- API reference
- General functions
- pandas.cut
pandas.cut#
- pandas.cut(x,bins,right=True,labels=None,retbins=False,precision=3,include_lowest=False,duplicates='raise',ordered=True)[source]#
Bin values into discrete intervals.
Usecut when you need to segment and sort data values into bins. Thisfunction is also useful for going from a continuous variable to acategorical variable. For example,cut could convert ages to groups ofage ranges. Supports binning into an equal number of bins, or apre-specified array of bins.
- Parameters:
- xarray-like
The input array to be binned. Must be 1-dimensional.
- binsint, sequence of scalars, or IntervalIndex
The criteria to bin by.
int : Defines the number of equal-width bins in the range ofx. Therange ofx is extended by .1% on each side to include the minimumand maximum values ofx.
sequence of scalars : Defines the bin edges allowing for non-uniformwidth. No extension of the range ofx is done.
IntervalIndex : Defines the exact bins to be used. Note thatIntervalIndex forbins must be non-overlapping.
- rightbool, default True
Indicates whetherbins includes the rightmost edge or not. If
right==True
(the default), then thebins[1,2,3,4]
indicate (1,2], (2,3], (3,4]. This argument is ignored whenbins is an IntervalIndex.- labelsarray or False, default None
Specifies the labels for the returned bins. Must be the same length asthe resulting bins. If False, returns only integer indicators of thebins. This affects the type of the output container (see below).This argument is ignored whenbins is an IntervalIndex. If True,raises an error. Whenordered=False, labels must be provided.
- retbinsbool, default False
Whether to return the bins or not. Useful when bins is providedas a scalar.
- precisionint, default 3
The precision at which to store and display the bins labels.
- include_lowestbool, default False
Whether the first interval should be left-inclusive or not.
- duplicates{default ‘raise’, ‘drop’}, optional
If bin edges are not unique, raise ValueError or drop non-uniques.
- orderedbool, default True
Whether the labels are ordered or not. Applies to returned typesCategorical and Series (with Categorical dtype). If True,the resulting categorical will be ordered. If False, the resultingcategorical will be unordered (labels must be provided).
- Returns:
- outCategorical, Series, or ndarray
An array-like object representing the respective bin for each valueofx. The type depends on the value oflabels.
None (default) : returns a Series for Seriesx or aCategorical for all other inputs. The values stored withinare Interval dtype.
sequence of scalars : returns a Series for Seriesx or aCategorical for all other inputs. The values stored withinare whatever the type in the sequence is.
False : returns an ndarray of integers.
- binsnumpy.ndarray or IntervalIndex.
The computed or specified bins. Only returned whenretbins=True.For scalar or sequencebins, this is an ndarray with the computedbins. If setduplicates=drop,bins will drop non-unique bin. Foran IntervalIndexbins, this is equal tobins.
See also
qcut
Discretize variable into equal-sized buckets based on rank or based on sample quantiles.
Categorical
Array type for storing data that come from a fixed set of values.
Series
One-dimensional array with axis labels (including time series).
IntervalIndex
Immutable Index implementing an ordered, sliceable set.
Notes
Any NA values will be NA in the result. Out of bounds values will be NA inthe resulting Series or Categorical object.
Referencethe user guide for more examples.
Examples
Discretize into three equal-sized bins.
>>>pd.cut(np.array([1,7,5,4,6,3]),3)...[(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...Categories (3, interval[float64, right]): [(0.994, 3.0] < (3.0, 5.0] ...
>>>pd.cut(np.array([1,7,5,4,6,3]),3,retbins=True)...([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ...Categories (3, interval[float64, right]): [(0.994, 3.0] < (3.0, 5.0] ...array([0.994, 3. , 5. , 7. ]))
Discovers the same bins, but assign them specific labels. Notice thatthe returned Categorical’s categories arelabels and is ordered.
>>>pd.cut(np.array([1,7,5,4,6,3]),...3,labels=["bad","medium","good"])['bad', 'good', 'medium', 'medium', 'good', 'bad']Categories (3, object): ['bad' < 'medium' < 'good']
ordered=False
will result in unordered categories when labels are passed.This parameter can be used to allow non-unique labels:>>>pd.cut(np.array([1,7,5,4,6,3]),3,...labels=["B","A","B"],ordered=False)['B', 'B', 'A', 'A', 'B', 'B']Categories (2, object): ['A', 'B']
labels=False
implies you just want the bins back.>>>pd.cut([0,1,1,2],bins=4,labels=False)array([0, 1, 1, 3])
Passing a Series as an input returns a Series with categorical dtype:
>>>s=pd.Series(np.array([2,4,6,8,10]),...index=['a','b','c','d','e'])>>>pd.cut(s,3)...a (1.992, 4.667]b (1.992, 4.667]c (4.667, 7.333]d (7.333, 10.0]e (7.333, 10.0]dtype: categoryCategories (3, interval[float64, right]): [(1.992, 4.667] < (4.667, ...
Passing a Series as an input returns a Series with mapping value.It is used to map numerically to intervals based on bins.
>>>s=pd.Series(np.array([2,4,6,8,10]),...index=['a','b','c','d','e'])>>>pd.cut(s,[0,2,4,6,8,10],labels=False,retbins=True,right=False)...(a 1.0 b 2.0 c 3.0 d 4.0 e NaN dtype: float64, array([ 0, 2, 4, 6, 8, 10]))
Usedrop optional when bins is not unique
>>>pd.cut(s,[0,2,4,6,10,10],labels=False,retbins=True,...right=False,duplicates='drop')...(a 1.0 b 2.0 c 3.0 d 3.0 e NaN dtype: float64, array([ 0, 2, 4, 6, 10]))
Passing an IntervalIndex forbins results in those categories exactly.Notice that values not covered by the IntervalIndex are set to NaN. 0is to the left of the first bin (which is closed on the right), and 1.5falls between two bins.
>>>bins=pd.IntervalIndex.from_tuples([(0,1),(2,3),(4,5)])>>>pd.cut([0,0.5,1.5,2.5,4.5],bins)[NaN, (0.0, 1.0], NaN, (2.0, 3.0], (4.0, 5.0]]Categories (3, interval[int64, right]): [(0, 1] < (2, 3] < (4, 5]]