Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

Indexing and selecting data#

The axis labeling information in pandas objects serves many purposes:

  • Identifies data (i.e. providesmetadata) using known indicators,important for analysis, visualization, and interactive console display.

  • Enables automatic and explicit data alignment.

  • Allows intuitive getting and setting of subsets of the data set.

In this section, we will focus on the final point: namely, how to slice, dice,and generally get and set subsets of pandas objects. The primary focus will beon Series and DataFrame as they have received more development attention inthis area.

Note

The Python and NumPy indexing operators[] and attribute operator.provide quick and easy access to pandas data structures across a wide rangeof use cases. This makes interactive work intuitive, as there’s little newto learn if you already know how to deal with Python dictionaries and NumPyarrays. However, since the type of the data to be accessed isn’t known inadvance, directly using standard operators has some optimization limits. Forproduction code, we recommended that you take advantage of the optimizedpandas data access methods exposed in this chapter.

Warning

Whether a copy or a reference is returned for a setting operation, maydepend on the context. This is sometimes calledchainedassignment andshould be avoided. SeeReturning a View versus Copy.

See theMultiIndex / Advanced Indexing forMultiIndex and more advanced indexing documentation.

See thecookbook for some advanced strategies.

Different choices for indexing#

Object selection has had a number of user-requested additions in order tosupport more explicit location based indexing. pandas now supports three typesof multi-axis indexing.

  • .loc is primarily label based, but may also be used with a boolean array..loc will raiseKeyError when the items are not found. Allowed inputs are:

    • A single label, e.g.5 or'a' (Note that5 is interpreted as alabel of the index. This use isnot an integer position along theindex.).

    • A list or array of labels['a','b','c'].

    • A slice object with labels'a':'f' (Note that contrary to usual Pythonslices,both the start and the stop are included, when present in theindex! SeeSlicing with labelsandEndpoints are inclusive.)

    • A boolean array (anyNA values will be treated asFalse).

    • Acallable function with one argument (the calling Series or DataFrame) andthat returns valid output for indexing (one of the above).

    • A tuple of row (and column) indices whose elements are one of theabove inputs.

    See more atSelection by Label.

  • .iloc is primarily integer position based (from0 tolength-1 of the axis), but may also be used with a booleanarray..iloc will raiseIndexError if a requestedindexer is out-of-bounds, exceptslice indexers which allowout-of-bounds indexing. (this conforms with Python/NumPyslicesemantics). Allowed inputs are:

    • An integer e.g.5.

    • A list or array of integers[4,3,0].

    • A slice object with ints1:7.

    • A boolean array (anyNA values will be treated asFalse).

    • Acallable function with one argument (the calling Series or DataFrame) andthat returns valid output for indexing (one of the above).

    • A tuple of row (and column) indices whose elements are one of theabove inputs.

    See more atSelection by Position,Advanced Indexing andAdvancedHierarchical.

  • .loc,.iloc, and also[] indexing can accept acallable as indexer. See more atSelection By Callable.

    Note

    Destructuring tuple keys into row (and column) indexes occursbefore callables are applied, so you cannot return a tuple froma callable to index both rows and columns.

Getting values from an object with multi-axes selection uses the followingnotation (using.loc as an example, but the following applies to.iloc aswell). Any of the axes accessors may be the null slice:. Axes left out ofthe specification are assumed to be:, e.g.p.loc['a'] is equivalent top.loc['a',:].

In [1]:ser=pd.Series(range(5),index=list("abcde"))In [2]:ser.loc[["a","c","e"]]Out[2]:a    0c    2e    4dtype: int64In [3]:df=pd.DataFrame(np.arange(25).reshape(5,5),index=list("abcde"),columns=list("abcde"))In [4]:df.loc[["a","c","e"],["b","d"]]Out[4]:    b   da   1   3c  11  13e  21  23

Basics#

As mentioned when introducing the data structures in thelast section, the primary function of indexing with[] (a.k.a.__getitem__for those familiar with implementing class behavior in Python) is selecting outlower-dimensional slices. The following table shows return type values whenindexing pandas objects with[]:

Object Type

Selection

Return Value Type

Series

series[label]

scalar value

DataFrame

frame[colname]

Series corresponding to colname

Here we construct a simple time series data set to use for illustrating theindexing functionality:

In [5]:dates=pd.date_range('1/1/2000',periods=8)In [6]:df=pd.DataFrame(np.random.randn(8,4),   ...:index=dates,columns=['A','B','C','D'])   ...:In [7]:dfOut[7]:                   A         B         C         D2000-01-01  0.469112 -0.282863 -1.509059 -1.1356322000-01-02  1.212112 -0.173215  0.119209 -1.0442362000-01-03 -0.861849 -2.104569 -0.494929  1.0718042000-01-04  0.721555 -0.706771 -1.039575  0.2718602000-01-05 -0.424972  0.567020  0.276232 -1.0874012000-01-06 -0.673690  0.113648 -1.478427  0.5249882000-01-07  0.404705  0.577046 -1.715002 -1.0392682000-01-08 -0.370647 -1.157892 -1.344312  0.844885

Note

None of the indexing functionality is time series specific unlessspecifically stated.

Thus, as per above, we have the most basic indexing using[]:

In [8]:s=df['A']In [9]:s[dates[5]]Out[9]:-0.6736897080883706

You can pass a list of columns to[] to select columns in that order.If a column is not contained in the DataFrame, an exception will beraised. Multiple columns can also be set in this manner:

In [10]:dfOut[10]:                   A         B         C         D2000-01-01  0.469112 -0.282863 -1.509059 -1.1356322000-01-02  1.212112 -0.173215  0.119209 -1.0442362000-01-03 -0.861849 -2.104569 -0.494929  1.0718042000-01-04  0.721555 -0.706771 -1.039575  0.2718602000-01-05 -0.424972  0.567020  0.276232 -1.0874012000-01-06 -0.673690  0.113648 -1.478427  0.5249882000-01-07  0.404705  0.577046 -1.715002 -1.0392682000-01-08 -0.370647 -1.157892 -1.344312  0.844885In [11]:df[['B','A']]=df[['A','B']]In [12]:dfOut[12]:                   A         B         C         D2000-01-01 -0.282863  0.469112 -1.509059 -1.1356322000-01-02 -0.173215  1.212112  0.119209 -1.0442362000-01-03 -2.104569 -0.861849 -0.494929  1.0718042000-01-04 -0.706771  0.721555 -1.039575  0.2718602000-01-05  0.567020 -0.424972  0.276232 -1.0874012000-01-06  0.113648 -0.673690 -1.478427  0.5249882000-01-07  0.577046  0.404705 -1.715002 -1.0392682000-01-08 -1.157892 -0.370647 -1.344312  0.844885

You may find this useful for applying a transform (in-place) to a subset of thecolumns.

Warning

pandas aligns all AXES when settingSeries andDataFrame from.loc.

This willnot modifydf because the column alignment is before value assignment.

In [13]:df[['A','B']]Out[13]:                   A         B2000-01-01 -0.282863  0.4691122000-01-02 -0.173215  1.2121122000-01-03 -2.104569 -0.8618492000-01-04 -0.706771  0.7215552000-01-05  0.567020 -0.4249722000-01-06  0.113648 -0.6736902000-01-07  0.577046  0.4047052000-01-08 -1.157892 -0.370647In [14]:df.loc[:,['B','A']]=df[['A','B']]In [15]:df[['A','B']]Out[15]:                   A         B2000-01-01 -0.282863  0.4691122000-01-02 -0.173215  1.2121122000-01-03 -2.104569 -0.8618492000-01-04 -0.706771  0.7215552000-01-05  0.567020 -0.4249722000-01-06  0.113648 -0.6736902000-01-07  0.577046  0.4047052000-01-08 -1.157892 -0.370647

The correct way to swap column values is by using raw values:

In [16]:df.loc[:,['B','A']]=df[['A','B']].to_numpy()In [17]:df[['A','B']]Out[17]:                   A         B2000-01-01  0.469112 -0.2828632000-01-02  1.212112 -0.1732152000-01-03 -0.861849 -2.1045692000-01-04  0.721555 -0.7067712000-01-05 -0.424972  0.5670202000-01-06 -0.673690  0.1136482000-01-07  0.404705  0.5770462000-01-08 -0.370647 -1.157892

However, pandas does not align AXES when settingSeries andDataFrame from.ilocbecause.iloc operates by position.

This will modifydf because the column alignment is not done before value assignment.

In [18]:df[['A','B']]Out[18]:                   A         B2000-01-01  0.469112 -0.2828632000-01-02  1.212112 -0.1732152000-01-03 -0.861849 -2.1045692000-01-04  0.721555 -0.7067712000-01-05 -0.424972  0.5670202000-01-06 -0.673690  0.1136482000-01-07  0.404705  0.5770462000-01-08 -0.370647 -1.157892In [19]:df.iloc[:,[1,0]]=df[['A','B']]In [20]:df[['A','B']]Out[20]:                   A         B2000-01-01 -0.282863  0.4691122000-01-02 -0.173215  1.2121122000-01-03 -2.104569 -0.8618492000-01-04 -0.706771  0.7215552000-01-05  0.567020 -0.4249722000-01-06  0.113648 -0.6736902000-01-07  0.577046  0.4047052000-01-08 -1.157892 -0.370647

Attribute access#

You may access an index on aSeries or column on aDataFrame directlyas an attribute:

In [21]:sa=pd.Series([1,2,3],index=list('abc'))In [22]:dfa=df.copy()
In [23]:sa.bOut[23]:2In [24]:dfa.AOut[24]:2000-01-01   -0.2828632000-01-02   -0.1732152000-01-03   -2.1045692000-01-04   -0.7067712000-01-05    0.5670202000-01-06    0.1136482000-01-07    0.5770462000-01-08   -1.157892Freq: D, Name: A, dtype: float64
In [25]:sa.a=5In [26]:saOut[26]:a    5b    2c    3dtype: int64In [27]:dfa.A=list(range(len(dfa.index)))# ok if A already existsIn [28]:dfaOut[28]:            A         B         C         D2000-01-01  0  0.469112 -1.509059 -1.1356322000-01-02  1  1.212112  0.119209 -1.0442362000-01-03  2 -0.861849 -0.494929  1.0718042000-01-04  3  0.721555 -1.039575  0.2718602000-01-05  4 -0.424972  0.276232 -1.0874012000-01-06  5 -0.673690 -1.478427  0.5249882000-01-07  6  0.404705 -1.715002 -1.0392682000-01-08  7 -0.370647 -1.344312  0.844885In [29]:dfa['A']=list(range(len(dfa.index)))# use this form to create a new columnIn [30]:dfaOut[30]:            A         B         C         D2000-01-01  0  0.469112 -1.509059 -1.1356322000-01-02  1  1.212112  0.119209 -1.0442362000-01-03  2 -0.861849 -0.494929  1.0718042000-01-04  3  0.721555 -1.039575  0.2718602000-01-05  4 -0.424972  0.276232 -1.0874012000-01-06  5 -0.673690 -1.478427  0.5249882000-01-07  6  0.404705 -1.715002 -1.0392682000-01-08  7 -0.370647 -1.344312  0.844885

Warning

  • You can use this access only if the index element is a valid Python identifier, e.g.s.1 is not allowed.Seehere for an explanation of valid identifiers.

  • The attribute will not be available if it conflicts with an existing method name, e.g.s.min is not allowed, buts['min'] is possible.

  • Similarly, the attribute will not be available if it conflicts with any of the following list:index,major_axis,minor_axis,items.

  • In any of these cases, standard indexing will still work, e.g.s['1'],s['min'], ands['index'] willaccess the corresponding element or column.

If you are using the IPython environment, you may also use tab-completion tosee these accessible attributes.

You can also assign adict to a row of aDataFrame:

In [31]:x=pd.DataFrame({'x':[1,2,3],'y':[3,4,5]})In [32]:x.iloc[1]={'x':9,'y':99}In [33]:xOut[33]:   x   y0  1   31  9  992  3   5

You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful;if you try to use attribute access to create a new column, it creates a new attribute rather than anew column and will this raise aUserWarning:

In [34]:df_new=pd.DataFrame({'one':[1.,2.,3.]})In [35]:df_new.two=[4,5,6]In [36]:df_newOut[36]:   one0  1.01  2.02  3.0

Slicing ranges#

The most robust and consistent way of slicing ranges along arbitrary axes isdescribed in theSelection by Position sectiondetailing the.iloc method. For now, we explain the semantics of slicing using the[] operator.

With Series, the syntax works exactly as with an ndarray, returning a slice ofthe values and the corresponding labels:

In [37]:s[:5]Out[37]:2000-01-01    0.4691122000-01-02    1.2121122000-01-03   -0.8618492000-01-04    0.7215552000-01-05   -0.424972Freq: D, Name: A, dtype: float64In [38]:s[::2]Out[38]:2000-01-01    0.4691122000-01-03   -0.8618492000-01-05   -0.4249722000-01-07    0.404705Freq: 2D, Name: A, dtype: float64In [39]:s[::-1]Out[39]:2000-01-08   -0.3706472000-01-07    0.4047052000-01-06   -0.6736902000-01-05   -0.4249722000-01-04    0.7215552000-01-03   -0.8618492000-01-02    1.2121122000-01-01    0.469112Freq: -1D, Name: A, dtype: float64

Note that setting works as well:

In [40]:s2=s.copy()In [41]:s2[:5]=0In [42]:s2Out[42]:2000-01-01    0.0000002000-01-02    0.0000002000-01-03    0.0000002000-01-04    0.0000002000-01-05    0.0000002000-01-06   -0.6736902000-01-07    0.4047052000-01-08   -0.370647Freq: D, Name: A, dtype: float64

With DataFrame, slicing inside of[]slices the rows. This is providedlargely as a convenience since it is such a common operation.

In [43]:df[:3]Out[43]:                   A         B         C         D2000-01-01 -0.282863  0.469112 -1.509059 -1.1356322000-01-02 -0.173215  1.212112  0.119209 -1.0442362000-01-03 -2.104569 -0.861849 -0.494929  1.071804In [44]:df[::-1]Out[44]:                   A         B         C         D2000-01-08 -1.157892 -0.370647 -1.344312  0.8448852000-01-07  0.577046  0.404705 -1.715002 -1.0392682000-01-06  0.113648 -0.673690 -1.478427  0.5249882000-01-05  0.567020 -0.424972  0.276232 -1.0874012000-01-04 -0.706771  0.721555 -1.039575  0.2718602000-01-03 -2.104569 -0.861849 -0.494929  1.0718042000-01-02 -0.173215  1.212112  0.119209 -1.0442362000-01-01 -0.282863  0.469112 -1.509059 -1.135632

Selection by label#

Warning

Whether a copy or a reference is returned for a setting operation, may depend on the context.This is sometimes calledchainedassignment and should be avoided.SeeReturning a View versus Copy.

Warning

.loc is strict when you present slicers that are not compatible (or convertible) with the index type. For exampleusing integers in aDatetimeIndex. These will raise aTypeError.

In [45]:dfl=pd.DataFrame(np.random.randn(5,4),   ....:columns=list('ABCD'),   ....:index=pd.date_range('20130101',periods=5))   ....:In [46]:dflOut[46]:                   A         B         C         D2013-01-01  1.075770 -0.109050  1.643563 -1.4693882013-01-02  0.357021 -0.674600 -1.776904 -0.9689142013-01-03 -1.294524  0.413738  0.276662 -0.4720352013-01-04 -0.013960 -0.362543 -0.006154 -0.9230612013-01-05  0.895717  0.805244 -1.206412  2.565646In [47]:dfl.loc[2:3]---------------------------------------------------------------------------TypeErrorTraceback (most recent call last)CellIn[47],line1---->1dfl.loc[2:3]File ~/work/pandas/pandas/pandas/core/indexing.py:1191, in_LocationIndexer.__getitem__(self, key)1189maybe_callable=com.apply_if_callable(key,self.obj)1190maybe_callable=self._check_deprecated_callable_usage(key,maybe_callable)->1191returnself._getitem_axis(maybe_callable,axis=axis)File ~/work/pandas/pandas/pandas/core/indexing.py:1411, in_LocIndexer._getitem_axis(self, key, axis)1409ifisinstance(key,slice):1410self._validate_key(key,axis)->1411returnself._get_slice_axis(key,axis=axis)1412elifcom.is_bool_indexer(key):1413returnself._getbool_axis(key,axis=axis)File ~/work/pandas/pandas/pandas/core/indexing.py:1443, in_LocIndexer._get_slice_axis(self, slice_obj, axis)1440returnobj.copy(deep=False)1442labels=obj._get_axis(axis)->1443indexer=labels.slice_indexer(slice_obj.start,slice_obj.stop,slice_obj.step)1445ifisinstance(indexer,slice):1446returnself.obj._slice(indexer,axis=axis)File ~/work/pandas/pandas/pandas/core/indexes/datetimes.py:682, inDatetimeIndex.slice_indexer(self, start, end, step)674# GH#33146 if start and end are combinations of str and None and Index is not675# monotonic, we can not use Index.slice_indexer because it does not honor the676# actual elements, is only searching for start and end677if(678check_str_or_none(start)679orcheck_str_or_none(end)680orself.is_monotonic_increasing681):-->682returnIndex.slice_indexer(self,start,end,step)684mask=np.array(True)685in_index=TrueFile ~/work/pandas/pandas/pandas/core/indexes/base.py:6662, inIndex.slice_indexer(self, start, end, step)6618defslice_indexer(6619self,6620start:Hashable|None=None,6621end:Hashable|None=None,6622step:int|None=None,6623)->slice:6624"""6625     Compute the slice indexer for input labels and step.6626   (...)6660     slice(1, 3, None)6661     """->6662start_slice,end_slice=self.slice_locs(start,end,step=step)6664# return a slice6665ifnotis_scalar(start_slice):File ~/work/pandas/pandas/pandas/core/indexes/base.py:6879, inIndex.slice_locs(self, start, end, step)6877start_slice=None6878ifstartisnotNone:->6879start_slice=self.get_slice_bound(start,"left")6880ifstart_sliceisNone:6881start_slice=0File ~/work/pandas/pandas/pandas/core/indexes/base.py:6794, inIndex.get_slice_bound(self, label, side)6790original_label=label6792# For datetime indices label may be a string that has to be converted6793# to datetime boundary according to its resolution.->6794label=self._maybe_cast_slice_bound(label,side)6796# we need to look up the label6797try:File ~/work/pandas/pandas/pandas/core/indexes/datetimes.py:642, inDatetimeIndex._maybe_cast_slice_bound(self, label, side)637ifisinstance(label,dt.date)andnotisinstance(label,dt.datetime):638# Pandas supports slicing with dates, treated as datetimes at midnight.639# https://github.com/pandas-dev/pandas/issues/31501640label=Timestamp(label).to_pydatetime()-->642label=super()._maybe_cast_slice_bound(label,side)643self._data._assert_tzawareness_compat(label)644returnTimestamp(label)File ~/work/pandas/pandas/pandas/core/indexes/datetimelike.py:378, inDatetimeIndexOpsMixin._maybe_cast_slice_bound(self, label, side)376returnlowerifside=="left"elseupper377elifnotisinstance(label,self._data._recognized_scalars):-->378self._raise_invalid_indexer("slice",label)380returnlabelFile ~/work/pandas/pandas/pandas/core/indexes/base.py:4301, inIndex._raise_invalid_indexer(self, form, key, reraise)4299ifreraiseisnotlib.no_default:4300raiseTypeError(msg)fromreraise->4301raiseTypeError(msg)TypeError: cannot do slice indexing on DatetimeIndex with these indexers [2] of type int

String likes in slicingcan be convertible to the type of the index and lead to natural slicing.

In [48]:dfl.loc['20130102':'20130104']Out[48]:                   A         B         C         D2013-01-02  0.357021 -0.674600 -1.776904 -0.9689142013-01-03 -1.294524  0.413738  0.276662 -0.4720352013-01-04 -0.013960 -0.362543 -0.006154 -0.923061

pandas provides a suite of methods in order to havepurely label based indexing. This is a strict inclusion based protocol.Every label asked for must be in the index, or aKeyError will be raised.When slicing, both the start boundAND the stop bound areincluded, if present in the index.Integers are valid labels, but they refer to the labeland not the position.

The.loc attribute is the primary access method. The following are valid inputs:

  • A single label, e.g.5 or'a' (Note that5 is interpreted as alabel of the index. This use isnot an integer position along the index.).

  • A list or array of labels['a','b','c'].

  • A slice object with labels'a':'f' (Note that contrary to usual Pythonslices,both the start and the stop are included, when present in theindex! SeeSlicing with labels.

  • A boolean array.

  • Acallable, seeSelection By Callable.

In [49]:s1=pd.Series(np.random.randn(6),index=list('abcdef'))In [50]:s1Out[50]:a    1.431256b    1.340309c   -1.170299d   -0.226169e    0.410835f    0.813850dtype: float64In [51]:s1.loc['c':]Out[51]:c   -1.170299d   -0.226169e    0.410835f    0.813850dtype: float64In [52]:s1.loc['b']Out[52]:1.3403088497993827

Note that setting works as well:

In [53]:s1.loc['c':]=0In [54]:s1Out[54]:a    1.431256b    1.340309c    0.000000d    0.000000e    0.000000f    0.000000dtype: float64

With a DataFrame:

In [55]:df1=pd.DataFrame(np.random.randn(6,4),   ....:index=list('abcdef'),   ....:columns=list('ABCD'))   ....:In [56]:df1Out[56]:          A         B         C         Da  0.132003 -0.827317 -0.076467 -1.187678b  1.130127 -1.436737 -1.413681  1.607920c  1.024180  0.569605  0.875906 -2.211372d  0.974466 -2.006747 -0.410001 -0.078638e  0.545952 -1.219217 -1.226825  0.769804f -1.281247 -0.727707 -0.121306 -0.097883In [57]:df1.loc[['a','b','d'],:]Out[57]:          A         B         C         Da  0.132003 -0.827317 -0.076467 -1.187678b  1.130127 -1.436737 -1.413681  1.607920d  0.974466 -2.006747 -0.410001 -0.078638

Accessing via label slices:

In [58]:df1.loc['d':,'A':'C']Out[58]:          A         B         Cd  0.974466 -2.006747 -0.410001e  0.545952 -1.219217 -1.226825f -1.281247 -0.727707 -0.121306

For getting a cross section using a label (equivalent todf.xs('a')):

In [59]:df1.loc['a']Out[59]:A    0.132003B   -0.827317C   -0.076467D   -1.187678Name: a, dtype: float64

For getting values with a boolean array:

In [60]:df1.loc['a']>0Out[60]:A     TrueB    FalseC    FalseD    FalseName: a, dtype: boolIn [61]:df1.loc[:,df1.loc['a']>0]Out[61]:          Aa  0.132003b  1.130127c  1.024180d  0.974466e  0.545952f -1.281247

NA values in a boolean array propagate asFalse:

In [62]:mask=pd.array([True,False,True,False,pd.NA,False],dtype="boolean")In [63]:maskOut[63]:<BooleanArray>[True, False, True, False, <NA>, False]Length: 6, dtype: booleanIn [64]:df1[mask]Out[64]:          A         B         C         Da  0.132003 -0.827317 -0.076467 -1.187678c  1.024180  0.569605  0.875906 -2.211372

For getting a value explicitly:

# this is also equivalent to ``df1.at['a','A']``In [65]:df1.loc['a','A']Out[65]:0.13200317033032932

Slicing with labels#

When using.loc with slices, if both the start and the stop labels arepresent in the index, then elementslocated between the two (including them)are returned:

In [66]:s=pd.Series(list('abcde'),index=[0,3,2,5,4])In [67]:s.loc[3:5]Out[67]:3    b2    c5    ddtype: object

If at least one of the two is absent, but the index is sorted, and can becompared against start and stop labels, then slicing will still work asexpected, by selecting labels whichrank between the two:

In [68]:s.sort_index()Out[68]:0    a2    c3    b4    e5    ddtype: objectIn [69]:s.sort_index().loc[1:6]Out[69]:2    c3    b4    e5    ddtype: object

However, if at least one of the two is absentand the index is not sorted, anerror will be raised (since doing otherwise would be computationally expensive,as well as potentially ambiguous for mixed type indexes). For instance, in theabove example,s.loc[1:6] would raiseKeyError.

For the rationale behind this behavior, seeEndpoints are inclusive.

In [70]:s=pd.Series(list('abcdef'),index=[0,3,2,5,4,2])In [71]:s.loc[3:5]Out[71]:3    b2    c5    ddtype: object

Also, if the index has duplicate labelsand either the start or the stop label is duplicated,an error will be raised. For instance, in the above example,s.loc[2:5] would raise aKeyError.

For more information about duplicate labels, seeDuplicate Labels.

Selection by position#

Warning

Whether a copy or a reference is returned for a setting operation, may depend on the context.This is sometimes calledchainedassignment and should be avoided.SeeReturning a View versus Copy.

pandas provides a suite of methods in order to getpurely integer based indexing. The semantics follow closely Python and NumPy slicing. These are0-based indexing. When slicing, the start bound isincluded, while the upper bound isexcluded. Trying to use a non-integer, even avalid label will raise anIndexError.

The.iloc attribute is the primary access method. The following are valid inputs:

  • An integer e.g.5.

  • A list or array of integers[4,3,0].

  • A slice object with ints1:7.

  • A boolean array.

  • Acallable, seeSelection By Callable.

  • A tuple of row (and column) indexes, whose elements are one of theabove types.

In [72]:s1=pd.Series(np.random.randn(5),index=list(range(0,10,2)))In [73]:s1Out[73]:0    0.6957752    0.3417344    0.9597266   -1.1103368   -0.619976dtype: float64In [74]:s1.iloc[:3]Out[74]:0    0.6957752    0.3417344    0.959726dtype: float64In [75]:s1.iloc[3]Out[75]:-1.110336102891167

Note that setting works as well:

In [76]:s1.iloc[:3]=0In [77]:s1Out[77]:0    0.0000002    0.0000004    0.0000006   -1.1103368   -0.619976dtype: float64

With a DataFrame:

In [78]:df1=pd.DataFrame(np.random.randn(6,4),   ....:index=list(range(0,12,2)),   ....:columns=list(range(0,8,2)))   ....:In [79]:df1Out[79]:           0         2         4         60   0.149748 -0.732339  0.687738  0.1764442   0.403310 -0.154951  0.301624 -2.1798614  -1.369849 -0.954208  1.462696 -1.7431616  -0.826591 -0.345352  1.314232  0.6905798   0.995761  2.396780  0.014871  3.35742710 -0.317441 -1.236269  0.896171 -0.487602

Select via integer slicing:

In [80]:df1.iloc[:3]Out[80]:          0         2         4         60  0.149748 -0.732339  0.687738  0.1764442  0.403310 -0.154951  0.301624 -2.1798614 -1.369849 -0.954208  1.462696 -1.743161In [81]:df1.iloc[1:5,2:4]Out[81]:          4         62  0.301624 -2.1798614  1.462696 -1.7431616  1.314232  0.6905798  0.014871  3.357427

Select via integer list:

In [82]:df1.iloc[[1,3,5],[1,3]]Out[82]:           2         62  -0.154951 -2.1798616  -0.345352  0.69057910 -1.236269 -0.487602
In [83]:df1.iloc[1:3,:]Out[83]:          0         2         4         62  0.403310 -0.154951  0.301624 -2.1798614 -1.369849 -0.954208  1.462696 -1.743161
In [84]:df1.iloc[:,1:3]Out[84]:           2         40  -0.732339  0.6877382  -0.154951  0.3016244  -0.954208  1.4626966  -0.345352  1.3142328   2.396780  0.01487110 -1.236269  0.896171
# this is also equivalent to ``df1.iat[1,1]``In [85]:df1.iloc[1,1]Out[85]:-0.1549507744249032

For getting a cross section using an integer position (equiv todf.xs(1)):

In [86]:df1.iloc[1]Out[86]:0    0.4033102   -0.1549514    0.3016246   -2.179861Name: 2, dtype: float64

Out of range slice indexes are handled gracefully just as in Python/NumPy.

# these are allowed in Python/NumPy.In [87]:x=list('abcdef')In [88]:xOut[88]:['a', 'b', 'c', 'd', 'e', 'f']In [89]:x[4:10]Out[89]:['e', 'f']In [90]:x[8:10]Out[90]:[]In [91]:s=pd.Series(x)In [92]:sOut[92]:0    a1    b2    c3    d4    e5    fdtype: objectIn [93]:s.iloc[4:10]Out[93]:4    e5    fdtype: objectIn [94]:s.iloc[8:10]Out[94]:Series([], dtype: object)

Note that using slices that go out of bounds can result inan empty axis (e.g. an empty DataFrame being returned).

In [95]:dfl=pd.DataFrame(np.random.randn(5,2),columns=list('AB'))In [96]:dflOut[96]:          A         B0 -0.082240 -2.1829371  0.380396  0.0848442  0.432390  1.5199703 -0.493662  0.6001784  0.274230  0.132885In [97]:dfl.iloc[:,2:3]Out[97]:Empty DataFrameColumns: []Index: [0, 1, 2, 3, 4]In [98]:dfl.iloc[:,1:3]Out[98]:          B0 -2.1829371  0.0848442  1.5199703  0.6001784  0.132885In [99]:dfl.iloc[4:6]Out[99]:         A         B4  0.27423  0.132885

A single indexer that is out of bounds will raise anIndexError.A list of indexers where any element is out of bounds will raise anIndexError.

In [100]:dfl.iloc[[4,5,6]]---------------------------------------------------------------------------IndexErrorTraceback (most recent call last)File ~/work/pandas/pandas/pandas/core/indexing.py:1714, in_iLocIndexer._get_list_axis(self, key, axis)1713try:->1714returnself.obj._take_with_is_copy(key,axis=axis)1715exceptIndexErroraserr:1716# re-raise with different error message, e.g. test_getitem_ndarray_3dFile ~/work/pandas/pandas/pandas/core/generic.py:4153, inNDFrame._take_with_is_copy(self, indices, axis)4144"""4145 Internal version of the `take` method that sets the `_is_copy`4146 attribute to keep track of the parent dataframe (using in indexing   (...)4151 See the docstring of `take` for full explanation of the parameters.4152 """->4153result=self.take(indices=indices,axis=axis)4154# Maybe set copy if we didn't actually change the index.File ~/work/pandas/pandas/pandas/core/generic.py:4133, inNDFrame.take(self, indices, axis, **kwargs)4129indices=np.arange(4130indices.start,indices.stop,indices.step,dtype=np.intp4131)->4133new_data=self._mgr.take(4134indices,4135axis=self._get_block_manager_axis(axis),4136verify=True,4137)4138returnself._constructor_from_mgr(new_data,axes=new_data.axes).__finalize__(4139self,method="take"4140)File ~/work/pandas/pandas/pandas/core/internals/managers.py:891, inBaseBlockManager.take(self, indexer, axis, verify)890n=self.shape[axis]-->891indexer=maybe_convert_indices(indexer,n,verify=verify)893new_labels=self.axes[axis].take(indexer)File ~/work/pandas/pandas/pandas/core/indexers/utils.py:282, inmaybe_convert_indices(indices, n, verify)281ifmask.any():-->282raiseIndexError("indices are out-of-bounds")283returnindicesIndexError: indices are out-of-boundsTheaboveexceptionwasthedirectcauseofthefollowingexception:IndexErrorTraceback (most recent call last)CellIn[100],line1---->1dfl.iloc[[4,5,6]]File ~/work/pandas/pandas/pandas/core/indexing.py:1191, in_LocationIndexer.__getitem__(self, key)1189maybe_callable=com.apply_if_callable(key,self.obj)1190maybe_callable=self._check_deprecated_callable_usage(key,maybe_callable)->1191returnself._getitem_axis(maybe_callable,axis=axis)File ~/work/pandas/pandas/pandas/core/indexing.py:1743, in_iLocIndexer._getitem_axis(self, key, axis)1741# a list of integers1742elifis_list_like_indexer(key):->1743returnself._get_list_axis(key,axis=axis)1745# a single integer1746else:1747key=item_from_zerodim(key)File ~/work/pandas/pandas/pandas/core/indexing.py:1717, in_iLocIndexer._get_list_axis(self, key, axis)1714returnself.obj._take_with_is_copy(key,axis=axis)1715exceptIndexErroraserr:1716# re-raise with different error message, e.g. test_getitem_ndarray_3d->1717raiseIndexError("positional indexers are out-of-bounds")fromerrIndexError: positional indexers are out-of-bounds
In [101]:dfl.iloc[:,4]---------------------------------------------------------------------------IndexErrorTraceback (most recent call last)CellIn[101],line1---->1dfl.iloc[:,4]File ~/work/pandas/pandas/pandas/core/indexing.py:1184, in_LocationIndexer.__getitem__(self, key)1182ifself._is_scalar_access(key):1183returnself.obj._get_value(*key,takeable=self._takeable)->1184returnself._getitem_tuple(key)1185else:1186# we by definition only have the 0th axis1187axis=self.axisor0File ~/work/pandas/pandas/pandas/core/indexing.py:1690, in_iLocIndexer._getitem_tuple(self, tup)1689def_getitem_tuple(self,tup:tuple):->1690tup=self._validate_tuple_indexer(tup)1691withsuppress(IndexingError):1692returnself._getitem_lowerdim(tup)File ~/work/pandas/pandas/pandas/core/indexing.py:966, in_LocationIndexer._validate_tuple_indexer(self, key)964fori,kinenumerate(key):965try:-->966self._validate_key(k,i)967exceptValueErroraserr:968raiseValueError(969"Location based indexing can only have "970f"[{self._valid_types}] types"971)fromerrFile ~/work/pandas/pandas/pandas/core/indexing.py:1592, in_iLocIndexer._validate_key(self, key, axis)1590return1591elifis_integer(key):->1592self._validate_integer(key,axis)1593elifisinstance(key,tuple):1594# a tuple should already have been caught by this point1595# so don't treat a tuple as a valid indexer1596raiseIndexingError("Too many indexers")File ~/work/pandas/pandas/pandas/core/indexing.py:1685, in_iLocIndexer._validate_integer(self, key, axis)1683len_axis=len(self.obj._get_axis(axis))1684ifkey>=len_axisorkey<-len_axis:->1685raiseIndexError("single positional indexer is out-of-bounds")IndexError: single positional indexer is out-of-bounds

Selection by callable#

.loc,.iloc, and also[] indexing can accept acallable as indexer.Thecallable must be a function with one argument (the calling Series or DataFrame) that returns valid output for indexing.

Note

For.iloc indexing, returning a tuple from the callable isnot supported, since tuple destructuring for row and column indexesoccursbefore applying callables.

In [102]:df1=pd.DataFrame(np.random.randn(6,4),   .....:index=list('abcdef'),   .....:columns=list('ABCD'))   .....:In [103]:df1Out[103]:          A         B         C         Da -0.023688  2.410179  1.450520  0.206053b -0.251905 -2.213588  1.063327  1.266143c  0.299368 -0.863838  0.408204 -1.048089d -0.025747 -0.988387  0.094055  1.262731e  1.289997  0.082423 -0.055758  0.536580f -0.489682  0.369374 -0.034571 -2.484478In [104]:df1.loc[lambdadf:df['A']>0,:]Out[104]:          A         B         C         Dc  0.299368 -0.863838  0.408204 -1.048089e  1.289997  0.082423 -0.055758  0.536580In [105]:df1.loc[:,lambdadf:['A','B']]Out[105]:          A         Ba -0.023688  2.410179b -0.251905 -2.213588c  0.299368 -0.863838d -0.025747 -0.988387e  1.289997  0.082423f -0.489682  0.369374In [106]:df1.iloc[:,lambdadf:[0,1]]Out[106]:          A         Ba -0.023688  2.410179b -0.251905 -2.213588c  0.299368 -0.863838d -0.025747 -0.988387e  1.289997  0.082423f -0.489682  0.369374In [107]:df1[lambdadf:df.columns[0]]Out[107]:a   -0.023688b   -0.251905c    0.299368d   -0.025747e    1.289997f   -0.489682Name: A, dtype: float64

You can use callable indexing inSeries.

In [108]:df1['A'].loc[lambdas:s>0]Out[108]:c    0.299368e    1.289997Name: A, dtype: float64

Using these methods / indexers, you can chain data selection operationswithout using a temporary variable.

In [109]:bb=pd.read_csv('data/baseball.csv',index_col='id')In [110]:(bb.groupby(['year','team']).sum(numeric_only=True)   .....:.loc[lambdadf:df['r']>100])   .....:Out[110]:           stint    g    ab    r    h  X2b  ...     so   ibb   hbp    sh    sf  gidpyear team                                   ...2007 CIN       6  379   745  101  203   35  ...  127.0  14.0   1.0   1.0  15.0  18.0     DET       5  301  1062  162  283   54  ...  176.0   3.0  10.0   4.0   8.0  28.0     HOU       4  311   926  109  218   47  ...  212.0   3.0   9.0  16.0   6.0  17.0     LAN      11  413  1021  153  293   61  ...  141.0   8.0   9.0   3.0   8.0  29.0     NYN      13  622  1854  240  509  101  ...  310.0  24.0  23.0  18.0  15.0  48.0     SFN       5  482  1305  198  337   67  ...  188.0  51.0   8.0  16.0   6.0  41.0     TEX       2  198   729  115  200   40  ...  140.0   4.0   5.0   2.0   8.0  16.0     TOR       4  459  1408  187  378   96  ...  265.0  16.0  12.0   4.0  16.0  38.0[8 rows x 18 columns]

Combining positional and label-based indexing#

If you wish to get the 0th and the 2nd elements from the index in the ‘A’ column, you can do:

In [111]:dfd=pd.DataFrame({'A':[1,2,3],   .....:'B':[4,5,6]},   .....:index=list('abc'))   .....:In [112]:dfdOut[112]:   A  Ba  1  4b  2  5c  3  6In [113]:dfd.loc[dfd.index[[0,2]],'A']Out[113]:a    1c    3Name: A, dtype: int64

This can also be expressed using.iloc, by explicitly getting locations on the indexers, and usingpositional indexing to select things.

In [114]:dfd.iloc[[0,2],dfd.columns.get_loc('A')]Out[114]:a    1c    3Name: A, dtype: int64

For gettingmultiple indexers, using.get_indexer:

In [115]:dfd.iloc[[0,2],dfd.columns.get_indexer(['A','B'])]Out[115]:   A  Ba  1  4c  3  6

Reindexing#

The idiomatic way to achieve selecting potentially not-found elements is via.reindex(). See also the section onreindexing.

In [116]:s=pd.Series([1,2,3])In [117]:s.reindex([1,2,3])Out[117]:1    2.02    3.03    NaNdtype: float64

Alternatively, if you want to select onlyvalid keys, the following is idiomatic and efficient; it is guaranteed to preserve the dtype of the selection.

In [118]:labels=[1,2,3]In [119]:s.loc[s.index.intersection(labels)]Out[119]:1    22    3dtype: int64

Having a duplicated index will raise for a.reindex():

In [120]:s=pd.Series(np.arange(4),index=['a','a','b','c'])In [121]:labels=['c','d']In [122]:s.reindex(labels)---------------------------------------------------------------------------ValueErrorTraceback (most recent call last)CellIn[122],line1---->1s.reindex(labels)File ~/work/pandas/pandas/pandas/core/series.py:5153, inSeries.reindex(self, index, axis, method, copy, level, fill_value, limit, tolerance)5136@doc(5137NDFrame.reindex,# type: ignore[has-type]5138klass=_shared_doc_kwargs["klass"],(...)5151tolerance=None,5152)->Series:->5153returnsuper().reindex(5154index=index,5155method=method,5156copy=copy,5157level=level,5158fill_value=fill_value,5159limit=limit,5160tolerance=tolerance,5161)File ~/work/pandas/pandas/pandas/core/generic.py:5610, inNDFrame.reindex(self, labels, index, columns, axis, method, copy, level, fill_value, limit, tolerance)5607returnself._reindex_multi(axes,copy,fill_value)5609# perform the reindex on the axes->5610returnself._reindex_axes(5611axes,level,limit,tolerance,method,fill_value,copy5612).__finalize__(self,method="reindex")File ~/work/pandas/pandas/pandas/core/generic.py:5633, inNDFrame._reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy)5630continue5632ax=self._get_axis(a)->5633new_index,indexer=ax.reindex(5634labels,level=level,limit=limit,tolerance=tolerance,method=method5635)5637axis=self._get_axis_number(a)5638obj=obj._reindex_with_indexers(5639{axis:[new_index,indexer]},5640fill_value=fill_value,5641copy=copy,5642allow_dups=False,5643)File ~/work/pandas/pandas/pandas/core/indexes/base.py:4429, inIndex.reindex(self, target, method, level, limit, tolerance)4426raiseValueError("cannot handle a non-unique multi-index!")4427elifnotself.is_unique:4428# GH#42568->4429raiseValueError("cannot reindex on an axis with duplicate labels")4430else:4431indexer,_=self.get_indexer_non_unique(target)ValueError: cannot reindex on an axis with duplicate labels

Generally, you can intersect the desired labels with the currentaxis, and then reindex.

In [123]:s.loc[s.index.intersection(labels)].reindex(labels)Out[123]:c    3.0d    NaNdtype: float64

However, this wouldstill raise if your resulting index is duplicated.

In [124]:labels=['a','d']In [125]:s.loc[s.index.intersection(labels)].reindex(labels)---------------------------------------------------------------------------ValueErrorTraceback (most recent call last)CellIn[125],line1---->1s.loc[s.index.intersection(labels)].reindex(labels)File ~/work/pandas/pandas/pandas/core/series.py:5153, inSeries.reindex(self, index, axis, method, copy, level, fill_value, limit, tolerance)5136@doc(5137NDFrame.reindex,# type: ignore[has-type]5138klass=_shared_doc_kwargs["klass"],(...)5151tolerance=None,5152)->Series:->5153returnsuper().reindex(5154index=index,5155method=method,5156copy=copy,5157level=level,5158fill_value=fill_value,5159limit=limit,5160tolerance=tolerance,5161)File ~/work/pandas/pandas/pandas/core/generic.py:5610, inNDFrame.reindex(self, labels, index, columns, axis, method, copy, level, fill_value, limit, tolerance)5607returnself._reindex_multi(axes,copy,fill_value)5609# perform the reindex on the axes->5610returnself._reindex_axes(5611axes,level,limit,tolerance,method,fill_value,copy5612).__finalize__(self,method="reindex")File ~/work/pandas/pandas/pandas/core/generic.py:5633, inNDFrame._reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy)5630continue5632ax=self._get_axis(a)->5633new_index,indexer=ax.reindex(5634labels,level=level,limit=limit,tolerance=tolerance,method=method5635)5637axis=self._get_axis_number(a)5638obj=obj._reindex_with_indexers(5639{axis:[new_index,indexer]},5640fill_value=fill_value,5641copy=copy,5642allow_dups=False,5643)File ~/work/pandas/pandas/pandas/core/indexes/base.py:4429, inIndex.reindex(self, target, method, level, limit, tolerance)4426raiseValueError("cannot handle a non-unique multi-index!")4427elifnotself.is_unique:4428# GH#42568->4429raiseValueError("cannot reindex on an axis with duplicate labels")4430else:4431indexer,_=self.get_indexer_non_unique(target)ValueError: cannot reindex on an axis with duplicate labels

Selecting random samples#

A random selection of rows or columns from a Series or DataFrame with thesample() method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.

In [126]:s=pd.Series([0,1,2,3,4,5])# When no arguments are passed, returns 1 row.In [127]:s.sample()Out[127]:4    4dtype: int64# One may specify either a number of rows:In [128]:s.sample(n=3)Out[128]:0    04    41    1dtype: int64# Or a fraction of the rows:In [129]:s.sample(frac=0.5)Out[129]:5    53    31    1dtype: int64

By default,sample will return each row at most once, but one can also sample with replacementusing thereplace option:

In [130]:s=pd.Series([0,1,2,3,4,5])# Without replacement (default):In [131]:s.sample(n=6,replace=False)Out[131]:0    01    15    53    32    24    4dtype: int64# With replacement:In [132]:s.sample(n=6,replace=True)Out[132]:0    04    43    32    24    44    4dtype: int64

By default, each row has an equal probability of being selected, but if you want rowsto have different probabilities, you can pass thesample function sampling weights asweights. These weights can be a list, a NumPy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:

In [133]:s=pd.Series([0,1,2,3,4,5])In [134]:example_weights=[0,0,0.2,0.2,0.2,0.4]In [135]:s.sample(n=3,weights=example_weights)Out[135]:5    54    43    3dtype: int64# Weights will be re-normalized automaticallyIn [136]:example_weights2=[0.5,0,0,0,0,0]In [137]:s.sample(n=1,weights=example_weights2)Out[137]:0    0dtype: int64

When applied to a DataFrame, you can use a column of the DataFrame as sampling weights(provided you are sampling rows and not columns) by simply passing the name of the columnas a string.

In [138]:df2=pd.DataFrame({'col1':[9,8,7,6],   .....:'weight_column':[0.5,0.4,0.1,0]})   .....:In [139]:df2.sample(n=3,weights='weight_column')Out[139]:   col1  weight_column1     8            0.40     9            0.52     7            0.1

sample also allows users to sample columns instead of rows using theaxis argument.

In [140]:df3=pd.DataFrame({'col1':[1,2,3],'col2':[2,3,4]})In [141]:df3.sample(n=1,axis=1)Out[141]:   col10     11     22     3

Finally, one can also set a seed forsample’s random number generator using therandom_state argument, which will accept either an integer (as a seed) or a NumPy RandomState object.

In [142]:df4=pd.DataFrame({'col1':[1,2,3],'col2':[2,3,4]})# With a given seed, the sample will always draw the same rows.In [143]:df4.sample(n=2,random_state=2)Out[143]:   col1  col22     3     41     2     3In [144]:df4.sample(n=2,random_state=2)Out[144]:   col1  col22     3     41     2     3

Setting with enlargement#

The.loc/[] operations can perform enlargement when setting a non-existent key for that axis.

In theSeries case this is effectively an appending operation.

In [145]:se=pd.Series([1,2,3])In [146]:seOut[146]:0    11    22    3dtype: int64In [147]:se[5]=5.In [148]:seOut[148]:0    1.01    2.02    3.05    5.0dtype: float64

ADataFrame can be enlarged on either axis via.loc.

In [149]:dfi=pd.DataFrame(np.arange(6).reshape(3,2),   .....:columns=['A','B'])   .....:In [150]:dfiOut[150]:   A  B0  0  11  2  32  4  5In [151]:dfi.loc[:,'C']=dfi.loc[:,'A']In [152]:dfiOut[152]:   A  B  C0  0  1  01  2  3  22  4  5  4

This is like anappend operation on theDataFrame.

In [153]:dfi.loc[3]=5In [154]:dfiOut[154]:   A  B  C0  0  1  01  2  3  22  4  5  43  5  5  5

Fast scalar value getting and setting#

Since indexing with[] must handle a lot of cases (single-label access,slicing, boolean indexing, etc.), it has a bit of overhead in order to figureout what you’re asking for. If you only want to access a scalar value, thefastest way is to use theat andiat methods, which are implemented onall of the data structures.

Similarly toloc,at provideslabel based scalar lookups, while,iat providesinteger based lookups analogously toiloc

In [155]:s.iat[5]Out[155]:5In [156]:df.at[dates[5],'A']Out[156]:0.1136484096888855In [157]:df.iat[3,0]Out[157]:-0.7067711336300845

You can also set using these same indexers.

In [158]:df.at[dates[5],'E']=7In [159]:df.iat[3,0]=7

at may enlarge the object in-place as above if the indexer is missing.

In [160]:df.at[dates[-1]+pd.Timedelta('1 day'),0]=7In [161]:dfOut[161]:                   A         B         C         D    E    02000-01-01 -0.282863  0.469112 -1.509059 -1.135632  NaN  NaN2000-01-02 -0.173215  1.212112  0.119209 -1.044236  NaN  NaN2000-01-03 -2.104569 -0.861849 -0.494929  1.071804  NaN  NaN2000-01-04  7.000000  0.721555 -1.039575  0.271860  NaN  NaN2000-01-05  0.567020 -0.424972  0.276232 -1.087401  NaN  NaN2000-01-06  0.113648 -0.673690 -1.478427  0.524988  7.0  NaN2000-01-07  0.577046  0.404705 -1.715002 -1.039268  NaN  NaN2000-01-08 -1.157892 -0.370647 -1.344312  0.844885  NaN  NaN2000-01-09       NaN       NaN       NaN       NaN  NaN  7.0

Boolean indexing#

Another common operation is the use of boolean vectors to filter the data.The operators are:| foror,& forand, and~ fornot.Thesemust be grouped by using parentheses, since by default Python willevaluate an expression such asdf['A']>2&df['B']<3 asdf['A']>(2&df['B'])<3, while the desired evaluation order is(df['A']>2)&(df['B']<3).

Using a boolean vector to index a Series works exactly as in a NumPy ndarray:

In [162]:s=pd.Series(range(-3,4))In [163]:sOut[163]:0   -31   -22   -13    04    15    26    3dtype: int64In [164]:s[s>0]Out[164]:4    15    26    3dtype: int64In [165]:s[(s<-1)|(s>0.5)]Out[165]:0   -31   -24    15    26    3dtype: int64In [166]:s[~(s<0)]Out[166]:3    04    15    26    3dtype: int64

You may select rows from a DataFrame using a boolean vector the same length asthe DataFrame’s index (for example, something derived from one of the columnsof the DataFrame):

In [167]:df[df['A']>0]Out[167]:                   A         B         C         D    E   02000-01-04  7.000000  0.721555 -1.039575  0.271860  NaN NaN2000-01-05  0.567020 -0.424972  0.276232 -1.087401  NaN NaN2000-01-06  0.113648 -0.673690 -1.478427  0.524988  7.0 NaN2000-01-07  0.577046  0.404705 -1.715002 -1.039268  NaN NaN

List comprehensions and themap method of Series can also be used to producemore complex criteria:

In [168]:df2=pd.DataFrame({'a':['one','one','two','three','two','one','six'],   .....:'b':['x','y','y','x','y','x','x'],   .....:'c':np.random.randn(7)})   .....:# only want 'two' or 'three'In [169]:criterion=df2['a'].map(lambdax:x.startswith('t'))In [170]:df2[criterion]Out[170]:       a  b         c2    two  y  0.0412903  three  x  0.3617194    two  y -0.238075# equivalent but slowerIn [171]:df2[[x.startswith('t')forxindf2['a']]]Out[171]:       a  b         c2    two  y  0.0412903  three  x  0.3617194    two  y -0.238075# Multiple criteriaIn [172]:df2[criterion&(df2['b']=='x')]Out[172]:       a  b         c3  three  x  0.361719

With the choice methodsSelection by Label,Selection by Position,andAdvanced Indexing you may select along more than one axis using boolean vectors combined with other indexing expressions.

In [173]:df2.loc[criterion&(df2['b']=='x'),'b':'c']Out[173]:   b         c3  x  0.361719

Warning

iloc supports two kinds of boolean indexing. If the indexer is a booleanSeries,an error will be raised. For instance, in the following example,df.iloc[s.values,1] is ok.The boolean indexer is an array. Butdf.iloc[s,1] would raiseValueError.

In [174]:df=pd.DataFrame([[1,2],[3,4],[5,6]],   .....:index=list('abc'),   .....:columns=['A','B'])   .....:In [175]:s=(df['A']>2)In [176]:sOut[176]:a    Falseb     Truec     TrueName: A, dtype: boolIn [177]:df.loc[s,'B']Out[177]:b    4c    6Name: B, dtype: int64In [178]:df.iloc[s.values,1]Out[178]:b    4c    6Name: B, dtype: int64

Indexing with isin#

Consider theisin() method ofSeries, which returns a booleanvector that is true wherever theSeries elements exist in the passed list.This allows you to select rows where one or more columns have values you want:

In [179]:s=pd.Series(np.arange(5),index=np.arange(5)[::-1],dtype='int64')In [180]:sOut[180]:4    03    12    21    30    4dtype: int64In [181]:s.isin([2,4,6])Out[181]:4    False3    False2     True1    False0     Truedtype: boolIn [182]:s[s.isin([2,4,6])]Out[182]:2    20    4dtype: int64

The same method is available forIndex objects and is useful for the caseswhen you don’t know which of the sought labels are in fact present:

In [183]:s[s.index.isin([2,4,6])]Out[183]:4    02    2dtype: int64# compare it to the followingIn [184]:s.reindex([2,4,6])Out[184]:2    2.04    0.06    NaNdtype: float64

In addition to that,MultiIndex allows selecting a separate level to usein the membership check:

In [185]:s_mi=pd.Series(np.arange(6),   .....:index=pd.MultiIndex.from_product([[0,1],['a','b','c']]))   .....:In [186]:s_miOut[186]:0  a    0   b    1   c    21  a    3   b    4   c    5dtype: int64In [187]:s_mi.iloc[s_mi.index.isin([(1,'a'),(2,'b'),(0,'c')])]Out[187]:0  c    21  a    3dtype: int64In [188]:s_mi.iloc[s_mi.index.isin(['a','c','e'],level=1)]Out[188]:0  a    0   c    21  a    3   c    5dtype: int64

DataFrame also has anisin() method. When callingisin, pass a set ofvalues as either an array or dict. If values is an array,isin returnsa DataFrame of booleans that is the same shape as the original DataFrame, with Truewherever the element is in the sequence of values.

In [189]:df=pd.DataFrame({'vals':[1,2,3,4],'ids':['a','b','f','n'],   .....:'ids2':['a','n','c','n']})   .....:In [190]:values=['a','b',1,3]In [191]:df.isin(values)Out[191]:    vals    ids   ids20   True   True   True1  False   True  False2   True  False  False3  False  False  False

Oftentimes you’ll want to match certain values with certain columns.Just make values adict where the key is the column, and the value isa list of items you want to check for.

In [192]:values={'ids':['a','b'],'vals':[1,3]}In [193]:df.isin(values)Out[193]:    vals    ids   ids20   True   True  False1  False   True  False2   True  False  False3  False  False  False

To return the DataFrame of booleans where the values arenot in the original DataFrame,use the~ operator:

In [194]:values={'ids':['a','b'],'vals':[1,3]}In [195]:~df.isin(values)Out[195]:    vals    ids  ids20  False  False  True1   True  False  True2  False   True  True3   True   True  True

Combine DataFrame’sisin with theany() andall() methods toquickly select subsets of your data that meet a given criteria.To select a row where each column meets its own criterion:

In [196]:values={'ids':['a','b'],'ids2':['a','c'],'vals':[1,3]}In [197]:row_mask=df.isin(values).all(1)In [198]:df[row_mask]Out[198]:   vals ids ids20     1   a    a

Thewhere() Method and Masking#

Selecting values from a Series with a boolean vector generally returns asubset of the data. To guarantee that selection output has the same shape asthe original data, you can use thewhere method inSeries andDataFrame.

To return only the selected rows:

In [199]:s[s>0]Out[199]:3    12    21    30    4dtype: int64

To return a Series of the same shape as the original:

In [200]:s.where(s>0)Out[200]:4    NaN3    1.02    2.01    3.00    4.0dtype: float64

Selecting values from a DataFrame with a boolean criterion now also preservesinput data shape.where is used under the hood as the implementation.The code below is equivalent todf.where(df<0).

In [201]:dates=pd.date_range('1/1/2000',periods=8)In [202]:df=pd.DataFrame(np.random.randn(8,4),   .....:index=dates,columns=['A','B','C','D'])   .....:In [203]:df[df<0]Out[203]:                   A         B         C         D2000-01-01 -2.104139 -1.309525       NaN       NaN2000-01-02 -0.352480       NaN -1.192319       NaN2000-01-03 -0.864883       NaN -0.227870       NaN2000-01-04       NaN -1.222082       NaN -1.2332032000-01-05       NaN -0.605656 -1.169184       NaN2000-01-06       NaN -0.948458       NaN -0.6847182000-01-07 -2.670153 -0.114722       NaN -0.0480482000-01-08       NaN       NaN -0.048788 -0.808838

In addition,where takes an optionalother argument for replacement ofvalues where the condition is False, in the returned copy.

In [204]:df.where(df<0,-df)Out[204]:                   A         B         C         D2000-01-01 -2.104139 -1.309525 -0.485855 -0.2451662000-01-02 -0.352480 -0.390389 -1.192319 -1.6558242000-01-03 -0.864883 -0.299674 -0.227870 -0.2810592000-01-04 -0.846958 -1.222082 -0.600705 -1.2332032000-01-05 -0.669692 -0.605656 -1.169184 -0.3424162000-01-06 -0.868584 -0.948458 -2.297780 -0.6847182000-01-07 -2.670153 -0.114722 -0.168904 -0.0480482000-01-08 -0.801196 -1.392071 -0.048788 -0.808838

You may wish to set values based on some boolean criteria.This can be done intuitively like so:

In [205]:s2=s.copy()In [206]:s2[s2<0]=0In [207]:s2Out[207]:4    03    12    21    30    4dtype: int64In [208]:df2=df.copy()In [209]:df2[df2<0]=0In [210]:df2Out[210]:                   A         B         C         D2000-01-01  0.000000  0.000000  0.485855  0.2451662000-01-02  0.000000  0.390389  0.000000  1.6558242000-01-03  0.000000  0.299674  0.000000  0.2810592000-01-04  0.846958  0.000000  0.600705  0.0000002000-01-05  0.669692  0.000000  0.000000  0.3424162000-01-06  0.868584  0.000000  2.297780  0.0000002000-01-07  0.000000  0.000000  0.168904  0.0000002000-01-08  0.801196  1.392071  0.000000  0.000000

where returns a modified copy of the data.

Note

The signature forDataFrame.where() differs fromnumpy.where().Roughlydf1.where(m,df2) is equivalent tonp.where(m,df1,df2).

In [211]:df.where(df<0,-df)==np.where(df<0,df,-df)Out[211]:               A     B     C     D2000-01-01  True  True  True  True2000-01-02  True  True  True  True2000-01-03  True  True  True  True2000-01-04  True  True  True  True2000-01-05  True  True  True  True2000-01-06  True  True  True  True2000-01-07  True  True  True  True2000-01-08  True  True  True  True

Alignment

Furthermore,where aligns the input boolean condition (ndarray or DataFrame),such that partial selection with setting is possible. This is analogous topartial setting via.loc (but on the contents rather than the axis labels).

In [212]:df2=df.copy()In [213]:df2[df2[1:4]>0]=3In [214]:df2Out[214]:                   A         B         C         D2000-01-01 -2.104139 -1.309525  0.485855  0.2451662000-01-02 -0.352480  3.000000 -1.192319  3.0000002000-01-03 -0.864883  3.000000 -0.227870  3.0000002000-01-04  3.000000 -1.222082  3.000000 -1.2332032000-01-05  0.669692 -0.605656 -1.169184  0.3424162000-01-06  0.868584 -0.948458  2.297780 -0.6847182000-01-07 -2.670153 -0.114722  0.168904 -0.0480482000-01-08  0.801196  1.392071 -0.048788 -0.808838

Where can also acceptaxis andlevel parameters to align the input whenperforming thewhere.

In [215]:df2=df.copy()In [216]:df2.where(df2>0,df2['A'],axis='index')Out[216]:                   A         B         C         D2000-01-01 -2.104139 -2.104139  0.485855  0.2451662000-01-02 -0.352480  0.390389 -0.352480  1.6558242000-01-03 -0.864883  0.299674 -0.864883  0.2810592000-01-04  0.846958  0.846958  0.600705  0.8469582000-01-05  0.669692  0.669692  0.669692  0.3424162000-01-06  0.868584  0.868584  2.297780  0.8685842000-01-07 -2.670153 -2.670153  0.168904 -2.6701532000-01-08  0.801196  1.392071  0.801196  0.801196

This is equivalent to (but faster than) the following.

In [217]:df2=df.copy()In [218]:df.apply(lambdax,y:x.where(x>0,y),y=df['A'])Out[218]:                   A         B         C         D2000-01-01 -2.104139 -2.104139  0.485855  0.2451662000-01-02 -0.352480  0.390389 -0.352480  1.6558242000-01-03 -0.864883  0.299674 -0.864883  0.2810592000-01-04  0.846958  0.846958  0.600705  0.8469582000-01-05  0.669692  0.669692  0.669692  0.3424162000-01-06  0.868584  0.868584  2.297780  0.8685842000-01-07 -2.670153 -2.670153  0.168904 -2.6701532000-01-08  0.801196  1.392071  0.801196  0.801196

where can accept a callable as condition andother arguments. The function mustbe with one argument (the calling Series or DataFrame) and that returns valid outputas condition andother argument.

In [219]:df3=pd.DataFrame({'A':[1,2,3],   .....:'B':[4,5,6],   .....:'C':[7,8,9]})   .....:In [220]:df3.where(lambdax:x>4,lambdax:x+10)Out[220]:    A   B  C0  11  14  71  12   5  82  13   6  9

Mask#

mask() is the inverse boolean operation ofwhere.

In [221]:s.mask(s>=0)Out[221]:4   NaN3   NaN2   NaN1   NaN0   NaNdtype: float64In [222]:df.mask(df>=0)Out[222]:                   A         B         C         D2000-01-01 -2.104139 -1.309525       NaN       NaN2000-01-02 -0.352480       NaN -1.192319       NaN2000-01-03 -0.864883       NaN -0.227870       NaN2000-01-04       NaN -1.222082       NaN -1.2332032000-01-05       NaN -0.605656 -1.169184       NaN2000-01-06       NaN -0.948458       NaN -0.6847182000-01-07 -2.670153 -0.114722       NaN -0.0480482000-01-08       NaN       NaN -0.048788 -0.808838

Setting with enlargement conditionally usingnumpy()#

An alternative towhere() is to usenumpy.where().Combined with setting a new column, you can use it to enlarge a DataFrame where thevalues are determined conditionally.

Consider you have two choices to choose from in the following DataFrame. And you want toset a new column color to ‘green’ when the second column has ‘Z’. You can do thefollowing:

In [223]:df=pd.DataFrame({'col1':list('ABBC'),'col2':list('ZZXY')})In [224]:df['color']=np.where(df['col2']=='Z','green','red')In [225]:dfOut[225]:  col1 col2  color0    A    Z  green1    B    Z  green2    B    X    red3    C    Y    red

If you have multiple conditions, you can usenumpy.select() to achieve that. Saycorresponding to three conditions there are three choice of colors, with a fourth coloras a fallback, you can do the following.

In [226]:conditions=[   .....:(df['col2']=='Z')&(df['col1']=='A'),   .....:(df['col2']=='Z')&(df['col1']=='B'),   .....:(df['col1']=='B')   .....:]   .....:In [227]:choices=['yellow','blue','purple']In [228]:df['color']=np.select(conditions,choices,default='black')In [229]:dfOut[229]:  col1 col2   color0    A    Z  yellow1    B    Z    blue2    B    X  purple3    C    Y   black

Thequery() Method#

DataFrame objects have aquery()method that allows selection using an expression.

You can get the value of the frame where columnb has valuesbetween the values of columnsa andc. For example:

In [230]:n=10In [231]:df=pd.DataFrame(np.random.rand(n,3),columns=list('abc'))In [232]:dfOut[232]:          a         b         c0  0.438921  0.118680  0.8636701  0.138138  0.577363  0.6866022  0.595307  0.564592  0.5206303  0.913052  0.926075  0.6161844  0.078718  0.854477  0.8987255  0.076404  0.523211  0.5915386  0.792342  0.216974  0.5640567  0.397890  0.454131  0.9157168  0.074315  0.437913  0.0197949  0.559209  0.502065  0.026437# pure pythonIn [233]:df[(df['a']<df['b'])&(df['b']<df['c'])]Out[233]:          a         b         c1  0.138138  0.577363  0.6866024  0.078718  0.854477  0.8987255  0.076404  0.523211  0.5915387  0.397890  0.454131  0.915716# queryIn [234]:df.query('(a < b) & (b < c)')Out[234]:          a         b         c1  0.138138  0.577363  0.6866024  0.078718  0.854477  0.8987255  0.076404  0.523211  0.5915387  0.397890  0.454131  0.915716

Do the same thing but fall back on a named index if there is no columnwith the namea.

In [235]:df=pd.DataFrame(np.random.randint(n/2,size=(n,2)),columns=list('bc'))In [236]:df.index.name='a'In [237]:dfOut[237]:   b  ca0  0  41  0  12  3  43  4  34  1  45  0  36  0  17  3  48  2  39  1  1In [238]:df.query('a < b and b < c')Out[238]:   b  ca2  3  4

If instead you don’t want to or cannot name your index, you can use the nameindex in your query expression:

In [239]:df=pd.DataFrame(np.random.randint(n,size=(n,2)),columns=list('bc'))In [240]:dfOut[240]:   b  c0  3  11  3  02  5  63  5  24  7  45  0  16  2  57  0  18  6  09  7  9In [241]:df.query('index < b < c')Out[241]:   b  c2  5  6

Note

If the name of your index overlaps with a column name, the column name isgiven precedence. For example,

In [242]:df=pd.DataFrame({'a':np.random.randint(5,size=5)})In [243]:df.index.name='a'In [244]:df.query('a > 2')# uses the column 'a', not the indexOut[244]:   aa1  33  3

You can still use the index in a query expression by using the specialidentifier ‘index’:

In [245]:df.query('index > 2')Out[245]:   aa3  34  2

If for some reason you have a column namedindex, then you can refer tothe index asilevel_0 as well, but at this point you should considerrenaming your columns to something less ambiguous.

MultiIndexquery() Syntax#

You can also use the levels of aDataFrame with aMultiIndex as if they were columns in the frame:

In [246]:n=10In [247]:colors=np.random.choice(['red','green'],size=n)In [248]:foods=np.random.choice(['eggs','ham'],size=n)In [249]:colorsOut[249]:array(['red', 'red', 'red', 'green', 'green', 'green', 'green', 'green',       'green', 'green'], dtype='<U5')In [250]:foodsOut[250]:array(['ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham', 'ham', 'eggs', 'eggs',       'eggs'], dtype='<U4')In [251]:index=pd.MultiIndex.from_arrays([colors,foods],names=['color','food'])In [252]:df=pd.DataFrame(np.random.randn(n,2),index=index)In [253]:dfOut[253]:                   0         1color foodred   ham   0.194889 -0.381994      ham   0.318587  2.089075      eggs -0.728293 -0.090255green eggs -0.748199  1.318931      eggs -2.029766  0.792652      ham   0.461007 -0.542749      ham  -0.305384 -0.479195      eggs  0.095031 -0.270099      eggs -0.707140 -0.773882      eggs  0.229453  0.304418In [254]:df.query('color == "red"')Out[254]:                   0         1color foodred   ham   0.194889 -0.381994      ham   0.318587  2.089075      eggs -0.728293 -0.090255

If the levels of theMultiIndex are unnamed, you can refer to them usingspecial names:

In [255]:df.index.names=[None,None]In [256]:dfOut[256]:                   0         1red   ham   0.194889 -0.381994      ham   0.318587  2.089075      eggs -0.728293 -0.090255green eggs -0.748199  1.318931      eggs -2.029766  0.792652      ham   0.461007 -0.542749      ham  -0.305384 -0.479195      eggs  0.095031 -0.270099      eggs -0.707140 -0.773882      eggs  0.229453  0.304418In [257]:df.query('ilevel_0 == "red"')Out[257]:                 0         1red ham   0.194889 -0.381994    ham   0.318587  2.089075    eggs -0.728293 -0.090255

The convention isilevel_0, which means “index level 0” for the 0th levelof theindex.

query() Use Cases#

A use case forquery() is when you have a collection ofDataFrame objects that have a subset of column names (or indexlevels/names) in common. You can pass the same query to both frameswithouthaving to specify which frame you’re interested in querying

In [258]:df=pd.DataFrame(np.random.rand(n,3),columns=list('abc'))In [259]:dfOut[259]:          a         b         c0  0.224283  0.736107  0.1391681  0.302827  0.657803  0.7138972  0.611185  0.136624  0.9849603  0.195246  0.123436  0.6277124  0.618673  0.371660  0.0479025  0.480088  0.062993  0.1857606  0.568018  0.483467  0.4452897  0.309040  0.274580  0.5871018  0.258993  0.477769  0.3702559  0.550459  0.840870  0.304611In [260]:df2=pd.DataFrame(np.random.rand(n+2,3),columns=df.columns)In [261]:df2Out[261]:           a         b         c0   0.357579  0.229800  0.5960011   0.309059  0.957923  0.9656632   0.123102  0.336914  0.3186163   0.526506  0.323321  0.8608134   0.518736  0.486514  0.3847245   0.190804  0.505723  0.6145336   0.891939  0.623977  0.6766397   0.480559  0.378528  0.4608588   0.420223  0.136404  0.1412959   0.732206  0.419540  0.60467510  0.604466  0.848974  0.89616511  0.589168  0.920046  0.732716In [262]:expr='0.0 <= a <= c <= 0.5'In [263]:map(lambdaframe:frame.query(expr),[df,df2])Out[263]:<map at 0x7fe8c904cca0>

query() Python versus pandas Syntax Comparison#

Full numpy-like syntax:

In [264]:df=pd.DataFrame(np.random.randint(n,size=(n,3)),columns=list('abc'))In [265]:dfOut[265]:   a  b  c0  7  8  91  1  0  72  2  7  23  6  2  24  2  6  35  3  8  26  1  7  27  5  1  58  9  8  09  1  5  0In [266]:df.query('(a < b) & (b < c)')Out[266]:   a  b  c0  7  8  9In [267]:df[(df['a']<df['b'])&(df['b']<df['c'])]Out[267]:   a  b  c0  7  8  9

Slightly nicer by removing the parentheses (comparison operators bind tighterthan& and|):

In [268]:df.query('a < b & b < c')Out[268]:   a  b  c0  7  8  9

Use English instead of symbols:

In [269]:df.query('a < b and b < c')Out[269]:   a  b  c0  7  8  9

Pretty close to how you might write it on paper:

In [270]:df.query('a < b < c')Out[270]:   a  b  c0  7  8  9

Thein andnotin operators#

query() also supports special use of Python’sin andnotin comparison operators, providing a succinct syntax for calling theisin method of aSeries orDataFrame.

# get all rows where columns "a" and "b" have overlapping valuesIn [271]:df=pd.DataFrame({'a':list('aabbccddeeff'),'b':list('aaaabbbbcccc'),   .....:'c':np.random.randint(5,size=12),   .....:'d':np.random.randint(9,size=12)})   .....:In [272]:dfOut[272]:    a  b  c  d0   a  a  2  61   a  a  4  72   b  a  1  63   b  a  2  14   c  b  3  65   c  b  0  26   d  b  3  37   d  b  2  18   e  c  4  39   e  c  2  010  f  c  0  611  f  c  1  2In [273]:df.query('a in b')Out[273]:   a  b  c  d0  a  a  2  61  a  a  4  72  b  a  1  63  b  a  2  14  c  b  3  65  c  b  0  2# How you'd do it in pure PythonIn [274]:df[df['a'].isin(df['b'])]Out[274]:   a  b  c  d0  a  a  2  61  a  a  4  72  b  a  1  63  b  a  2  14  c  b  3  65  c  b  0  2In [275]:df.query('a not in b')Out[275]:    a  b  c  d6   d  b  3  37   d  b  2  18   e  c  4  39   e  c  2  010  f  c  0  611  f  c  1  2# pure PythonIn [276]:df[~df['a'].isin(df['b'])]Out[276]:    a  b  c  d6   d  b  3  37   d  b  2  18   e  c  4  39   e  c  2  010  f  c  0  611  f  c  1  2

You can combine this with other expressions for very succinct queries:

# rows where cols a and b have overlapping values# and col c's values are less than col d'sIn [277]:df.query('a in b and c < d')Out[277]:   a  b  c  d0  a  a  2  61  a  a  4  72  b  a  1  64  c  b  3  65  c  b  0  2# pure PythonIn [278]:df[df['b'].isin(df['a'])&(df['c']<df['d'])]Out[278]:    a  b  c  d0   a  a  2  61   a  a  4  72   b  a  1  64   c  b  3  65   c  b  0  210  f  c  0  611  f  c  1  2

Note

Note thatin andnotin are evaluated in Python, sincenumexprhas no equivalent of this operation. However,only thein/notinexpression itself is evaluated in vanilla Python. For example, in theexpression

df.query('a in b + c + d')

(b+c+d) is evaluated bynumexpr andthen theinoperation is evaluated in plain Python. In general, any operations that canbe evaluated usingnumexpr will be.

Special use of the== operator withlist objects#

Comparing alist of values to a column using==/!= works similarlytoin/notin.

In [279]:df.query('b == ["a", "b", "c"]')Out[279]:    a  b  c  d0   a  a  2  61   a  a  4  72   b  a  1  63   b  a  2  14   c  b  3  65   c  b  0  26   d  b  3  37   d  b  2  18   e  c  4  39   e  c  2  010  f  c  0  611  f  c  1  2# pure PythonIn [280]:df[df['b'].isin(["a","b","c"])]Out[280]:    a  b  c  d0   a  a  2  61   a  a  4  72   b  a  1  63   b  a  2  14   c  b  3  65   c  b  0  26   d  b  3  37   d  b  2  18   e  c  4  39   e  c  2  010  f  c  0  611  f  c  1  2In [281]:df.query('c == [1, 2]')Out[281]:    a  b  c  d0   a  a  2  62   b  a  1  63   b  a  2  17   d  b  2  19   e  c  2  011  f  c  1  2In [282]:df.query('c != [1, 2]')Out[282]:    a  b  c  d1   a  a  4  74   c  b  3  65   c  b  0  26   d  b  3  38   e  c  4  310  f  c  0  6# using in/not inIn [283]:df.query('[1, 2] in c')Out[283]:    a  b  c  d0   a  a  2  62   b  a  1  63   b  a  2  17   d  b  2  19   e  c  2  011  f  c  1  2In [284]:df.query('[1, 2] not in c')Out[284]:    a  b  c  d1   a  a  4  74   c  b  3  65   c  b  0  26   d  b  3  38   e  c  4  310  f  c  0  6# pure PythonIn [285]:df[df['c'].isin([1,2])]Out[285]:    a  b  c  d0   a  a  2  62   b  a  1  63   b  a  2  17   d  b  2  19   e  c  2  011  f  c  1  2

Boolean operators#

You can negate boolean expressions with the wordnot or the~ operator.

In [286]:df=pd.DataFrame(np.random.rand(n,3),columns=list('abc'))In [287]:df['bools']=np.random.rand(len(df))>0.5In [288]:df.query('~bools')Out[288]:          a         b         c  bools2  0.697753  0.212799  0.329209  False7  0.275396  0.691034  0.826619  False8  0.190649  0.558748  0.262467  FalseIn [289]:df.query('not bools')Out[289]:          a         b         c  bools2  0.697753  0.212799  0.329209  False7  0.275396  0.691034  0.826619  False8  0.190649  0.558748  0.262467  FalseIn [290]:df.query('not bools')==df[~df['bools']]Out[290]:      a     b     c  bools2  True  True  True   True7  True  True  True   True8  True  True  True   True

Of course, expressions can be arbitrarily complex too:

# short query syntaxIn [291]:shorter=df.query('a < b < c and (not bools) or bools > 2')# equivalent in pure PythonIn [292]:longer=df[(df['a']<df['b'])   .....:&(df['b']<df['c'])   .....:&(~df['bools'])   .....:|(df['bools']>2)]   .....:In [293]:shorterOut[293]:          a         b         c  bools7  0.275396  0.691034  0.826619  FalseIn [294]:longerOut[294]:          a         b         c  bools7  0.275396  0.691034  0.826619  FalseIn [295]:shorter==longerOut[295]:      a     b     c  bools7  True  True  True   True

Performance ofquery()#

DataFrame.query() usingnumexpr is slightly faster than Python forlarge frames.

../_images/query-perf.png

You will only see the performance benefits of using thenumexpr enginewithDataFrame.query() if your frame has more than approximately 100,000rows.

This plot was created using aDataFrame with 3 columns each containingfloating point values generated usingnumpy.random.randn().

In [296]:df=pd.DataFrame(np.random.randn(8,4),   .....:index=dates,columns=['A','B','C','D'])   .....:In [297]:df2=df.copy()

Duplicate data#

If you want to identify and remove duplicate rows in a DataFrame, there aretwo methods that will help:duplicated anddrop_duplicates. Eachtakes as an argument the columns to use to identify duplicated rows.

  • duplicated returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.

  • drop_duplicates removes duplicate rows.

By default, the first observed row of a duplicate set is considered unique, buteach method has akeep parameter to specify targets to be kept.

  • keep='first' (default): mark / drop duplicates except for the first occurrence.

  • keep='last': mark / drop duplicates except for the last occurrence.

  • keep=False: mark / drop all duplicates.

In [298]:df2=pd.DataFrame({'a':['one','one','two','two','two','three','four'],   .....:'b':['x','y','x','y','x','x','x'],   .....:'c':np.random.randn(7)})   .....:In [299]:df2Out[299]:       a  b         c0    one  x -1.0671371    one  y  0.3095002    two  x -0.2110563    two  y -1.8420234    two  x -0.3908205  three  x -1.9644756   four  x  1.298329In [300]:df2.duplicated('a')Out[300]:0    False1     True2    False3     True4     True5    False6    Falsedtype: boolIn [301]:df2.duplicated('a',keep='last')Out[301]:0     True1    False2     True3     True4    False5    False6    Falsedtype: boolIn [302]:df2.duplicated('a',keep=False)Out[302]:0     True1     True2     True3     True4     True5    False6    Falsedtype: boolIn [303]:df2.drop_duplicates('a')Out[303]:       a  b         c0    one  x -1.0671372    two  x -0.2110565  three  x -1.9644756   four  x  1.298329In [304]:df2.drop_duplicates('a',keep='last')Out[304]:       a  b         c1    one  y  0.3095004    two  x -0.3908205  three  x -1.9644756   four  x  1.298329In [305]:df2.drop_duplicates('a',keep=False)Out[305]:       a  b         c5  three  x -1.9644756   four  x  1.298329

Also, you can pass a list of columns to identify duplications.

In [306]:df2.duplicated(['a','b'])Out[306]:0    False1    False2    False3    False4     True5    False6    Falsedtype: boolIn [307]:df2.drop_duplicates(['a','b'])Out[307]:       a  b         c0    one  x -1.0671371    one  y  0.3095002    two  x -0.2110563    two  y -1.8420235  three  x -1.9644756   four  x  1.298329

To drop duplicates by index value, useIndex.duplicated then perform slicing.The same set of options are available for thekeep parameter.

In [308]:df3=pd.DataFrame({'a':np.arange(6),   .....:'b':np.random.randn(6)},   .....:index=['a','a','b','c','b','a'])   .....:In [309]:df3Out[309]:   a         ba  0  1.440455a  1  2.456086b  2  1.038402c  3 -0.894409b  4  0.683536a  5  3.082764In [310]:df3.index.duplicated()Out[310]:array([False,  True, False, False,  True,  True])In [311]:df3[~df3.index.duplicated()]Out[311]:   a         ba  0  1.440455b  2  1.038402c  3 -0.894409In [312]:df3[~df3.index.duplicated(keep='last')]Out[312]:   a         bc  3 -0.894409b  4  0.683536a  5  3.082764In [313]:df3[~df3.index.duplicated(keep=False)]Out[313]:   a         bc  3 -0.894409

Dictionary-likeget() method#

Each of Series or DataFrame have aget method which can return adefault value.

In [314]:s=pd.Series([1,2,3],index=['a','b','c'])In [315]:s.get('a')# equivalent to s['a']Out[315]:1In [316]:s.get('x',default=-1)Out[316]:-1

Looking up values by index/column labels#

Sometimes you want to extract a set of values given a sequence of row labelsand column labels, this can be achieved bypandas.factorize and NumPy indexing.For instance:

In [317]:df=pd.DataFrame({'col':["A","A","B","B"],   .....:'A':[80,23,np.nan,22],   .....:'B':[80,55,76,67]})   .....:In [318]:dfOut[318]:  col     A   B0   A  80.0  801   A  23.0  552   B   NaN  763   B  22.0  67In [319]:idx,cols=pd.factorize(df['col'])In [320]:df.reindex(cols,axis=1).to_numpy()[np.arange(len(df)),idx]Out[320]:array([80., 23., 76., 67.])

Formerly this could be achieved with the dedicatedDataFrame.lookup methodwhich was deprecated in version 1.2.0 and removed in version 2.0.0.

Index objects#

The pandasIndex class and its subclasses can be viewed asimplementing anordered multiset. Duplicates are allowed.

Index also provides the infrastructure necessary forlookups, data alignment, and reindexing. The easiest way to create anIndex directly is to pass alist or other sequence toIndex:

In [321]:index=pd.Index(['e','d','a','b'])In [322]:indexOut[322]:Index(['e', 'd', 'a', 'b'], dtype='object')In [323]:'d'inindexOut[323]:True

or using numbers:

In [324]:index=pd.Index([1,5,12])In [325]:indexOut[325]:Index([1, 5, 12], dtype='int64')In [326]:5inindexOut[326]:True

If no dtype is given,Index tries to infer the dtype from the data.It is also possible to give an explicit dtype when instantiating anIndex:

In [327]:index=pd.Index(['e','d','a','b'],dtype="string")In [328]:indexOut[328]:Index(['e', 'd', 'a', 'b'], dtype='string')In [329]:index=pd.Index([1,5,12],dtype="int8")In [330]:indexOut[330]:Index([1, 5, 12], dtype='int8')In [331]:index=pd.Index([1,5,12],dtype="float32")In [332]:indexOut[332]:Index([1.0, 5.0, 12.0], dtype='float32')

You can also pass aname to be stored in the index:

In [333]:index=pd.Index(['e','d','a','b'],name='something')In [334]:index.nameOut[334]:'something'

The name, if set, will be shown in the console display:

In [335]:index=pd.Index(list(range(5)),name='rows')In [336]:columns=pd.Index(['A','B','C'],name='cols')In [337]:df=pd.DataFrame(np.random.randn(5,3),index=index,columns=columns)In [338]:dfOut[338]:cols         A         B         Crows0     1.295989 -1.051694  1.3404291    -2.366110  0.428241  0.3872752     0.433306  0.929548  0.2780943     2.154730 -0.315628  0.2642234     1.126818  1.132290 -0.353310In [339]:df['A']Out[339]:rows0    1.2959891   -2.3661102    0.4333063    2.1547304    1.126818Name: A, dtype: float64

Setting metadata#

Indexes are “mostly immutable”, but it is possible to set and change theirname attribute. You can use therename,set_names to set these attributesdirectly, and they default to returning a copy.

SeeAdvanced Indexing for usage of MultiIndexes.

In [340]:ind=pd.Index([1,2,3])In [341]:ind.rename("apple")Out[341]:Index([1, 2, 3], dtype='int64', name='apple')In [342]:indOut[342]:Index([1, 2, 3], dtype='int64')In [343]:ind=ind.set_names(["apple"])In [344]:ind.name="bob"In [345]:indOut[345]:Index([1, 2, 3], dtype='int64', name='bob')

set_names,set_levels, andset_codes also take an optionallevel argument

In [346]:index=pd.MultiIndex.from_product([range(3),['one','two']],names=['first','second'])In [347]:indexOut[347]:MultiIndex([(0, 'one'),            (0, 'two'),            (1, 'one'),            (1, 'two'),            (2, 'one'),            (2, 'two')],           names=['first', 'second'])In [348]:index.levels[1]Out[348]:Index(['one', 'two'], dtype='object', name='second')In [349]:index.set_levels(["a","b"],level=1)Out[349]:MultiIndex([(0, 'a'),            (0, 'b'),            (1, 'a'),            (1, 'b'),            (2, 'a'),            (2, 'b')],           names=['first', 'second'])

Set operations on Index objects#

The two main operations areunion andintersection.Difference is provided via the.difference() method.

In [350]:a=pd.Index(['c','b','a'])In [351]:b=pd.Index(['c','e','d'])In [352]:a.difference(b)Out[352]:Index(['a', 'b'], dtype='object')

Also available is thesymmetric_difference operation, which returns elementsthat appear in eitheridx1 oridx2, but not in both. This isequivalent to the Index created byidx1.difference(idx2).union(idx2.difference(idx1)),with duplicates dropped.

In [353]:idx1=pd.Index([1,2,3,4])In [354]:idx2=pd.Index([2,3,4,5])In [355]:idx1.symmetric_difference(idx2)Out[355]:Index([1, 5], dtype='int64')

Note

The resulting index from a set operation will be sorted in ascending order.

When performingIndex.union() between indexes with different dtypes, the indexesmust be cast to a common dtype. Typically, though not always, this is object dtype. Theexception is when performing a union between integer and float data. In this case, theinteger values are converted to float

In [356]:idx1=pd.Index([0,1,2])In [357]:idx2=pd.Index([0.5,1.5])In [358]:idx1.union(idx2)Out[358]:Index([0.0, 0.5, 1.0, 1.5, 2.0], dtype='float64')

Missing values#

Important

Even thoughIndex can hold missing values (NaN), it should be avoidedif you do not want any unexpected results. For example, some operationsexclude missing values implicitly.

Index.fillna fills missing values with specified scalar value.

In [359]:idx1=pd.Index([1,np.nan,3,4])In [360]:idx1Out[360]:Index([1.0, nan, 3.0, 4.0], dtype='float64')In [361]:idx1.fillna(2)Out[361]:Index([1.0, 2.0, 3.0, 4.0], dtype='float64')In [362]:idx2=pd.DatetimeIndex([pd.Timestamp('2011-01-01'),   .....:pd.NaT,   .....:pd.Timestamp('2011-01-03')])   .....:In [363]:idx2Out[363]:DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03'], dtype='datetime64[ns]', freq=None)In [364]:idx2.fillna(pd.Timestamp('2011-01-02'))Out[364]:DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], dtype='datetime64[ns]', freq=None)

Set / reset index#

Occasionally you will load or create a data set into a DataFrame and want toadd an index after you’ve already done so. There are a couple of differentways.

Set an index#

DataFrame has aset_index() method which takes a column name(for a regularIndex) or a list of column names (for aMultiIndex).To create a new, re-indexed DataFrame:

In [365]:data=pd.DataFrame({'a':['bar','bar','foo','foo'],   .....:'b':['one','two','one','two'],   .....:'c':['z','y','x','w'],   .....:'d':[1.,2.,3,4]})   .....:In [366]:dataOut[366]:     a    b  c    d0  bar  one  z  1.01  bar  two  y  2.02  foo  one  x  3.03  foo  two  w  4.0In [367]:indexed1=data.set_index('c')In [368]:indexed1Out[368]:     a    b    dcz  bar  one  1.0y  bar  two  2.0x  foo  one  3.0w  foo  two  4.0In [369]:indexed2=data.set_index(['a','b'])In [370]:indexed2Out[370]:         c    da   bbar one  z  1.0    two  y  2.0foo one  x  3.0    two  w  4.0

Theappend keyword option allow you to keep the existing index and appendthe given columns to a MultiIndex:

In [371]:frame=data.set_index('c',drop=False)In [372]:frame=frame.set_index(['a','b'],append=True)In [373]:frameOut[373]:           c    dc a   bz bar one  z  1.0y bar two  y  2.0x foo one  x  3.0w foo two  w  4.0

Other options inset_index allow you not drop the index columns.

In [374]:data.set_index('c',drop=False)Out[374]:     a    b  c    dcz  bar  one  z  1.0y  bar  two  y  2.0x  foo  one  x  3.0w  foo  two  w  4.0

Reset the index#

As a convenience, there is a new function on DataFrame calledreset_index() which transfers the index values into theDataFrame’s columns and sets a simple integer index.This is the inverse operation ofset_index().

In [375]:dataOut[375]:     a    b  c    d0  bar  one  z  1.01  bar  two  y  2.02  foo  one  x  3.03  foo  two  w  4.0In [376]:data.reset_index()Out[376]:   index    a    b  c    d0      0  bar  one  z  1.01      1  bar  two  y  2.02      2  foo  one  x  3.03      3  foo  two  w  4.0

The output is more similar to a SQL table or a record array. The names for thecolumns derived from the index are the ones stored in thenames attribute.

You can use thelevel keyword to remove only a portion of the index:

In [377]:frameOut[377]:           c    dc a   bz bar one  z  1.0y bar two  y  2.0x foo one  x  3.0w foo two  w  4.0In [378]:frame.reset_index(level=1)Out[378]:         a  c    dc bz one  bar  z  1.0y two  bar  y  2.0x one  foo  x  3.0w two  foo  w  4.0

reset_index takes an optional parameterdrop which if true simplydiscards the index, instead of putting index values in the DataFrame’s columns.

Adding an ad hoc index#

You can assign a custom index to theindex attribute:

In [379]:df_idx=pd.DataFrame(range(4))In [380]:df_idx.index=pd.Index([10,20,30,40],name="a")In [381]:df_idxOut[381]:    0a10  020  130  240  3

Returning a view versus a copy#

Warning

Copy-on-Writewill become the new default in pandas 3.0. This means that chained indexing willnever work. As a consequence, theSettingWithCopyWarning won’t be necessaryanymore.Seethis sectionfor more context.We recommend turning Copy-on-Write on to leverage the improvements with

`pd.options.mode.copy_on_write=True`

even before pandas 3.0 is available.

When setting values in a pandas object, care must be taken to avoid what is calledchainedindexing. Here is an example.

In [382]:dfmi=pd.DataFrame([list('abcd'),   .....:list('efgh'),   .....:list('ijkl'),   .....:list('mnop')],   .....:columns=pd.MultiIndex.from_product([['one','two'],   .....:['first','second']]))   .....:In [383]:dfmiOut[383]:    one          two  first second first second0     a      b     c      d1     e      f     g      h2     i      j     k      l3     m      n     o      p

Compare these two access methods:

In [384]:dfmi['one']['second']Out[384]:0    b1    f2    j3    nName: second, dtype: object
In [385]:dfmi.loc[:,('one','second')]Out[385]:0    b1    f2    j3    nName: (one, second), dtype: object

These both yield the same results, so which should you use? It is instructive to understand the orderof operations on these and why method 2 (.loc) is much preferred over method 1 (chained[]).

dfmi['one'] selects the first level of the columns and returns a DataFrame that is singly-indexed.Then another Python operationdfmi_with_one['second'] selects the series indexed by'second'.This is indicated by the variabledfmi_with_one because pandas sees these operations as separate events.e.g. separate calls to__getitem__, so it has to treat them as linear operations, they happen one after another.

Contrast this todf.loc[:,('one','second')] which passes a nested tuple of(slice(None),('one','second')) to a single call to__getitem__. This allows pandas to deal with this as a single entity. Furthermore this order of operationscan be significantlyfaster, and allows one to indexboth axes if so desired.

Why does assignment fail when using chained indexing?#

Warning

Copy-on-Writewill become the new default in pandas 3.0. This means than chained indexing willnever work. As a consequence, theSettingWithCopyWarning won’t be necessaryanymore.Seethis sectionfor more context.We recommend turning Copy-on-Write on to leverage the improvements with

`pd.options.mode.copy_on_write=True`

even before pandas 3.0 is available.

The problem in the previous section is just a performance issue. What’s up withtheSettingWithCopy warning? We don’tusually throw warnings around whenyou do something that might cost a few extra milliseconds!

But it turns out that assigning to the product of chained indexing hasinherently unpredictable results. To see this, think about how the Pythoninterpreter executes this code:

dfmi.loc[:,('one','second')]=value# becomesdfmi.loc.__setitem__((slice(None),('one','second')),value)

But this code is handled differently:

dfmi['one']['second']=value# becomesdfmi.__getitem__('one').__setitem__('second',value)

See that__getitem__ in there? Outside of simple cases, it’s very hard topredict whether it will return a view or a copy (it depends on the memory layoutof the array, about which pandas makes no guarantees), and therefore whetherthe__setitem__ will modifydfmi or a temporary object that gets thrownout immediately afterward.That’s whatSettingWithCopy is warning youabout!

Note

You may be wondering whether we should be concerned about thelocproperty in the first example. Butdfmi.loc is guaranteed to bedfmiitself with modified indexing behavior, sodfmi.loc.__getitem__ /dfmi.loc.__setitem__ operate ondfmi directly. Of course,dfmi.loc.__getitem__(idx) may be a view or a copy ofdfmi.

Sometimes aSettingWithCopy warning will arise at times when there’s noobvious chained indexing going on.These are the bugs thatSettingWithCopy is designed to catch! pandas is probably trying to warn youthat you’ve done this:

defdo_something(df):foo=df[['bar','baz']]# Is foo a view? A copy? Nobody knows!# ... many lines here ...# We don't know whether this will modify df or not!foo['quux']=valuereturnfoo

Yikes!

Evaluation order matters#

Warning

Copy-on-Writewill become the new default in pandas 3.0. This means than chained indexing willnever work. As a consequence, theSettingWithCopyWarning won’t be necessaryanymore.Seethis sectionfor more context.We recommend turning Copy-on-Write on to leverage the improvements with

`pd.options.mode.copy_on_write=True`

even before pandas 3.0 is available.

When you use chained indexing, the order and type of the indexing operationpartially determine whether the result is a slice into the original object, ora copy of the slice.

pandas has theSettingWithCopyWarning because assigning to a copy of aslice is frequently not intentional, but a mistake caused by chained indexingreturning a copy where a slice was expected.

If you would like pandas to be more or less trusting about assignment to achained indexing expression, you can set theoptionmode.chained_assignment to one of these values:

  • 'warn', the default, means aSettingWithCopyWarning is printed.

  • 'raise' means pandas will raise aSettingWithCopyErroryou have to deal with.

  • None will suppress the warnings entirely.

In [386]:dfb=pd.DataFrame({'a':['one','one','two',   .....:'three','two','one','six'],   .....:'c':np.arange(7)})   .....:# This will show the SettingWithCopyWarning# but the frame values will be setIn [387]:dfb['c'][dfb['a'].str.startswith('o')]=42

This however is operating on a copy and will not work.

In [388]:withpd.option_context('mode.chained_assignment','warn'):   .....:dfb[dfb['a'].str.startswith('o')]['c']=42   .....:

A chained assignment can also crop up in setting in a mixed dtype frame.

Note

These setting rules apply to all of.loc/.iloc.

The following is the recommended access method using.loc for multiple items (usingmask) and a single item using a fixed index:

In [389]:dfc=pd.DataFrame({'a':['one','one','two',   .....:'three','two','one','six'],   .....:'c':np.arange(7)})   .....:In [390]:dfd=dfc.copy()# Setting multiple items using a maskIn [391]:mask=dfd['a'].str.startswith('o')In [392]:dfd.loc[mask,'c']=42In [393]:dfdOut[393]:       a   c0    one  421    one  422    two   23  three   34    two   45    one  426    six   6# Setting a single itemIn [394]:dfd=dfc.copy()In [395]:dfd.loc[2,'a']=11In [396]:dfdOut[396]:       a  c0    one  01    one  12     11  23  three  34    two  45    one  56    six  6

The followingcan work at times, but it is not guaranteed to, and therefore should be avoided:

In [397]:dfd=dfc.copy()In [398]:dfd['a'][2]=111In [399]:dfdOut[399]:       a  c0    one  01    one  12    111  23  three  34    two  45    one  56    six  6

Last, the subsequent example willnot work at all, and so should be avoided:

In [400]:withpd.option_context('mode.chained_assignment','raise'):   .....:dfd.loc[0]['a']=1111   .....:---------------------------------------------------------------------------SettingWithCopyErrorTraceback (most recent call last)<ipython-input-400-32ce785aaa5b> in?()1withpd.option_context('mode.chained_assignment','raise'):---->2dfd.loc[0]['a']=1111~/work/pandas/pandas/pandas/core/series.py in?(self, key, value)1284)12851286check_dict_or_set_indexers(key)1287key=com.apply_if_callable(key,self)->1288cacher_needs_updating=self._check_is_chained_assignment_possible()12891290ifkeyisEllipsis:1291key=slice(None)~/work/pandas/pandas/pandas/core/series.py in?(self)1489ref=self._get_cacher()1490ifrefisnotNoneandref._is_mixed_type:1491self._check_setitem_copy(t="referent",force=True)1492returnTrue->1493returnsuper()._check_is_chained_assignment_possible()~/work/pandas/pandas/pandas/core/generic.py in?(self)4395single-dtypemeaningthatthecachershouldbeupdatedfollowing4396setting.4397"""4398         if self._is_copy:->4399             self._check_setitem_copy(t="referent")4400         return False~/work/pandas/pandas/pandas/core/generic.py in?(self, t, force)4469                 "indexing.html#returning-a-view-versus-a-copy"4470             )44714472         if value == "raise":->4473             raise SettingWithCopyError(t)4474         if value == "warn":4475             warnings.warn(t, SettingWithCopyWarning, stacklevel=find_stack_level())SettingWithCopyError:A value is trying to be set on a copy of a slice from a DataFrameSee the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Warning

The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalidassignment. There may be false positives; situations where a chained assignment is inadvertentlyreported.

On this page

[8]ページ先頭

©2009-2025 Movatter.jp