- API reference
- DataFrame
- pandas.DataFrame.var
pandas.DataFrame.var#
- DataFrame.var(axis=0,skipna=True,ddof=1,numeric_only=False,**kwargs)[source]#
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument.
- Parameters:
- axis{index (0), columns (1)}
ForSeries this parameter is unused and defaults to 0.
Warning
The behavior of DataFrame.var with
axis=None
is deprecated,in a future version this will reduce over both axes and return a scalarTo retain the old behavior, pass axis=0 (or do not pass axis).- skipnabool, default True
Exclude NA/null values. If an entire row/column is NA, the resultwill be NA.
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof,where N represents the number of elements.
- numeric_onlybool, default False
Include only float, int, boolean columns. Not implemented for Series.
- Returns:
- Series or DataFrame (if level specified)
Examples
>>>df=pd.DataFrame({'person_id':[0,1,2,3],...'age':[21,25,62,43],...'height':[1.61,1.87,1.49,2.01]}...).set_index('person_id')>>>df age heightperson_id0 21 1.611 25 1.872 62 1.493 43 2.01
>>>df.var()age 352.916667height 0.056367dtype: float64
Alternatively,
ddof=0
can be set to normalize by N instead of N-1:>>>df.var(ddof=0)age 264.687500height 0.042275dtype: float64
On this page