- API reference
- DataFrame
- pandas.DataFrame.le
pandas.DataFrame.le#
- DataFrame.le(other,axis='columns',level=None)[source]#
Get Less than or equal to of dataframe and other, element-wise (binary operatorle).
Among flexible wrappers (eq,ne,le,lt,ge,gt) to comparisonoperators.
Equivalent to==,!=,<=,<,>=,> with support to choose axis(rows or columns) and level for comparison.
- Parameters:
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axis{0 or ‘index’, 1 or ‘columns’}, default ‘columns’
Whether to compare by the index (0 or ‘index’) or columns(1 or ‘columns’).
- levelint or label
Broadcast across a level, matching Index values on the passedMultiIndex level.
- Returns:
- DataFrame of bool
Result of the comparison.
See also
DataFrame.eq
Compare DataFrames for equality elementwise.
DataFrame.ne
Compare DataFrames for inequality elementwise.
DataFrame.le
Compare DataFrames for less than inequality or equality elementwise.
DataFrame.lt
Compare DataFrames for strictly less than inequality elementwise.
DataFrame.ge
Compare DataFrames for greater than inequality or equality elementwise.
DataFrame.gt
Compare DataFrames for strictly greater than inequality elementwise.
Notes
Mismatched indices will be unioned together.NaN values are considered different (i.e.NaN !=NaN).
Examples
>>>df=pd.DataFrame({'cost':[250,150,100],...'revenue':[100,250,300]},...index=['A','B','C'])>>>df cost revenueA 250 100B 150 250C 100 300
Comparison with a scalar, using either the operator or method:
>>>df==100 cost revenueA False TrueB False FalseC True False
>>>df.eq(100) cost revenueA False TrueB False FalseC True False
Whenother is a
Series
, the columns of a DataFrame are alignedwith the index ofother and broadcast:>>>df!=pd.Series([100,250],index=["cost","revenue"]) cost revenueA True TrueB True FalseC False True
Use the method to control the broadcast axis:
>>>df.ne(pd.Series([100,300],index=["A","D"]),axis='index') cost revenueA True FalseB True TrueC True TrueD True True
When comparing to an arbitrary sequence, the number of columns mustmatch the number elements inother:
>>>df==[250,100] cost revenueA True TrueB False FalseC False False
Use the method to control the axis:
>>>df.eq([250,250,100],axis='index') cost revenueA True FalseB False TrueC True False
Compare to a DataFrame of different shape.
>>>other=pd.DataFrame({'revenue':[300,250,100,150]},...index=['A','B','C','D'])>>>other revenueA 300B 250C 100D 150
>>>df.gt(other) cost revenueA False FalseB False FalseC False TrueD False False
Compare to a MultiIndex by level.
>>>df_multindex=pd.DataFrame({'cost':[250,150,100,150,300,220],...'revenue':[100,250,300,200,175,225]},...index=[['Q1','Q1','Q1','Q2','Q2','Q2'],...['A','B','C','A','B','C']])>>>df_multindex cost revenueQ1 A 250 100 B 150 250 C 100 300Q2 A 150 200 B 300 175 C 220 225
>>>df.le(df_multindex,level=1) cost revenueQ1 A True True B True True C True TrueQ2 A False True B True False C True False