut[49]:<class 'pandas.core.frame.DataFrame'>RangeIndex: 10 entries, 0 to 9Data columns (total 10 columns): #   Column  Non-Null Count  Dtype---  ------  --------------  ----- 0   0       10 non-null     float64 1   1       10 non-null     float64 2   2       10 non-null     float64 3   3       10 non-null     float64 4   4       10 non-null     float64 5   5       10 non-null     float64 6   6       10 non-null     float64 7   7       10 non-null     float64 8   8       10 non-null     float64 9   9       10 non-null     float64dtypes: float64(10)memory usage: 928.0 bytesIn [50]:pd.reset_option("large_repr")In [51]:pd.reset_option("display.max_rows")

display.max_colwidth sets the maximum width of columns. Cellsof this length or longer will be truncated with an ellipsis.

In [52]:df=pd.DataFrame(   ....:np.array(   ....:[   ....:["foo","bar","bim","uncomfortably long string"],   ....:["horse","cow","banana","apple"],   ....:]   ....:)   ....:)   ....:In [53]:pd.set_option("max_colwidth",40)In [54]:dfOut[54]:       0    1       2                          30    foo  bar     bim  uncomfortably long string1  horse  cow  banana                      appleIn [55]:pd.set_option("max_colwidth",6)In [56]:dfOut[56]:       0    1      2      30    foo  bar    bim  un...1  horse  cow  ba...  appleIn [57]:pd.reset_option("max_colwidth")

display.max_info_columns sets a threshold for the number of columnsdisplayed when callinginfo().

In [58]:df=pd.DataFrame(np.random.randn(10,10))In [59]:pd.set_option("max_info_columns",11)In [60]:df.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 10 entries, 0 to 9Data columns (total 10 columns): #   Column  Non-Null Count  Dtype---  ------  --------------  ----- 0   0       10 non-null     float64 1   1       10 non-null     float64 2   2       10 non-null     float64 3   3       10 non-null     float64 4   4       10 non-null     float64 5   5       10 non-null     float64 6   6       10 non-null     float64 7   7       10 non-null     float64 8   8       10 non-null     float64 9   9       10 non-null     float64dtypes: float64(10)memory usage: 928.0 bytesIn [61]:pd.set_option("max_info_columns",5)In [62]:df.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 10 entries, 0 to 9Columns: 10 entries, 0 to 9dtypes: float64(10)memory usage: 928.0 bytesIn [63]:pd.reset_option("max_info_columns")

display.max_info_rows:info() will usually show null-counts for each column.For a largeDataFrame, this can be quite slow.max_info_rows andmax_info_colslimit this null check to the specified rows and columns respectively. Theinfo()keyword argumentshow_counts=True will override this.

In [64]:df=pd.DataFrame(np.random.choice([0,1,np.nan],size=(10,10)))In [65]:dfOut[65]:     0    1    2    3    4    5    6    7    8    90  0.0  NaN  1.0  NaN  NaN  0.0  NaN  0.0  NaN  1.01  1.0  NaN  1.0  1.0  1.0  1.0  NaN  0.0  0.0  NaN2  0.0  NaN  1.0  0.0  0.0  NaN  NaN  NaN  NaN  0.03  NaN  NaN  NaN  0.0  1.0  1.0  NaN  1.0  NaN  1.04  0.0  NaN  NaN  NaN  0.0  NaN  NaN  NaN  1.0  0.05  0.0  1.0  1.0  1.0  1.0  0.0  NaN  NaN  1.0  0.06  1.0  1.0  1.0  NaN  1.0  NaN  1.0  0.0  NaN  NaN7  0.0  0.0  1.0  0.0  1.0  0.0  1.0  1.0  0.0  NaN8  NaN  NaN  NaN  0.0  NaN  NaN  NaN  NaN  1.0  NaN9  0.0  NaN  0.0  NaN  NaN  0.0  NaN  1.0  1.0  0.0In [66]:pd.set_option("max_info_rows",11)In [67]:df.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 10 entries, 0 to 9Data columns (total 10 columns): #   Column  Non-Null Count  Dtype---  ------  --------------  ----- 0   0       8 non-null      float64 1   1       3 non-null      float64 2   2       7 non-null      float64 3   3       6 non-null      float64 4   4       7 non-null      float64 5   5       6 non-null      float64 6   6       2 non-null      float64 7   7       6 non-null      float64 8   8       6 non-null      float64 9   9       6 non-null      float64dtypes: float64(10)memory usage: 928.0 bytesIn [68]:pd.set_option("max_info_rows",5)In [69]:df.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 10 entries, 0 to 9Data columns (total 10 columns): #   Column  Dtype---  ------  ----- 0   0       float64 1   1       float64 2   2       float64 3   3       float64 4   4       float64 5   5       float64 6   6       float64 7   7       float64 8   8       float64 9   9       float64dtypes: float64(10)memory usage: 928.0 bytesIn [70]:pd.reset_option("max_info_rows")

display.precision sets the output display precision in terms of decimal places.

In [71]:df=pd.DataFrame(np.random.randn(5,5))In [72]:pd.set_option("display.precision",7)In [73]:dfOut[73]:           0          1          2          3          40 -1.1506406 -0.7983341 -0.5576966  0.3813531  1.33712171 -1.5310949  1.3314582 -0.5713290 -0.0266708 -1.08566302 -1.1147378 -0.0582158 -0.4867681  1.6851483  0.11257233 -1.4953086  0.8984347 -0.1482168 -1.5960698  0.15965304  0.2621358  0.0362196  0.1847350 -0.2550694 -0.2710197In [74]:pd.set_option("display.precision",4)In [75]:dfOut[75]:        0       1       2       3       40 -1.1506 -0.7983 -0.5577  0.3814  1.33711 -1.5311  1.3315 -0.5713 -0.0267 -1.08572 -1.1147 -0.0582 -0.4868  1.6851  0.11263 -1.4953  0.8984 -0.1482 -1.5961  0.15974  0.2621  0.0362  0.1847 -0.2551 -0.2710

display.chop_threshold sets the rounding threshold to zero when displaying aSeries orDataFrame. This setting does not change theprecision at which the number is stored.

In [76]:df=pd.DataFrame(np.random.randn(6,6))In [77]:pd.set_option("chop_threshold",0)In [78]:dfOut[78]:        0       1       2       3       4       50  1.2884  0.2946 -1.1658  0.8470 -0.6856  0.60911 -0.3040  0.6256 -0.0593  0.2497  1.1039 -1.08752  1.9980 -0.2445  0.1362  0.8863 -1.3507 -0.88633 -1.0133  1.9209 -0.3882 -2.3144  0.6655  0.40264  0.3996 -1.7660  0.8504  0.3881  0.9923  0.74415 -0.7398 -1.0549 -0.1796  0.6396  1.5850  1.9067In [79]:pd.set_option("chop_threshold",0.5)In [80]:dfOut[80]:        0       1       2       3       4       50  1.2884  0.0000 -1.1658  0.8470 -0.6856  0.60911  0.0000  0.6256  0.0000  0.0000  1.1039 -1.08752  1.9980  0.0000  0.0000  0.8863 -1.3507 -0.88633 -1.0133  1.9209  0.0000 -2.3144  0.6655  0.00004  0.0000 -1.7660  0.8504  0.0000  0.9923  0.74415 -0.7398 -1.0549  0.0000  0.6396  1.5850  1.9067In [81]:pd.reset_option("chop_threshold")

display.colheader_justify controls the justification of the headers.The options are'right', and'left'.

In [82]:df=pd.DataFrame(   ....:np.array([np.random.randn(6),np.random.randint(1,9,6)*0.1,np.zeros(6)]).T,   ....:columns=["A","B","C"],   ....:dtype="float",   ....:)   ....:In [83]:pd.set_option("colheader_justify","right")In [84]:dfOut[84]:        A    B    C0  0.1040  0.1  0.01  0.1741  0.5  0.02 -0.4395  0.4  0.03 -0.7413  0.8  0.04 -0.0797  0.4  0.05 -0.9229  0.3  0.0In [85]:pd.set_option("colheader_justify","left")In [86]:dfOut[86]:   A       B    C0  0.1040  0.1  0.01  0.1741  0.5  0.02 -0.4395  0.4  0.03 -0.7413  0.8  0.04 -0.0797  0.4  0.05 -0.9229  0.3  0.0In [87]:pd.reset_option("colheader_justify")

Number formatting#

pandas also allows you to set how numbers are displayed in the console.This option is not set through theset_options API.

Use theset_eng_float_format functionto alter the floating-point formatting of pandas objects to produce a particularformat.

In [88]:importnumpyasnpIn [89]:pd.set_eng_float_format(accuracy=3,use_eng_prefix=True)In [90]:s=pd.Series(np.random.randn(5),index=["a","b","c","d","e"])In [91]:s/1.0e3Out[91]:a    303.638ub   -721.084uc   -622.696ud    648.250ue     -1.945mdtype: float64In [92]:s/1.0e6Out[92]:a    303.638nb   -721.084nc   -622.696nd    648.250ne     -1.945udtype: float64

Useround() to specifically control rounding of an individualDataFrame

Unicode formatting#

Warning

Enabling this option will affect the performance for printing of DataFrame and Series (about 2 times slower).Use only when it is actually required.

Some East Asian countries use Unicode characters whose width corresponds to two Latin characters.If a DataFrame or Series contains these characters, the default output mode may not align them properly.

In [93]:df=pd.DataFrame({"国籍":["UK","日本"],"名前":["Alice","しのぶ"]})In [94]:dfOut[94]:   国籍     名前0  UK  Alice1  日本    しのぶ

Enablingdisplay.unicode.east_asian_width allows pandas to check each character’s “East Asian Width” property.These characters can be aligned properly by setting this option toTrue. However, this will result in longer rendertimes than the standardlen function.

In [95]:pd.set_option("display.unicode.east_asian_width",True)In [96]:dfOut[96]:   国籍    名前0    UK   Alice1  日本  しのぶ

In addition, Unicode characters whose width is “ambiguous” can either be 1 or 2 characters wide depending on theterminal setting or encoding. The optiondisplay.unicode.ambiguous_as_wide can be used to handle the ambiguity.

By default, an “ambiguous” character’s width, such as “¡” (inverted exclamation) in the example below, is taken to be 1.

In [97]:df=pd.DataFrame({"a":["xxx","¡¡"],"b":["yyy","¡¡"]})In [98]:dfOut[98]:     a    b0  xxx  yyy1   ¡¡   ¡¡

Enablingdisplay.unicode.ambiguous_as_wide makes pandas interpret these characters’ widths to be 2.(Note that this option will only be effective whendisplay.unicode.east_asian_width is enabled.)

However, setting this option incorrectly for your terminal will cause these characters to be aligned incorrectly:

In [99]:pd.set_option("display.unicode.ambiguous_as_wide",True)In [100]:dfOut[100]:      a     b0   xxx   yyy1  ¡¡  ¡¡

Table schema display#

DataFrame andSeries will publish a Table Schema representationby default. This can be enabled globally with thedisplay.html.table_schema option:

In [101]:pd.set_option("display.html.table_schema",True)

Only'display.max_rows' are serialized and published.


[8]ページ先頭

©2009-2025 Movatter.jp