- API reference
- General functions
- pandas.to_datetime
pandas.to_datetime#
- pandas.to_datetime(arg,errors='raise',dayfirst=False,yearfirst=False,utc=False,format=None,exact=<no_default>,unit=None,infer_datetime_format=<no_default>,origin='unix',cache=True)[source]#
Convert argument to datetime.
This function converts a scalar, array-like,
Series
orDataFrame
/dict-like to a pandas datetime object.- Parameters:
- argint, float, str, datetime, list, tuple, 1-d array, Series, DataFrame/dict-like
The object to convert to a datetime. If a
DataFrame
is provided, themethod expects minimally the following columns:"year"
,"month"
,"day"
. The column “year”must be specified in 4-digit format.- errors{‘ignore’, ‘raise’, ‘coerce’}, default ‘raise’
If
'raise'
, then invalid parsing will raise an exception.If
'coerce'
, then invalid parsing will be set asNaT
.If
'ignore'
, then invalid parsing will return the input.
- dayfirstbool, default False
Specify a date parse order ifarg is str or is list-like.If
True
, parses dates with the day first, e.g."10/11/12"
is parsed as2012-11-10
.Warning
dayfirst=True
is not strict, but will prefer to parsewith day first.- yearfirstbool, default False
Specify a date parse order ifarg is str or is list-like.
If
True
parses dates with the year first, e.g."10/11/12"
is parsed as2010-11-12
.If bothdayfirst andyearfirst are
True
,yearfirst ispreceded (same asdateutil
).
Warning
yearfirst=True
is not strict, but will prefer to parsewith year first.- utcbool, default False
Control timezone-related parsing, localization and conversion.
If
True
, the functionalways returns a timezone-awareUTC-localizedTimestamp
,Series
orDatetimeIndex
. To do this, timezone-naive inputs arelocalized as UTC, while timezone-aware inputs areconverted to UTC.If
False
(default), inputs will not be coerced to UTC.Timezone-naive inputs will remain naive, while timezone-aware oneswill keep their time offsets. Limitations exist for mixedoffsets (typically, daylight savings), seeExamples section for details.
Warning
In a future version of pandas, parsing datetimes with mixed timezones will raise an error unlessutc=True.Please specifyutc=True to opt in to the new behaviourand silence this warning. To create aSeries with mixed offsets andobject dtype, please useapply anddatetime.datetime.strptime.
See also: pandas general documentation abouttimezone conversion andlocalization.
- formatstr, default None
The strftime to parse time, e.g.
"%d/%m/%Y"
. Seestrftime documentation for more information on choices, thoughnote that"%f"
will parse all the way up to nanoseconds.You can also pass:“ISO8601”, to parse anyISO8601time string (not necessarily in exactly the same format);
“mixed”, to infer the format for each element individually. This is risky,and you should probably use it along withdayfirst.
Note
If a
DataFrame
is passed, thenformat has no effect.- exactbool, default True
Control howformat is used:
If
True
, require an exactformat match.If
False
, allow theformat to match anywhere in the targetstring.
Cannot be used alongside
format='ISO8601'
orformat='mixed'
.- unitstr, default ‘ns’
The unit of the arg (D,s,ms,us,ns) denote the unit, which is aninteger or float number. This will be based off the origin.Example, with
unit='ms'
andorigin='unix'
, this would calculatethe number of milliseconds to the unix epoch start.- infer_datetime_formatbool, default False
If
True
and noformat is given, attempt to infer the formatof the datetime strings based on the first non-NaN element,and if it can be inferred, switch to a faster method of parsing them.In some cases this can increase the parsing speed by ~5-10x.Deprecated since version 2.0.0:A strict version of this argument is now the default, passing it hasno effect.
- originscalar, default ‘unix’
Define the reference date. The numeric values would be parsed as numberof units (defined byunit) since this reference date.
If
'unix'
(or POSIX) time; origin is set to 1970-01-01.If
'julian'
, unit must be'D'
, and origin is set tobeginning of Julian Calendar. Julian day number0
is assignedto the day starting at noon on January 1, 4713 BC.If Timestamp convertible (Timestamp, dt.datetime, np.datetimt64 or datestring), origin is set to Timestamp identified by origin.
If a float or integer, origin is the difference(in units determined by the
unit
argument) relative to 1970-01-01.
- cachebool, default True
If
True
, use a cache of unique, converted dates to apply thedatetime conversion. May produce significant speed-up when parsingduplicate date strings, especially ones with timezone offsets. The cacheis only used when there are at least 50 values. The presence ofout-of-bounds values will render the cache unusable and may slow downparsing.
- Returns:
- datetime
If parsing succeeded.Return type depends on input (types in parenthesis correspond tofallback in case of unsuccessful timezone or out-of-range timestampparsing):
scalar:
Timestamp
(ordatetime.datetime
)array-like:
DatetimeIndex
(orSeries
withobject
dtype containingdatetime.datetime
)Series:
Series
ofdatetime64
dtype (orSeries
ofobject
dtype containingdatetime.datetime
)DataFrame:
Series
ofdatetime64
dtype (orSeries
ofobject
dtype containingdatetime.datetime
)
- Raises:
- ParserError
When parsing a date from string fails.
- ValueError
When another datetime conversion error happens. For example when oneof ‘year’, ‘month’, day’ columns is missing in a
DataFrame
, orwhen a Timezone-awaredatetime.datetime
is found in an array-likeof mixed time offsets, andutc=False
.
See also
DataFrame.astype
Cast argument to a specified dtype.
to_timedelta
Convert argument to timedelta.
convert_dtypes
Convert dtypes.
Notes
Many input types are supported, and lead to different output types:
scalars can be int, float, str, datetime object (from stdlib
datetime
module ornumpy
). They are converted toTimestamp
whenpossible, otherwise they are converted todatetime.datetime
.None/NaN/null scalars are converted toNaT
.array-like can contain int, float, str, datetime objects. They areconverted to
DatetimeIndex
when possible, otherwise they areconverted toIndex
withobject
dtype, containingdatetime.datetime
. None/NaN/null entries are converted toNaT
in both cases.Series are converted to
Series
withdatetime64
dtype when possible, otherwise they are converted toSeries
withobject
dtype, containingdatetime.datetime
. None/NaN/nullentries are converted toNaT
in both cases.DataFrame/dict-like are converted to
Series
withdatetime64
dtype. For each row a datetime is created from assemblingthe various dataframe columns. Column keys can be common abbreviationslike [‘year’, ‘month’, ‘day’, ‘minute’, ‘second’, ‘ms’, ‘us’, ‘ns’]) orplurals of the same.
The following causes are responsible for
datetime.datetime
objectsbeing returned (possibly inside anIndex
or aSeries
withobject
dtype) instead of a proper pandas designated type(Timestamp
,DatetimeIndex
orSeries
withdatetime64
dtype):when any input element is before
Timestamp.min
or afterTimestamp.max
, seetimestamp limitations.when
utc=False
(default) and the input is an array-like orSeries
containing mixed naive/aware datetime, or aware with mixedtime offsets. Note that this happens in the (quite frequent) situation whenthe timezone has a daylight savings policy. In that case you may wish touseutc=True
.
Examples
Handling various input formats
Assembling a datetime from multiple columns of a
DataFrame
. The keyscan be common abbreviations like [‘year’, ‘month’, ‘day’, ‘minute’, ‘second’,‘ms’, ‘us’, ‘ns’]) or plurals of the same>>>df=pd.DataFrame({'year':[2015,2016],...'month':[2,3],...'day':[4,5]})>>>pd.to_datetime(df)0 2015-02-041 2016-03-05dtype: datetime64[ns]
Using a unix epoch time
>>>pd.to_datetime(1490195805,unit='s')Timestamp('2017-03-22 15:16:45')>>>pd.to_datetime(1490195805433502912,unit='ns')Timestamp('2017-03-22 15:16:45.433502912')
Warning
For float arg, precision rounding might happen. To preventunexpected behavior use a fixed-width exact type.
Using a non-unix epoch origin
>>>pd.to_datetime([1,2,3],unit='D',...origin=pd.Timestamp('1960-01-01'))DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None)
Differences with strptime behavior
"%f"
will parse all the way up to nanoseconds.>>>pd.to_datetime('2018-10-26 12:00:00.0000000011',...format='%Y-%m-%d %H:%M:%S.%f')Timestamp('2018-10-26 12:00:00.000000001')
Non-convertible date/times
Passing
errors='coerce'
will force an out-of-bounds date toNaT
,in addition to forcing non-dates (or non-parseable dates) toNaT
.>>>pd.to_datetime('13000101',format='%Y%m%d',errors='coerce')NaT
Timezones and time offsets
The default behaviour (
utc=False
) is as follows:Timezone-naive inputs are converted to timezone-naive
DatetimeIndex
:
>>>pd.to_datetime(['2018-10-26 12:00:00','2018-10-26 13:00:15'])DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:15'], dtype='datetime64[ns]', freq=None)
Timezone-aware inputswith constant time offset are converted totimezone-aware
DatetimeIndex
:
>>>pd.to_datetime(['2018-10-26 12:00 -0500','2018-10-26 13:00 -0500'])DatetimeIndex(['2018-10-26 12:00:00-05:00', '2018-10-26 13:00:00-05:00'], dtype='datetime64[ns, UTC-05:00]', freq=None)
However, timezone-aware inputswith mixed time offsets (for exampleissued from a timezone with daylight savings, such as Europe/Paris)arenot successfully converted to a
DatetimeIndex
.Parsing datetimes with mixed time zones will show a warning unlessutc=True. If you specifyutc=False the warning below will be shownand a simpleIndex
containingdatetime.datetime
objects will be returned:
>>>pd.to_datetime(['2020-10-25 02:00 +0200',...'2020-10-25 04:00 +0100'])FutureWarning: In a future version of pandas, parsing datetimes with mixedtime zones will raise an error unless `utc=True`. Please specify `utc=True`to opt in to the new behaviour and silence this warning. To create a `Series`with mixed offsets and `object` dtype, please use `apply` and`datetime.datetime.strptime`.Index([2020-10-25 02:00:00+02:00, 2020-10-25 04:00:00+01:00], dtype='object')
A mix of timezone-aware and timezone-naive inputs is also converted toa simple
Index
containingdatetime.datetime
objects:
>>>fromdatetimeimportdatetime>>>pd.to_datetime(["2020-01-01 01:00:00-01:00",...datetime(2020,1,1,3,0)])FutureWarning: In a future version of pandas, parsing datetimes with mixedtime zones will raise an error unless `utc=True`. Please specify `utc=True`to opt in to the new behaviour and silence this warning. To create a `Series`with mixed offsets and `object` dtype, please use `apply` and`datetime.datetime.strptime`.Index([2020-01-01 01:00:00-01:00, 2020-01-01 03:00:00], dtype='object')
Setting
utc=True
solves most of the above issues:Timezone-naive inputs arelocalized as UTC
>>>pd.to_datetime(['2018-10-26 12:00','2018-10-26 13:00'],utc=True)DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 13:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)
Timezone-aware inputs areconverted to UTC (the output represents theexact same datetime, but viewed from the UTC time offset+00:00).
>>>pd.to_datetime(['2018-10-26 12:00 -0530','2018-10-26 12:00 -0500'],...utc=True)DatetimeIndex(['2018-10-26 17:30:00+00:00', '2018-10-26 17:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)
Inputs can contain both string or datetime, the aboverules still apply
>>>pd.to_datetime(['2018-10-26 12:00',datetime(2020,1,1,18)],utc=True)DatetimeIndex(['2018-10-26 12:00:00+00:00', '2020-01-01 18:00:00+00:00'], dtype='datetime64[ns, UTC]', freq=None)