Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

Essential basic functionality#

Here we discuss a lot of the essential functionality common to the pandas datastructures. To begin, let’s create some example objects like we did inthe10 minutes to pandas section:

In [1]:index=pd.date_range("1/1/2000",periods=8)In [2]:s=pd.Series(np.random.randn(5),index=["a","b","c","d","e"])In [3]:df=pd.DataFrame(np.random.randn(8,3),index=index,columns=["A","B","C"])

Head and tail#

To view a small sample of a Series or DataFrame object, use thehead() andtail() methods. The default numberof elements to display is five, but you may pass a custom number.

In [4]:long_series=pd.Series(np.random.randn(1000))In [5]:long_series.head()Out[5]:0   -1.1578921   -1.3443122    0.8448853    1.0757704   -0.109050dtype: float64In [6]:long_series.tail(3)Out[6]:997   -0.289388998   -1.020544999    0.589993dtype: float64

Attributes and underlying data#

pandas objects have a number of attributes enabling you to access the metadata

  • shape: gives the axis dimensions of the object, consistent with ndarray

  • Axis labels
    • Series:index (only axis)

    • DataFrame:index (rows) andcolumns

Note,these attributes can be safely assigned to!

In [7]:df[:2]Out[7]:                   A         B         C2000-01-01 -0.173215  0.119209 -1.0442362000-01-02 -0.861849 -2.104569 -0.494929In [8]:df.columns=[x.lower()forxindf.columns]In [9]:dfOut[9]:                   a         b         c2000-01-01 -0.173215  0.119209 -1.0442362000-01-02 -0.861849 -2.104569 -0.4949292000-01-03  1.071804  0.721555 -0.7067712000-01-04 -1.039575  0.271860 -0.4249722000-01-05  0.567020  0.276232 -1.0874012000-01-06 -0.673690  0.113648 -1.4784272000-01-07  0.524988  0.404705  0.5770462000-01-08 -1.715002 -1.039268 -0.370647

pandas objects (Index,Series,DataFrame) can bethought of as containers for arrays, which hold the actual data and do theactual computation. For many types, the underlying array is anumpy.ndarray. However, pandas and 3rd party libraries mayextendNumPy’s type system to add support for custom arrays(seedtypes).

To get the actual data inside aIndex orSeries, usethe.array property

In [10]:s.arrayOut[10]:<NumpyExtensionArray>[ 0.4691122999071863, -0.2828633443286633, -1.5090585031735124, -1.1356323710171934,  1.2121120250208506]Length: 5, dtype: float64In [11]:s.index.arrayOut[11]:<NumpyExtensionArray>['a', 'b', 'c', 'd', 'e']Length: 5, dtype: object

array will always be anExtensionArray.The exact details of what anExtensionArray is and why pandas uses them are a bitbeyond the scope of this introduction. Seedtypes for more.

If you know you need a NumPy array, useto_numpy()ornumpy.asarray().

In [12]:s.to_numpy()Out[12]:array([ 0.4691, -0.2829, -1.5091, -1.1356,  1.2121])In [13]:np.asarray(s)Out[13]:array([ 0.4691, -0.2829, -1.5091, -1.1356,  1.2121])

When the Series or Index is backed byanExtensionArray,to_numpy()may involve copying data and coercing values. Seedtypes for more.

to_numpy() gives some control over thedtype of theresultingnumpy.ndarray. For example, consider datetimes with timezones.NumPy doesn’t have a dtype to represent timezone-aware datetimes, so thereare two possibly useful representations:

  1. An object-dtypenumpy.ndarray withTimestamp objects, eachwith the correcttz

  2. Adatetime64[ns] -dtypenumpy.ndarray, where the values havebeen converted to UTC and the timezone discarded

Timezones may be preserved withdtype=object

In [14]:ser=pd.Series(pd.date_range("2000",periods=2,tz="CET"))In [15]:ser.to_numpy(dtype=object)Out[15]:array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'),       Timestamp('2000-01-02 00:00:00+0100', tz='CET')], dtype=object)

Or thrown away withdtype='datetime64[ns]'

In [16]:ser.to_numpy(dtype="datetime64[ns]")Out[16]:array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00.000000000'],      dtype='datetime64[ns]')

Getting the “raw data” inside aDataFrame is possibly a bit morecomplex. When yourDataFrame only has a single data type for all thecolumns,DataFrame.to_numpy() will return the underlying data:

In [17]:df.to_numpy()Out[17]:array([[-0.1732,  0.1192, -1.0442],       [-0.8618, -2.1046, -0.4949],       [ 1.0718,  0.7216, -0.7068],       [-1.0396,  0.2719, -0.425 ],       [ 0.567 ,  0.2762, -1.0874],       [-0.6737,  0.1136, -1.4784],       [ 0.525 ,  0.4047,  0.577 ],       [-1.715 , -1.0393, -0.3706]])

If a DataFrame contains homogeneously-typed data, the ndarray canactually be modified in-place, and the changes will be reflected in the datastructure. For heterogeneous data (e.g. some of the DataFrame’s columns are notall the same dtype), this will not be the case. The values attribute itself,unlike the axis labels, cannot be assigned to.

Note

When working with heterogeneous data, the dtype of the resulting ndarraywill be chosen to accommodate all of the data involved. For example, ifstrings are involved, the result will be of object dtype. If there are onlyfloats and integers, the resulting array will be of float dtype.

In the past, pandas recommendedSeries.values orDataFrame.valuesfor extracting the data from a Series or DataFrame. You’ll still find referencesto these in old code bases and online. Going forward, we recommend avoiding.values and using.array or.to_numpy()..values has the followingdrawbacks:

  1. When your Series contains anextension type, it’sunclear whetherSeries.values returns a NumPy array or the extension array.Series.array will always return anExtensionArray, and will nevercopy data.Series.to_numpy() will always return a NumPy array,potentially at the cost of copying / coercing values.

  2. When your DataFrame contains a mixture of data types,DataFrame.values mayinvolve copying data and coercing values to a common dtype, a relatively expensiveoperation.DataFrame.to_numpy(), being a method, makes it clearer that thereturned NumPy array may not be a view on the same data in the DataFrame.

Accelerated operations#

pandas has support for accelerating certain types of binary numerical and boolean operations usingthenumexpr library and thebottleneck libraries.

These libraries are especially useful when dealing with large data sets, and provide largespeedups.numexpr uses smart chunking, caching, and multiple cores.bottleneck isa set of specialized cython routines that are especially fast when dealing with arrays that havenans.

Here is a sample (using 100 column x 100,000 rowDataFrames):

Operation

0.11.0 (ms)

Prior Version (ms)

Ratio to Prior

df1>df2

13.32

125.35

0.1063

df1*df2

21.71

36.63

0.5928

df1+df2

22.04

36.50

0.6039

You are highly encouraged to install both libraries. See the sectionRecommended Dependencies for more installation info.

These are both enabled to be used by default, you can control this by setting the options:

pd.set_option("compute.use_bottleneck",False)pd.set_option("compute.use_numexpr",False)

Flexible binary operations#

With binary operations between pandas data structures, there are two key pointsof interest:

  • Broadcasting behavior between higher- (e.g. DataFrame) andlower-dimensional (e.g. Series) objects.

  • Missing data in computations.

We will demonstrate how to manage these issues independently, though they canbe handled simultaneously.

Matching / broadcasting behavior#

DataFrame has the methodsadd(),sub(),mul(),div() and related functionsradd(),rsub(), …for carrying out binary operations. For broadcasting behavior,Series input is of primary interest. Using these functions, you can use toeither match on theindex orcolumns via theaxis keyword:

In [18]:df=pd.DataFrame(   ....:{   ....:"one":pd.Series(np.random.randn(3),index=["a","b","c"]),   ....:"two":pd.Series(np.random.randn(4),index=["a","b","c","d"]),   ....:"three":pd.Series(np.random.randn(3),index=["b","c","d"]),   ....:}   ....:)   ....:In [19]:dfOut[19]:        one       two     threea  1.394981  1.772517       NaNb  0.343054  1.912123 -0.050390c  0.695246  1.478369  1.227435d       NaN  0.279344 -0.613172In [20]:row=df.iloc[1]In [21]:column=df["two"]In [22]:df.sub(row,axis="columns")Out[22]:        one       two     threea  1.051928 -0.139606       NaNb  0.000000  0.000000  0.000000c  0.352192 -0.433754  1.277825d       NaN -1.632779 -0.562782In [23]:df.sub(row,axis=1)Out[23]:        one       two     threea  1.051928 -0.139606       NaNb  0.000000  0.000000  0.000000c  0.352192 -0.433754  1.277825d       NaN -1.632779 -0.562782In [24]:df.sub(column,axis="index")Out[24]:        one  two     threea -0.377535  0.0       NaNb -1.569069  0.0 -1.962513c -0.783123  0.0 -0.250933d       NaN  0.0 -0.892516In [25]:df.sub(column,axis=0)Out[25]:        one  two     threea -0.377535  0.0       NaNb -1.569069  0.0 -1.962513c -0.783123  0.0 -0.250933d       NaN  0.0 -0.892516

Furthermore you can align a level of a MultiIndexed DataFrame with a Series.

In [26]:dfmi=df.copy()In [27]:dfmi.index=pd.MultiIndex.from_tuples(   ....:[(1,"a"),(1,"b"),(1,"c"),(2,"a")],names=["first","second"]   ....:)   ....:In [28]:dfmi.sub(column,axis=0,level="second")Out[28]:                   one       two     threefirst second1     a      -0.377535  0.000000       NaN      b      -1.569069  0.000000 -1.962513      c      -0.783123  0.000000 -0.2509332     a            NaN -1.493173 -2.385688

Series and Index also support thedivmod() builtin. This function takesthe floor division and modulo operation at the same time returning a two-tupleof the same type as the left hand side. For example:

In [29]:s=pd.Series(np.arange(10))In [30]:sOut[30]:0    01    12    23    34    45    56    67    78    89    9dtype: int64In [31]:div,rem=divmod(s,3)In [32]:divOut[32]:0    01    02    03    14    15    16    27    28    29    3dtype: int64In [33]:remOut[33]:0    01    12    23    04    15    26    07    18    29    0dtype: int64In [34]:idx=pd.Index(np.arange(10))In [35]:idxOut[35]:Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')In [36]:div,rem=divmod(idx,3)In [37]:divOut[37]:Index([0, 0, 0, 1, 1, 1, 2, 2, 2, 3], dtype='int64')In [38]:remOut[38]:Index([0, 1, 2, 0, 1, 2, 0, 1, 2, 0], dtype='int64')

We can also do elementwisedivmod():

In [39]:div,rem=divmod(s,[2,2,3,3,4,4,5,5,6,6])In [40]:divOut[40]:0    01    02    03    14    15    16    17    18    19    1dtype: int64In [41]:remOut[41]:0    01    12    23    04    05    16    17    28    29    3dtype: int64

Missing data / operations with fill values#

In Series and DataFrame, the arithmetic functions have the option of inputtingafill_value, namely a value to substitute when at most one of the values ata location are missing. For example, when adding two DataFrame objects, you maywish to treat NaN as 0 unless both DataFrames are missing that value, in whichcase the result will be NaN (you can later replace NaN with some other valueusingfillna if you wish).

In [42]:df2=df.copy()In [43]:df2.loc["a","three"]=1.0In [44]:dfOut[44]:        one       two     threea  1.394981  1.772517       NaNb  0.343054  1.912123 -0.050390c  0.695246  1.478369  1.227435d       NaN  0.279344 -0.613172In [45]:df2Out[45]:        one       two     threea  1.394981  1.772517  1.000000b  0.343054  1.912123 -0.050390c  0.695246  1.478369  1.227435d       NaN  0.279344 -0.613172In [46]:df+df2Out[46]:        one       two     threea  2.789963  3.545034       NaNb  0.686107  3.824246 -0.100780c  1.390491  2.956737  2.454870d       NaN  0.558688 -1.226343In [47]:df.add(df2,fill_value=0)Out[47]:        one       two     threea  2.789963  3.545034  1.000000b  0.686107  3.824246 -0.100780c  1.390491  2.956737  2.454870d       NaN  0.558688 -1.226343

Flexible comparisons#

Series and DataFrame have the binary comparison methodseq,ne,lt,gt,le, andge whose behavior is analogous to the binaryarithmetic operations described above:

In [48]:df.gt(df2)Out[48]:     one    two  threea  False  False  Falseb  False  False  Falsec  False  False  Falsed  False  False  FalseIn [49]:df2.ne(df)Out[49]:     one    two  threea  False  False   Trueb  False  False  Falsec  False  False  Falsed   True  False  False

These operations produce a pandas object of the same type as the left-hand-sideinput that is of dtypebool. Theseboolean objects can be used inindexing operations, see the section onBoolean indexing.

Boolean reductions#

You can apply the reductions:empty,any(),all(), andbool() to provide away to summarize a boolean result.

In [50]:(df>0).all()Out[50]:one      Falsetwo       Truethree    Falsedtype: boolIn [51]:(df>0).any()Out[51]:one      Truetwo      Truethree    Truedtype: bool

You can reduce to a final boolean value.

In [52]:(df>0).any().any()Out[52]:True

You can test if a pandas object is empty, via theempty property.

In [53]:df.emptyOut[53]:FalseIn [54]:pd.DataFrame(columns=list("ABC")).emptyOut[54]:True

Warning

Asserting the truthiness of a pandas object will raise an error, as the testing of the emptinessor values is ambiguous.

In [55]:ifdf:   ....:print(True)   ....:---------------------------------------------------------------------------ValueErrorTraceback (most recent call last)<ipython-input-55-318d08b2571a> in?()---->1ifdf:2print(True)~/work/pandas/pandas/pandas/core/generic.py in?(self)1575@final1576def__nonzero__(self)->NoReturn:->1577raiseValueError(1578f"The truth value of a{type(self).__name__} is ambiguous. "1579"Use a.empty, a.bool(), a.item(), a.any() or a.all()."1580)ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
In [56]:dfanddf2---------------------------------------------------------------------------ValueErrorTraceback (most recent call last)<ipython-input-56-b241b64bb471> in?()---->1dfanddf2~/work/pandas/pandas/pandas/core/generic.py in?(self)1575@final1576def__nonzero__(self)->NoReturn:->1577raiseValueError(1578f"The truth value of a{type(self).__name__} is ambiguous. "1579"Use a.empty, a.bool(), a.item(), a.any() or a.all()."1580)ValueError: The truth value of a DataFrame is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().

Seegotchas for a more detailed discussion.

Comparing if objects are equivalent#

Often you may find that there is more than one way to compute the sameresult. As a simple example, considerdf+df anddf*2. To testthat these two computations produce the same result, given the toolsshown above, you might imagine using(df+df==df*2).all(). But infact, this expression is False:

In [57]:df+df==df*2Out[57]:     one   two  threea   True  True  Falseb   True  True   Truec   True  True   Trued  False  True   TrueIn [58]:(df+df==df*2).all()Out[58]:one      Falsetwo       Truethree    Falsedtype: bool

Notice that the boolean DataFramedf+df==df*2 contains some False values!This is because NaNs do not compare as equals:

In [59]:np.nan==np.nanOut[59]:False

So, NDFrames (such as Series and DataFrames)have anequals() method for testing equality, with NaNs incorresponding locations treated as equal.

In [60]:(df+df).equals(df*2)Out[60]:True

Note that the Series or DataFrame index needs to be in the same order forequality to be True:

In [61]:df1=pd.DataFrame({"col":["foo",0,np.nan]})In [62]:df2=pd.DataFrame({"col":[np.nan,0,"foo"]},index=[2,1,0])In [63]:df1.equals(df2)Out[63]:FalseIn [64]:df1.equals(df2.sort_index())Out[64]:True

Comparing array-like objects#

You can conveniently perform element-wise comparisons when comparing a pandasdata structure with a scalar value:

In [65]:pd.Series(["foo","bar","baz"])=="foo"Out[65]:0     True1    False2    Falsedtype: boolIn [66]:pd.Index(["foo","bar","baz"])=="foo"Out[66]:array([ True, False, False])

pandas also handles element-wise comparisons between different array-likeobjects of the same length:

In [67]:pd.Series(["foo","bar","baz"])==pd.Index(["foo","bar","qux"])Out[67]:0     True1     True2    Falsedtype: boolIn [68]:pd.Series(["foo","bar","baz"])==np.array(["foo","bar","qux"])Out[68]:0     True1     True2    Falsedtype: bool

Trying to compareIndex orSeries objects of different lengths willraise a ValueError:

In [69]:pd.Series(['foo','bar','baz'])==pd.Series(['foo','bar'])---------------------------------------------------------------------------ValueErrorTraceback (most recent call last)CellIn[69],line1---->1pd.Series(['foo','bar','baz'])==pd.Series(['foo','bar'])File ~/work/pandas/pandas/pandas/core/ops/common.py:76, in_unpack_zerodim_and_defer.<locals>.new_method(self, other)72returnNotImplemented74other=item_from_zerodim(other)--->76returnmethod(self,other)File ~/work/pandas/pandas/pandas/core/arraylike.py:40, inOpsMixin.__eq__(self, other)38@unpack_zerodim_and_defer("__eq__")39def__eq__(self,other):--->40returnself._cmp_method(other,operator.eq)File ~/work/pandas/pandas/pandas/core/series.py:6114, inSeries._cmp_method(self, other, op)6111res_name=ops.get_op_result_name(self,other)6113ifisinstance(other,Series)andnotself._indexed_same(other):->6114raiseValueError("Can only compare identically-labeled Series objects")6116lvalues=self._values6117rvalues=extract_array(other,extract_numpy=True,extract_range=True)ValueError: Can only compare identically-labeled Series objectsIn [70]:pd.Series(['foo','bar','baz'])==pd.Series(['foo'])---------------------------------------------------------------------------ValueErrorTraceback (most recent call last)CellIn[70],line1---->1pd.Series(['foo','bar','baz'])==pd.Series(['foo'])File ~/work/pandas/pandas/pandas/core/ops/common.py:76, in_unpack_zerodim_and_defer.<locals>.new_method(self, other)72returnNotImplemented74other=item_from_zerodim(other)--->76returnmethod(self,other)File ~/work/pandas/pandas/pandas/core/arraylike.py:40, inOpsMixin.__eq__(self, other)38@unpack_zerodim_and_defer("__eq__")39def__eq__(self,other):--->40returnself._cmp_method(other,operator.eq)File ~/work/pandas/pandas/pandas/core/series.py:6114, inSeries._cmp_method(self, other, op)6111res_name=ops.get_op_result_name(self,other)6113ifisinstance(other,Series)andnotself._indexed_same(other):->6114raiseValueError("Can only compare identically-labeled Series objects")6116lvalues=self._values6117rvalues=extract_array(other,extract_numpy=True,extract_range=True)ValueError: Can only compare identically-labeled Series objects

Combining overlapping data sets#

A problem occasionally arising is the combination of two similar data setswhere values in one are preferred over the other. An example would be two dataseries representing a particular economic indicator where one is considered tobe of “higher quality”. However, the lower quality series might extend furtherback in history or have more complete data coverage. As such, we would like tocombine two DataFrame objects where missing values in one DataFrame areconditionally filled with like-labeled values from the other DataFrame. Thefunction implementing this operation iscombine_first(),which we illustrate:

In [71]:df1=pd.DataFrame(   ....:{"A":[1.0,np.nan,3.0,5.0,np.nan],"B":[np.nan,2.0,3.0,np.nan,6.0]}   ....:)   ....:In [72]:df2=pd.DataFrame(   ....:{   ....:"A":[5.0,2.0,4.0,np.nan,3.0,7.0],   ....:"B":[np.nan,np.nan,3.0,4.0,6.0,8.0],   ....:}   ....:)   ....:In [73]:df1Out[73]:     A    B0  1.0  NaN1  NaN  2.02  3.0  3.03  5.0  NaN4  NaN  6.0In [74]:df2Out[74]:     A    B0  5.0  NaN1  2.0  NaN2  4.0  3.03  NaN  4.04  3.0  6.05  7.0  8.0In [75]:df1.combine_first(df2)Out[75]:     A    B0  1.0  NaN1  2.0  2.02  3.0  3.03  5.0  4.04  3.0  6.05  7.0  8.0

General DataFrame combine#

Thecombine_first() method above calls the more generalDataFrame.combine(). This method takes another DataFrameand a combiner function, aligns the input DataFrame and then passes the combinerfunction pairs of Series (i.e., columns whose names are the same).

So, for instance, to reproducecombine_first() as above:

In [76]:defcombiner(x,y):   ....:returnnp.where(pd.isna(x),y,x)   ....:In [77]:df1.combine(df2,combiner)Out[77]:     A    B0  1.0  NaN1  2.0  2.02  3.0  3.03  5.0  4.04  3.0  6.05  7.0  8.0

Descriptive statistics#

There exists a large number of methods for computing descriptive statistics andother related operations onSeries,DataFrame. Most of theseare aggregations (hence producing a lower-dimensional result) likesum(),mean(), andquantile(),but some of them, likecumsum() andcumprod(),produce an object of the same size. Generally speaking, these methods take anaxis argument, just likendarray.{sum, std, …}, but the axis can bespecified by name or integer:

  • Series: no axis argument needed

  • DataFrame: “index” (axis=0, default), “columns” (axis=1)

For example:

In [78]:dfOut[78]:        one       two     threea  1.394981  1.772517       NaNb  0.343054  1.912123 -0.050390c  0.695246  1.478369  1.227435d       NaN  0.279344 -0.613172In [79]:df.mean(0)Out[79]:one      0.811094two      1.360588three    0.187958dtype: float64In [80]:df.mean(1)Out[80]:a    1.583749b    0.734929c    1.133683d   -0.166914dtype: float64

All such methods have askipna option signaling whether to exclude missingdata (True by default):

In [81]:df.sum(0,skipna=False)Out[81]:one           NaNtwo      5.442353three         NaNdtype: float64In [82]:df.sum(axis=1,skipna=True)Out[82]:a    3.167498b    2.204786c    3.401050d   -0.333828dtype: float64

Combined with the broadcasting / arithmetic behavior, one can describe variousstatistical procedures, like standardization (rendering data zero mean andstandard deviation of 1), very concisely:

In [83]:ts_stand=(df-df.mean())/df.std()In [84]:ts_stand.std()Out[84]:one      1.0two      1.0three    1.0dtype: float64In [85]:xs_stand=df.sub(df.mean(1),axis=0).div(df.std(1),axis=0)In [86]:xs_stand.std(1)Out[86]:a    1.0b    1.0c    1.0d    1.0dtype: float64

Note that methods likecumsum() andcumprod()preserve the location ofNaN values. This is somewhat different fromexpanding() androlling() sinceNaN behavioris furthermore dictated by amin_periods parameter.

In [87]:df.cumsum()Out[87]:        one       two     threea  1.394981  1.772517       NaNb  1.738035  3.684640 -0.050390c  2.433281  5.163008  1.177045d       NaN  5.442353  0.563873

Here is a quick reference summary table of common functions. Each also takes anoptionallevel parameter which applies only if the object has ahierarchical index.

Function

Description

count

Number of non-NA observations

sum

Sum of values

mean

Mean of values

median

Arithmetic median of values

min

Minimum

max

Maximum

mode

Mode

abs

Absolute Value

prod

Product of values

std

Bessel-corrected sample standard deviation

var

Unbiased variance

sem

Standard error of the mean

skew

Sample skewness (3rd moment)

kurt

Sample kurtosis (4th moment)

quantile

Sample quantile (value at %)

cumsum

Cumulative sum

cumprod

Cumulative product

cummax

Cumulative maximum

cummin

Cumulative minimum

Note that by chance some NumPy methods, likemean,std, andsum,will exclude NAs on Series input by default:

In [88]:np.mean(df["one"])Out[88]:0.8110935116651192In [89]:np.mean(df["one"].to_numpy())Out[89]:nan

Series.nunique() will return the number of unique non-NA values in aSeries:

In [90]:series=pd.Series(np.random.randn(500))In [91]:series[20:500]=np.nanIn [92]:series[10:20]=5In [93]:series.nunique()Out[93]:11

Summarizing data: describe#

There is a convenientdescribe() function which computes a variety of summarystatistics about a Series or the columns of a DataFrame (excluding NAs ofcourse):

In [94]:series=pd.Series(np.random.randn(1000))In [95]:series[::2]=np.nanIn [96]:series.describe()Out[96]:count    500.000000mean      -0.021292std        1.015906min       -2.68376325%       -0.69907050%       -0.06971875%        0.714483max        3.160915dtype: float64In [97]:frame=pd.DataFrame(np.random.randn(1000,5),columns=["a","b","c","d","e"])In [98]:frame.iloc[::2]=np.nanIn [99]:frame.describe()Out[99]:                a           b           c           d           ecount  500.000000  500.000000  500.000000  500.000000  500.000000mean     0.033387    0.030045   -0.043719   -0.051686    0.005979std      1.017152    0.978743    1.025270    1.015988    1.006695min     -3.000951   -2.637901   -3.303099   -3.159200   -3.18882125%     -0.647623   -0.576449   -0.712369   -0.691338   -0.69111550%      0.047578   -0.021499   -0.023888   -0.032652   -0.02536375%      0.729907    0.775880    0.618896    0.670047    0.649748max      2.740139    2.752332    3.004229    2.728702    3.240991

You can select specific percentiles to include in the output:

In [100]:series.describe(percentiles=[0.05,0.25,0.75,0.95])Out[100]:count    500.000000mean      -0.021292std        1.015906min       -2.6837635%        -1.64542325%       -0.69907050%       -0.06971875%        0.71448395%        1.711409max        3.160915dtype: float64

By default, the median is always included.

For a non-numerical Series object,describe() will give a simplesummary of the number of unique values and most frequently occurring values:

In [101]:s=pd.Series(["a","a","b","b","a","a",np.nan,"c","d","a"])In [102]:s.describe()Out[102]:count     9unique    4top       afreq      5dtype: object

Note that on a mixed-type DataFrame object,describe() willrestrict the summary to include only numerical columns or, if none are, onlycategorical columns:

In [103]:frame=pd.DataFrame({"a":["Yes","Yes","No","No"],"b":range(4)})In [104]:frame.describe()Out[104]:              bcount  4.000000mean   1.500000std    1.290994min    0.00000025%    0.75000050%    1.50000075%    2.250000max    3.000000

This behavior can be controlled by providing a list of types asinclude/excludearguments. The special valueall can also be used:

In [105]:frame.describe(include=["object"])Out[105]:          acount     4unique    2top     Yesfreq      2In [106]:frame.describe(include=["number"])Out[106]:              bcount  4.000000mean   1.500000std    1.290994min    0.00000025%    0.75000050%    1.50000075%    2.250000max    3.000000In [107]:frame.describe(include="all")Out[107]:          a         bcount     4  4.000000unique    2       NaNtop     Yes       NaNfreq      2       NaNmean    NaN  1.500000std     NaN  1.290994min     NaN  0.00000025%     NaN  0.75000050%     NaN  1.50000075%     NaN  2.250000max     NaN  3.000000

That feature relies onselect_dtypes. Refer tothere for details about accepted inputs.

Index of min/max values#

Theidxmin() andidxmax() functions on Seriesand DataFrame compute the index labels with the minimum and maximumcorresponding values:

In [108]:s1=pd.Series(np.random.randn(5))In [109]:s1Out[109]:0    1.1180761   -0.3520512   -1.2428833   -1.2771554   -0.641184dtype: float64In [110]:s1.idxmin(),s1.idxmax()Out[110]:(3, 0)In [111]:df1=pd.DataFrame(np.random.randn(5,3),columns=["A","B","C"])In [112]:df1Out[112]:          A         B         C0 -0.327863 -0.946180 -0.1375701 -0.186235 -0.257213 -0.4865672 -0.507027 -0.871259 -0.1111103  2.000339 -2.430505  0.0897594 -0.321434 -0.033695  0.096271In [113]:df1.idxmin(axis=0)Out[113]:A    2B    3C    1dtype: int64In [114]:df1.idxmax(axis=1)Out[114]:0    C1    A2    C3    A4    Cdtype: object

When there are multiple rows (or columns) matching the minimum or maximumvalue,idxmin() andidxmax() return the firstmatching index:

In [115]:df3=pd.DataFrame([2,1,1,3,np.nan],columns=["A"],index=list("edcba"))In [116]:df3Out[116]:     Ae  2.0d  1.0c  1.0b  3.0a  NaNIn [117]:df3["A"].idxmin()Out[117]:'d'

Note

idxmin andidxmax are calledargmin andargmax in NumPy.

Value counts (histogramming) / mode#

Thevalue_counts() Series method computes a histogramof a 1D array of values. It can also be used as a function on regular arrays:

In [118]:data=np.random.randint(0,7,size=50)In [119]:dataOut[119]:array([6, 6, 2, 3, 5, 3, 2, 5, 4, 5, 4, 3, 4, 5, 0, 2, 0, 4, 2, 0, 3, 2,       2, 5, 6, 5, 3, 4, 6, 4, 3, 5, 6, 4, 3, 6, 2, 6, 6, 2, 3, 4, 2, 1,       6, 2, 6, 1, 5, 4])In [120]:s=pd.Series(data)In [121]:s.value_counts()Out[121]:6    102    104     93     85     80     31     2Name: count, dtype: int64

Thevalue_counts() method can be used to count combinations across multiple columns.By default all columns are used but a subset can be selected using thesubset argument.

In [122]:data={"a":[1,2,3,4],"b":["x","x","y","y"]}In [123]:frame=pd.DataFrame(data)In [124]:frame.value_counts()Out[124]:a  b1  x    12  x    13  y    14  y    1Name: count, dtype: int64

Similarly, you can get the most frequently occurring value(s), i.e. the mode, of the values in a Series or DataFrame:

In [125]:s5=pd.Series([1,1,3,3,3,5,5,7,7,7])In [126]:s5.mode()Out[126]:0    31    7dtype: int64In [127]:df5=pd.DataFrame(   .....:{   .....:"A":np.random.randint(0,7,size=50),   .....:"B":np.random.randint(-10,15,size=50),   .....:}   .....:)   .....:In [128]:df5.mode()Out[128]:     A   B0  1.0  -91  NaN  102  NaN  13

Discretization and quantiling#

Continuous values can be discretized using thecut() (bins based on values)andqcut() (bins based on sample quantiles) functions:

In [129]:arr=np.random.randn(20)In [130]:factor=pd.cut(arr,4)In [131]:factorOut[131]:[(-0.251, 0.464], (-0.968, -0.251], (0.464, 1.179], (-0.251, 0.464], (-0.968, -0.251], ..., (-0.251, 0.464], (-0.968, -0.251], (-0.968, -0.251], (-0.968, -0.251], (-0.968, -0.251]]Length: 20Categories (4, interval[float64, right]): [(-0.968, -0.251] < (-0.251, 0.464] < (0.464, 1.179] <                                           (1.179, 1.893]]In [132]:factor=pd.cut(arr,[-5,-1,0,1,5])In [133]:factorOut[133]:[(0, 1], (-1, 0], (0, 1], (0, 1], (-1, 0], ..., (-1, 0], (-1, 0], (-1, 0], (-1, 0], (-1, 0]]Length: 20Categories (4, interval[int64, right]): [(-5, -1] < (-1, 0] < (0, 1] < (1, 5]]

qcut() computes sample quantiles. For example, we could slice up somenormally distributed data into equal-size quartiles like so:

In [134]:arr=np.random.randn(30)In [135]:factor=pd.qcut(arr,[0,0.25,0.5,0.75,1])In [136]:factorOut[136]:[(0.569, 1.184], (-2.278, -0.301], (-2.278, -0.301], (0.569, 1.184], (0.569, 1.184], ..., (-0.301, 0.569], (1.184, 2.346], (1.184, 2.346], (-0.301, 0.569], (-2.278, -0.301]]Length: 30Categories (4, interval[float64, right]): [(-2.278, -0.301] < (-0.301, 0.569] < (0.569, 1.184] <                                           (1.184, 2.346]]

We can also pass infinite values to define the bins:

In [137]:arr=np.random.randn(20)In [138]:factor=pd.cut(arr,[-np.inf,0,np.inf])In [139]:factorOut[139]:[(-inf, 0.0], (0.0, inf], (0.0, inf], (-inf, 0.0], (-inf, 0.0], ..., (-inf, 0.0], (-inf, 0.0], (-inf, 0.0], (0.0, inf], (0.0, inf]]Length: 20Categories (2, interval[float64, right]): [(-inf, 0.0] < (0.0, inf]]

Function application#

To apply your own or another library’s functions to pandas objects,you should be aware of the three methods below. The appropriatemethod to use depends on whether your function expects to operateon an entireDataFrame orSeries, row- or column-wise, or elementwise.

  1. Tablewise Function Application:pipe()

  2. Row or Column-wise Function Application:apply()

  3. Aggregation API:agg() andtransform()

  4. Applying Elementwise Functions:map()

Tablewise function application#

DataFrames andSeries can be passed into functions.However, if the function needs to be called in a chain, consider using thepipe() method.

First some setup:

In [140]:defextract_city_name(df):   .....:"""   .....:    Chicago, IL -> Chicago for city_name column   .....:    """   .....:df["city_name"]=df["city_and_code"].str.split(",").str.get(0)   .....:returndf   .....:In [141]:defadd_country_name(df,country_name=None):   .....:"""   .....:    Chicago -> Chicago-US for city_name column   .....:    """   .....:col="city_name"   .....:df["city_and_country"]=df[col]+country_name   .....:returndf   .....:In [142]:df_p=pd.DataFrame({"city_and_code":["Chicago, IL"]})

extract_city_name andadd_country_name are functions taking and returningDataFrames.

Now compare the following:

In [143]:add_country_name(extract_city_name(df_p),country_name="US")Out[143]:  city_and_code city_name city_and_country0   Chicago, IL   Chicago        ChicagoUS

Is equivalent to:

In [144]:df_p.pipe(extract_city_name).pipe(add_country_name,country_name="US")Out[144]:  city_and_code city_name city_and_country0   Chicago, IL   Chicago        ChicagoUS

pandas encourages the second style, which is known as method chaining.pipe makes it easy to use your own or another library’s functionsin method chains, alongside pandas’ methods.

In the example above, the functionsextract_city_name andadd_country_name each expected aDataFrame as the first positional argument.What if the function you wish to apply takes its data as, say, the second argument?In this case, providepipe with a tuple of(callable,data_keyword)..pipe will route theDataFrame to the argument specified in the tuple.

For example, we can fit a regression using statsmodels. Their API expects a formula first and aDataFrame as the second argument,data. We pass in the function, keyword pair(sm.ols,'data') topipe:

In [147]:importstatsmodels.formula.apiassmIn [148]:bb=pd.read_csv("data/baseball.csv",index_col="id")In [149]:(   .....:bb.query("h > 0")   .....:.assign(ln_h=lambdadf:np.log(df.h))   .....:.pipe((sm.ols,"data"),"hr ~ ln_h + year + g + C(lg)")   .....:.fit()   .....:.summary()   .....:)   .....:Out[149]:<class 'statsmodels.iolib.summary.Summary'>"""                           OLS Regression Results==============================================================================Dep. Variable:                     hr   R-squared:                       0.685Model:                            OLS   Adj. R-squared:                  0.665Method:                 Least Squares   F-statistic:                     34.28Date:                Tue, 22 Nov 2022   Prob (F-statistic):           3.48e-15Time:                        05:34:17   Log-Likelihood:                -205.92No. Observations:                  68   AIC:                             421.8Df Residuals:                      63   BIC:                             432.9Df Model:                           4Covariance Type:            nonrobust===============================================================================                  coef    std err          t      P>|t|      [0.025      0.975]-------------------------------------------------------------------------------Intercept-8484.77204664.146-1.8190.074-1.78e+04835.780C(lg)[T.NL]-2.27361.325-1.7160.091-4.9220.375ln_h-1.35420.875-1.5470.127-3.1030.395year4.22772.3241.8190.074-0.4178.872g0.18410.0296.2580.0000.1250.243==============================================================================Omnibus:                       10.875   Durbin-Watson:                   1.999Prob(Omnibus):0.004Jarque-Bera(JB):17.298Skew:                           0.537   Prob(JB):                     0.000175Kurtosis:                       5.225   Cond. No.                     1.49e+07==============================================================================Notes:[1]StandardErrorsassumethatthecovariancematrixoftheerrorsiscorrectlyspecified.[2]Theconditionnumberislarge,1.49e+07.Thismightindicatethattherearestrongmulticollinearityorothernumericalproblems."""

The pipe method is inspired by unix pipes and more recentlydplyr andmagrittr, whichhave introduced the popular(%>%) (read pipe) operator forR.The implementation ofpipe here is quite clean and feels right at home in Python.We encourage you to view the source code ofpipe().

Row or column-wise function application#

Arbitrary functions can be applied along the axes of a DataFrameusing theapply() method, which, like the descriptivestatistics methods, takes an optionalaxis argument:

In [145]:df.apply(lambdax:np.mean(x))Out[145]:one      0.811094two      1.360588three    0.187958dtype: float64In [146]:df.apply(lambdax:np.mean(x),axis=1)Out[146]:a    1.583749b    0.734929c    1.133683d   -0.166914dtype: float64In [147]:df.apply(lambdax:x.max()-x.min())Out[147]:one      1.051928two      1.632779three    1.840607dtype: float64In [148]:df.apply(np.cumsum)Out[148]:        one       two     threea  1.394981  1.772517       NaNb  1.738035  3.684640 -0.050390c  2.433281  5.163008  1.177045d       NaN  5.442353  0.563873In [149]:df.apply(np.exp)Out[149]:        one       two     threea  4.034899  5.885648       NaNb  1.409244  6.767440  0.950858c  2.004201  4.385785  3.412466d       NaN  1.322262  0.541630

Theapply() method will also dispatch on a string method name.

In [150]:df.apply("mean")Out[150]:one      0.811094two      1.360588three    0.187958dtype: float64In [151]:df.apply("mean",axis=1)Out[151]:a    1.583749b    0.734929c    1.133683d   -0.166914dtype: float64

The return type of the function passed toapply() affects thetype of the final output fromDataFrame.apply for the default behaviour:

  • If the applied function returns aSeries, the final output is aDataFrame.The columns match the index of theSeries returned by the applied function.

  • If the applied function returns any other type, the final output is aSeries.

This default behaviour can be overridden using theresult_type, whichaccepts three options:reduce,broadcast, andexpand.These will determine how list-likes return values expand (or not) to aDataFrame.

apply() combined with some cleverness can be used to answer many questionsabout a data set. For example, suppose we wanted to extract the date where themaximum value for each column occurred:

In [152]:tsdf=pd.DataFrame(   .....:np.random.randn(1000,3),   .....:columns=["A","B","C"],   .....:index=pd.date_range("1/1/2000",periods=1000),   .....:)   .....:In [153]:tsdf.apply(lambdax:x.idxmax())Out[153]:A   2000-08-06B   2001-01-18C   2001-07-18dtype: datetime64[ns]

You may also pass additional arguments and keyword arguments to theapply()method.

In [154]:defsubtract_and_divide(x,sub,divide=1):   .....:return(x-sub)/divide   .....:In [155]:df_udf=pd.DataFrame(np.ones((2,2)))In [156]:df_udf.apply(subtract_and_divide,args=(5,),divide=3)Out[156]:          0         10 -1.333333 -1.3333331 -1.333333 -1.333333

Another useful feature is the ability to pass Series methods to carry out someSeries operation on each column or row:

In [157]:tsdf=pd.DataFrame(   .....:np.random.randn(10,3),   .....:columns=["A","B","C"],   .....:index=pd.date_range("1/1/2000",periods=10),   .....:)   .....:In [158]:tsdf.iloc[3:7]=np.nanIn [159]:tsdfOut[159]:                   A         B         C2000-01-01 -0.158131 -0.232466  0.3216042000-01-02 -1.810340 -3.105758  0.4338342000-01-03 -1.209847 -1.156793 -0.1367942000-01-04       NaN       NaN       NaN2000-01-05       NaN       NaN       NaN2000-01-06       NaN       NaN       NaN2000-01-07       NaN       NaN       NaN2000-01-08 -0.653602  0.178875  1.0082982000-01-09  1.007996  0.462824  0.2544722000-01-10  0.307473  0.600337  1.643950In [160]:tsdf.apply(pd.Series.interpolate)Out[160]:                   A         B         C2000-01-01 -0.158131 -0.232466  0.3216042000-01-02 -1.810340 -3.105758  0.4338342000-01-03 -1.209847 -1.156793 -0.1367942000-01-04 -1.098598 -0.889659  0.0922252000-01-05 -0.987349 -0.622526  0.3212432000-01-06 -0.876100 -0.355392  0.5502622000-01-07 -0.764851 -0.088259  0.7792802000-01-08 -0.653602  0.178875  1.0082982000-01-09  1.007996  0.462824  0.2544722000-01-10  0.307473  0.600337  1.643950

Finally,apply() takes an argumentraw which is False by default, whichconverts each row or column into a Series before applying the function. Whenset to True, the passed function will instead receive an ndarray object, whichhas positive performance implications if you do not need the indexingfunctionality.

Aggregation API#

The aggregation API allows one to express possibly multiple aggregation operations in a single concise way.This API is similar across pandas objects, seegroupby API, thewindow API, and theresample API.The entry point for aggregation isDataFrame.aggregate(), or the aliasDataFrame.agg().

We will use a similar starting frame from above:

In [161]:tsdf=pd.DataFrame(   .....:np.random.randn(10,3),   .....:columns=["A","B","C"],   .....:index=pd.date_range("1/1/2000",periods=10),   .....:)   .....:In [162]:tsdf.iloc[3:7]=np.nanIn [163]:tsdfOut[163]:                   A         B         C2000-01-01  1.257606  1.004194  0.1675742000-01-02 -0.749892  0.288112 -0.7573042000-01-03 -0.207550 -0.298599  0.1160182000-01-04       NaN       NaN       NaN2000-01-05       NaN       NaN       NaN2000-01-06       NaN       NaN       NaN2000-01-07       NaN       NaN       NaN2000-01-08  0.814347 -0.257623  0.8692262000-01-09 -0.250663 -1.206601  0.8968392000-01-10  2.169758 -1.333363  0.283157

Using a single function is equivalent toapply(). You can alsopass named methods as strings. These will return aSeries of the aggregatedoutput:

In [164]:tsdf.agg(lambdax:np.sum(x))Out[164]:A    3.033606B   -1.803879C    1.575510dtype: float64In [165]:tsdf.agg("sum")Out[165]:A    3.033606B   -1.803879C    1.575510dtype: float64# these are equivalent to a ``.sum()`` because we are aggregating# on a single functionIn [166]:tsdf.sum()Out[166]:A    3.033606B   -1.803879C    1.575510dtype: float64

Single aggregations on aSeries this will return a scalar value:

In [167]:tsdf["A"].agg("sum")Out[167]:3.033606102414146

Aggregating with multiple functions#

You can pass multiple aggregation arguments as a list.The results of each of the passed functions will be a row in the resultingDataFrame.These are naturally named from the aggregation function.

In [168]:tsdf.agg(["sum"])Out[168]:            A         B        Csum  3.033606 -1.803879  1.57551

Multiple functions yield multiple rows:

In [169]:tsdf.agg(["sum","mean"])Out[169]:             A         B         Csum   3.033606 -1.803879  1.575510mean  0.505601 -0.300647  0.262585

On aSeries, multiple functions return aSeries, indexed by the function names:

In [170]:tsdf["A"].agg(["sum","mean"])Out[170]:sum     3.033606mean    0.505601Name: A, dtype: float64

Passing alambda function will yield a<lambda> named row:

In [171]:tsdf["A"].agg(["sum",lambdax:x.mean()])Out[171]:sum         3.033606<lambda>    0.505601Name: A, dtype: float64

Passing a named function will yield that name for the row:

In [172]:defmymean(x):   .....:returnx.mean()   .....:In [173]:tsdf["A"].agg(["sum",mymean])Out[173]:sum       3.033606mymean    0.505601Name: A, dtype: float64

Aggregating with a dict#

Passing a dictionary of column names to a scalar or a list of scalars, toDataFrame.aggallows you to customize which functions are applied to which columns. Note that the resultsare not in any particular order, you can use anOrderedDict instead to guarantee ordering.

In [174]:tsdf.agg({"A":"mean","B":"sum"})Out[174]:A    0.505601B   -1.803879dtype: float64

Passing a list-like will generate aDataFrame output. You will get a matrix-like outputof all of the aggregators. The output will consist of all unique functions. Those that arenot noted for a particular column will beNaN:

In [175]:tsdf.agg({"A":["mean","min"],"B":"sum"})Out[175]:             A         Bmean  0.505601       NaNmin  -0.749892       NaNsum        NaN -1.803879

Custom describe#

With.agg() it is possible to easily create a custom describe function, similarto the built indescribe function.

In [176]:fromfunctoolsimportpartialIn [177]:q_25=partial(pd.Series.quantile,q=0.25)In [178]:q_25.__name__="25%"In [179]:q_75=partial(pd.Series.quantile,q=0.75)In [180]:q_75.__name__="75%"In [181]:tsdf.agg(["count","mean","std","min",q_25,"median",q_75,"max"])Out[181]:               A         B         Ccount   6.000000  6.000000  6.000000mean    0.505601 -0.300647  0.262585std     1.103362  0.887508  0.606860min    -0.749892 -1.333363 -0.75730425%    -0.239885 -0.979600  0.128907median  0.303398 -0.278111  0.22536575%     1.146791  0.151678  0.722709max     2.169758  1.004194  0.896839

Transform API#

Thetransform() method returns an object that is indexed the same (same size)as the original. This API allows you to providemultiple operations at the sametime rather than one-by-one. Its API is quite similar to the.agg API.

We create a frame similar to the one used in the above sections.

In [182]:tsdf=pd.DataFrame(   .....:np.random.randn(10,3),   .....:columns=["A","B","C"],   .....:index=pd.date_range("1/1/2000",periods=10),   .....:)   .....:In [183]:tsdf.iloc[3:7]=np.nanIn [184]:tsdfOut[184]:                   A         B         C2000-01-01 -0.428759 -0.864890 -0.6753412000-01-02 -0.168731  1.338144 -1.2793212000-01-03 -1.621034  0.438107  0.9037942000-01-04       NaN       NaN       NaN2000-01-05       NaN       NaN       NaN2000-01-06       NaN       NaN       NaN2000-01-07       NaN       NaN       NaN2000-01-08  0.254374 -1.240447 -0.2010522000-01-09 -0.157795  0.791197 -1.1442092000-01-10 -0.030876  0.371900  0.061932

Transform the entire frame..transform() allows input functions as: a NumPy function, a stringfunction name or a user defined function.

In [185]:tsdf.transform(np.abs)Out[185]:                   A         B         C2000-01-01  0.428759  0.864890  0.6753412000-01-02  0.168731  1.338144  1.2793212000-01-03  1.621034  0.438107  0.9037942000-01-04       NaN       NaN       NaN2000-01-05       NaN       NaN       NaN2000-01-06       NaN       NaN       NaN2000-01-07       NaN       NaN       NaN2000-01-08  0.254374  1.240447  0.2010522000-01-09  0.157795  0.791197  1.1442092000-01-10  0.030876  0.371900  0.061932In [186]:tsdf.transform("abs")Out[186]:                   A         B         C2000-01-01  0.428759  0.864890  0.6753412000-01-02  0.168731  1.338144  1.2793212000-01-03  1.621034  0.438107  0.9037942000-01-04       NaN       NaN       NaN2000-01-05       NaN       NaN       NaN2000-01-06       NaN       NaN       NaN2000-01-07       NaN       NaN       NaN2000-01-08  0.254374  1.240447  0.2010522000-01-09  0.157795  0.791197  1.1442092000-01-10  0.030876  0.371900  0.061932In [187]:tsdf.transform(lambdax:x.abs())Out[187]:                   A         B         C2000-01-01  0.428759  0.864890  0.6753412000-01-02  0.168731  1.338144  1.2793212000-01-03  1.621034  0.438107  0.9037942000-01-04       NaN       NaN       NaN2000-01-05       NaN       NaN       NaN2000-01-06       NaN       NaN       NaN2000-01-07       NaN       NaN       NaN2000-01-08  0.254374  1.240447  0.2010522000-01-09  0.157795  0.791197  1.1442092000-01-10  0.030876  0.371900  0.061932

Heretransform() received a single function; this is equivalent to aufunc application.

In [188]:np.abs(tsdf)Out[188]:                   A         B         C2000-01-01  0.428759  0.864890  0.6753412000-01-02  0.168731  1.338144  1.2793212000-01-03  1.621034  0.438107  0.9037942000-01-04       NaN       NaN       NaN2000-01-05       NaN       NaN       NaN2000-01-06       NaN       NaN       NaN2000-01-07       NaN       NaN       NaN2000-01-08  0.254374  1.240447  0.2010522000-01-09  0.157795  0.791197  1.1442092000-01-10  0.030876  0.371900  0.061932

Passing a single function to.transform() with aSeries will yield a singleSeries in return.

In [189]:tsdf["A"].transform(np.abs)Out[189]:2000-01-01    0.4287592000-01-02    0.1687312000-01-03    1.6210342000-01-04         NaN2000-01-05         NaN2000-01-06         NaN2000-01-07         NaN2000-01-08    0.2543742000-01-09    0.1577952000-01-10    0.030876Freq: D, Name: A, dtype: float64

Transform with multiple functions#

Passing multiple functions will yield a column MultiIndexed DataFrame.The first level will be the original frame column names; the second levelwill be the names of the transforming functions.

In [190]:tsdf.transform([np.abs,lambdax:x+1])Out[190]:                   A                   B                   C            absolute  <lambda>  absolute  <lambda>  absolute  <lambda>2000-01-01  0.428759  0.571241  0.864890  0.135110  0.675341  0.3246592000-01-02  0.168731  0.831269  1.338144  2.338144  1.279321 -0.2793212000-01-03  1.621034 -0.621034  0.438107  1.438107  0.903794  1.9037942000-01-04       NaN       NaN       NaN       NaN       NaN       NaN2000-01-05       NaN       NaN       NaN       NaN       NaN       NaN2000-01-06       NaN       NaN       NaN       NaN       NaN       NaN2000-01-07       NaN       NaN       NaN       NaN       NaN       NaN2000-01-08  0.254374  1.254374  1.240447 -0.240447  0.201052  0.7989482000-01-09  0.157795  0.842205  0.791197  1.791197  1.144209 -0.1442092000-01-10  0.030876  0.969124  0.371900  1.371900  0.061932  1.061932

Passing multiple functions to a Series will yield a DataFrame. Theresulting column names will be the transforming functions.

In [191]:tsdf["A"].transform([np.abs,lambdax:x+1])Out[191]:            absolute  <lambda>2000-01-01  0.428759  0.5712412000-01-02  0.168731  0.8312692000-01-03  1.621034 -0.6210342000-01-04       NaN       NaN2000-01-05       NaN       NaN2000-01-06       NaN       NaN2000-01-07       NaN       NaN2000-01-08  0.254374  1.2543742000-01-09  0.157795  0.8422052000-01-10  0.030876  0.969124

Transforming with a dict#

Passing a dict of functions will allow selective transforming per column.

In [192]:tsdf.transform({"A":np.abs,"B":lambdax:x+1})Out[192]:                   A         B2000-01-01  0.428759  0.1351102000-01-02  0.168731  2.3381442000-01-03  1.621034  1.4381072000-01-04       NaN       NaN2000-01-05       NaN       NaN2000-01-06       NaN       NaN2000-01-07       NaN       NaN2000-01-08  0.254374 -0.2404472000-01-09  0.157795  1.7911972000-01-10  0.030876  1.371900

Passing a dict of lists will generate a MultiIndexed DataFrame with theseselective transforms.

In [193]:tsdf.transform({"A":np.abs,"B":[lambdax:x+1,"sqrt"]})Out[193]:                   A         B            absolute  <lambda>      sqrt2000-01-01  0.428759  0.135110       NaN2000-01-02  0.168731  2.338144  1.1567822000-01-03  1.621034  1.438107  0.6618972000-01-04       NaN       NaN       NaN2000-01-05       NaN       NaN       NaN2000-01-06       NaN       NaN       NaN2000-01-07       NaN       NaN       NaN2000-01-08  0.254374 -0.240447       NaN2000-01-09  0.157795  1.791197  0.8894932000-01-10  0.030876  1.371900  0.609836

Applying elementwise functions#

Since not all functions can be vectorized (accept NumPy arrays and returnanother array or value), the methodsmap() on DataFrameand analogouslymap() on Series accept any Python function takinga single value and returning a single value. For example:

In [194]:df4=df.copy()In [195]:df4Out[195]:        one       two     threea  1.394981  1.772517       NaNb  0.343054  1.912123 -0.050390c  0.695246  1.478369  1.227435d       NaN  0.279344 -0.613172In [196]:deff(x):   .....:returnlen(str(x))   .....:In [197]:df4["one"].map(f)Out[197]:a    18b    19c    18d     3Name: one, dtype: int64In [198]:df4.map(f)Out[198]:   one  two  threea   18   17      3b   19   18     20c   18   18     16d    3   19     19

Series.map() has an additional feature; it can be used to easily“link” or “map” values defined by a secondary series. This is closely relatedtomerging/joining functionality:

In [199]:s=pd.Series(   .....:["six","seven","six","seven","six"],index=["a","b","c","d","e"]   .....:)   .....:In [200]:t=pd.Series({"six":6.0,"seven":7.0})In [201]:sOut[201]:a      sixb    sevenc      sixd    sevene      sixdtype: objectIn [202]:s.map(t)Out[202]:a    6.0b    7.0c    6.0d    7.0e    6.0dtype: float64

Reindexing and altering labels#

reindex() is the fundamental data alignment method in pandas.It is used to implement nearly all other features relying on label-alignmentfunctionality. Toreindex means to conform the data to match a given set oflabels along a particular axis. This accomplishes several things:

  • Reorders the existing data to match a new set of labels

  • Inserts missing value (NA) markers in label locations where no data forthat label existed

  • If specified,fill data for missing labels using logic (highly relevantto working with time series data)

Here is a simple example:

In [203]:s=pd.Series(np.random.randn(5),index=["a","b","c","d","e"])In [204]:sOut[204]:a    1.695148b    1.328614c    1.234686d   -0.385845e   -1.326508dtype: float64In [205]:s.reindex(["e","b","f","d"])Out[205]:e   -1.326508b    1.328614f         NaNd   -0.385845dtype: float64

Here, thef label was not contained in the Series and hence appears asNaN in the result.

With a DataFrame, you can simultaneously reindex the index and columns:

In [206]:dfOut[206]:        one       two     threea  1.394981  1.772517       NaNb  0.343054  1.912123 -0.050390c  0.695246  1.478369  1.227435d       NaN  0.279344 -0.613172In [207]:df.reindex(index=["c","f","b"],columns=["three","two","one"])Out[207]:      three       two       onec  1.227435  1.478369  0.695246f       NaN       NaN       NaNb -0.050390  1.912123  0.343054

Note that theIndex objects containing the actual axis labels can beshared between objects. So if we have a Series and a DataFrame, thefollowing can be done:

In [208]:rs=s.reindex(df.index)In [209]:rsOut[209]:a    1.695148b    1.328614c    1.234686d   -0.385845dtype: float64In [210]:rs.indexisdf.indexOut[210]:True

This means that the reindexed Series’s index is the same Python object as theDataFrame’s index.

DataFrame.reindex() also supports an “axis-style” calling convention,where you specify a singlelabels argument and theaxis it applies to.

In [211]:df.reindex(["c","f","b"],axis="index")Out[211]:        one       two     threec  0.695246  1.478369  1.227435f       NaN       NaN       NaNb  0.343054  1.912123 -0.050390In [212]:df.reindex(["three","two","one"],axis="columns")Out[212]:      three       two       onea       NaN  1.772517  1.394981b -0.050390  1.912123  0.343054c  1.227435  1.478369  0.695246d -0.613172  0.279344       NaN

See also

MultiIndex / Advanced Indexing is an even more concise way ofdoing reindexing.

Note

When writing performance-sensitive code, there is a good reason to spendsome time becoming a reindexing ninja:many operations are faster onpre-aligned data. Adding two unaligned DataFrames internally triggers areindexing step. For exploratory analysis you will hardly notice thedifference (becausereindex has been heavily optimized), but when CPUcycles matter sprinkling a few explicitreindex calls here and there canhave an impact.

Reindexing to align with another object#

You may wish to take an object and reindex its axes to be labeled the same asanother object. While the syntax for this is straightforward albeit verbose, itis a common enough operation that thereindex_like() method isavailable to make this simpler:

In [213]:df2=df.reindex(["a","b","c"],columns=["one","two"])In [214]:df3=df2-df2.mean()In [215]:df2Out[215]:        one       twoa  1.394981  1.772517b  0.343054  1.912123c  0.695246  1.478369In [216]:df3Out[216]:        one       twoa  0.583888  0.051514b -0.468040  0.191120c -0.115848 -0.242634In [217]:df.reindex_like(df2)Out[217]:        one       twoa  1.394981  1.772517b  0.343054  1.912123c  0.695246  1.478369

Aligning objects with each other withalign#

Thealign() method is the fastest way to simultaneously align two objects. Itsupports ajoin argument (related tojoining and merging):

  • join='outer': take the union of the indexes (default)

  • join='left': use the calling object’s index

  • join='right': use the passed object’s index

  • join='inner': intersect the indexes

It returns a tuple with both of the reindexed Series:

In [218]:s=pd.Series(np.random.randn(5),index=["a","b","c","d","e"])In [219]:s1=s[:4]In [220]:s2=s[1:]In [221]:s1.align(s2)Out[221]:(a   -0.186646 b   -1.692424 c   -0.303893 d   -1.425662 e         NaN dtype: float64, a         NaN b   -1.692424 c   -0.303893 d   -1.425662 e    1.114285 dtype: float64)In [222]:s1.align(s2,join="inner")Out[222]:(b   -1.692424 c   -0.303893 d   -1.425662 dtype: float64, b   -1.692424 c   -0.303893 d   -1.425662 dtype: float64)In [223]:s1.align(s2,join="left")Out[223]:(a   -0.186646 b   -1.692424 c   -0.303893 d   -1.425662 dtype: float64, a         NaN b   -1.692424 c   -0.303893 d   -1.425662 dtype: float64)

For DataFrames, the join method will be applied to both the index and thecolumns by default:

In [224]:df.align(df2,join="inner")Out[224]:(        one       two a  1.394981  1.772517 b  0.343054  1.912123 c  0.695246  1.478369,         one       two a  1.394981  1.772517 b  0.343054  1.912123 c  0.695246  1.478369)

You can also pass anaxis option to only align on the specified axis:

In [225]:df.align(df2,join="inner",axis=0)Out[225]:(        one       two     three a  1.394981  1.772517       NaN b  0.343054  1.912123 -0.050390 c  0.695246  1.478369  1.227435,         one       two a  1.394981  1.772517 b  0.343054  1.912123 c  0.695246  1.478369)

If you pass a Series toDataFrame.align(), you can choose to align bothobjects either on the DataFrame’s index or columns using theaxis argument:

In [226]:df.align(df2.iloc[0],axis=1)Out[226]:(        one     three       two a  1.394981       NaN  1.772517 b  0.343054 -0.050390  1.912123 c  0.695246  1.227435  1.478369 d       NaN -0.613172  0.279344, one      1.394981 three         NaN two      1.772517 Name: a, dtype: float64)

Filling while reindexing#

reindex() takes an optional parametermethod which is afilling method chosen from the following table:

Method

Action

pad / ffill

Fill values forward

bfill / backfill

Fill values backward

nearest

Fill from the nearest index value

We illustrate these fill methods on a simple Series:

In [227]:rng=pd.date_range("1/3/2000",periods=8)In [228]:ts=pd.Series(np.random.randn(8),index=rng)In [229]:ts2=ts.iloc[[0,3,6]]In [230]:tsOut[230]:2000-01-03    0.1830512000-01-04    0.4005282000-01-05   -0.0150832000-01-06    2.3954892000-01-07    1.4148062000-01-08    0.1184282000-01-09    0.7336392000-01-10   -0.936077Freq: D, dtype: float64In [231]:ts2Out[231]:2000-01-03    0.1830512000-01-06    2.3954892000-01-09    0.733639Freq: 3D, dtype: float64In [232]:ts2.reindex(ts.index)Out[232]:2000-01-03    0.1830512000-01-04         NaN2000-01-05         NaN2000-01-06    2.3954892000-01-07         NaN2000-01-08         NaN2000-01-09    0.7336392000-01-10         NaNFreq: D, dtype: float64In [233]:ts2.reindex(ts.index,method="ffill")Out[233]:2000-01-03    0.1830512000-01-04    0.1830512000-01-05    0.1830512000-01-06    2.3954892000-01-07    2.3954892000-01-08    2.3954892000-01-09    0.7336392000-01-10    0.733639Freq: D, dtype: float64In [234]:ts2.reindex(ts.index,method="bfill")Out[234]:2000-01-03    0.1830512000-01-04    2.3954892000-01-05    2.3954892000-01-06    2.3954892000-01-07    0.7336392000-01-08    0.7336392000-01-09    0.7336392000-01-10         NaNFreq: D, dtype: float64In [235]:ts2.reindex(ts.index,method="nearest")Out[235]:2000-01-03    0.1830512000-01-04    0.1830512000-01-05    2.3954892000-01-06    2.3954892000-01-07    2.3954892000-01-08    0.7336392000-01-09    0.7336392000-01-10    0.733639Freq: D, dtype: float64

These methods require that the indexes areordered increasing ordecreasing.

Note that the same result could have been achieved usingffill (except formethod='nearest') orinterpolate:

In [236]:ts2.reindex(ts.index).ffill()Out[236]:2000-01-03    0.1830512000-01-04    0.1830512000-01-05    0.1830512000-01-06    2.3954892000-01-07    2.3954892000-01-08    2.3954892000-01-09    0.7336392000-01-10    0.733639Freq: D, dtype: float64

reindex() will raise a ValueError if the index is not monotonicallyincreasing or decreasing.fillna() andinterpolate()will not perform any checks on the order of the index.

Limits on filling while reindexing#

Thelimit andtolerance arguments provide additional control overfilling while reindexing. Limit specifies the maximum count of consecutivematches:

In [237]:ts2.reindex(ts.index,method="ffill",limit=1)Out[237]:2000-01-03    0.1830512000-01-04    0.1830512000-01-05         NaN2000-01-06    2.3954892000-01-07    2.3954892000-01-08         NaN2000-01-09    0.7336392000-01-10    0.733639Freq: D, dtype: float64

In contrast, tolerance specifies the maximum distance between the index andindexer values:

In [238]:ts2.reindex(ts.index,method="ffill",tolerance="1 day")Out[238]:2000-01-03    0.1830512000-01-04    0.1830512000-01-05         NaN2000-01-06    2.3954892000-01-07    2.3954892000-01-08         NaN2000-01-09    0.7336392000-01-10    0.733639Freq: D, dtype: float64

Notice that when used on aDatetimeIndex,TimedeltaIndex orPeriodIndex,tolerance will coerced into aTimedelta if possible.This allows you to specify tolerance with appropriate strings.

Dropping labels from an axis#

A method closely related toreindex is thedrop() function.It removes a set of labels from an axis:

In [239]:dfOut[239]:        one       two     threea  1.394981  1.772517       NaNb  0.343054  1.912123 -0.050390c  0.695246  1.478369  1.227435d       NaN  0.279344 -0.613172In [240]:df.drop(["a","d"],axis=0)Out[240]:        one       two     threeb  0.343054  1.912123 -0.050390c  0.695246  1.478369  1.227435In [241]:df.drop(["one"],axis=1)Out[241]:        two     threea  1.772517       NaNb  1.912123 -0.050390c  1.478369  1.227435d  0.279344 -0.613172

Note that the following also works, but is a bit less obvious / clean:

In [242]:df.reindex(df.index.difference(["a","d"]))Out[242]:        one       two     threeb  0.343054  1.912123 -0.050390c  0.695246  1.478369  1.227435

Renaming / mapping labels#

Therename() method allows you to relabel an axis based on somemapping (a dict or Series) or an arbitrary function.

In [243]:sOut[243]:a   -0.186646b   -1.692424c   -0.303893d   -1.425662e    1.114285dtype: float64In [244]:s.rename(str.upper)Out[244]:A   -0.186646B   -1.692424C   -0.303893D   -1.425662E    1.114285dtype: float64

If you pass a function, it must return a value when called with any of thelabels (and must produce a set of unique values). A dict orSeries can also be used:

In [245]:df.rename(   .....:columns={"one":"foo","two":"bar"},   .....:index={"a":"apple","b":"banana","d":"durian"},   .....:)   .....:Out[245]:             foo       bar     threeapple   1.394981  1.772517       NaNbanana  0.343054  1.912123 -0.050390c       0.695246  1.478369  1.227435durian       NaN  0.279344 -0.613172

If the mapping doesn’t include a column/index label, it isn’t renamed. Note thatextra labels in the mapping don’t throw an error.

DataFrame.rename() also supports an “axis-style” calling convention, whereyou specify a singlemapper and theaxis to apply that mapping to.

In [246]:df.rename({"one":"foo","two":"bar"},axis="columns")Out[246]:        foo       bar     threea  1.394981  1.772517       NaNb  0.343054  1.912123 -0.050390c  0.695246  1.478369  1.227435d       NaN  0.279344 -0.613172In [247]:df.rename({"a":"apple","b":"banana","d":"durian"},axis="index")Out[247]:             one       two     threeapple   1.394981  1.772517       NaNbanana  0.343054  1.912123 -0.050390c       0.695246  1.478369  1.227435durian       NaN  0.279344 -0.613172

Finally,rename() also accepts a scalar or list-likefor altering theSeries.name attribute.

In [248]:s.rename("scalar-name")Out[248]:a   -0.186646b   -1.692424c   -0.303893d   -1.425662e    1.114285Name: scalar-name, dtype: float64

The methodsDataFrame.rename_axis() andSeries.rename_axis()allow specific names of aMultiIndex to be changed (as opposed to thelabels).

In [249]:df=pd.DataFrame(   .....:{"x":[1,2,3,4,5,6],"y":[10,20,30,40,50,60]},   .....:index=pd.MultiIndex.from_product(   .....:[["a","b","c"],[1,2]],names=["let","num"]   .....:),   .....:)   .....:In [250]:dfOut[250]:         x   ylet numa   1    1  10    2    2  20b   1    3  30    2    4  40c   1    5  50    2    6  60In [251]:df.rename_axis(index={"let":"abc"})Out[251]:         x   yabc numa   1    1  10    2    2  20b   1    3  30    2    4  40c   1    5  50    2    6  60In [252]:df.rename_axis(index=str.upper)Out[252]:         x   yLET NUMa   1    1  10    2    2  20b   1    3  30    2    4  40c   1    5  50    2    6  60

Iteration#

The behavior of basic iteration over pandas objects depends on the type.When iterating over a Series, it is regarded as array-like, and basic iterationproduces the values. DataFrames follow the dict-like convention of iteratingover the “keys” of the objects.

In short, basic iteration (foriinobject) produces:

  • Series: values

  • DataFrame: column labels

Thus, for example, iterating over a DataFrame gives you the column names:

In [253]:df=pd.DataFrame(   .....:{"col1":np.random.randn(3),"col2":np.random.randn(3)},index=["a","b","c"]   .....:)   .....:In [254]:forcolindf:   .....:print(col)   .....:col1col2

pandas objects also have the dict-likeitems() method toiterate over the (key, value) pairs.

To iterate over the rows of a DataFrame, you can use the following methods:

  • iterrows(): Iterate over the rows of a DataFrame as (index, Series) pairs.This converts the rows to Series objects, which can change the dtypes and has someperformance implications.

  • itertuples(): Iterate over the rows of a DataFrameas namedtuples of the values. This is a lot faster thaniterrows(), and is in most cases preferable to useto iterate over the values of a DataFrame.

Warning

Iterating through pandas objects is generallyslow. In many cases,iterating manually over the rows is not needed and can be avoided withone of the following approaches:

  • Look for avectorized solution: many operations can be performed usingbuilt-in methods or NumPy functions, (boolean) indexing, …

  • When you have a function that cannot work on the full DataFrame/Seriesat once, it is better to useapply() instead of iteratingover the values. See the docs onfunction application.

  • If you need to do iterative manipulations on the values but performance isimportant, consider writing the inner loop with cython or numba.See theenhancing performance section for someexamples of this approach.

Warning

You shouldnever modify something you are iterating over.This is not guaranteed to work in all cases. Depending on thedata types, the iterator returns a copy and not a view, and writingto it will have no effect!

For example, in the following case setting the value has no effect:

In [255]:df=pd.DataFrame({"a":[1,2,3],"b":["a","b","c"]})In [256]:forindex,rowindf.iterrows():   .....:row["a"]=10   .....:In [257]:dfOut[257]:   a  b0  1  a1  2  b2  3  c

items#

Consistent with the dict-like interface,items() iteratesthrough key-value pairs:

  • Series: (index, scalar value) pairs

  • DataFrame: (column, Series) pairs

For example:

In [258]:forlabel,serindf.items():   .....:print(label)   .....:print(ser)   .....:a0    11    22    3Name: a, dtype: int64b0    a1    b2    cName: b, dtype: object

iterrows#

iterrows() allows you to iterate through the rows of aDataFrame as Series objects. It returns an iterator yielding eachindex value along with a Series containing the data in each row:

In [259]:forrow_index,rowindf.iterrows():   .....:print(row_index,row,sep="\n")   .....:0a    1b    aName: 0, dtype: object1a    2b    bName: 1, dtype: object2a    3b    cName: 2, dtype: object

Note

Becauseiterrows() returns a Series for each row,it doesnot preserve dtypes across the rows (dtypes arepreserved across columns for DataFrames). For example,

In [260]:df_orig=pd.DataFrame([[1,1.5]],columns=["int","float"])In [261]:df_orig.dtypesOut[261]:int        int64float    float64dtype: objectIn [262]:row=next(df_orig.iterrows())[1]In [263]:rowOut[263]:int      1.0float    1.5Name: 0, dtype: float64

All values inrow, returned as a Series, are now upcastedto floats, also the original integer value in columnx:

In [264]:row["int"].dtypeOut[264]:dtype('float64')In [265]:df_orig["int"].dtypeOut[265]:dtype('int64')

To preserve dtypes while iterating over the rows, it is betterto useitertuples() which returns namedtuples of the valuesand which is generally much faster thaniterrows().

For instance, a contrived way to transpose the DataFrame would be:

In [266]:df2=pd.DataFrame({"x":[1,2,3],"y":[4,5,6]})In [267]:print(df2)   x  y0  1  41  2  52  3  6In [268]:print(df2.T)   0  1  2x  1  2  3y  4  5  6In [269]:df2_t=pd.DataFrame({idx:valuesforidx,valuesindf2.iterrows()})In [270]:print(df2_t)   0  1  2x  1  2  3y  4  5  6

itertuples#

Theitertuples() method will return an iteratoryielding a namedtuple for each row in the DataFrame. The first elementof the tuple will be the row’s corresponding index value, while theremaining values are the row values.

For instance:

In [271]:forrowindf.itertuples():   .....:print(row)   .....:Pandas(Index=0, a=1, b='a')Pandas(Index=1, a=2, b='b')Pandas(Index=2, a=3, b='c')

This method does not convert the row to a Series object; it merelyreturns the values inside a namedtuple. Therefore,itertuples() preserves the data type of the valuesand is generally faster asiterrows().

Note

The column names will be renamed to positional names if they areinvalid Python identifiers, repeated, or start with an underscore.With a large number of columns (>255), regular tuples are returned.

.dt accessor#

Series has an accessor to succinctly return datetime like properties for thevalues of the Series, if it is a datetime/period like Series.This will return a Series, indexed like the existing Series.

# datetimeIn [272]:s=pd.Series(pd.date_range("20130101 09:10:12",periods=4))In [273]:sOut[273]:0   2013-01-01 09:10:121   2013-01-02 09:10:122   2013-01-03 09:10:123   2013-01-04 09:10:12dtype: datetime64[ns]In [274]:s.dt.hourOut[274]:0    91    92    93    9dtype: int32In [275]:s.dt.secondOut[275]:0    121    122    123    12dtype: int32In [276]:s.dt.dayOut[276]:0    11    22    33    4dtype: int32

This enables nice expressions like this:

In [277]:s[s.dt.day==2]Out[277]:1   2013-01-02 09:10:12dtype: datetime64[ns]

You can easily produces tz aware transformations:

In [278]:stz=s.dt.tz_localize("US/Eastern")In [279]:stzOut[279]:0   2013-01-01 09:10:12-05:001   2013-01-02 09:10:12-05:002   2013-01-03 09:10:12-05:003   2013-01-04 09:10:12-05:00dtype: datetime64[ns, US/Eastern]In [280]:stz.dt.tzOut[280]:<DstTzInfo 'US/Eastern' LMT-1 day, 19:04:00 STD>

You can also chain these types of operations:

In [281]:s.dt.tz_localize("UTC").dt.tz_convert("US/Eastern")Out[281]:0   2013-01-01 04:10:12-05:001   2013-01-02 04:10:12-05:002   2013-01-03 04:10:12-05:003   2013-01-04 04:10:12-05:00dtype: datetime64[ns, US/Eastern]

You can also format datetime values as strings withSeries.dt.strftime() whichsupports the same format as the standardstrftime().

# DatetimeIndexIn [282]:s=pd.Series(pd.date_range("20130101",periods=4))In [283]:sOut[283]:0   2013-01-011   2013-01-022   2013-01-033   2013-01-04dtype: datetime64[ns]In [284]:s.dt.strftime("%Y/%m/%d")Out[284]:0    2013/01/011    2013/01/022    2013/01/033    2013/01/04dtype: object
# PeriodIndexIn [285]:s=pd.Series(pd.period_range("20130101",periods=4))In [286]:sOut[286]:0    2013-01-011    2013-01-022    2013-01-033    2013-01-04dtype: period[D]In [287]:s.dt.strftime("%Y/%m/%d")Out[287]:0    2013/01/011    2013/01/022    2013/01/033    2013/01/04dtype: object

The.dt accessor works for period and timedelta dtypes.

# periodIn [288]:s=pd.Series(pd.period_range("20130101",periods=4,freq="D"))In [289]:sOut[289]:0    2013-01-011    2013-01-022    2013-01-033    2013-01-04dtype: period[D]In [290]:s.dt.yearOut[290]:0    20131    20132    20133    2013dtype: int64In [291]:s.dt.dayOut[291]:0    11    22    33    4dtype: int64
# timedeltaIn [292]:s=pd.Series(pd.timedelta_range("1 day 00:00:05",periods=4,freq="s"))In [293]:sOut[293]:0   1 days 00:00:051   1 days 00:00:062   1 days 00:00:073   1 days 00:00:08dtype: timedelta64[ns]In [294]:s.dt.daysOut[294]:0    11    12    13    1dtype: int64In [295]:s.dt.secondsOut[295]:0    51    62    73    8dtype: int32In [296]:s.dt.componentsOut[296]:   days  hours  minutes  seconds  milliseconds  microseconds  nanoseconds0     1      0        0        5             0             0            01     1      0        0        6             0             0            02     1      0        0        7             0             0            03     1      0        0        8             0             0            0

Note

Series.dt will raise aTypeError if you access with a non-datetime-like values.

Vectorized string methods#

Series is equipped with a set of string processing methods that make it easy tooperate on each element of the array. Perhaps most importantly, these methodsexclude missing/NA values automatically. These are accessed via the Series’sstr attribute and generally have names matching the equivalent (scalar)built-in string methods. For example:

In [297]:s=pd.Series(   .....:["A","B","C","Aaba","Baca",np.nan,"CABA","dog","cat"],dtype="string"   .....:)   .....:In [298]:s.str.lower()Out[298]:0       a1       b2       c3    aaba4    baca5    <NA>6    caba7     dog8     catdtype: string

Powerful pattern-matching methods are provided as well, but note thatpattern-matching generally usesregular expressions by default (and in some casesalways uses them).

Note

Prior to pandas 1.0, string methods were only available onobject -dtypeSeries. pandas 1.0 added theStringDtype which is dedicatedto strings. SeeText data types for more.

Please seeVectorized String Methods for a completedescription.

Sorting#

pandas supports three kinds of sorting: sorting by index labels,sorting by column values, and sorting by a combination of both.

By index#

TheSeries.sort_index() andDataFrame.sort_index() methods areused to sort a pandas object by its index levels.

In [299]:df=pd.DataFrame(   .....:{   .....:"one":pd.Series(np.random.randn(3),index=["a","b","c"]),   .....:"two":pd.Series(np.random.randn(4),index=["a","b","c","d"]),   .....:"three":pd.Series(np.random.randn(3),index=["b","c","d"]),   .....:}   .....:)   .....:In [300]:unsorted_df=df.reindex(   .....:index=["a","d","c","b"],columns=["three","two","one"]   .....:)   .....:In [301]:unsorted_dfOut[301]:      three       two       onea       NaN -1.152244  0.562973d -0.252916 -0.109597       NaNc  1.273388 -0.167123  0.640382b -0.098217  0.009797 -1.299504# DataFrameIn [302]:unsorted_df.sort_index()Out[302]:      three       two       onea       NaN -1.152244  0.562973b -0.098217  0.009797 -1.299504c  1.273388 -0.167123  0.640382d -0.252916 -0.109597       NaNIn [303]:unsorted_df.sort_index(ascending=False)Out[303]:      three       two       oned -0.252916 -0.109597       NaNc  1.273388 -0.167123  0.640382b -0.098217  0.009797 -1.299504a       NaN -1.152244  0.562973In [304]:unsorted_df.sort_index(axis=1)Out[304]:        one     three       twoa  0.562973       NaN -1.152244d       NaN -0.252916 -0.109597c  0.640382  1.273388 -0.167123b -1.299504 -0.098217  0.009797# SeriesIn [305]:unsorted_df["three"].sort_index()Out[305]:a         NaNb   -0.098217c    1.273388d   -0.252916Name: three, dtype: float64

Sorting by index also supports akey parameter that takes a callablefunction to apply to the index being sorted. ForMultiIndex objects,the key is applied per-level to the levels specified bylevel.

In [306]:s1=pd.DataFrame({"a":["B","a","C"],"b":[1,2,3],"c":[2,3,4]}).set_index(   .....:list("ab")   .....:)   .....:In [307]:s1Out[307]:     ca bB 1  2a 2  3C 3  4
In [308]:s1.sort_index(level="a")Out[308]:     ca bB 1  2C 3  4a 2  3In [309]:s1.sort_index(level="a",key=lambdaidx:idx.str.lower())Out[309]:     ca ba 2  3B 1  2C 3  4

For information on key sorting by value, seevalue sorting.

By values#

TheSeries.sort_values() method is used to sort aSeries by its values. TheDataFrame.sort_values() method is used to sort aDataFrame by its column or row values.The optionalby parameter toDataFrame.sort_values() may used to specify one or more columnsto use to determine the sorted order.

In [310]:df1=pd.DataFrame(   .....:{"one":[2,1,1,1],"two":[1,3,2,4],"three":[5,4,3,2]}   .....:)   .....:In [311]:df1.sort_values(by="two")Out[311]:   one  two  three0    2    1      52    1    2      31    1    3      43    1    4      2

Theby parameter can take a list of column names, e.g.:

In [312]:df1[["one","two","three"]].sort_values(by=["one","two"])Out[312]:   one  two  three2    1    2      31    1    3      43    1    4      20    2    1      5

These methods have special treatment of NA values via thena_positionargument:

In [313]:s[2]=np.nanIn [314]:s.sort_values()Out[314]:0       A3    Aaba1       B4    Baca6    CABA8     cat7     dog2    <NA>5    <NA>dtype: stringIn [315]:s.sort_values(na_position="first")Out[315]:2    <NA>5    <NA>0       A3    Aaba1       B4    Baca6    CABA8     cat7     dogdtype: string

Sorting also supports akey parameter that takes a callable functionto apply to the values being sorted.

In [316]:s1=pd.Series(["B","a","C"])
In [317]:s1.sort_values()Out[317]:0    B2    C1    adtype: objectIn [318]:s1.sort_values(key=lambdax:x.str.lower())Out[318]:1    a0    B2    Cdtype: object

key will be given theSeries of values and should return aSeriesor array of the same shape with the transformed values. ForDataFrame objects,the key is applied per column, so the key should still expect a Series and returna Series, e.g.

In [319]:df=pd.DataFrame({"a":["B","a","C"],"b":[1,2,3]})
In [320]:df.sort_values(by="a")Out[320]:   a  b0  B  12  C  31  a  2In [321]:df.sort_values(by="a",key=lambdacol:col.str.lower())Out[321]:   a  b1  a  20  B  12  C  3

The name or type of each column can be used to apply different functions todifferent columns.

By indexes and values#

Strings passed as theby parameter toDataFrame.sort_values() mayrefer to either columns or index level names.

# Build MultiIndexIn [322]:idx=pd.MultiIndex.from_tuples(   .....:[("a",1),("a",2),("a",2),("b",2),("b",1),("b",1)]   .....:)   .....:In [323]:idx.names=["first","second"]# Build DataFrameIn [324]:df_multi=pd.DataFrame({"A":np.arange(6,0,-1)},index=idx)In [325]:df_multiOut[325]:              Afirst seconda     1       6      2       5      2       4b     2       3      1       2      1       1

Sort by ‘second’ (index) and ‘A’ (column)

In [326]:df_multi.sort_values(by=["second","A"])Out[326]:              Afirst secondb     1       1      1       2a     1       6b     2       3a     2       4      2       5

Note

If a string matches both a column name and an index level name then awarning is issued and the column takes precedence. This will result in anambiguity error in a future version.

searchsorted#

Series has thesearchsorted() method, which works similarly tonumpy.ndarray.searchsorted().

In [327]:ser=pd.Series([1,2,3])In [328]:ser.searchsorted([0,3])Out[328]:array([0, 2])In [329]:ser.searchsorted([0,4])Out[329]:array([0, 3])In [330]:ser.searchsorted([1,3],side="right")Out[330]:array([1, 3])In [331]:ser.searchsorted([1,3],side="left")Out[331]:array([0, 2])In [332]:ser=pd.Series([3,1,2])In [333]:ser.searchsorted([0,3],sorter=np.argsort(ser))Out[333]:array([0, 2])

smallest / largest values#

Series has thensmallest() andnlargest() methods which return thesmallest or largest\(n\) values. For a largeSeries this can be muchfaster than sorting the entire Series and callinghead(n) on the result.

In [334]:s=pd.Series(np.random.permutation(10))In [335]:sOut[335]:0    21    02    33    74    15    56    97    68    89    4dtype: int64In [336]:s.sort_values()Out[336]:1    04    10    22    39    45    57    63    78    86    9dtype: int64In [337]:s.nsmallest(3)Out[337]:1    04    10    2dtype: int64In [338]:s.nlargest(3)Out[338]:6    98    83    7dtype: int64

DataFrame also has thenlargest andnsmallest methods.

In [339]:df=pd.DataFrame(   .....:{   .....:"a":[-2,-1,1,10,8,11,-1],   .....:"b":list("abdceff"),   .....:"c":[1.0,2.0,4.0,3.2,np.nan,3.0,4.0],   .....:}   .....:)   .....:In [340]:df.nlargest(3,"a")Out[340]:    a  b    c5  11  f  3.03  10  c  3.24   8  e  NaNIn [341]:df.nlargest(5,["a","c"])Out[341]:    a  b    c5  11  f  3.03  10  c  3.24   8  e  NaN2   1  d  4.06  -1  f  4.0In [342]:df.nsmallest(3,"a")Out[342]:   a  b    c0 -2  a  1.01 -1  b  2.06 -1  f  4.0In [343]:df.nsmallest(5,["a","c"])Out[343]:   a  b    c0 -2  a  1.01 -1  b  2.06 -1  f  4.02  1  d  4.04  8  e  NaN

Sorting by a MultiIndex column#

You must be explicit about sorting when the column is a MultiIndex, and fully specifyall levels toby.

In [344]:df1.columns=pd.MultiIndex.from_tuples(   .....:[("a","one"),("a","two"),("b","three")]   .....:)   .....:In [345]:df1.sort_values(by=("a","two"))Out[345]:    a         b  one two three0   2   1     52   1   2     31   1   3     43   1   4     2

Copying#

Thecopy() method on pandas objects copies the underlying data (though notthe axis indexes, since they are immutable) and returns a new object. Note thatit is seldom necessary to copy objects. For example, there are only ahandful of ways to alter a DataFramein-place:

  • Inserting, deleting, or modifying a column.

  • Assigning to theindex orcolumns attributes.

  • For homogeneous data, directly modifying the values via thevaluesattribute or advanced indexing.

To be clear, no pandas method has the side effect of modifying your data;almost every method returns a new object, leaving the original objectuntouched. If the data is modified, it is because you did so explicitly.

dtypes#

For the most part, pandas uses NumPy arrays and dtypes for Series or individualcolumns of a DataFrame. NumPy provides support forfloat,int,bool,timedelta64[ns] anddatetime64[ns] (note that NumPydoes not support timezone-aware datetimes).

pandas and third-party librariesextend NumPy’s type system in a few places.This section describes the extensions pandas has made internally.SeeExtension types for how to write your own extension thatworks with pandas. Seethe ecosystem page for a list of third-partylibraries that have implemented an extension.

The following table lists all of pandas extension types. For methods requiringdtypearguments, strings can be specified as indicated. See the respectivedocumentation sections for more on each type.

Kind of Data

Data Type

Scalar

Array

String Aliases

tz-aware datetime

DatetimeTZDtype

Timestamp

arrays.DatetimeArray

'datetime64[ns,<tz>]'

Categorical

CategoricalDtype

(none)

Categorical

'category'

period (time spans)

PeriodDtype

Period

arrays.PeriodArray'Period[<freq>]'

'period[<freq>]',

sparse

SparseDtype

(none)

arrays.SparseArray

'Sparse','Sparse[int]','Sparse[float]'

intervals

IntervalDtype

Interval

arrays.IntervalArray

'interval','Interval','Interval[<numpy_dtype>]','Interval[datetime64[ns,<tz>]]','Interval[timedelta64[<freq>]]'

nullable integer

Int64Dtype, …

(none)

arrays.IntegerArray

'Int8','Int16','Int32','Int64','UInt8','UInt16','UInt32','UInt64'

nullable float

Float64Dtype, …

(none)

arrays.FloatingArray

'Float32','Float64'

Strings

StringDtype

str

arrays.StringArray

'string'

Boolean (with NA)

BooleanDtype

bool

arrays.BooleanArray

'boolean'

pandas has two ways to store strings.

  1. object dtype, which can hold any Python object, including strings.

  2. StringDtype, which is dedicated to strings.

Generally, we recommend usingStringDtype. SeeText data types for more.

Finally, arbitrary objects may be stored using theobject dtype, but shouldbe avoided to the extent possible (for performance and interoperability withother libraries and methods. Seeobject conversion).

A convenientdtypes attribute for DataFrame returns a Serieswith the data type of each column.

In [346]:dft=pd.DataFrame(   .....:{   .....:"A":np.random.rand(3),   .....:"B":1,   .....:"C":"foo",   .....:"D":pd.Timestamp("20010102"),   .....:"E":pd.Series([1.0]*3).astype("float32"),   .....:"F":False,   .....:"G":pd.Series([1]*3,dtype="int8"),   .....:}   .....:)   .....:In [347]:dftOut[347]:          A  B    C          D    E      F  G0  0.035962  1  foo 2001-01-02  1.0  False  11  0.701379  1  foo 2001-01-02  1.0  False  12  0.281885  1  foo 2001-01-02  1.0  False  1In [348]:dft.dtypesOut[348]:A          float64B            int64C           objectD    datetime64[s]E          float32F             boolG             int8dtype: object

On aSeries object, use thedtype attribute.

In [349]:dft["A"].dtypeOut[349]:dtype('float64')

If a pandas object contains data with multiple dtypesin a single column, thedtype of the column will be chosen to accommodate all of the data types(object is the most general).

# these ints are coerced to floatsIn [350]:pd.Series([1,2,3,4,5,6.0])Out[350]:0    1.01    2.02    3.03    4.04    5.05    6.0dtype: float64# string data forces an ``object`` dtypeIn [351]:pd.Series([1,2,3,6.0,"foo"])Out[351]:0      11      22      33    6.04    foodtype: object

The number of columns of each type in aDataFrame can be found by callingDataFrame.dtypes.value_counts().

In [352]:dft.dtypes.value_counts()Out[352]:float64          1int64            1object           1datetime64[s]    1float32          1bool             1int8             1Name: count, dtype: int64

Numeric dtypes will propagate and can coexist in DataFrames.If a dtype is passed (either directly via thedtype keyword, a passedndarray,or a passedSeries), then it will be preserved in DataFrame operations. Furthermore,different numeric dtypes willNOT be combined. The following example will give you a taste.

In [353]:df1=pd.DataFrame(np.random.randn(8,1),columns=["A"],dtype="float32")In [354]:df1Out[354]:          A0  0.2243641  1.8905462  0.1828793  0.7878474 -0.1884495  0.6677156 -0.0117367 -0.399073In [355]:df1.dtypesOut[355]:A    float32dtype: objectIn [356]:df2=pd.DataFrame(   .....:{   .....:"A":pd.Series(np.random.randn(8),dtype="float16"),   .....:"B":pd.Series(np.random.randn(8)),   .....:"C":pd.Series(np.random.randint(0,255,size=8),dtype="uint8"),# [0,255] (range of uint8)   .....:}   .....:)   .....:In [357]:df2Out[357]:          A         B    C0  0.823242  0.256090   261  1.607422  1.426469   862 -0.333740 -0.416203   463 -0.063477  1.139976  2124 -1.014648 -1.193477   265  0.678711  0.096706    76 -0.040863 -1.956850  1847 -0.357422 -0.714337  206In [358]:df2.dtypesOut[358]:A    float16B    float64C      uint8dtype: object

defaults#

By default integer types areint64 and float types arefloat64,regardless of platform (32-bit or 64-bit).The following will all result inint64 dtypes.

In [359]:pd.DataFrame([1,2],columns=["a"]).dtypesOut[359]:a    int64dtype: objectIn [360]:pd.DataFrame({"a":[1,2]}).dtypesOut[360]:a    int64dtype: objectIn [361]:pd.DataFrame({"a":1},index=list(range(2))).dtypesOut[361]:a    int64dtype: object

Note that Numpy will chooseplatform-dependent types when creating arrays.The followingWILL result inint32 on 32-bit platform.

In [362]:frame=pd.DataFrame(np.array([1,2]))

upcasting#

Types can potentially beupcasted when combined with other types, meaning they are promotedfrom the current type (e.g.int tofloat).

In [363]:df3=df1.reindex_like(df2).fillna(value=0.0)+df2In [364]:df3Out[364]:          A         B      C0  1.047606  0.256090   26.01  3.497968  1.426469   86.02 -0.150862 -0.416203   46.03  0.724370  1.139976  212.04 -1.203098 -1.193477   26.05  1.346426  0.096706    7.06 -0.052599 -1.956850  184.07 -0.756495 -0.714337  206.0In [365]:df3.dtypesOut[365]:A    float32B    float64C    float64dtype: object

DataFrame.to_numpy() will return thelower-common-denominator of the dtypes, meaningthe dtype that can accommodateALL of the types in the resulting homogeneous dtyped NumPy array. This canforce someupcasting.

In [366]:df3.to_numpy().dtypeOut[366]:dtype('float64')

astype#

You can use theastype() method to explicitly convert dtypes from one to another. These will by default return a copy,even if the dtype was unchanged (passcopy=False to change this behavior). In addition, they will raise anexception if the astype operation is invalid.

Upcasting is always according to theNumPy rules. If two different dtypes are involved in an operation,then the moregeneral one will be used as the result of the operation.

In [367]:df3Out[367]:          A         B      C0  1.047606  0.256090   26.01  3.497968  1.426469   86.02 -0.150862 -0.416203   46.03  0.724370  1.139976  212.04 -1.203098 -1.193477   26.05  1.346426  0.096706    7.06 -0.052599 -1.956850  184.07 -0.756495 -0.714337  206.0In [368]:df3.dtypesOut[368]:A    float32B    float64C    float64dtype: object# conversion of dtypesIn [369]:df3.astype("float32").dtypesOut[369]:A    float32B    float32C    float32dtype: object

Convert a subset of columns to a specified type usingastype().

In [370]:dft=pd.DataFrame({"a":[1,2,3],"b":[4,5,6],"c":[7,8,9]})In [371]:dft[["a","b"]]=dft[["a","b"]].astype(np.uint8)In [372]:dftOut[372]:   a  b  c0  1  4  71  2  5  82  3  6  9In [373]:dft.dtypesOut[373]:a    uint8b    uint8c    int64dtype: object

Convert certain columns to a specific dtype by passing a dict toastype().

In [374]:dft1=pd.DataFrame({"a":[1,0,1],"b":[4,5,6],"c":[7,8,9]})In [375]:dft1=dft1.astype({"a":np.bool_,"c":np.float64})In [376]:dft1Out[376]:       a  b    c0   True  4  7.01  False  5  8.02   True  6  9.0In [377]:dft1.dtypesOut[377]:a       boolb      int64c    float64dtype: object

Note

When trying to convert a subset of columns to a specified type usingastype() andloc(), upcasting occurs.

loc() tries to fit in what we are assigning to the current dtypes, while[] will overwrite them taking the dtype from the right hand side. Therefore the following piece of code produces the unintended result.

In [378]:dft=pd.DataFrame({"a":[1,2,3],"b":[4,5,6],"c":[7,8,9]})In [379]:dft.loc[:,["a","b"]].astype(np.uint8).dtypesOut[379]:a    uint8b    uint8dtype: objectIn [380]:dft.loc[:,["a","b"]]=dft.loc[:,["a","b"]].astype(np.uint8)In [381]:dft.dtypesOut[381]:a    int64b    int64c    int64dtype: object

object conversion#

pandas offers various functions to try to force conversion of types from theobject dtype to other types.In cases where the data is already of the correct type, but stored in anobject array, theDataFrame.infer_objects() andSeries.infer_objects() methods can be used to soft convertto the correct type.

In [382]:importdatetimeIn [383]:df=pd.DataFrame(   .....:[   .....:[1,2],   .....:["a","b"],   .....:[datetime.datetime(2016,3,2),datetime.datetime(2016,3,2)],   .....:]   .....:)   .....:In [384]:df=df.TIn [385]:dfOut[385]:   0  1                    20  1  a  2016-03-02 00:00:001  2  b  2016-03-02 00:00:00In [386]:df.dtypesOut[386]:0    object1    object2    objectdtype: object

Because the data was transposed the original inference stored all columns as object, whichinfer_objects will correct.

In [387]:df.infer_objects().dtypesOut[387]:0             int641            object2    datetime64[ns]dtype: object

The following functions are available for one dimensional object arrays or scalars to performhard conversion of objects to a specified type:

  • to_numeric() (conversion to numeric dtypes)

    In [388]:m=["1.1",2,3]In [389]:pd.to_numeric(m)Out[389]:array([1.1, 2. , 3. ])
  • to_datetime() (conversion to datetime objects)

    In [390]:importdatetimeIn [391]:m=["2016-07-09",datetime.datetime(2016,3,2)]In [392]:pd.to_datetime(m)Out[392]:DatetimeIndex(['2016-07-09', '2016-03-02'], dtype='datetime64[ns]', freq=None)
  • to_timedelta() (conversion to timedelta objects)

    In [393]:m=["5us",pd.Timedelta("1day")]In [394]:pd.to_timedelta(m)Out[394]:TimedeltaIndex(['0 days 00:00:00.000005', '1 days 00:00:00'], dtype='timedelta64[ns]', freq=None)

To force a conversion, we can pass in anerrors argument, which specifies how pandas should deal with elementsthat cannot be converted to desired dtype or object. By default,errors='raise', meaning that any errors encounteredwill be raised during the conversion process. However, iferrors='coerce', these errors will be ignored and pandaswill convert problematic elements topd.NaT (for datetime and timedelta) ornp.nan (for numeric). This might beuseful if you are reading in data which is mostly of the desired dtype (e.g. numeric, datetime), but occasionally hasnon-conforming elements intermixed that you want to represent as missing:

In [395]:importdatetimeIn [396]:m=["apple",datetime.datetime(2016,3,2)]In [397]:pd.to_datetime(m,errors="coerce")Out[397]:DatetimeIndex(['NaT', '2016-03-02'], dtype='datetime64[ns]', freq=None)In [398]:m=["apple",2,3]In [399]:pd.to_numeric(m,errors="coerce")Out[399]:array([nan,  2.,  3.])In [400]:m=["apple",pd.Timedelta("1day")]In [401]:pd.to_timedelta(m,errors="coerce")Out[401]:TimedeltaIndex([NaT, '1 days'], dtype='timedelta64[ns]', freq=None)

In addition to object conversion,to_numeric() provides another argumentdowncast, which gives theoption of downcasting the newly (or already) numeric data to a smaller dtype, which can conserve memory:

In [402]:m=["1",2,3]In [403]:pd.to_numeric(m,downcast="integer")# smallest signed int dtypeOut[403]:array([1, 2, 3], dtype=int8)In [404]:pd.to_numeric(m,downcast="signed")# same as 'integer'Out[404]:array([1, 2, 3], dtype=int8)In [405]:pd.to_numeric(m,downcast="unsigned")# smallest unsigned int dtypeOut[405]:array([1, 2, 3], dtype=uint8)In [406]:pd.to_numeric(m,downcast="float")# smallest float dtypeOut[406]:array([1., 2., 3.], dtype=float32)

As these methods apply only to one-dimensional arrays, lists or scalars; they cannot be used directly on multi-dimensional objects suchas DataFrames. However, withapply(), we can “apply” the function over each column efficiently:

In [407]:importdatetimeIn [408]:df=pd.DataFrame([["2016-07-09",datetime.datetime(2016,3,2)]]*2,dtype="O")In [409]:dfOut[409]:            0                    10  2016-07-09  2016-03-02 00:00:001  2016-07-09  2016-03-02 00:00:00In [410]:df.apply(pd.to_datetime)Out[410]:           0          10 2016-07-09 2016-03-021 2016-07-09 2016-03-02In [411]:df=pd.DataFrame([["1.1",2,3]]*2,dtype="O")In [412]:dfOut[412]:     0  1  20  1.1  2  31  1.1  2  3In [413]:df.apply(pd.to_numeric)Out[413]:     0  1  20  1.1  2  31  1.1  2  3In [414]:df=pd.DataFrame([["5us",pd.Timedelta("1day")]]*2,dtype="O")In [415]:dfOut[415]:     0                10  5us  1 days 00:00:001  5us  1 days 00:00:00In [416]:df.apply(pd.to_timedelta)Out[416]:                       0      10 0 days 00:00:00.000005 1 days1 0 days 00:00:00.000005 1 days

gotchas#

Performing selection operations oninteger type data can easily upcast the data tofloating.The dtype of the input data will be preserved in cases wherenans are not introduced.See alsoSupport for integer NA.

In [417]:dfi=df3.astype("int32")In [418]:dfi["E"]=1In [419]:dfiOut[419]:   A  B    C  E0  1  0   26  11  3  1   86  12  0  0   46  13  0  1  212  14 -1 -1   26  15  1  0    7  16  0 -1  184  17  0  0  206  1In [420]:dfi.dtypesOut[420]:A    int32B    int32C    int32E    int64dtype: objectIn [421]:casted=dfi[dfi>0]In [422]:castedOut[422]:     A    B    C  E0  1.0  NaN   26  11  3.0  1.0   86  12  NaN  NaN   46  13  NaN  1.0  212  14  NaN  NaN   26  15  1.0  NaN    7  16  NaN  NaN  184  17  NaN  NaN  206  1In [423]:casted.dtypesOut[423]:A    float64B    float64C      int32E      int64dtype: object

While float dtypes are unchanged.

In [424]:dfa=df3.copy()In [425]:dfa["A"]=dfa["A"].astype("float32")In [426]:dfa.dtypesOut[426]:A    float32B    float64C    float64dtype: objectIn [427]:casted=dfa[df2>0]In [428]:castedOut[428]:          A         B      C0  1.047606  0.256090   26.01  3.497968  1.426469   86.02       NaN       NaN   46.03       NaN  1.139976  212.04       NaN       NaN   26.05  1.346426  0.096706    7.06       NaN       NaN  184.07       NaN       NaN  206.0In [429]:casted.dtypesOut[429]:A    float32B    float64C    float64dtype: object

Selecting columns based ondtype#

Theselect_dtypes() method implements subsetting of columnsbased on theirdtype.

First, let’s create aDataFrame with a slew of differentdtypes:

In [430]:df=pd.DataFrame(   .....:{   .....:"string":list("abc"),   .....:"int64":list(range(1,4)),   .....:"uint8":np.arange(3,6).astype("u1"),   .....:"float64":np.arange(4.0,7.0),   .....:"bool1":[True,False,True],   .....:"bool2":[False,True,False],   .....:"dates":pd.date_range("now",periods=3),   .....:"category":pd.Series(list("ABC")).astype("category"),   .....:}   .....:)   .....:In [431]:df["tdeltas"]=df.dates.diff()In [432]:df["uint64"]=np.arange(3,6).astype("u8")In [433]:df["other_dates"]=pd.date_range("20130101",periods=3)In [434]:df["tz_aware_dates"]=pd.date_range("20130101",periods=3,tz="US/Eastern")In [435]:dfOut[435]:  string  int64  uint8  ...  uint64  other_dates            tz_aware_dates0      a      1      3  ...       3   2013-01-01 2013-01-01 00:00:00-05:001      b      2      4  ...       4   2013-01-02 2013-01-02 00:00:00-05:002      c      3      5  ...       5   2013-01-03 2013-01-03 00:00:00-05:00[3 rows x 12 columns]

And the dtypes:

In [436]:df.dtypesOut[436]:string                                objectint64                                  int64uint8                                  uint8float64                              float64bool1                                   boolbool2                                   booldates                         datetime64[ns]category                            categorytdeltas                      timedelta64[ns]uint64                                uint64other_dates                   datetime64[ns]tz_aware_dates    datetime64[ns, US/Eastern]dtype: object

select_dtypes() has two parametersinclude andexclude that allow you tosay “give me the columnswith these dtypes” (include) and/or “give thecolumnswithout these dtypes” (exclude).

For example, to selectbool columns:

In [437]:df.select_dtypes(include=[bool])Out[437]:   bool1  bool20   True  False1  False   True2   True  False

You can also pass the name of a dtype in theNumPy dtype hierarchy:

In [438]:df.select_dtypes(include=["bool"])Out[438]:   bool1  bool20   True  False1  False   True2   True  False

select_dtypes() also works with generic dtypes as well.

For example, to select all numeric and boolean columns while excluding unsignedintegers:

In [439]:df.select_dtypes(include=["number","bool"],exclude=["unsignedinteger"])Out[439]:   int64  float64  bool1  bool2 tdeltas0      1      4.0   True  False     NaT1      2      5.0  False   True  1 days2      3      6.0   True  False  1 days

To select string columns you must use theobject dtype:

In [440]:df.select_dtypes(include=["object"])Out[440]:  string0      a1      b2      c

To see all the child dtypes of a genericdtype likenumpy.number youcan define a function that returns a tree of child dtypes:

In [441]:defsubdtypes(dtype):   .....:subs=dtype.__subclasses__()   .....:ifnotsubs:   .....:returndtype   .....:return[dtype,[subdtypes(dt)fordtinsubs]]   .....:

All NumPy dtypes are subclasses ofnumpy.generic:

In [442]:subdtypes(np.generic)Out[442]:[numpy.generic, [[numpy.number,   [[numpy.integer,     [[numpy.signedinteger,       [numpy.int8,        numpy.int16,        numpy.int32,        numpy.int64,        numpy.longlong,        numpy.timedelta64]],      [numpy.unsignedinteger,       [numpy.uint8,        numpy.uint16,        numpy.uint32,        numpy.uint64,        numpy.ulonglong]]]],    [numpy.inexact,     [[numpy.floating,       [numpy.float16, numpy.float32, numpy.float64, numpy.longdouble]],      [numpy.complexfloating,       [numpy.complex64, numpy.complex128, numpy.clongdouble]]]]]],  [numpy.flexible,   [[numpy.character, [numpy.bytes_, numpy.str_]],    [numpy.void, [numpy.record]]]],  numpy.bool_,  numpy.datetime64,  numpy.object_]]

Note

pandas also defines the typescategory, anddatetime64[ns,tz], which are not integrated into the normalNumPy hierarchy and won’t show up with the above function.

On this page

[8]ページ先頭

©2009-2025 Movatter.jp