- API reference
- General functions
- pandas.isnull
pandas.isnull#
- pandas.isnull(obj)[source]#
Detect missing values for an array-like object.
This function takes a scalar or array-like object and indicateswhether values are missing (
NaN
in numeric arrays,None
orNaN
in object arrays,NaT
in datetimelike).- Parameters:
- objscalar or array-like
Object to check for null or missing values.
- Returns:
- bool or array-like of bool
For scalar input, returns a scalar boolean.For array input, returns an array of boolean indicating whether eachcorresponding element is missing.
See also
notna
Boolean inverse of pandas.isna.
Series.isna
Detect missing values in a Series.
DataFrame.isna
Detect missing values in a DataFrame.
Index.isna
Detect missing values in an Index.
Examples
Scalar arguments (including strings) result in a scalar boolean.
>>>pd.isna('dog')False
>>>pd.isna(pd.NA)True
>>>pd.isna(np.nan)True
ndarrays result in an ndarray of booleans.
>>>array=np.array([[1,np.nan,3],[4,5,np.nan]])>>>arrayarray([[ 1., nan, 3.], [ 4., 5., nan]])>>>pd.isna(array)array([[False, True, False], [False, False, True]])
For indexes, an ndarray of booleans is returned.
>>>index=pd.DatetimeIndex(["2017-07-05","2017-07-06",None,..."2017-07-08"])>>>indexDatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'], dtype='datetime64[ns]', freq=None)>>>pd.isna(index)array([False, False, True, False])
For Series and DataFrame, the same type is returned, containing booleans.
>>>df=pd.DataFrame([['ant','bee','cat'],['dog',None,'fly']])>>>df 0 1 20 ant bee cat1 dog None fly>>>pd.isna(df) 0 1 20 False False False1 False True False
>>>pd.isna(df[1])0 False1 TrueName: 1, dtype: bool