- User Guide
- Cookbook
Cookbook#
This is a repository forshort and sweet examples and links for useful pandas recipes.We encourage users to add to this documentation.
Adding interesting links and/or inline examples to this section is a greatFirst Pull Request.
Simplified, condensed, new-user friendly, in-line examples have been inserted where possible toaugment the Stack-Overflow and GitHub links. Many of the links contain expanded information,above what the in-line examples offer.
pandas (pd) and NumPy (np) are the only two abbreviated imported modules. The rest are keptexplicitly imported for newer users.
Idioms#
These are some neat pandasidioms
if-then/if-then-else on one column, and assignment to another one or more columns:
In [1]:df=pd.DataFrame( ...:{"AAA":[4,5,6,7],"BBB":[10,20,30,40],"CCC":[100,50,-30,-50]} ...:) ...:In [2]:dfOut[2]: AAA BBB CCC0 4 10 1001 5 20 502 6 30 -303 7 40 -50
if-then…#
An if-then on one column
In [3]:df.loc[df.AAA>=5,"BBB"]=-1In [4]:dfOut[4]: AAA BBB CCC0 4 10 1001 5 -1 502 6 -1 -303 7 -1 -50
An if-then with assignment to 2 columns:
In [5]:df.loc[df.AAA>=5,["BBB","CCC"]]=555In [6]:dfOut[6]: AAA BBB CCC0 4 10 1001 5 555 5552 6 555 5553 7 555 555
Add another line with different logic, to do the -else
In [7]:df.loc[df.AAA<5,["BBB","CCC"]]=2000In [8]:dfOut[8]: AAA BBB CCC0 4 2000 20001 5 555 5552 6 555 5553 7 555 555
Or use pandas where after you’ve set up a mask
In [9]:df_mask=pd.DataFrame( ...:{"AAA":[True]*4,"BBB":[False]*4,"CCC":[True,False]*2} ...:) ...:In [10]:df.where(df_mask,-1000)Out[10]: AAA BBB CCC0 4 -1000 20001 5 -1000 -10002 6 -1000 5553 7 -1000 -1000
if-then-else using NumPy’s where()
In [11]:df=pd.DataFrame( ....:{"AAA":[4,5,6,7],"BBB":[10,20,30,40],"CCC":[100,50,-30,-50]} ....:) ....:In [12]:dfOut[12]: AAA BBB CCC0 4 10 1001 5 20 502 6 30 -303 7 40 -50In [13]:df["logic"]=np.where(df["AAA"]>5,"high","low")In [14]:dfOut[14]: AAA BBB CCC logic0 4 10 100 low1 5 20 50 low2 6 30 -30 high3 7 40 -50 high
Splitting#
Split a frame with a boolean criterion
In [15]:df=pd.DataFrame( ....:{"AAA":[4,5,6,7],"BBB":[10,20,30,40],"CCC":[100,50,-30,-50]} ....:) ....:In [16]:dfOut[16]: AAA BBB CCC0 4 10 1001 5 20 502 6 30 -303 7 40 -50In [17]:df[df.AAA<=5]Out[17]: AAA BBB CCC0 4 10 1001 5 20 50In [18]:df[df.AAA>5]Out[18]: AAA BBB CCC2 6 30 -303 7 40 -50
Building criteria#
Select with multi-column criteria
In [19]:df=pd.DataFrame( ....:{"AAA":[4,5,6,7],"BBB":[10,20,30,40],"CCC":[100,50,-30,-50]} ....:) ....:In [20]:dfOut[20]: AAA BBB CCC0 4 10 1001 5 20 502 6 30 -303 7 40 -50
…and (without assignment returns a Series)
In [21]:df.loc[(df["BBB"]<25)&(df["CCC"]>=-40),"AAA"]Out[21]:0 41 5Name: AAA, dtype: int64
…or (without assignment returns a Series)
In [22]:df.loc[(df["BBB"]>25)|(df["CCC"]>=-40),"AAA"]Out[22]:0 41 52 63 7Name: AAA, dtype: int64
…or (with assignment modifies the DataFrame.)
In [23]:df.loc[(df["BBB"]>25)|(df["CCC"]>=75),"AAA"]=999In [24]:dfOut[24]: AAA BBB CCC0 999 10 1001 5 20 502 999 30 -303 999 40 -50
Select rows with data closest to certain value using argsort
In [25]:df=pd.DataFrame( ....:{"AAA":[4,5,6,7],"BBB":[10,20,30,40],"CCC":[100,50,-30,-50]} ....:) ....:In [26]:dfOut[26]: AAA BBB CCC0 4 10 1001 5 20 502 6 30 -303 7 40 -50In [27]:aValue=43.0In [28]:df.loc[(df.CCC-aValue).abs().argsort()]Out[28]: AAA BBB CCC1 5 20 500 4 10 1002 6 30 -303 7 40 -50
Dynamically reduce a list of criteria using a binary operators
In [29]:df=pd.DataFrame( ....:{"AAA":[4,5,6,7],"BBB":[10,20,30,40],"CCC":[100,50,-30,-50]} ....:) ....:In [30]:dfOut[30]: AAA BBB CCC0 4 10 1001 5 20 502 6 30 -303 7 40 -50In [31]:Crit1=df.AAA<=5.5In [32]:Crit2=df.BBB==10.0In [33]:Crit3=df.CCC>-40.0
One could hard code:
In [34]:AllCrit=Crit1&Crit2&Crit3
…Or it can be done with a list of dynamically built criteria
In [35]:importfunctoolsIn [36]:CritList=[Crit1,Crit2,Crit3]In [37]:AllCrit=functools.reduce(lambdax,y:x&y,CritList)In [38]:df[AllCrit]Out[38]: AAA BBB CCC0 4 10 100
Selection#
Dataframes#
Theindexing docs.
Using both row labels and value conditionals
In [39]:df=pd.DataFrame( ....:{"AAA":[4,5,6,7],"BBB":[10,20,30,40],"CCC":[100,50,-30,-50]} ....:) ....:In [40]:dfOut[40]: AAA BBB CCC0 4 10 1001 5 20 502 6 30 -303 7 40 -50In [41]:df[(df.AAA<=6)&(df.index.isin([0,2,4]))]Out[41]: AAA BBB CCC0 4 10 1002 6 30 -30
Use loc for label-oriented slicing and iloc positional slicingGH 2904
In [42]:df=pd.DataFrame( ....:{"AAA":[4,5,6,7],"BBB":[10,20,30,40],"CCC":[100,50,-30,-50]}, ....:index=["foo","bar","boo","kar"], ....:) ....:
There are 2 explicit slicing methods, with a third general case
Positional-oriented (Python slicing style : exclusive of end)
Label-oriented (Non-Python slicing style : inclusive of end)
General (Either slicing style : depends on if the slice contains labels or positions)
In [43]:df.loc["bar":"kar"]# LabelOut[43]: AAA BBB CCCbar 5 20 50boo 6 30 -30kar 7 40 -50# GenericIn [44]:df[0:3]Out[44]: AAA BBB CCCfoo 4 10 100bar 5 20 50boo 6 30 -30In [45]:df["bar":"kar"]Out[45]: AAA BBB CCCbar 5 20 50boo 6 30 -30kar 7 40 -50
Ambiguity arises when an index consists of integers with a non-zero start or non-unit increment.
In [46]:data={"AAA":[4,5,6,7],"BBB":[10,20,30,40],"CCC":[100,50,-30,-50]}In [47]:df2=pd.DataFrame(data=data,index=[1,2,3,4])# Note index starts at 1.In [48]:df2.iloc[1:3]# Position-orientedOut[48]: AAA BBB CCC2 5 20 503 6 30 -30In [49]:df2.loc[1:3]# Label-orientedOut[49]: AAA BBB CCC1 4 10 1002 5 20 503 6 30 -30
Using inverse operator (~) to take the complement of a mask
In [50]:df=pd.DataFrame( ....:{"AAA":[4,5,6,7],"BBB":[10,20,30,40],"CCC":[100,50,-30,-50]} ....:) ....:In [51]:dfOut[51]: AAA BBB CCC0 4 10 1001 5 20 502 6 30 -303 7 40 -50In [52]:df[~((df.AAA<=6)&(df.index.isin([0,2,4])))]Out[52]: AAA BBB CCC1 5 20 503 7 40 -50
New columns#
Efficiently and dynamically creating new columns using DataFrame.map (previously named applymap)
In [53]:df=pd.DataFrame({"AAA":[1,2,1,3],"BBB":[1,1,2,2],"CCC":[2,1,3,1]})In [54]:dfOut[54]: AAA BBB CCC0 1 1 21 2 1 12 1 2 33 3 2 1In [55]:source_cols=df.columns# Or some subset would work tooIn [56]:new_cols=[str(x)+"_cat"forxinsource_cols]In [57]:categories={1:"Alpha",2:"Beta",3:"Charlie"}In [58]:df[new_cols]=df[source_cols].map(categories.get)In [59]:dfOut[59]: AAA BBB CCC AAA_cat BBB_cat CCC_cat0 1 1 2 Alpha Alpha Beta1 2 1 1 Beta Alpha Alpha2 1 2 3 Alpha Beta Charlie3 3 2 1 Charlie Beta Alpha
Keep other columns when using min() with groupby
In [60]:df=pd.DataFrame( ....:{"AAA":[1,1,1,2,2,2,3,3],"BBB":[2,1,3,4,5,1,2,3]} ....:) ....:In [61]:dfOut[61]: AAA BBB0 1 21 1 12 1 33 2 44 2 55 2 16 3 27 3 3
Method 1 : idxmin() to get the index of the minimums
In [62]:df.loc[df.groupby("AAA")["BBB"].idxmin()]Out[62]: AAA BBB1 1 15 2 16 3 2
Method 2 : sort then take first of each
In [63]:df.sort_values(by="BBB").groupby("AAA",as_index=False).first()Out[63]: AAA BBB0 1 11 2 12 3 2
Notice the same results, with the exception of the index.
Multiindexing#
Themultindexing docs.
Creating a MultiIndex from a labeled frame
In [64]:df=pd.DataFrame( ....:{ ....:"row":[0,1,2], ....:"One_X":[1.1,1.1,1.1], ....:"One_Y":[1.2,1.2,1.2], ....:"Two_X":[1.11,1.11,1.11], ....:"Two_Y":[1.22,1.22,1.22], ....:} ....:) ....:In [65]:dfOut[65]: row One_X One_Y Two_X Two_Y0 0 1.1 1.2 1.11 1.221 1 1.1 1.2 1.11 1.222 2 1.1 1.2 1.11 1.22# As Labelled IndexIn [66]:df=df.set_index("row")In [67]:dfOut[67]: One_X One_Y Two_X Two_Yrow0 1.1 1.2 1.11 1.221 1.1 1.2 1.11 1.222 1.1 1.2 1.11 1.22# With Hierarchical ColumnsIn [68]:df.columns=pd.MultiIndex.from_tuples([tuple(c.split("_"))forcindf.columns])In [69]:dfOut[69]: One Two X Y X Yrow0 1.1 1.2 1.11 1.221 1.1 1.2 1.11 1.222 1.1 1.2 1.11 1.22# Now stack & ResetIn [70]:df=df.stack(0,future_stack=True).reset_index(1)In [71]:dfOut[71]: level_1 X Yrow0 One 1.10 1.200 Two 1.11 1.221 One 1.10 1.201 Two 1.11 1.222 One 1.10 1.202 Two 1.11 1.22# And fix the labels (Notice the label 'level_1' got added automatically)In [72]:df.columns=["Sample","All_X","All_Y"]In [73]:dfOut[73]: Sample All_X All_Yrow0 One 1.10 1.200 Two 1.11 1.221 One 1.10 1.201 Two 1.11 1.222 One 1.10 1.202 Two 1.11 1.22
Arithmetic#
Performing arithmetic with a MultiIndex that needs broadcasting
In [74]:cols=pd.MultiIndex.from_tuples( ....:[(x,y)forxin["A","B","C"]foryin["O","I"]] ....:) ....:In [75]:df=pd.DataFrame(np.random.randn(2,6),index=["n","m"],columns=cols)In [76]:dfOut[76]: A B C O I O I O In 0.469112 -0.282863 -1.509059 -1.135632 1.212112 -0.173215m 0.119209 -1.044236 -0.861849 -2.104569 -0.494929 1.071804In [77]:df=df.div(df["C"],level=1)In [78]:dfOut[78]: A B C O I O I O In 0.387021 1.633022 -1.244983 6.556214 1.0 1.0m -0.240860 -0.974279 1.741358 -1.963577 1.0 1.0
Slicing#
In [79]:coords=[("AA","one"),("AA","six"),("BB","one"),("BB","two"),("BB","six")]In [80]:index=pd.MultiIndex.from_tuples(coords)In [81]:df=pd.DataFrame([11,22,33,44,55],index,["MyData"])In [82]:dfOut[82]: MyDataAA one 11 six 22BB one 33 two 44 six 55
To take the cross section of the 1st level and 1st axis the index:
# Note : level and axis are optional, and default to zeroIn [83]:df.xs("BB",level=0,axis=0)Out[83]: MyDataone 33two 44six 55
…and now the 2nd level of the 1st axis.
In [84]:df.xs("six",level=1,axis=0)Out[84]: MyDataAA 22BB 55
Slicing a MultiIndex with xs, method #2
In [85]:importitertoolsIn [86]:index=list(itertools.product(["Ada","Quinn","Violet"],["Comp","Math","Sci"]))In [87]:headr=list(itertools.product(["Exams","Labs"],["I","II"]))In [88]:indx=pd.MultiIndex.from_tuples(index,names=["Student","Course"])In [89]:cols=pd.MultiIndex.from_tuples(headr)# Notice these are un-namedIn [90]:data=[[70+x+y+(x*y)%3forxinrange(4)]foryinrange(9)]In [91]:df=pd.DataFrame(data,indx,cols)In [92]:dfOut[92]: Exams Labs I II I IIStudent CourseAda Comp 70 71 72 73 Math 71 73 75 74 Sci 72 75 75 75Quinn Comp 73 74 75 76 Math 74 76 78 77 Sci 75 78 78 78Violet Comp 76 77 78 79 Math 77 79 81 80 Sci 78 81 81 81In [93]:All=slice(None)In [94]:df.loc["Violet"]Out[94]: Exams Labs I II I IICourseComp 76 77 78 79Math 77 79 81 80Sci 78 81 81 81In [95]:df.loc[(All,"Math"),All]Out[95]: Exams Labs I II I IIStudent CourseAda Math 71 73 75 74Quinn Math 74 76 78 77Violet Math 77 79 81 80In [96]:df.loc[(slice("Ada","Quinn"),"Math"),All]Out[96]: Exams Labs I II I IIStudent CourseAda Math 71 73 75 74Quinn Math 74 76 78 77In [97]:df.loc[(All,"Math"),("Exams")]Out[97]: I IIStudent CourseAda Math 71 73Quinn Math 74 76Violet Math 77 79In [98]:df.loc[(All,"Math"),(All,"II")]Out[98]: Exams Labs II IIStudent CourseAda Math 73 74Quinn Math 76 77Violet Math 79 80
Sorting#
Sort by specific column or an ordered list of columns, with a MultiIndex
In [99]:df.sort_values(by=("Labs","II"),ascending=False)Out[99]: Exams Labs I II I IIStudent CourseViolet Sci 78 81 81 81 Math 77 79 81 80 Comp 76 77 78 79Quinn Sci 75 78 78 78 Math 74 76 78 77 Comp 73 74 75 76Ada Sci 72 75 75 75 Math 71 73 75 74 Comp 70 71 72 73
Partial selection, the need for sortednessGH 2995
Levels#
Missing data#
Themissing data docs.
Fill forward a reversed timeseries
In [100]:df=pd.DataFrame( .....:np.random.randn(6,1), .....:index=pd.date_range("2013-08-01",periods=6,freq="B"), .....:columns=list("A"), .....:) .....:In [101]:df.loc[df.index[3],"A"]=np.nanIn [102]:dfOut[102]: A2013-08-01 0.7215552013-08-02 -0.7067712013-08-05 -1.0395752013-08-06 NaN2013-08-07 -0.4249722013-08-08 0.567020In [103]:df.bfill()Out[103]: A2013-08-01 0.7215552013-08-02 -0.7067712013-08-05 -1.0395752013-08-06 -0.4249722013-08-07 -0.4249722013-08-08 0.567020
Replace#
Grouping#
Thegrouping docs.
Unlike agg, apply’s callable is passed a sub-DataFrame which gives you access to all the columns
In [104]:df=pd.DataFrame( .....:{ .....:"animal":"cat dog cat fish dog cat cat".split(), .....:"size":list("SSMMMLL"), .....:"weight":[8,10,11,1,20,12,12], .....:"adult":[False]*5+[True]*2, .....:} .....:) .....:In [105]:dfOut[105]: animal size weight adult0 cat S 8 False1 dog S 10 False2 cat M 11 False3 fish M 1 False4 dog M 20 False5 cat L 12 True6 cat L 12 True# List the size of the animals with the highest weight.In [106]:df.groupby("animal").apply(lambdasubf:subf["size"][subf["weight"].idxmax()],include_groups=False)Out[106]:animalcat Ldog Mfish Mdtype: object
In [107]:gb=df.groupby("animal")In [108]:gb.get_group("cat")Out[108]: animal size weight adult0 cat S 8 False2 cat M 11 False5 cat L 12 True6 cat L 12 True
Apply to different items in a group
In [109]:defGrowUp(x): .....:avg_weight=sum(x[x["size"]=="S"].weight*1.5) .....:avg_weight+=sum(x[x["size"]=="M"].weight*1.25) .....:avg_weight+=sum(x[x["size"]=="L"].weight) .....:avg_weight/=len(x) .....:returnpd.Series(["L",avg_weight,True],index=["size","weight","adult"]) .....:In [110]:expected_df=gb.apply(GrowUp,include_groups=False)In [111]:expected_dfOut[111]: size weight adultanimalcat L 12.4375 Truedog L 20.0000 Truefish L 1.2500 True
In [112]:S=pd.Series([i/100.0foriinrange(1,11)])In [113]:defcum_ret(x,y): .....:returnx*(1+y) .....:In [114]:defred(x): .....:returnfunctools.reduce(cum_ret,x,1.0) .....:In [115]:S.expanding().apply(red,raw=True)Out[115]:0 1.0100001 1.0302002 1.0611063 1.1035504 1.1587285 1.2282516 1.3142297 1.4193678 1.5471109 1.701821dtype: float64
Replacing some values with mean of the rest of a group
In [116]:df=pd.DataFrame({"A":[1,1,2,2],"B":[1,-1,1,2]})In [117]:gb=df.groupby("A")In [118]:defreplace(g): .....:mask=g<0 .....:returng.where(~mask,g[~mask].mean()) .....:In [119]:gb.transform(replace)Out[119]: B0 11 12 13 2
Sort groups by aggregated data
In [120]:df=pd.DataFrame( .....:{ .....:"code":["foo","bar","baz"]*2, .....:"data":[0.16,-0.21,0.33,0.45,-0.59,0.62], .....:"flag":[False,True]*3, .....:} .....:) .....:In [121]:code_groups=df.groupby("code")In [122]:agg_n_sort_order=code_groups[["data"]].transform("sum").sort_values(by="data")In [123]:sorted_df=df.loc[agg_n_sort_order.index]In [124]:sorted_dfOut[124]: code data flag1 bar -0.21 True4 bar -0.59 False0 foo 0.16 False3 foo 0.45 True2 baz 0.33 False5 baz 0.62 True
Create multiple aggregated columns
In [125]:rng=pd.date_range(start="2014-10-07",periods=10,freq="2min")In [126]:ts=pd.Series(data=list(range(10)),index=rng)In [127]:defMyCust(x): .....:iflen(x)>2: .....:returnx.iloc[1]*1.234 .....:returnpd.NaT .....:In [128]:mhc={"Mean":"mean","Max":"max","Custom":MyCust}In [129]:ts.resample("5min").apply(mhc)Out[129]: Mean Max Custom2014-10-07 00:00:00 1.0 2 1.2342014-10-07 00:05:00 3.5 4 NaT2014-10-07 00:10:00 6.0 7 7.4042014-10-07 00:15:00 8.5 9 NaTIn [130]:tsOut[130]:2014-10-07 00:00:00 02014-10-07 00:02:00 12014-10-07 00:04:00 22014-10-07 00:06:00 32014-10-07 00:08:00 42014-10-07 00:10:00 52014-10-07 00:12:00 62014-10-07 00:14:00 72014-10-07 00:16:00 82014-10-07 00:18:00 9Freq: 2min, dtype: int64
Create a value counts column and reassign back to the DataFrame
In [131]:df=pd.DataFrame( .....:{"Color":"Red Red Red Blue".split(),"Value":[100,150,50,50]} .....:) .....:In [132]:dfOut[132]: Color Value0 Red 1001 Red 1502 Red 503 Blue 50In [133]:df["Counts"]=df.groupby(["Color"]).transform(len)In [134]:dfOut[134]: Color Value Counts0 Red 100 31 Red 150 32 Red 50 33 Blue 50 1
Shift groups of the values in a column based on the index
In [135]:df=pd.DataFrame( .....:{"line_race":[10,10,8,10,10,8],"beyer":[99,102,103,103,88,100]}, .....:index=[ .....:"Last Gunfighter", .....:"Last Gunfighter", .....:"Last Gunfighter", .....:"Paynter", .....:"Paynter", .....:"Paynter", .....:], .....:) .....:In [136]:dfOut[136]: line_race beyerLast Gunfighter 10 99Last Gunfighter 10 102Last Gunfighter 8 103Paynter 10 103Paynter 10 88Paynter 8 100In [137]:df["beyer_shifted"]=df.groupby(level=0)["beyer"].shift(1)In [138]:dfOut[138]: line_race beyer beyer_shiftedLast Gunfighter 10 99 NaNLast Gunfighter 10 102 99.0Last Gunfighter 8 103 102.0Paynter 10 103 NaNPaynter 10 88 103.0Paynter 8 100 88.0
Select row with maximum value from each group
In [139]:df=pd.DataFrame( .....:{ .....:"host":["other","other","that","this","this"], .....:"service":["mail","web","mail","mail","web"], .....:"no":[1,2,1,2,1], .....:} .....:).set_index(["host","service"]) .....:In [140]:mask=df.groupby(level=0).agg("idxmax")In [141]:df_count=df.loc[mask["no"]].reset_index()In [142]:df_countOut[142]: host service no0 other web 21 that mail 12 this mail 2
Grouping like Python’s itertools.groupby
In [143]:df=pd.DataFrame([0,1,0,1,1,1,0,1,1],columns=["A"])In [144]:df["A"].groupby((df["A"]!=df["A"].shift()).cumsum()).groupsOut[144]:{1: [0], 2: [1], 3: [2], 4: [3, 4, 5], 5: [6], 6: [7, 8]}In [145]:df["A"].groupby((df["A"]!=df["A"].shift()).cumsum()).cumsum()Out[145]:0 01 12 03 14 25 36 07 18 2Name: A, dtype: int64
Expanding data#
Rolling Computation window based on values instead of counts
Splitting#
Create a list of dataframes, split using a delineation based on logic included in rows.
In [146]:df=pd.DataFrame( .....:data={ .....:"Case":["A","A","A","B","A","A","B","A","A"], .....:"Data":np.random.randn(9), .....:} .....:) .....:In [147]:dfs=list( .....:zip( .....:*df.groupby( .....:(1*(df["Case"]=="B")) .....:.cumsum() .....:.rolling(window=3,min_periods=1) .....:.median() .....:) .....:) .....:)[-1] .....:In [148]:dfs[0]Out[148]: Case Data0 A 0.2762321 A -1.0874012 A -0.6736903 B 0.113648In [149]:dfs[1]Out[149]: Case Data4 A -1.4784275 A 0.5249886 B 0.404705In [150]:dfs[2]Out[150]: Case Data7 A 0.5770468 A -1.715002
Pivot#
ThePivot docs.
In [151]:df=pd.DataFrame( .....:data={ .....:"Province":["ON","QC","BC","AL","AL","MN","ON"], .....:"City":[ .....:"Toronto", .....:"Montreal", .....:"Vancouver", .....:"Calgary", .....:"Edmonton", .....:"Winnipeg", .....:"Windsor", .....:], .....:"Sales":[13,6,16,8,4,3,1], .....:} .....:) .....:In [152]:table=pd.pivot_table( .....:df, .....:values=["Sales"], .....:index=["Province"], .....:columns=["City"], .....:aggfunc="sum", .....:margins=True, .....:) .....:In [153]:table.stack("City",future_stack=True)Out[153]: SalesProvince CityAL Calgary 8.0 Edmonton 4.0 Montreal NaN Toronto NaN Vancouver NaN... ...All Toronto 13.0 Vancouver 16.0 Windsor 1.0 Winnipeg 3.0 All 51.0[48 rows x 1 columns]
Frequency table like plyr in R
In [154]:grades=[48,99,75,80,42,80,72,68,36,78]In [155]:df=pd.DataFrame( .....:{ .....:"ID":["x%d"%rforrinrange(10)], .....:"Gender":["F","M","F","M","F","M","F","M","M","M"], .....:"ExamYear":[ .....:"2007", .....:"2007", .....:"2007", .....:"2008", .....:"2008", .....:"2008", .....:"2008", .....:"2009", .....:"2009", .....:"2009", .....:], .....:"Class":[ .....:"algebra", .....:"stats", .....:"bio", .....:"algebra", .....:"algebra", .....:"stats", .....:"stats", .....:"algebra", .....:"bio", .....:"bio", .....:], .....:"Participated":[ .....:"yes", .....:"yes", .....:"yes", .....:"yes", .....:"no", .....:"yes", .....:"yes", .....:"yes", .....:"yes", .....:"yes", .....:], .....:"Passed":["yes"ifx>50else"no"forxingrades], .....:"Employed":[ .....:True, .....:True, .....:True, .....:False, .....:False, .....:False, .....:False, .....:True, .....:True, .....:False, .....:], .....:"Grade":grades, .....:} .....:) .....:In [156]:df.groupby("ExamYear").agg( .....:{ .....:"Participated":lambdax:x.value_counts()["yes"], .....:"Passed":lambdax:sum(x=="yes"), .....:"Employed":lambdax:sum(x), .....:"Grade":lambdax:sum(x)/len(x), .....:} .....:) .....:Out[156]: Participated Passed Employed GradeExamYear2007 3 2 3 74.0000002008 3 3 0 68.5000002009 3 2 2 60.666667
Plot pandas DataFrame with year over year data
To create year and month cross tabulation:
In [157]:df=pd.DataFrame( .....:{"value":np.random.randn(36)}, .....:index=pd.date_range("2011-01-01",freq="ME",periods=36), .....:) .....:In [158]:pd.pivot_table( .....:df,index=df.index.month,columns=df.index.year,values="value",aggfunc="sum" .....:) .....:Out[158]: 2011 2012 20131 -1.039268 -0.968914 2.5656462 -0.370647 -1.294524 1.4312563 -1.157892 0.413738 1.3403094 -1.344312 0.276662 -1.1702995 0.844885 -0.472035 -0.2261696 1.075770 -0.013960 0.4108357 -0.109050 -0.362543 0.8138508 1.643563 -0.006154 0.1320039 -1.469388 -0.923061 -0.82731710 0.357021 0.895717 -0.07646711 -0.674600 0.805244 -1.18767812 -1.776904 -1.206412 1.130127
Apply#
Rolling apply to organize - Turning embedded lists into a MultiIndex frame
In [159]:df=pd.DataFrame( .....:data={ .....:"A":[[2,4,8,16],[100,200],[10,20,30]], .....:"B":[["a","b","c"],["jj","kk"],["ccc"]], .....:}, .....:index=["I","II","III"], .....:) .....:In [160]:defSeriesFromSubList(aList): .....:returnpd.Series(aList) .....:In [161]:df_orgz=pd.concat( .....:{ind:row.apply(SeriesFromSubList)forind,rowindf.iterrows()} .....:) .....:In [162]:df_orgzOut[162]: 0 1 2 3I A 2 4 8 16.0 B a b c NaNII A 100 200 NaN NaN B jj kk NaN NaNIII A 10 20.0 30.0 NaN B ccc NaN NaN NaN
Rolling apply with a DataFrame returning a Series
Rolling Apply to multiple columns where function calculates a Series before a Scalar from the Series is returned
In [163]:df=pd.DataFrame( .....:data=np.random.randn(2000,2)/10000, .....:index=pd.date_range("2001-01-01",periods=2000), .....:columns=["A","B"], .....:) .....:In [164]:dfOut[164]: A B2001-01-01 -0.000144 -0.0001412001-01-02 0.000161 0.0001022001-01-03 0.000057 0.0000882001-01-04 -0.000221 0.0000972001-01-05 -0.000201 -0.000041... ... ...2006-06-19 0.000040 -0.0002352006-06-20 -0.000123 -0.0000212006-06-21 -0.000113 0.0001142006-06-22 0.000136 0.0001092006-06-23 0.000027 0.000030[2000 rows x 2 columns]In [165]:defgm(df,const): .....:v=((((df["A"]+df["B"])+1).cumprod())-1)*const .....:returnv.iloc[-1] .....:In [166]:s=pd.Series( .....:{ .....:df.index[i]:gm(df.iloc[i:min(i+51,len(df)-1)],5) .....:foriinrange(len(df)-50) .....:} .....:) .....:In [167]:sOut[167]:2001-01-01 0.0009302001-01-02 0.0026152001-01-03 0.0012812001-01-04 0.0011172001-01-05 0.002772 ...2006-04-30 0.0032962006-05-01 0.0026292006-05-02 0.0020812006-05-03 0.0042472006-05-04 0.003928Length: 1950, dtype: float64
Rolling apply with a DataFrame returning a Scalar
Rolling Apply to multiple columns where function returns a Scalar (Volume Weighted Average Price)
In [168]:rng=pd.date_range(start="2014-01-01",periods=100)In [169]:df=pd.DataFrame( .....:{ .....:"Open":np.random.randn(len(rng)), .....:"Close":np.random.randn(len(rng)), .....:"Volume":np.random.randint(100,2000,len(rng)), .....:}, .....:index=rng, .....:) .....:In [170]:dfOut[170]: Open Close Volume2014-01-01 -1.611353 -0.492885 12192014-01-02 -3.000951 0.445794 10542014-01-03 -0.138359 -0.076081 13812014-01-04 0.301568 1.198259 12532014-01-05 0.276381 -0.669831 1728... ... ... ...2014-04-06 -0.040338 0.937843 11882014-04-07 0.359661 -0.285908 18642014-04-08 0.060978 1.714814 9412014-04-09 1.759055 -0.455942 10652014-04-10 0.138185 -1.147008 1453[100 rows x 3 columns]In [171]:defvwap(bars): .....:return(bars.Close*bars.Volume).sum()/bars.Volume.sum() .....:In [172]:window=5In [173]:s=pd.concat( .....:[ .....:(pd.Series(vwap(df.iloc[i:i+window]),index=[df.index[i+window]])) .....:foriinrange(len(df)-window) .....:] .....:) .....:In [174]:s.round(2)Out[174]:2014-01-06 0.022014-01-07 0.112014-01-08 0.102014-01-09 0.072014-01-10 -0.29 ...2014-04-06 -0.632014-04-07 -0.022014-04-08 -0.032014-04-09 0.342014-04-10 0.29Length: 95, dtype: float64
Timeseries#
Constructing a datetime range that excludes weekends and includes only certain times
Aggregation and plotting time series
Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series.How to rearrange a Python pandas DataFrame?
Dealing with duplicates when reindexing a timeseries to a specified frequency
Calculate the first day of the month for each entry in a DatetimeIndex
In [175]:dates=pd.date_range("2000-01-01",periods=5)In [176]:dates.to_period(freq="M").to_timestamp()Out[176]:DatetimeIndex(['2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01', '2000-01-01'], dtype='datetime64[ns]', freq=None)
Resampling#
TheResample docs.
Using Grouper instead of TimeGrouper for time grouping of values
Time grouping with some missing values
Valid frequency arguments to GrouperTimeseries
Using TimeGrouper and another grouping to create subgroups, then apply a custom functionGH 3791
Resampling with custom periods
Merge#
TheJoin docs.
Concatenate two dataframes with overlapping index (emulate R rbind)
In [177]:rng=pd.date_range("2000-01-01",periods=6)In [178]:df1=pd.DataFrame(np.random.randn(6,3),index=rng,columns=["A","B","C"])In [179]:df2=df1.copy()
Depending on df construction,ignore_index
may be needed
In [180]:df=pd.concat([df1,df2],ignore_index=True)In [181]:dfOut[181]: A B C0 -0.870117 -0.479265 -0.7908551 0.144817 1.726395 -0.4645352 -0.821906 1.597605 0.1873073 -0.128342 -1.511638 -0.2898584 0.399194 -1.430030 -0.6397605 1.115116 -2.012600 1.8106626 -0.870117 -0.479265 -0.7908557 0.144817 1.726395 -0.4645358 -0.821906 1.597605 0.1873079 -0.128342 -1.511638 -0.28985810 0.399194 -1.430030 -0.63976011 1.115116 -2.012600 1.810662
Self Join of a DataFrameGH 2996
In [182]:df=pd.DataFrame( .....:data={ .....:"Area":["A"]*5+["C"]*2, .....:"Bins":[110]*2+[160]*3+[40]*2, .....:"Test_0":[0,1,0,1,2,0,1], .....:"Data":np.random.randn(7), .....:} .....:) .....:In [183]:dfOut[183]: Area Bins Test_0 Data0 A 110 0 -0.4339371 A 110 1 -0.1605522 A 160 0 0.7444343 A 160 1 1.7542134 A 160 2 0.0008505 C 40 0 0.3422436 C 40 1 1.070599In [184]:df["Test_1"]=df["Test_0"]-1In [185]:pd.merge( .....:df, .....:df, .....:left_on=["Bins","Area","Test_0"], .....:right_on=["Bins","Area","Test_1"], .....:suffixes=("_L","_R"), .....:) .....:Out[185]: Area Bins Test_0_L Data_L Test_1_L Test_0_R Data_R Test_1_R0 A 110 0 -0.433937 -1 1 -0.160552 01 A 160 0 0.744434 -1 1 1.754213 02 A 160 1 1.754213 0 2 0.000850 13 C 40 0 0.342243 -1 1 1.070599 0
Plotting#
ThePlotting docs.
Setting x-axis major and minor labels
Plotting multiple charts in an IPython Jupyter notebook
Annotate a time-series plot #2
Generate Embedded plots in excel files using Pandas, Vincent and xlsxwriter
Boxplot for each quartile of a stratifying variable
In [186]:df=pd.DataFrame( .....:{ .....:"stratifying_var":np.random.uniform(0,100,20), .....:"price":np.random.normal(100,5,20), .....:} .....:) .....:In [187]:df["quartiles"]=pd.qcut( .....:df["stratifying_var"],4,labels=["0-25%","25-50%","50-75%","75-100%"] .....:) .....:In [188]:df.boxplot(column="price",by="quartiles")Out[188]:<Axes: title={'center': 'price'}, xlabel='quartiles'>

Data in/out#
Performance comparison of SQL vs HDF5
CSV#
TheCSV docs
Reading only certain rows of a csv chunk-by-chunk
Reading the first few lines of a frame
Reading a file that is compressed but not bygzip/bz2
(the native compressed formats whichread_csv
understands).This example shows aWinZipped
file, but is a general application of opening the file within a context manager andusing that handle to read.See here
Dealing with bad linesGH 2886
Write a multi-row index CSV without writing duplicates
Reading multiple files to create a single DataFrame#
The best way to combine multiple files into a single DataFrame is to read the individual frames one by one, put allof the individual frames into a list, and then combine the frames in the list usingpd.concat()
:
In [189]:foriinrange(3): .....:data=pd.DataFrame(np.random.randn(10,4)) .....:data.to_csv("file_{}.csv".format(i)) .....:In [190]:files=["file_0.csv","file_1.csv","file_2.csv"]In [191]:result=pd.concat([pd.read_csv(f)forfinfiles],ignore_index=True)
You can use the same approach to read all files matching a pattern. Here is an example usingglob
:
In [192]:importglobIn [193]:importosIn [194]:files=glob.glob("file_*.csv")In [195]:result=pd.concat([pd.read_csv(f)forfinfiles],ignore_index=True)
Finally, this strategy will work with the otherpd.read_*(...)
functions described in theio docs.
Parsing date components in multi-columns#
Parsing date components in multi-columns is faster with a format
In [196]:i=pd.date_range("20000101",periods=10000)In [197]:df=pd.DataFrame({"year":i.year,"month":i.month,"day":i.day})In [198]:df.head()Out[198]: year month day0 2000 1 11 2000 1 22 2000 1 33 2000 1 44 2000 1 5In [199]:%timeit pd.to_datetime(df.year * 10000 + df.month * 100 + df.day, format='%Y%m%d') .....:ds=df.apply(lambdax:"%04d%02d%02d"%(x["year"],x["month"],x["day"]),axis=1) .....:ds.head() .....:%timeit pd.to_datetime(ds) .....:2.7 ms +- 240 us per loop (mean +- std. dev. of 7 runs, 100 loops each)1.09 ms +- 5.62 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each)
Skip row between header and data#
In [200]:data=""";;;; .....: ;;;; .....: ;;;; .....: ;;;; .....: ;;;; .....: ;;;; .....:;;;; .....: ;;;; .....: ;;;; .....:;;;; .....:date;Param1;Param2;Param4;Param5 .....: ;m²;°C;m²;m .....:;;;; .....:01.01.1990 00:00;1;1;2;3 .....:01.01.1990 01:00;5;3;4;5 .....:01.01.1990 02:00;9;5;6;7 .....:01.01.1990 03:00;13;7;8;9 .....:01.01.1990 04:00;17;9;10;11 .....:01.01.1990 05:00;21;11;12;13 .....:""" .....:
Option 1: pass rows explicitly to skip rows#
In [201]:fromioimportStringIOIn [202]:pd.read_csv( .....:StringIO(data), .....:sep=";", .....:skiprows=[11,12], .....:index_col=0, .....:parse_dates=True, .....:header=10, .....:) .....:Out[202]: Param1 Param2 Param4 Param5date1990-01-01 00:00:00 1 1 2 31990-01-01 01:00:00 5 3 4 51990-01-01 02:00:00 9 5 6 71990-01-01 03:00:00 13 7 8 91990-01-01 04:00:00 17 9 10 111990-01-01 05:00:00 21 11 12 13
Option 2: read column names and then data#
In [203]:pd.read_csv(StringIO(data),sep=";",header=10,nrows=10).columnsOut[203]:Index(['date', 'Param1', 'Param2', 'Param4', 'Param5'], dtype='object')In [204]:columns=pd.read_csv(StringIO(data),sep=";",header=10,nrows=10).columnsIn [205]:pd.read_csv( .....:StringIO(data),sep=";",index_col=0,header=12,parse_dates=True,names=columns .....:) .....:Out[205]: Param1 Param2 Param4 Param5date1990-01-01 00:00:00 1 1 2 31990-01-01 01:00:00 5 3 4 51990-01-01 02:00:00 9 5 6 71990-01-01 03:00:00 13 7 8 91990-01-01 04:00:00 17 9 10 111990-01-01 05:00:00 21 11 12 13
SQL#
TheSQL docs
Excel#
TheExcel docs
Reading from a filelike handle
Modifying formatting in XlsxWriter output
Loading only visible sheetsGH 19842#issuecomment-892150745
HTML#
Reading HTML tables from a server that cannot handle the default requestheader
HDFStore#
TheHDFStores docs
Simple queries with a Timestamp Index
Managing heterogeneous data using a linked multiple table hierarchyGH 3032
Merging on-disk tables with millions of rows
Avoiding inconsistencies when writing to a store from multiple processes/threads
De-duplicating a large store by chunks, essentially a recursive reduction operation. Shows a function for taking in data fromcsv file and creating a store by chunks, with date parsing as well.See here
Creating a store chunk-by-chunk from a csv file
Appending to a store, while creating a unique index
Reading in a sequence of files, then providing a global unique index to a store while appending
Groupby on a HDFStore with low group density
Groupby on a HDFStore with high group density
Hierarchical queries on a HDFStore
Troubleshoot HDFStore exceptions
Setting min_itemsize with strings
Using ptrepack to create a completely-sorted-index on a store
Storing Attributes to a group node
In [206]:df=pd.DataFrame(np.random.randn(8,3))In [207]:store=pd.HDFStore("test.h5")In [208]:store.put("df",df)# you can store an arbitrary Python object via pickleIn [209]:store.get_storer("df").attrs.my_attribute={"A":10}In [210]:store.get_storer("df").attrs.my_attributeOut[210]:{'A': 10}
You can create or load a HDFStore in-memory by passing thedriver
parameter to PyTables. Changes are only written to disk when the HDFStoreis closed.
In [211]:store=pd.HDFStore("test.h5","w",driver="H5FD_CORE")In [212]:df=pd.DataFrame(np.random.randn(8,3))In [213]:store["test"]=df# only after closing the store, data is written to disk:In [214]:store.close()
Binary files#
pandas readily accepts NumPy record arrays, if you need to read in a binaryfile consisting of an array of C structs. For example, given this C programin a file calledmain.c
compiled withgccmain.c-std=gnu99
on a64-bit machine,
#include<stdio.h>#include<stdint.h>typedefstruct_Data{int32_tcount;doubleavg;floatscale;}Data;intmain(intargc,constchar*argv[]){size_tn=10;Datad[n];for(inti=0;i<n;++i){d[i].count=i;d[i].avg=i+1.0;d[i].scale=(float)i+2.0f;}FILE*file=fopen("binary.dat","wb");fwrite(&d,sizeof(Data),n,file);fclose(file);return0;}
the following Python code will read the binary file'binary.dat'
into apandasDataFrame
, where each element of the struct corresponds to a columnin the frame:
names="count","avg","scale"# note that the offsets are larger than the size of the type because of# struct paddingoffsets=0,8,16formats="i4","f8","f4"dt=np.dtype({"names":names,"offsets":offsets,"formats":formats},align=True)df=pd.DataFrame(np.fromfile("binary.dat",dt))
Note
The offsets of the structure elements may be different depending on thearchitecture of the machine on which the file was created. Using a rawbinary file format like this for general data storage is not recommended, asit is not cross platform. We recommended either HDF5 or parquet, both ofwhich are supported by pandas’ IO facilities.
Computation#
Numerical integration (sample-based) of a time series
Correlation#
Often it’s useful to obtain the lower (or upper) triangular form of a correlation matrix calculated fromDataFrame.corr()
. This can be achieved by passing a boolean mask towhere
as follows:
In [215]:df=pd.DataFrame(np.random.random(size=(100,5)))In [216]:corr_mat=df.corr()In [217]:mask=np.tril(np.ones_like(corr_mat,dtype=np.bool_),k=-1)In [218]:corr_mat.where(mask)Out[218]: 0 1 2 3 40 NaN NaN NaN NaN NaN1 -0.079861 NaN NaN NaN NaN2 -0.236573 0.183801 NaN NaN NaN3 -0.013795 -0.051975 0.037235 NaN NaN4 -0.031974 0.118342 -0.073499 -0.02063 NaN
Themethod
argument withinDataFrame.corr
can accept a callable in addition to the named correlation types. Here we compute thedistance correlation matrix for aDataFrame
object.
In [219]:defdistcorr(x,y): .....:n=len(x) .....:a=np.zeros(shape=(n,n)) .....:b=np.zeros(shape=(n,n)) .....:foriinrange(n): .....:forjinrange(i+1,n): .....:a[i,j]=abs(x[i]-x[j]) .....:b[i,j]=abs(y[i]-y[j]) .....:a+=a.T .....:b+=b.T .....:a_bar=np.vstack([np.nanmean(a,axis=0)]*n) .....:b_bar=np.vstack([np.nanmean(b,axis=0)]*n) .....:A=a-a_bar-a_bar.T+np.full(shape=(n,n),fill_value=a_bar.mean()) .....:B=b-b_bar-b_bar.T+np.full(shape=(n,n),fill_value=b_bar.mean()) .....:cov_ab=np.sqrt(np.nansum(A*B))/n .....:std_a=np.sqrt(np.sqrt(np.nansum(A**2))/n) .....:std_b=np.sqrt(np.sqrt(np.nansum(B**2))/n) .....:returncov_ab/std_a/std_b .....:In [220]:df=pd.DataFrame(np.random.normal(size=(100,3)))In [221]:df.corr(method=distcorr)Out[221]: 0 1 20 1.000000 0.197613 0.2163281 0.197613 1.000000 0.2087492 0.216328 0.208749 1.000000
Timedeltas#
TheTimedeltas docs.
In [222]:importdatetimeIn [223]:s=pd.Series(pd.date_range("2012-1-1",periods=3,freq="D"))In [224]:s-s.max()Out[224]:0 -2 days1 -1 days2 0 daysdtype: timedelta64[ns]In [225]:s.max()-sOut[225]:0 2 days1 1 days2 0 daysdtype: timedelta64[ns]In [226]:s-datetime.datetime(2011,1,1,3,5)Out[226]:0 364 days 20:55:001 365 days 20:55:002 366 days 20:55:00dtype: timedelta64[ns]In [227]:s+datetime.timedelta(minutes=5)Out[227]:0 2012-01-01 00:05:001 2012-01-02 00:05:002 2012-01-03 00:05:00dtype: datetime64[ns]In [228]:datetime.datetime(2011,1,1,3,5)-sOut[228]:0 -365 days +03:05:001 -366 days +03:05:002 -367 days +03:05:00dtype: timedelta64[ns]In [229]:datetime.timedelta(minutes=5)+sOut[229]:0 2012-01-01 00:05:001 2012-01-02 00:05:002 2012-01-03 00:05:00dtype: datetime64[ns]
Adding and subtracting deltas and dates
In [230]:deltas=pd.Series([datetime.timedelta(days=i)foriinrange(3)])In [231]:df=pd.DataFrame({"A":s,"B":deltas})In [232]:dfOut[232]: A B0 2012-01-01 0 days1 2012-01-02 1 days2 2012-01-03 2 daysIn [233]:df["New Dates"]=df["A"]+df["B"]In [234]:df["Delta"]=df["A"]-df["New Dates"]In [235]:dfOut[235]: A B New Dates Delta0 2012-01-01 0 days 2012-01-01 0 days1 2012-01-02 1 days 2012-01-03 -1 days2 2012-01-03 2 days 2012-01-05 -2 daysIn [236]:df.dtypesOut[236]:A datetime64[ns]B timedelta64[ns]New Dates datetime64[ns]Delta timedelta64[ns]dtype: object
Values can be set to NaT using np.nan, similar to datetime
In [237]:y=s-s.shift()In [238]:yOut[238]:0 NaT1 1 days2 1 daysdtype: timedelta64[ns]In [239]:y[1]=np.nanIn [240]:yOut[240]:0 NaT1 NaT2 1 daysdtype: timedelta64[ns]
Creating example data#
To create a dataframe from every combination of some given values, like R’sexpand.grid()
function, we can create a dict where the keys are column names and the values are listsof the data values:
In [241]:defexpand_grid(data_dict): .....:rows=itertools.product(*data_dict.values()) .....:returnpd.DataFrame.from_records(rows,columns=data_dict.keys()) .....:In [242]:df=expand_grid( .....:{"height":[60,70],"weight":[100,140,180],"sex":["Male","Female"]} .....:) .....:In [243]:dfOut[243]: height weight sex0 60 100 Male1 60 100 Female2 60 140 Male3 60 140 Female4 60 180 Male5 60 180 Female6 70 100 Male7 70 100 Female8 70 140 Male9 70 140 Female10 70 180 Male11 70 180 Female
Constant series#
To assess if a series has a constant value, we can check ifseries.nunique()<=1
.However, a more performant approach, that does not count all unique values first, is:
In [244]:v=s.to_numpy()In [245]:is_constant=v.shape[0]==0or(s[0]==s).all()
This approach assumes that the series does not contain missing values.For the case that we would drop NA values, we can simply remove those values first:
In [246]:v=s.dropna().to_numpy()In [247]:is_constant=v.shape[0]==0or(s[0]==s).all()
If missing values are considered distinct from any other value, then one could use:
In [248]:v=s.to_numpy()In [249]:is_constant=v.shape[0]==0or(s[0]==s).all()ornotpd.notna(v).any()
(Note that this example does not disambiguate betweennp.nan
,pd.NA
andNone
)